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Abstract 

 
 

Contrary to early predictions of sperm competition theory, postcopulatory sexual 
selection favoring increased investment per sperm (e.g., sperm size, sperm 
quality) has been demonstrated in numerous organisms.  Recent findings reveal 
that sperm production strategies are highly variable, with males of some species 
producing relatively few, giant sperm.  We empirically demonstrate for 
Drosophila melanogaster that both sperm quality and sperm quantity 
independently contribute to competitive male fertilization success.  The 
interaction between sperm quality and quantity suggests an internal positive 
reinforcement on selection for sperm quality, with selection predicted to intensify 
as investment per sperm increases and the number of sperm competing declines.  
The mechanism underlying the sperm quality advantage is elucidated through 
examination of the relationship between female sperm-storage organ morphology 
and the differential organization of different length sperm within the organ.  Our 
results exemplify that primary sex cells can bear secondary sexual straits. 
 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                       Pattarini et al.  3 

Table of Contents 

 
 
 
 
 
Introduction          1 
 
 
 
Methods        11 
 
 
 
Results         21 
 
 
 
Discussion          27 

 
 
Tables and Figures     43 

 

 
Sources Cited and Consulted    58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 



                                                                                       Pattarini et al.  4 

 

 

We would like to thank Bridgette Byrnes for superb technical assistance and D. 

Althoff, D. Higginson, G.T. Miller, C. Rhodes, B. Roumasset, R. Schmedicke, K. 

Segraves and J.A.C. Uy for useful comments.  This research was supported by a 

Ruth Meyer Scholarship from Syracuse University to J.M.P. and by grants from 

the National Science Foundation to Scott Pitnick (DEB-0075307 and DEB-

0315008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

 
 



                                                                                       Pattarini et al.  5 

Studies indicate postcopulatory sexual selection exists in certain female types 

creating a bias in favor of long sperm (Pitnick 1999, Briskie 1997, Gage 1994).  

This is directly opposed to the accepted dogma that a winning strategy for 

fertilization success is for males to produce high numbers of low-investment 

(small size) gametes.  Since previous studies have clearly shown not only an 

increase in fertilization success with increasing sperm number, as would be 

expected, but also an increase with sperm size in some systems, we set out to 

compete these antagonistic traits against each other.  It was recently suggested 

that the long sperm tails of Drosophila are the cellular, postcopulatory equivalent 

of peacock tails (Miller and Pitnick 2002).  A compelling body of evidence 

supports this contention (Keller and Reeve 1995; Snook 2005).  First, sperm cells 

are the most diverse cell type known, exhibiting rapid and dramatic evolutionary 

divergence in form (Baccetti 1986; Jamieson 1991; Jamieson et al. 1999; Morrow 

2004; Pitnick et al. 1995a; Pitnick et al. 2003; Sivinski 1984), as expected of traits 

subject to intense sexual selection (Andersson 1994; Eberhard 1985).  Second, 

intraspecific variation in sperm size positively correlates with fertilization success 

in the bulb mite Rhizoglyphus robini (Radwan 1996), the nematode 

Caenorhabditis elegans (LaMunyon and Ward 1998) and in the freshwater snail 

Viviparus ater (Oppliger et al. 2003).  Third, selection lines of C. elegans evolved 

larger sperm in response to experimentally increased levels of sperm competition 

(LaMunyon and Ward 2002), and males from lines of the fruitfly, Drosophila 

melanogaster, experimentally selected to have longer sperm demonstrated 

enhanced competitive fertilization success (Miller & Pitnick 2002; but see Gage 

& Morrow 2003, discussed in detail below).  Fourth, comparative studies of a 
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diverse array of taxa have found a significant positive relationship between sperm 

length and the risk or intensity of sperm competition (mammals: (Gomendio and 

Roldan 1991); primates: (Dixson 1993); birds: (Briskie and Montgomerie 1992; 

Briskie et al. 1997; Johnson and Briskie 1999); butterflies: (Gage 1994); 

nematodes: (LaMunyon and Ward 1999); moths: (Morrow and Gage 2000); 

cichlid fish: (Balshine et al. 2001); frogs: (Byrne et al. 2003); rodents: (Breed 

