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Abstract 

Chamberlain (1982) showed that the fixed effects (FE) specification imposes testable 

restrictions on the coefficients from regressions of all leads and lags of dependent variables on 

all leads and lags of independent variables. Angrist and Newey (1991) suggested computing this 

test statistic as the degrees of freedom times the R2 from a regression of within residuals on all 

leads and lags of the exogenous variables. Despite the simplicity of these tests, they are not 

commonly used in practice. Instead, a Hausman (1978) test is used based on a contrast of the 

fixed and random effects specifications. We advocate the use of Chamberlain (1982) test if the 

researcher wants to settle on the FE specification and we check this test’s performance using 

Monte Carlo experiments and we apply it to the crime example of Cornwell and Trumbull 

(1994). 
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1 Introduction

Chamberlain (1982) showed that the fixed effects (FE) specification imposes
testable restrictions on the coefficients from regressions of all leads and lags
of the dependent variable on all leads and lags of the independent variables.
Chamberlain suggested the estimation and testing of these restrictions us-
ing a minimum chi-squared (MCS) method with the test statistic being the
minimand. Angrist and Newey (1991) demonstrated that this MCS method
has 3SLS equivalents and that the resulting over-identification test statistic
is equivalent to the MCS test statistic suggested by Chamberlain (1982). In
addition, they showed that in the standard fixed effects model with remainder
disturbances having a scalar identity covariance matrix, this MCS test statis-
tic can be obtained as the sum of T terms. Each term of this sum is simply
the degrees of freedom times the R2 from a regression of within residuals for
a particular period on all leads and lags of the independent variables. They
applied this test to the union-wage effect using data from the NLSY random
subsample of civilian men observed over the period 1983-1987. They failed
to reject the fixed effects specification for the union-wage example. Next,
they applied it to the estimation of the returns to schooling in a conventional
human capital earnings equation. They found that the fixed effects estimates
of the returns to schooling in the NLSY were roughly twice those of OLS.
However, the over-identification test rejected the fixed effects restrictions.
Unfortunately, this careful testing of the FE restrictions has not been

the usual practice in empirical work. In fact, the standard practice is to
run a Hausman (1978) test. The latter statistic is based upon a contrast
between the FE and random effects (RE) estimators. The RE estimator is
an efficient estimator under the null hypothesis that the conditional mean
of the disturbances given the regressors is zero, while the FE estimator is
consistent under the null and alternative hypotheses. Not rejecting this null,
the applied researcher reports the RE estimator. Otherwise, the researcher
reports the FE estimator, see Owusu-Gyapong (1986) and Cardellichio (1990)
for two such applications1. Rejecting the null of the Hausman test implies
that the RE estimator is not consistent. This does not necessarily mean that
the FE restrictions are satisfied. Therefore, a natural next step would be to
test the FE restrictions before settling on this estimator as the preferred one.

1For more discussion on the fixed versus random effects specification in panel data, see
Baltagi (2008).
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The aim of this paper is to check the performance of Chamberlain’s test
for the FE restrictions. This is done via Monte Carlo experiments. In one-
design we let all regressors be correlated with the individual effects at every
point in time, i.e., a Chamberlain reduced form (case 1). In another design,
we let one regressor be correlated with the individual effects, whereas the
other is not. Section 2 describes the model, the Chamberlain (1982) and the
equivalent Angrist and Newey (1991) reformulation, and sets up the Monte
Carlo design. Section 3 presents the Monte-Carlo results, while section 4
applies this test to the crime example of Cornwell and Trumbull (1994).
Section 5 concludes.

2 The Model and Monte Carlo Design

Consider the panel data regression model with two regressors:

yi,t = x1,i,tβ1 + x2,i,tβ2 + αi + ui,t (1)

where i = 1, 2, . . . , N , t = 1, 2, . . . , T and x0i,t = [x1,i,t, x2,i,t]. Following
Chamberlain (1982), we specify the relationship between the unobserved in-
dividual effects αi and xi,t as follows:

αi = x
0
i,1λ1 + ...+ x

0
i,TλT + µi (2)

where λt is 2×1, µi is not correlated with x0i,t and ui,t ∼ IIN(0,σ2
u) and µi ∼

IIN(0,σ2
µ). For our experiments, we fix β1 = β2 = 1; and we let N = 100

and T = 5 and 11. The number of replications is 1000. We also fix the total
variance (σ2

α + σ
2
u) = 20 and vary ρ = σ2

α/ (σ
2
α + σ

2
u) over the values (0.2,

0.5, 0.9).
The error terms ui,t and µi are uncorrelated with xi,1, ..., xi,T , and with

each other by construction. Let y
0
i = (yi1, ..., yiT ) and x

0
i =

¡
x

0
i1, ..., x

0
iT

¢
and

denote the “reduced form” regression of y
0
i on x

0
i by

y
0
i = x

0
iπ + ηi (3)

