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THE ADJOINT OF AN EVEN SIZE MATRIX FACTORS

RAGNAR-OLAF BUCHWEITZ AND GRAHAM LEUSCHKE

Abstract. We show that the adjoint matrix of a generic square matrix of
even size can be factored nontrivially. This answers a question of G. Bergman.
This note should be considered a preliminary report on work in progress.

1. Determinants and Derivations

1.1. Let K be a commutative ring, X = (xij) the generic (n × n)–matrix, whose
entries thus form a family of n2 indeterminates, and set S = K[xij ], the polynomial
ring over K in these variables.

1.2. The determinant det(X) of the generic matrix X is a nonzerodivisor in S, and
the classical adjoint matrix adj(X) of X is uniquely determined through either of
the following two matrix equations

(∗) adj(X)X = det(X) idn and X adj(X) = det(X) idn ,

where idn represents the n × n identity matrix.

1.3. We will use the following notation for minors of the generic matrix X : Let
[i1i2 . . . ik | j1j2 . . . jk] denote the (unsigned) determinant of the (k × k)–submatrix
of X that consists of the rows indexed 1 ≤ i1 < · · · < ik ≤ n, and of the columns
indexed 1 ≤ j1 < · · · < jk ≤ n.

The symbol [i1i2 . . . ik |̂ j1j2 . . . jk] will denote the complementary minor, thus,
the determinant of the (n− k)× (n− k)–submatrix of X obtained by removing the
rows indexed iν and the columns indexed jν . For consistency, the empty determi-
nant, for k = n, has value 1.

We extend the symbols [? | ?] and [? |̂ ?] to not necessarily strictly increasing
index sets by requiring them to be alternating in both the left and right arguments.
In particular, each symbol vanishes if there is repetition of indices either before or
after the vertical bar.

1.4. If U is any (n×n)–matrix over some K–algebra R, then there exists a unique
K–algebra homomorphism evU : S → R, xij 7→ uij that transforms the entries of
X to those of U . Let [. . .](U) = evU ([. . .]) represent the corresponding minor of the
matrix U , and write It(U) ⊆ R for the ideal generated by all the (t × t)–minors of
U . The transpose of a matrix U will be denoted UT .

Example 1.5. The (i, j)-th entry of the adjoint matrix can be written as

adj(X)ij = (−1)i+j [j |̂ i] = (−1)i+j [1 . . . ĵ . . . n | 1 . . . î . . . n] .
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2 RAGNAR-OLAF BUCHWEITZ AND GRAHAM LEUSCHKE

1.6. Recall that a map D : R → R, on a not necessarily commutative ring R, is a
derivation if D(ab) = D(a)b + aD(b) for any elements a, b ∈ R.

For example, the partial derivation ∂ij = ∂
∂xij

with respect to the variable xij

defines a derivation on S that is furthermore K–linear. These partial derivations
form indeed a basis of the free S–module DerK(S) of all K–linear derivations on S,

DerK(S) ∼=
⊕

1≤i,j≤n

S∂ij .

Now we state the facts on derivations and minors that we will use.

Lemma 1.7. If R is a commutative ring, D : R → R a derivation, and U an

(n × n)–matrix over R, then

D(detU) =

n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣

u11 · · · u1n

...
...

D(ui1) · · · D(uin)
...

...

un1 · · · unn

∣∣∣∣∣∣∣∣∣∣∣∣

=

n∑

i=1

∣∣∣∣∣∣∣

u11 · · · D(u1j) · · · u1n

...
...

...

un1 · · · D(unj) · · · unn

∣∣∣∣∣∣∣

where |V | denotes the determinant of the matrix V .

Proof. This follows immediately from the Leibnitz rule for derivations applied to
the complete expansion of the determinant. �

Lemma 1.8. Let X be again the generic matrix and S the associated polynomial

ring over K.

(1) For any pair of indices 1 ≤ i, j ≤ n,

∂ij(detX) = adj(X)ji

equivalently,

adj(X)T = (∂ij(detX))ij .

(2) For any pair of indices 1 ≤ i, j ≤ n,

n∑

ν=1

xiν∂jν(detX) = δij det(X) =

n∑

ν=1

xνi∂νj(detX) ,

where δij is the Kronecker symbol.
(3) For any indices 1 ≤ i1, i2, . . . , ik ≤ n and 1 ≤ j1, j2, . . . , jk ≤ n,

∂i1j1 · · ·∂ikjk
(det X) = (−1)i1+···+ik+j1+···jk [i1 . . . ik |̂ j1, . . . , jk] ,

in particular, these terms vanish whenever there is a repetition among the

i’s or the j’s.

Proof. Claim (1) follows from 1.7 with D = ∂ij and U = X . In view of (1), claim
(2) is simply a reformulation of the equation (∗) above. To see (3), apply first 1.7
or (1) to the generic matrix using the derivation ∂ikjk

, and then use induction on
k ≥ 1. �



FACTORING THE ADJOINT 3

2. The Factorizations

We now use the “differential calculus” from the previous section to establish two
factorization results about products of the transpose of the adjoint matrix with
alternating matrices on one or both sides. Recall that an (n×n)–matrix A = (akl)
is alternating if AT = −A and the diagonal elements vanish, akk = 0 for each
k = 1, . . . , n. The latter condition is of course a consequence of the first as soon as
2 is a nonzerodivisor in K.