2004); but for exceptions see (Stockley et al. 1997) on fish and Harcourt 1991; 

Hosken 1997; (Anderson and Dixson 2002; Gage and Freckleton 2003; Harcourt 

1991; Hosken 1997)on mammals, discussed in detail below).  Fifth, comparative 

studies on diverse taxa have found significant correlated evolution between sperm 

length and dimensions of some critical region of the female reproductive tract 

(featherwing beetles: (Dybas and Dybas 1981); birds: (Briskie and Montgomerie 

1993); fruit flies: (Pitnick et al. 1999b; Pitnick et al. 2003); stalk-eyed flies: 

(Presgraves et al. 1999); moths: (Morrow and Gage 2000); dung flies: (Minder et 

al. 2005); but see (Hosken 1998) for megachiropteran bats).  The interpretation 

that this correlation results from sperm size evolving in response to changing 

female reproductive tract design is supported by an experimental evolution study 

showing that evolving female sperm-storage organ morphology can drive the 

evolution of sperm length (Miller and Pitnick 2002; Miller and Pitnick 2003).  

Long flagella, as the overwhelming contributor to overall sperm length, are thus 

best thought of as ornaments or armaments - the result of postcopulatory sexual 

selection for traits that enhance competitive fertilization success (Keller and 

Reeve 1995; Miller and Pitnick 2002).  Likewise, the conditions of the female 

reproductive tract, which bias fertilization success in favor of certain sperm 
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phenotypes over others, represent the proximate bases of female sperm or sire 

choice (Pitnick and Brown 2000). 

Although there is strong evidence for correlated evolution between certain 

dimensions of the female reproductive tract and the gamete size being favored 

(Miller 2002), no mechanisms have yet been proposed to explain this interaction.  

In a previous study (Pitnick et al. 1999b; Pitnick et al. 2003), sperm in D. 

melanogaster seminal receptacles was observed to exhibit a reproducible pattern 

of organization that was confirmed and expanded upon in this paper.  Both long - 

and short - seminal receptacle females present an organization pattern consistent 

with relatively few sperm residing in a mass proximate and highly removed from 

the majority of sperm in storage in the distal end of the organ.  Until now, this is 

all that was indicated. 

 

The origin of anisogomy is unknown, however disruptive selection acting upon an 

originally isogamous population is the popular theory to explain its emergence 

(Bulmer and Parker 2002; Parker et al. 1972) .   Sperm competition theory applies 

the same selective conditions (i.e., the more numerically abundant gamete type 

competing to fuse with the rarer gamete type) to explain the evolutionary 

maintenance of anisogamy (Parker 1982).  Specifically, most theoretical 

treatments model sperm competition as a raffle, with the probability of a given 

male siring an offspring depending on the relative representation of his sperm in 

the "fertilization set" (Parker 1970b; Parker 1982; Parker 1984a; Parker 1990a; 

Parker 1990b; Parker et al. 1972; Parker et al. 1996; Parker et al. 1997; Williams 

et al. 2005).  Under these conditions, males will be selected to invest minimally in 
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each sperm (i.e., tiny sperm) and thus maximize the number of sperm produced 

(e.g., (Parker 1970b; Parker 1982; Parker 1984a; Parker 1990a; Parker 1990b; 

Parker et al. 1972).   

 

All other things being equal, greater sperm numbers should nearly always 

enhance male fertilization success (with the possible exception of species where 

males can efficiently remove, incapacitate or displace previously stored sperm; 

e.g., (Waage 1979).   This prediction has received robust empirical support.  First, 

experiments with numerous taxa have demonstrated that males copulating longer, 

transferring larger ejaculates or greater numbers of sperm achieve paternity 

(Birkhead and Møller 1998a; Simmons 2001).  Second, this sperm quantity 

advantage certainly underlies the taxonomically widespread relationship between 

relative testis mass and the intensity of sperm competition demonstrated through 

comparative analyses (e.g., (Harcourt et al. 1981; Pitcher et al. 2005; Ramm et al. 