The restrictions between the reduced form and structural parameters are
given by

π = (IT ⊗ β) + λι0T (4)
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with λ
0
=

³
λ

0
1, ...,λ

0
T

´
, β0 = (β1, β2), and ιT is a vector of ones of dimension

T . Chamberlain (1982) suggested estimation and testing be carried out using
the minimum chi-square (MCS) method. Let bπ be a consistent estimator of
π, MCS estimates of β and λ are computed by minimizing

Nvec
³bπ − ((IT ⊗ β) + λι0T )´0 bΩ−1vec

³bπ − ((IT ⊗ β) + λι0T )´ (5)

where bΩ is a consistent estimate of the asymptotic variance of√Nvec (bπ − π) .
The minimand is a χ2 goodness of fit statistic for the restrictions on the re-
duced form with 2T 2 − (2T + 2) degrees of freedom. Angrist and Newey
(1991) showed that the minimand can be obtained as the sum of T terms.
Each term of this sum is simply the degrees of freedom times the R2 from
a regression of the Within residuals for a particular period on all leads and
lags of the independent variables.
For the Monte Carlo experiments, the explanatory variables are generated

by:

xj,i,t = δj,i + ωj,i,t (6)

with δj,i ∼ N(mδj
,σ2

δj
) and ωj,i,t ∼ N(mωj

,σ2
ωj
). Except for case 2, we have

mδ1 = mω1 = 5, mδ2 = mω2 = 10 and σ
2
ω1
= σ2

ω2
= σ2

ω = 2, σ
2
δ1
= σ2

δ2
= σ2

δ =
8, so σ2

x1
= σ2

x2
= σ2

x = 10.
Case 1. x1 and x2 are correlated with αi. For simplicity, we assume that

the contributions of x1 and x2 to the total variance of σ2
α in (2) are the same.

In particular,

σ2
α = λ

2
1T

¡
σ2
ω1
+ Tσ2

δ1

¢
+ λ2

2T
¡
σ2
ω2
+ Tσ2

δ2

¢
+ σ2

µ (7)

Hence, if we let λ2
1T

¡
σ2
ω1
+ Tσ2

δ1

¢
= λ2

2T
¡
σ2
ω2
+ Tσ2

δ2

¢
, we get

λ1 = λ2 =

s
σ2
α − σ2

µ

2T (σ2
ω + Tσ

2
δ)
,∀t (8)

Case 2. x1 is not correlated with αi, but x2 is correlated with αi. In this
case, λ1t = 0, ∀t, so expression (7) reduces to
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σ2
α = λ

2
2T

¡
σ2
ω2
+ Tσ2

δ2

¢
+ σ2

µ (9)

with

λ2 =

s
σ2
α − σ2

µ

T
¡
σ2
ω2
+ Tσ2

δ2

¢ ,∀t (10)

3 Monte Carlo results

Table 1 gives the size of the Minimum Chi-Squared (MCS) Chamberlain test
and its Angrist-Newey (AN) alternative, using the 1%, 5% and 10% signifi-
cance levels. This is done for T = 5, 11, 20 and N = 100, and ρ = 0.2, 0.5, 0.9.
The degrees of freedom of the χ2 statistics are 38 for T = 5; 218 for T = 11;
and 758 for T = 20. Their means should be 38, 218, and 758, and their
variances should be 76, 436, and 1516, respectively. The empirical means,
based on 1000 replications, for both statistics are very close to their theoret-
ical values for all experiments conducted. However, the empirical variances,
based on 1000 replications, are understated. This is more serious for large T.
Rather than 76 we get variances between 60 and 71 for T = 5, depending on
the experiment performed. Also, rather than 436 we get variances between
281 and 358 for T = 11, depending on the experiment performed. The worst
case is for T = 20, where the variance varies between 694 and 908 rather than
1516. A similar phenomenon was observed by Bowsher (2002) for the Sargan
over-identification test in the context of dynamic panel data GMM estima-
tion. Table 1 reports the frequency of rejections in 1000 replications for the
MCS Chamberlain test and its associated Angrist-Newey version. Since the
null hypothesis is always true, this represents the empirical size of the test.
For T = 5, the size of the MCS and AN tests overstate the 5% level for
ρ = 0.2 yielding 10.9 to 12.9% rejections. This improves as ρ increases to
0.5 yielding rejections between 7.2 to 9.3%. For ρ = 0.9, the corresponding
rejections are between 3.3 to 4.8%. The results get better when T increases
to 11. The size of the MCS and AN tests at the 5% level for ρ = 0.2 yield 6.6
to 8.9% rejections. For ρ = 0.5 the empirical size is between 4.7 to 6.1%. For
ρ = 0.9, the corresponding size is understated varying between 2.3 to 3.2%.
For T = 20, the empirical size of the MCS and AN tests understate the 5%
level. The only exception is for ρ = 0.2 for the AN version of the test. This is
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not surprising given the understating of the true variance of the test statistic
as T gets large. The last part of Table 1 reports the conflict between the
MCS and AN tests in 1000 replications at various levels of significance. As
clear from the table, there is at most 2.2 % conflict in the decision rendered
by these two identical tests at the 5% level.