Theorem 2.1. Let U, A be (n × n)–matrices over a commutative ring R, with A

alternating. The (n × n)–matrix B = (brs) with entries from I1(A) · In−2(U) ⊆ R,

given by

brs =
∑

k<l

akl(−1)k+l+r+s[kl |̂ rs](U)

is then alternating as well and satisfies the matrix equation

(∗∗) A · adj(U)T = UB .

If detU is a nonzerodivisor in R, then B is the unique solution to this equation.

Proof. As [kl |̂ sr] = −[kl |̂ rs] and [kl |̂ rr] = 0, the matrix B is alternating. To
verify that B satisfies (∗∗), it suffices to establish the generic case, where R = S and
U = X . Let Eij denote the elementary (n×n)–matrix with 1 at position (i, j) as its
only nonzero entry. Recall that ErsEuv = δsuErv for any indices 1 ≤ r, s, u, v ≤ n.

As ∂kr∂ls(detX) = (−1)k+l+r+s[kl |̂ rs] by Lemma 1.8(3), the right hand side of
(∗∗) expands now first as

XB =

(∑

i,ν

xiνEiν

)(∑

µ,j

∑

k<l

akl∂kµ∂lj(det X)Eµj

)

=
∑

k<l

akl

∑

i,j

(∑

ν

xiν∂kν∂lj(detX)

)
Eij .

The innermost sum can be simplified using first that partial derivatives commute,
then applying the product rule, and finally invoking Lemma 1.8(2) together with
the fact that ∂lj(xiν) = δilδjν . In detail, these steps yield the following equalities:

∑

ν

xiν∂kν∂lj(detX) =
∑

ν

xiν∂lj∂kν(detX)

=
∑

ν

∂lj

(
xiν∂kν(detX)

)
−
∑

ν

∂lj(xiν)∂kν (detX)

= ∂lj

(∑

ν

xiν∂kν(detX)

)
− δil

∑

ν

δjν∂kν(det X)

= δik∂lj(det X) − δil∂kj(det X)
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In light of this simplification, we may expand XB further as follows:

XB =
∑

k<l

akl

∑

i,j

(∑

ν

xiν∂kν∂lj(det X)

)
Eij

=
∑

k<l

akl

∑

i,j

(
δik∂lj(detX) − δil∂kj(detX)

)
Eij

=
∑

k<l

akl

∑

j

(
∂lj(det X)Ekj − ∂kj(detX)Elj

)

=
∑

k<l

akl

(
Ekl

∑

j

∂lj(detX)Elj − Elk

∑

j

∂kj(detX)Ekj

)

=
∑

k<l

akl

(
Ekl

∑

i,j

∂ij(detX)Eij − Elk

∑

i,j

∂ij(detX)Eij

)

=
∑

k<l

akl

(
Ekl − Elk

)∑

i,j

∂ij(detX)Eij

= A · adj(X)T

with the last equality using that A is alternating, thus A =
∑

k<l akl(Ekl − Elk),

and that adj(X)T =
∑

ij ∂ij(det X)Eij , in view of 1.8(1).

The final assertion about uniqueness follows from (∗∗) by multiplying from the
left with adj(U) and using equation (∗) to obtain

adj(U) · A · adj(U)T = det(U)B .

�

Remark 2.2. One may formulate 2.1 equally well for multiplication of the trans-
pose of the adjoint matrix from the right by an alternating matrix. Namely, assume
A, B are (n × n)–matrices over S satisfying A adj(X)T = XB. Let ϕ : S → S be
the K–algebra automorphism uniquely determined through ϕ(xij) = xji. Clearly,
ϕ is involutive and exchanges X and its transpose, ϕ(X) = XT . Moreover,
ϕ(adj(X)) = adj(X)T , in view of equation (∗). Now

A adj(X)T = XB if, and only if,

ϕ(A)ϕ(adj(X)T ) = ϕ(X)ϕ(B) if, and only if,

ϕ(A) adj(X) = XT ϕ(B) if, and only if,

adj(X)T ϕ(A)T = ϕ(B)T X .

In case A, B are alternating, then so are ϕ(A), ϕ(B) and the last equation is equiv-
alent to

adj(X)T ϕ(A) = ϕ(B)X .

We now investigate what happens when multiplying simultaneously from both
left and right.

Theorem 2.3. Let U, A, B denote the same matrices as introduced in 2.1. If A′ is

another alternating (n×n)–matrix, then the (n×n)–matrix C = (cwm) with entries
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from I1(A) · In−3(U) · I1(A
′) ⊆ R given by

cwm =
∑

k<l,u<v

(−1)k+l+m+u+v+wakl[klm |̂ uvw](U)a′
uv

satisfies

(***) BA′ = r idn +CU ,

where

r = −
∑

k<l,u<v

(−1)k+l+u+vakl[kl |̂ uv](U)a′
uv ∈ R .