2005).  Third, males from populations for which sexual selection has been 

experimentally eliminated evolve relatively smaller testes (Hosken and Ward 

2001; Pitnick et al. 2001).  Nevertheless, things are not always equal (Snook 

2005).  For example, among insects, sperm quality, as measured by sperm 

viability, positively co-varies with the intensity of sperm competition (Hunter and 

Birkhead 2002).  Also, experiments controlling the number of sperm inseminated 

into females have found repeatable and/or heritable differences among males in 

ejaculate performance or the outcome of sperm competition (Birkhead et al. 1999; 

Dziuk 1996; Froman et al. 2002; Martin et al. 1974).   
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Theoretical treatments of sperm size evolution have approached the problem from 

a parental investment theory perspective (exceptions discussed below), with the 

principal adaptive benefit of larger sperm being enhanced zygote viability 

(Bulmer and Parker 2002; Parker 1982; Parker 1984a; Parker et al. 1972; Trivers 

1972).  Such models indicate that, with a starting condition of extreme 

anisogamy, an increase in sperm size will only be favored when there is no sperm 

competition.  Parker (1982, p. 287) summarizes the conclusion as follows: 

"Essentially, the reason it does not pay to increase sperm provisioning is that a 

unit increase in investment in each sperm causes significant cost, but insignificant 

benefit.  For example, doubling the sperm size halves the sperm number, which 

causes significant losses when there is sperm competition.  But doubling the 

sperm size would effect a virtually insignificant increase in the viability of the 

zygote." 

 

As we have found that large sperm are, in fact, advantageous in certain systems, 

we contend that parental investment theory provides a limited perspective for 

considering sperm size evolution.  It is true that the entire sperm cell enters the 

egg in the majority of species (Ankel-Simons and Cummins 1996; Karr and 

Pitnick 1996; Snook and Karr 1998) and that post-fertilization interaction between 

the "sperm" and the "egg" can be protracted and complex (Karr 1991; Pitnick and 

Karr 1998).  It is also now recognized that the sperm contributes more essential 

product to the zygote than simply the haploid complement of paternal DNA 

(Churchill et al. 2003; Karr 1996; Krawetz 2005; Loppin et al. 2005; Rauh et al. 

2005; Schatten 1994).  Unfortunately, very little is know about fertilization in 
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animals other than chordates and echinoderms (Sander 1985), and even less is 

known about the fate of sperm-derived products following fertilization (Karr 

1996; Krawetz 2005; Pitnick and Karr 1998).  Nevertheless, the only relevant 

study to date strongly suggests that post-fertilization function is not the driving 

force behind evolutionary diversification of sperm size (Karr and Pitnick 1996).  

Thus, although postzygotic traits were explicitly considered by Trivers (1972) as 

parental investment, we contend that sperm "quality" attributes arising from 

postcopulatory sexual selection represent energies expended in intrasexual 

competition and intersexual choice, and hence are specifically excluded from 

parental investment by Trivers (1972). 

 

We also have a poor understanding of sperm-female interactions (Pitnick et al. 

1999b).  We know little about the dynamics of sperm motility inside of females 

(Katz and Drobins 1990), and hence very little of structure-function relationships 

for spermatozoa (e.g., (Moore et al. 2002).  Likewise, there is no robust 

understanding of how sperm move or are transported to sites of storage and 

fertilization for most taxa (e.g., Tschudi-Rein and Benz 1990; (Steele and Wishart 

1992; Suarez 2002b; Tschudi-Rein and Benz 1990).  We have only meager details 

for few taxa about how sperm are organized within females (both within and 

among alternative sperm-storage organs; Siva-Jothy 1987; (Fritz and Turner 

2002; Gack and Peschke 1994; Otronen et al. 1997; Siva-Jothy 1987).  We know 

even less about how sperm from different males may interact with one another 

(Birkhead and Møller 1998b) and of how sperm viability is maintained during 

prolonged storage (Austin 1975; Davey and Webster 1967; Filosi and Perotti 
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1975; Foighil 1985; Fritz and Turner 2002; Racey 1979; Suarez 2003; Wheeler 

and Krutzsch 1994).  This lack of knowledge of the selective environment for 

sperm has likely contributed to little attention being paid to sperm adaptations. 