4 Empirical example

Cornwell and Trumbull (1994), hereafter (CT), estimated an economic model
of crime using panel data on 90 counties in North Carolina over the period
1981-1987. The empirical model relates the crime rate (which is an FBI
index measuring the number of crimes divided by the county population) to
a set of explanatory variables which include deterrent variables as well as
variables measuring returns to legal opportunities. All variables are in logs
except for the regional dummies. Here we focus on the explanatory variables
that were significant in the fixed effects specification of CT. This was their
prefered estimator. These variable include the probability of arrest PA (which
is measured by the ratio of arrests to offences), the probability of conviction
given arrest PC (which is measured by the ratio of convictions to arrests),
the probability of a prison sentence given a conviction PP (measured by the
proportion of total convictions resulting in prison sentences); the number
of police per capita as a measure of the county’s ability to detect crime
(Police); the population density, which is the county population divided by
county land area (Density); percent minority, which is the proportion of
the county’s population that is minority or non-white; regional dummies for
western and central counties. Opportunities in the legal sector are captured
by the average weekly wage in the county by industry. These industries are:
transportation, utilities and communication (wtuc); manufacturing (wmfg).
Table 2 shows the fixed effects and MCS estimates. Compared to the FE

estimates of CT, removing the insignificant variables does not change the
results much, neither in magnitude nor in significance. The MCS estimates
are slightly different from the FE estimates, with Police for example having
an estimate of 0.305 for MCS as compared 0.412 for FE. The Chamberlain
MCS test for the restrictions imposed by (4) yield a χ2 value of 415.7 which
is significant. Hence, the null is rejected, and the FE assumption may be
inappropriate for the crime example.
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Table 2. – Economics of Crime Estimates for North Carolina, 1981-1987
(standard errors and t-stats are in parentheses)

Fixed effects MCS
Constant −5.444

(0.915)

(−5.945)

PA −0.351
(0.032)

(−10.945)

−0.341
(0.027)

(−12.377)

PC −0.282
(0.021)

(−13.405)

−0.229
(0.016)

(−13.888)

PP −0.173
(0.032)

(−5.389)

−0.180
(0.023)

(−7.637)

Police 0.412
(0.026)

(15.796)

0.305
(0.026)

(11.584)

Density 0.482
(0.278)

(1.730)

0.310
(0.313)

(0.990)

wtuc 0.047
(0.018)

(2.479)

0.012
(0.011)

(1.128)

wmfg −0.347
(0.109)

(−3.185)

−0.233
(0.065)

(−3.557)

Percent minority 0.204
(0.035)

(5.725)

west −0.197
(0.091)

(−2.176)

central −0.051
(0.045)

(−1.124)

χ2
311 = 415.702

5 Conclusion

The random effects (RE) model in panel data is usually criticized for impos-
ing restrictive conditions requiring the independence of the individual effects
and the regressors. Rejection of the RE model by a Hausman (1978) test
does not necessarily mean that the researcher should adopt a FE specifica-
tion. Instead, we argue that one should run the Chamberlain (1982) test or
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its Angrist-Newey (1991) alternative to check that the restrictions imposed
by a FE model are valid. Our Monte Carlo results show that these tests yield
the same decision and are in conflict at most 2.2 % of the time. One caveat,
is that like the Sargan overidentification test for dynamic panels, the MCS
test tends to understate the true variance of the test statistic as T gets large.
This is because as T gets large, the number of testable restrictions increase
and the variance of the test statistic is understated. We illustrate the Cham-
berlain MCS test for the crime data of Cornwell and Trumbull (1994) finding
that the FE restrictions are rejected by the data. When the Chamberalin test
rejects the FE specification, and by default the reduced form implied by it,
relating the individual effects to all the regressors at every point in time, we
suggest careful examination of which regressors may or may not be correlated
with the individual effects. In this case, one should be willing to entertain
a more restricted model where only a subset of the regressors are correlated
with the individual effects as proposed by Hausman and Taylor (1981). This
would impose less restrictions than the general Chamberlain model and is
also testable with a Hausman test. Alternatively, one could question the
endogeneity of the regressors with the disturbances and not only with the
individual effects. This endogeneity leads to inconsistency of the FE estima-
tor and invalidates the Hausman test performed based on the fixed effects
versus the random effects estimator, see Baltagi (2008). This requires an
instrumental variable approach resulting in a fixed effects 2sls rather than a
simple fixed effects estimator. The latter approach was actually considered
in the application by Cornwell and Trumbull (1994). More generally, one
could question the constancy of the parameters assumption over time which
is underlying the panel data model and the fixed effects and random effects
specification, see Crepon and Mairesse (2008) for an excellent survey as well
as extensions of the Chamberlain model.
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Table 1. - Size of MCS and Angrist-Newey tests for N=1001  
 