Proof. It suffices again to verify the result for the generic matrix U = X , in which
case we can employ once more the description of minors as given in 1.8(3). The
straighforward calculation proceeds then as follows:

(BA′ − r idn)ij =
∑

m

∑

k<l

(−1)k+l+i+makl[kl |̂ im]a′
mj

+ δij

∑

k<l

∑

u<v

(−1)k+l+u+vakl[kl |̂ uv]a′
uv

=
∑

k<l

akl

(
∑

m

∂ki∂lm(detX)a′
mj +

∑

u<v

∂ku∂lv(detX)a′
uvδij

)

=
∑

k<l,m

akl

(
∂ki∂lm(detX)a′

mj +
∑

u<v

∂ku∂lv (∂mi(det X)xmj) a′
uv

)

where we have used 1.8(2) in the last step. Using the product rule twice together
with ∂rs(xmn) = δrmδsn , we find next

∂ku∂lv (∂mi(det X)xmj) = ∂ku∂mi(det X)δlmδvj + ∂lv∂mi(detX)δkmδuj

+ ∂ku∂lv∂mi(detX)xmj

Substituting and evaluating the Kronecker symbols yields

(BA′ − r idn)ij =
∑

k<l,m

akl

(
∂ki∂lm(det X)a′

mj +
∑

u<v

∂ku∂lv (∂mi(detX)xmj) a′
uv

)

=
∑

k<l

akl




∑

m

∂ki∂lm(det X)a′
mj +

∑

u<j

∂ku∂li(detX)a′
uj

+
∑

j<v

∂ki∂lv(det X)a′
jv +

∑

u<v,m

∂ku∂lv∂mi(det X)a′
uvxmj





The terms involving only second order derivatives of the determinant cancel. To
see this, rename summation indices, use that ∂km∂li(det X) = −∂ki∂lm(det X) and
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that A′ is alternating, whence its entries satisfy a′
mm = 0, a′

jm = −a′
mj. In detail,

(BA′ − r idn)ij =
∑

k<l

akl




∑

m

∂ki∂lm(det X)a′
mj −

∑

m<j

∂km∂li(detX)a′
mj

−
∑

j<m

∂ki∂lm(det X)a′
mj +

∑

u<v

∑

m

∂ku∂lv∂mi(det X)a′
uvxmj





=
∑

m




∑

k<l,u<v

akl∂ku∂lv∂mi(det X)a′
uv



xmj

=
∑

m




∑

k<l,u<v

(−1)k+l+m+u+v+iakl[klm |̂ uvi]a′
uv



xmj

= (CX)ij

where we have evaluated the third order derivatives of the determinant according
to 1.8(3). �

Combining the results from 2.1 and 2.3 yields the following.

Corollary 2.4. Let U, A, A′ be (n× n)–matrices over a commutative ring R, with

A, A′ alternating. One then has an equality of matrices

A adj(U)T A′ = rU + UCU ,

where r and C are as specified in 2.3. �

Remark 2.5. The element r ∈ I1(A) · In−2(U) · I1(A
′) ⊆ R is a “half trace” of

BA′, as

tr(BA′) =
∑

k<l

∑

i,j

akl(−1)k+l+i+j [kl |̂ ij]a′
ji

= 2
∑

k<l

∑

i<j

akl(−1)k+l+i+j [kl |̂ ij]a′
ji

= 2r

invoking once again that A′ is alternating. Equivalently, tr(CU) = (2 − n)r .

Remark 2.6. If n = 2, all expressions of the form [klm |̂ uvi] vanish, and 2.1
together with 2.3 specialize to the easily established identity

(
0 a

−a 0

)(
x22 −x21

−x12 x11

)(
0 b

−b 0

)
= −ab

(
x11 x12

x21 x22

)
.

If the size n = 2m is even, then there are invertible alternating matrices of that
size over any commutative ring. For example, the alternating “hyperbolic matrix”(

0 idm

− idm 0

)
has determinant equal to 1 over any ring.
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Corollary 2.7. If n is even, then the adjoint of the generic matrix admits nontrivial

factorizations

adj(X) = Y Z = Y ′Z ′

into products of (n × n)–matrices over S with det(Y ) = det(Z ′) = det(X).
More precisely, any pair of alternating (n × n)–matrices A, A′ of determinant

equal to 1 over S gives rise to such factorizations. With r and C the data associated

to A, A′ as in 2.3, one may take

Y = (A′)−1XT and Z = (r idn +CT XT )A−1 ,

Y ′ = (A′)−1(r idn +XT CT ) and Z ′ = XT A−1 .

Proof. Transposing the equation in 2.4 for U = X yields first

(A′)T adj(X)AT = rXT + XT CT XT .

As A, A′ are invertible and alternating, this equality is equivalent to

adj(X) = (A′)−1(rXT + XT CT XT )A−1 .

�

Remark 2.8. Bergman [1] shows that, over a field K of characteristic zero, in any
factorization adj(X) = Y Z of the generic adjoint matrix into noninvertible factors,
either det(Y ) = det(X) or det(Z) = det(X), up to units of S .
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