 

We do know that female reproductive tracts tend to be complex (Birkhead et al. 

1993; Eberhard 1996; Keller and Reeve 1995) and that female tract design, 

especially that of the sperm-storage organs, can be highly evolutionarily divergent 

(e.g., (Dybas and Dybas 1981; Pitnick et al. 1999b; Pitnick et al. 2003; Siva-Jothy 

1987).  Anecdotal evidence suggests that in a diversity of taxa, sperm undergo 

biochemical, morphological and/or behavioral modification within females (e.g., 

Nur 1962; Makielski 1966; (Bedford and Shalkovsky 1967; Hughes and Kavey 

1969; Makielski 1966; Nur 1962; Renieri and Talluri 1974; Rieman and Thorson 

1971).  In mammals, sperm are held in the oviduct by binding to the surface of the 

oviductal epithelium, prior to capacitation (Fazeli et al. 1999; Fazeli et al. 2000; 

Suarez 2002a; Suarez 2003).  Sperm-female interactions contributing to 

differential male fertilization success may be complex (Fazeli et al. 2004; 

Georgiou et al. 2005) and may include sperm-female-seminal protein interaction 

effects (Peng et al. 2005).  Variation among males in sperm traits that interact 

with females are likely to contribute to differential male competitive fertilization 

success (Miller and Pitnick 2002; Peng et al. 2005; Watnick et al. 2003) and, 

hence, serve as targets for postcopulatory sexual selection.   

 

Demonstrating postcopulatory female choice experimentally is highly 

challenging, which is why there are a poverty of studies examining this directly.  
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The challenge is to demonstrate both the capacity of females to bias paternity in 

favor of one male's sperm over that of another, and to understand how such an 

ability would be favored over, or in addition to, mechanisms that would act earlier 

in the course of events, such as pre-copulatory mate choice (Birkhead 1998; 

Eberhard 1996; Pitnick and Brown 2000; Telford and Jennions 1998).  

Mechanisms underlying female sperm choice are inherently difficult to study 

(Birkhead and Pizzari 2002) and hence there have only been a few demonstrations 

(reviewed in (Birkhead 1998; Pitnick and Brown 2000; Telford and Jennions 

1998) see also (Mack et al. 2002; Miller and Pitnick 2002); also see studies of 

conspecific sperm precedence: Howard 1999; (Eady 2001; Howard 1999).  

Moreover, the majority of the studies demonstrating female sperm choice reveal 

biases against the sperm of closely related or otherwise genetically incompatible 

males, and thus should not contribute to directional selection on sperm traits 

(Birkhead 1998; Clark et al. 1999; Zeh and Zeh 1997).  Only a single study 

(Miller and Pitnick 2002) identifies interacting male and female traits that connect 

to a broader macroevolutionary pattern (Pitnick et al. 1999b; Pitnick et al. 2003). 

 

A final theoretical constraint that influences our understanding of sperm quality 

evolution by sexual selection is a consequence of the centrality of Bateman's 

(1948) contribution in sexual selection theory. Bateman’s quantitative description 

of sex differences in D. melanogaster gave rise to the modern era of sexual 

selection theory (Clutton-Brock and Parker 1992; Emlen and Oring 1977; Shuster 

and Wade 2003; Trivers 1972) by showing that the slope of the line relating 
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reproductive success to mating success (the sexual selection gradient) is nearly 

flat for females, whereas the slope of this line is much steeper for males.  The 

magnitude of the sex difference in the strength of selection depends upon the 

relationship between male and female sexual selection gradients (Jones et al. 

2002; Jones et al. 2000).  Anisogamy generates the conditions for sexual 

selection, as numerically abundant male gametes compete to fertilize rare female 

gametes (Kokko and Jennions 2003).  For the majority of species, those lacking 

post-fertilization parental investment (e.g., most Drosophila; (Pitnick et al. 1997), 

the intensity of sexual selection distills down to the sex difference in the number 

of gametes produced.  Because sperm size and number are expected to trade-off 

(Oppliger et al. 1998; Pitnick 1996), the evolution of giant sperm by sexual 

selection is an apparent paradox: as sperm size increases, sperm become less 

abundant, ova become relatively less rare, and hence competition between sperm 

(or males) for fertilization success is predicted to weaken.  As a consequence, 

theory predicts an inverse relationship between sperm size and the intensity of 

sexual selection on sperm quality (Bjork and Pitnick 2006). 