  Case 1 
x1 and x2 correlated with αi    

Case 2 
Only x2 is correlated with αi 

 ρ 0.9 0.5 0.2 0.9 0.5 0.2 
 T        
MCS           
   1% size 5 

11 
20 

0.50 
0.20 
0.10 

0.70 
0.30 
0.10 

1.30 
0.40 
0.10 

0.40 
0.10 
0.10 

0.70 
0.10 
0.10 

1.00 
0.20 
0.20 

   5% size 5 
11 
20 

4.10 
3.00 
1.20 

8.20 
5.70 
2.40 

11.40 
7.40 
3.30 

3.30 
2.30 
1.20 

7.20 
4.70 
2.40 

10.90 
6.60 
3.30 

   10% size 5 
11 
20 

8.70 
6.50 
3.80 

17.40 
12.80 
7.90 

25.10 
16.50 
11.80 

8.00 
5.60 
3.80 

16.60 
11.50 
7.90 

23.20 
17.60 
11.80 

   Mean 5 
11 
20 

37.98 
218.45 
760.38 

38.46 
218.11 
761.37 

37.88 
217.36 
760.10 

38.21 
217.94 
760.38 

38.24 
218.61 
761.37 

37.94 
219.42 
760.10 

   Variance 5 
11 
20 

66.62 
327.18 
694.38 

64.95 
308.28 
695.70 

62.31 
290.73 
741.68 

60.22 
280.50 
694.38 

66.42 
288.82 
695.78 

66.69 
288.85 
741.72 

Angrist-Newey        
   1% size 5 

11 
20 

0.90 
0.50 
0.00 

1.20 
1.20 
0.20 

1.70 
1.40 
0.30 

0.20 
0.30 
0.00 

0.80 
0.60 
0.20 

1.70 
0.70 
0.30 

   5% size 5 
11 
20 

4.80 
3.20 
2.10 

9.30 
6.10 
3.80 

12.90 
8.10 
5.60 

4.30 
2.90 
2.10 

8.20 
6.10 
3.80 

11.70 
8.90 
5.60 

   10% size 5 
11 
20 

8.80 
7.20 
5.00 

17.50 
13.90 
9.60 

24.60 
18.50 
14.70 

9.00 
5.80 
5.00 

17.90 
12.60 
9.60 

24.50 
20.10 
14.70 

   Mean 5 
11 
20 

37.95 
218.01 
759.17 

38.38 
218.28 
760.20 

37.80 
217.09 
757.99 

38.13 
217.47 
759.17 

38.13 
218.75 
760.20 

37.83 
219.22 
757.99 

   Variance 5 
11 
20 

71.48 
358.25 
694.38 

69.10 
347.13 
695.70 

63.90 
320.25 
741.68 

64.32 
314.93 
874.42 

69.20 
322.04 
863.30 

70.10 
309.41 
908.16 

Conflict (%)        
   for   1% size 5 

11 
20 

0.40 
0.50 
0.10 

0.40 
0.50 
0.10 

0.40 
0.50 
0.10 

0.20 
0.20 
0.10 

0.20 
0.20 
0.10 

0.20 
0.20 
0.10 

   for   5% size 5 
11 
20 

1.30 
2.00 
1.90 

1.20 
2.00 
1.90 

1.20 
2.00 
1.90 

2.20 
1.20 
1.90 

2.10 
1.20 
1.90 

1.90 
1.20 
1.90 

   for 10% size 5 
11 
20 

2.50 
3.30 
3.60 

2.20 
3.20 
3.20 

2.20 
2.80 
3.10 

2.80 
2.60 
3.60 

2.50 
2.50 
3.20 

2.30 
2.40 
3.10 

 

                                                 
1 For 1000 replications. 
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