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A CHARACTERISTIC FREE TILTING BUNDLE FOR

GRASSMANNIANS

RAGNAR-OLAF BUCHWEITZ, GRAHAM J. LEUSCHKE,
AND MICHEL VAN DEN BERGH

Abstract. We construct a characteristic free tilting bundle on Grassmanni-
ans.

1. Introduction

Throughout K is a field of arbitrary characteristic. Let X be a smooth algebraic
variety over K. A vector bundle T on X is called a tilting bundle if it satisfies the
following two conditions.

(1) T classically generates the bounded derived category of coherent sheaves
Db(coh(X)). In other words, the smallest thick subcategory of Db(coh(X))
containing T is Db(coh(X)) itself.

(2) HomOX
(T , T [i]) = 0 for i 6= 0.

When K is a field of characteristic zero, Kapranov [7] constructs a tilting bundle on
the Grassmannian varietyG = Grass(l, F ) ∼= Grass(l,m) of l-dimensional subspaces
of an m-dimensional K-vector space F as follows: we have a tautological exact
sequence

(1.1) 0 −→ R −→ F∨ ⊗K OG −→ Q −→ 0

of vector bundles on G. For a partition α write Lα for the associated Schur func-
tor [9].

Theorem ([7]). Let Bu,v be the set of partitions with at most u rows and at most
v columns. Then the vector bundle

TK =
⊕

α∈Bl,m−l

LαQ

is a tilting bundle on G = Grass(l, F ).

For fields K of positive characteristic p, Kaneda [6] shows that TK remains tilting
as long as p > m − 1. However TK fails to be tilting in very small characteristics.
See Example 4.3 below.

In this note we give a tilting bundle on G which exists in arbitrary characteristic.
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Main Theorem. Define a vector bundle on G = Grass(l, F ) ∼= Grass(l,m) by

(1.2) T =
⊕

(u)

∧u1Q⊗ · · · ⊗
∧um−lQ ,

where the direct sum is over all sequences l > u1 > · · · > um−l > 1. Then T is a
tilting bundle on G.

In characteristic zero we recover Kapranov’s theorem by working out the tensor
products in (1.2) using Pieri’s formula. Of course in contrast to Kapranov’s tilting
bundle, our tilting bundle is far from being multiplicity-free. In Remark 4.4 below
we give some comments on the situation in characteristic p.

The proof of our main theorem depends on the following vanishing result which
we will also use in [2].

Proposition 1.1. Let u1, . . . , um−l be non-negative integers with uj > 0 for all j.
Then for all i > 0 and any partition γ one has

Hi
(

G, (
∧u1Q)

∨

⊗ · · · ⊗ (
∧um−lQ)

∨

⊗ LγQ
)

= 0 .

The proof of Proposition 1.1 is a consequence of Kempf’s vanishing theorem (see
Theorem 3.1 below) and the vanishing of the cohomology of certain line bundles on
projective space.

2. Acknowledgement
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3. Preliminaries

Throughout we use [5] as a convenient reference for facts about algebraic groups.
If H ⊂ G is an inclusion of algebraic groups over the ground field K, then the re-
striction functor from rational G-modules to rational H-modules has a right adjoint
denoted by indG

H ([5, I.3.3]). Its right derived functors are denoted by Ri indGH . For
an inclusion of groups K ⊂ H ⊂ G and M a rational K-representation there is a
spectral sequence [5, I.4.5(c)]

(3.1) Epq
2 : Rp indG

H Rq indHK M =⇒ Rp+q indGK M .

If G/H is a scheme and V is a finite-dimensional representation then LG/H(V )
is by definition the G-equivariant vector bundle on G/H given by the sections
of (G × V )/H . The functor LG/H(−) defines an equivalence between the finite-
dimensional H-representations and the G-equivariant vector bundles on G/H . The
inverse of this functor is given by taking the fiber in [H ].

If G/H is a scheme then Rn indGH may be computed as [5, Prop. I.5.12]

(3.2) Rn indG
H M = Hn(G/H,LG/H(M)) .

We now assume that G is a split reductive group with a given split maximal torus
and Borel T ⊂ B ⊂ G. We let X(T ) be the character group of T and we identify the
elements of X(T ) with the one-dimensional representations of T . The set of roots
(the weights of LieG) is denoted by R. We have R = R−

∐

R+ where the negative
roots R− represent the roots of LieB. For α ∈ R we denote the corresponding
coroot in Y (T ) = Hom(X(T ),Z) [5, II.1.3] by α∨. The natural pairing between
X(T ) and Y (T ) is denoted by 〈−,−〉. A weight λ ∈ X(T ) is dominant if 〈λ, α∨〉 > 0
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for all positive roots α. The set of dominant weights is denoted by X(T )+. For
other unexplained terminology and notations we refer to [5].