What is needed to clarify our understanding of sexual selection for sperm quality, 

and to recognize that certain sperm characters are secondary sexual traits, is (1) an 

understanding of the relationship between sperm quality (e.g., size) and the 

intensity of sexual selection, (2) knowledge of how sperm quality and quantity 

contribute to the pattern of sperm precedence, (3) elucidation of the mechanisms 

by which sperm and the female reproductive tract interact to generate selection on 

sperm quality and (4) identification of the selective benefits accrued by females 
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from choosing among sperm.  By repeating Bateman's (1948) experiments with 

species of Drosophila, as well as with experimental evolution lines of D. 

melanogaster that differ in sperm length (Miller and Pitnick 2002), we have 

recently made progress toward the first goal by demonstrating that the opportunity 

for sexual selection does not decrease with increasing sperm length (Bjork and 

Pitnick 2006).  Herein, working with the same lines of D. melanogaster, we report 

the results of experiments fulfilling the second and third goals (but not the fourth 

goal).  Specifically, using a fully factorial design, we investigate the effect of 

varying sperm length and sperm number on second male sperm precedence.  

Next, we provide a detailed examination of the distribution of sperm within the 

primary sperm-storage organ, revealing a pattern of organization that corresponds 

to the architecture of the female organ.  Finally, we quantify the distribution of 

competing short and long sperm within females to reveal some of the mechanisms 

by which males with relatively long sperm achieve a fertilization advantage. 

 

 

Methods 
 
 

Experimental populations and culturing 

All experiments were conducted on populations of D. melanogaster artificially 

selected bi-directionally for either sperm length or seminal receptacle (SR) length.  

Details of the selection protocols and of the source populations are provided in 

Miller and Pitnick (2002, 2003).  Males were from "short-sperm" or "long-sperm" 
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populations, 36 -48 generations following the inception of selection on sperm 

length.  Females were from "short- SR” or "long-SR" populations (replicate B), 

58-60 generations following the inception of selection on SR length.  Note, 

however, that these populations have not been subject to selection for sperm or 

SR length since generations 17 and 38, respectively.  Nevertheless, as 

demonstrated by data presented herein, no appreciative regression of the traits has 

occurred.   

 

Additionally, for the sperm competition experiment, LH
M
-BW strain males were 

used.  This strain was derived from a large outbred population (LH
M
) that had 

adapted to the laboratory for over 200 generations, and carries a brown-eyed (BW) 

dominant marker that had been introgressed through 12-13 back-cross generations 

into the LH
M
 background (see (Chippindale et al. 2001) for details on the origin 

and maintenance of these lines).  These lines were obtained from A. Chippindale 

and maintained in our laboratory since their arrival in 2001 in a population cage 

supporting > 1000 individuals with overlapping generations. 

 

All flies were reared at moderate density on standard cornmeal molasses agar 

medium at 25°
 
C and a 12L:12D cycle.  Males and females were collected from 

culture bottles as virgins following light ether anesthesia and stored 10 flies per 8-

dram vial with medium inoculated with live yeast until reaching experimental age. 

 

Sperm and SR dimensions 
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For some experimental analyses, sperm length and SR length were treated as 

discrete factors (e.g., long- versus short-sperm line).  In other cases, it was 

necessary to measure mean sperm head or total length for individual males and 

SR length for individual females.  Sperm of each anesthetized male were 

measured following dissection of the seminal vesicles into phosphate-buffered 

saline (PBS) on a subbed slide.  After passively releasing a few hundred sperm 

into the saline, preparations were dried in a 60° C oven, fixed in methanol:acetic 

acid (3:1), stained in a 5 x 10
-7
 M solution of Hoechst 33258 (Sakaluk and O'Day 

1984) and then mounted with glycerol:PBS (9:1) under a glass coverslip.  Digital 

images of sperm were obtained using a Dage CCD72 camera (Dage-MTI Inc., 

Michigan City, IN, USA) mounted on an Olympus BX60 microscope (Olympus 

America Inc., Melville, NY, USA) and lengths were measured using NIH Image 

public domain software (http://rsb.info.nih.gov/nih-image).  Total sperm length 

was quantified using darkfield optics at a magnification of 200X and sperm head 

length using epifluorescence at 1000X.   