The following is the celebrated Kempf vanishing result ([8], see also [5, II.4.5]).

Theorem 3.1. If λ ∈ X(T )+ then Ri indG
B λ = Hi(G/B,LG/B(λ)) vanishes for

all strictly positive i.

4. Application to Grassmanians

We stick to the notation already introduced in the introduction. We will iden-
tify G = Grass(l, F ) with Grass(m − l, F∨) via the correspondence (V ⊂ F ) 7→
((F/V )∨ ⊂ F∨).

For convenience we choose a basis for (fi)i=1,...,m for F and a corresponding
dual basis (f∗

i )i for F
∨. We view G as homogeneous space G/P with G = GL(m)

and P ⊂ G the parabolic subgroup stabilizing the point (W ⊂ F∨) ∈ G where
W =

∑m
i=l+1 Kf∗

i . We let T and B be respectively the diagonal matrices and
the lower triangular matrices in G. We identify X(T ) and Y (T ) with Zm (with
εi being the ith natural basis element). Here

∑

aiεi corresponds to the character
diag(z1, . . . , zm) 7→ za1

1 · · · zam
m . Under this identification roots and coroots coincide

and are given by εi − εj, i 6= j, a root being positive if i < j. The pairing between
X(T ) and Y (T ) is the standard Euclidean scalar product and hence X(T )+ =
{
∑

i aiεi | ai > aj for i 6 j}.
Let H = G1 × G2 = GL(l) × GL(m − l) ⊂ GL(m) be the Levi-subgroup of P

containing T . We put Bi = B ∩Gi, Ti = T ∩Gi.
For use in the proof below we fix an additional parabolic P ◦ in G given by the

stabilizer of the flag (
∑

i>p Kf∗
i )p=1,...,l. We let G◦ = GL(m − l + 1) ⊂ P ◦ ⊂

G = GL(m) be the lower right (m − l + 1 × m − l + 1)-block in GL(m). We put
T ◦ = T ∩ G◦, B◦ = B ∩ G◦. I.e. B◦ is the set of lower triangular matrices in G◦

and T ◦ is the set of diagonal matrices.
We also recall the following.

Proposition 4.1 ([4, §4,§4.8][9, (4.1.10)]). Let γ = [γ1, . . . , γm] be a partition (i.e.
γ1 > γ2 > · · · > γm > 0) and let γ′ =

∑

i γiεi be the corresponding weight. Then

Lγ(F
∨) = indGB γ′ .

Proof of Proposition 1.1. Using the identity

(
∧u

Q)
∨

=
∧l−u

Q⊗K

(

∧l
Q
)

∨

and the characteristic free version of the Littlewood-Richardson rule (see Theo-
rem 4.2 below) we reduce immediately to the case u1 = · · · = um−l = l. The
tautological exact sequence (1.1) allows us to write

(

∧l
Q
)

∨

=
∧m

F ⊗K

∧m−l
R .

Thus we need to prove that

LγQ⊗
∧m−l

R⊗ · · · ⊗
∧m−l

R

(with m − l factors of
∧m−l

R) has vanishing higher cohomology. Using (3.2) we
see that we must prove that for i > 0 we have

(4.1) Ri indG
P

(

LγQx ⊗
∧m−l

Rx ⊗ · · · ⊗
∧m−l

Rx

)

= 0 ,



4 R.-O. BUCHWEITZ, G.J. LEUSCHKE, AND M. VAN DEN BERGH

where x = [P ] ∈ G/P = G. Since Q has rank l, we may assume that γ has at

most l entries. As above we write γ′ =
∑l

i=1 γiεi ∈ X(T1) for the corresponding
weight. Let σ ∈ X(T2) be given by (m− l)

∑m
i=l+1 εi and put γ = γ′ + σ ∈ X(T ).

As P/B ∼= (G1 ×G2)/(B1 ×B2) we have

LγQx ⊗
∧m−lRx ⊗ · · · ⊗

∧m−lRx = indG1

B1
γ′ ⊗ indG2

B2
σ

= indPB γ

The positive roots of G1 are of the form εi−εj with i < j and 1 6 i, j 6 l. Similarly
the positive roots of G2 are of the form εi − εj with i < j and l+ 1 6 i, j 6 m− l.

It follows that γ is dominant when viewed as a weight for T considered as a
maximal torus in H = G1 × G2. So Kempf vanishing implies that Ri indPB γ =

Ri indG1×G2

B1×B2
γ = 0 for all i > 0.

Thus the spectral sequence (3.1) degenerates and we obtain

(4.2) Ri indGP

(

LγQx ⊗
∧m−l

Rx ⊗ · · · ⊗
∧m−l

Rx

)

= Ri indGB γ .

Thus if γ is dominant (i.e. γl > m− l) then the desired vanishing (4.1) follows by
invoking Kempf vanishing again.

Assume then that γ is not dominant, i.e. 0 6 γl < m − l. We claim that

Ri indP
◦

B γ = 0 for all i. Then by the spectral sequence (3.1) applied to B ⊂ P ◦ ⊂ G

we obtain that Ri indGB γ = 0 for all i.

To prove the claim we note that P ◦/B ∼= G◦/B◦ and hence Ri indP◦

B γ =

Ri indG
◦

B◦(γ | T ◦). In other words we have reduced ourselves to the case l = 1
(replacing m by m− l+ 1).

So now we assume l = 1. Thus G = Pm−1. The partition γ consists of a single
entry γ1 and σ =

∑m
i=2(m − 1)εi. Under the assumption γ1 < m − 1 we have to

prove Ri indG
B γ = 0 for all i. Applying (4.2) in reverse this means we have to prove

that

Q⊗γ1 ⊗
(

∧m−1
R
)⊗m−1

has vanishing cohomology on Pm−1.
We now observe Q = OPm−1(1) and since

R = ker(Om
Pm−1 → OPm−1(1))

we also have
∧m−1

R = OPm−1(−1)

so that
Q⊗γ1 ⊗

∧m−1
R⊗m−1 = OPm−1(−m+ 1 + γ1)

It is standard that this line bundle has vanishing cohomology when γ1 < m−1. �

We have used the following result.

Theorem 4.2 (Boffi [1]). Let α and β be arbitrary partitions and E a K-vector
space. There is a natural (“good”) filtration on LαE ⊗K LβE whose associated
graded object is a direct sum of Schur functors LγE. The γ that appear, and their
multiplicities, can be computed using the usual Littlewood-Richardson rule.

In a good filtration as above, we may assume by [5, II.4.16, Remark (4)] that
the LγE which appear are in decreasing order for the lexicographic ordering on
partitions, that is, the largest γ appear on top.
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Proof of the Main Theorem. The main thing to prove is that ExtiOG
(T , T ) = 0 for

i 6= 0. It follows from the usual spectral sequence argument that ExtiOG
(T , T ) is

the ith cohomology of HomOG
(T , T ) = T ∨⊗T . Applying Theorem 4.2 we see that

it suffices to prove that T ∨ ⊗ LγQ has vanishing higher cohomology whenever γ is
a partition with at most l rows. This is the content of Proposition 1.1.

Kapranov’s resolution of the diagonal argument implies that TK still classically
generates Db(coh(G)) [6, §4]. Thus we must show that LαQ for α ∈ Bl,m−l is in
the thick subcategory C generated by T . Assume this is not the case and let α be
minimal for the lexicographic ordering on partitions such that LαQ is not in C.

Let α be the dual partition and consider U =
∧α1Q ⊗ · · · ⊗

∧αlQ. By Theo-
rem 4.2 and the comment following, U maps surjectively to LαQ and the kernel is
an extension of various LβQ with β < α (Pieri’s formula, which is a special case
of the Littlewood-Richardson rule, implies that LαQ appears with multiplicity one
in U). By the hypotheses all such LβQ are in C. Since U is in C as well we obtain
that LαQ is in C, which is a contradiction.

�

Example 4.3. Assume that K has characteristic 2 and put G = Grass(2, 4). Then
the short exact sequence

(4.3) 0 −→
∧2Q −→ Q⊗Q −→ S2Q −→ 0

is non-split. In particular Ext1OG
(S2Q,

∧2Q) 6= 0, so that S2Q and
∧2Q are not

common direct summands of a tilting bundle on G.

To see that (4.3) is not split, tensor with (
∧2

Q)∨ to obtain the sequence

(4.4) 0 −→ OG −→ End (Q) −→ (
∧2

Q)∨ ⊗ S2Q −→ 0

where the leftmost map is the obvious one. Any splitting of the inclusion OG −→
End (Q) is of the form Tr(a−), where Tr is the reduced trace and a is an element
of End(Q) such that Tr(a) = 1. Hence it is sufficient to prove that End(Q) = K
since in that case we have Tr(a) = 0 for any a ∈ End(Q).

By (the proof of) Proposition 1.1 we have Hi(G, (
∧2

Q)∨ ⊗ S2Q) = 0 for all i
(observe that if we go through to the proof we obtain a situation where γ is not
dominant, whence all cohomology vanishes) and of course we also haveH0(G,OG) =
K. Applying H0(G,−) to (4.4) thus shows End(Q) = K.

Remark 4.4. By [3, Lemma (3.4)] (at least when K is algebraically closed) we
obtain the following more economical tilting bundle for G

T ◦ =
⊕

α∈Bl,m−l

LG(M(α)) ,

whereM(α) is the tilting GL(l)-representation with highest weight α. Note however
that the character of M(α) strongly depends on the characteristic. Hence so does
the nature of T ◦.
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