Prior to examining the mechanisms conferring a fertilization advantage to 

relatively long sperm, it was necessary to discern (1) population (selection line) 

differences in the mean and variance of sperm length, (2) the relationship between 

sperm head length and total length.  We thus measured both head and total length 

for each of 20 sperm per male (N = 15 males per line).  These data confirmed that 

within-male variation in sperm sperm length was low (Fig. 1), that the long- and 

short-sperm lines exhibit non-overlapping distributions in total sperm length (Fig. 

2) and that these populations also differ significantly in the length of sperm heads 

(Fig. 2).  Thus, these lines could be experimentally used to explore the 
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contribution of sperm quality and quantity to differential male fertilization success 

and the mechanisms underlying the demonstrated advantage of relatively long 

sperm (Miller and Pitnick 2002). 

 

SR length was determined for each anesthetized female by dissecting the 

reproductive tract into PBS on a microscope slide, paring away extraneous tissue 

with fine probes, and severing the tracheoles binding together the loops of the SR.  

A glass coverslip with clay at the corners was then placed on top of the specimen, 

and the clay was carefully compressed, while viewing through a microscope, until 

the SR was flattened to two dimensions, but without over-compressing and thus 

stretching the organ.  The preparation was then viewed and a digitized image 

captured at 200X using differential interference contrast microscopy.  Using NIH 

Image, diameter of the SR lumen was measured approximately every 0.10 mm 

and SR length determined by tracing the lumen from proximal to distal ends. 

 

Contribution of sperm quality and quantity to competitive fertilization success 

The contributions of sperm quality and quantity to male competitive fertilization 

success were determined by assaying second male sperm precedence (P2, arcsine 

square root transformed) while factorially varying the quality (short versus long) 

and quantity (few versus many) of sperm transferred by second males.  All 

females were initially mated to an LH
M
-BW male and then remated after three 

days to a wild type (long- or short-sperm selection line) male transferring either 

(1) many long sperm, (2) few long sperm, (3) many short sperm, or (4) few short 
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sperm (N = 20 per treatment), with females randomly assigned to second-male 

treatments.  Sperm quantity was manipulated by varying the number of 

copulations performed by the male prior to the experimental copulation (Fig. 3).  

Only females from the long-SR selection line were used for this experiment, as 

these demonstrate the greatest level of sperm choice in favor of longer sperm 

(Miller and Pitnick 2002).   

 

The general design of the experiment was identical to that used by Miller and 

Pitnick (2002).  Virgin 4-6 day-old females were initially mated and then remated 

to an experimental male 3 days later.  Females were transferred to fresh vials 

containing media and live yeast immediately following remating.  They remained 

in these vials for 24 h and were then transferred to a second vial for 24 h before 

being discarded.  After all progeny had eclosed, paternity was ascertained by eye 

color and P2 was calculated as the proportion of offspring sired by the second 

male.  The number of progeny eclosing from vials occupied by each female prior 

to remating was quantified and this variable (an index of the number of first male 

sperm used by the female prior to remating) was entered as a continuous covariate 

in the statistical analysis of P2. 

 

Two preliminary experiments were conducted to determine the appropriate 

number of prior matings to subject long- and short-sperm males to manipulate 

sperm quantity. The number of sperm transferred by males was assayed directly 

in one experiment by counting the number of sperm ejaculated into each of five 

successive control-line females (N = 5 males per line; Fig. 3A) and indirectly in a 
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separate experiment by counting the number of progeny produced by six 

successive control-line mates (N = 20 males per line; Fig. 3B).  In both 

experiments, each male was paired with a virgin female and transferred to a vial 

containing a new virgin female immediately following termination of each 

successive copulation.  For sperm transfer, females were frozen immediately 

following male dismount and were later thawed and the sperm were dissected into 

phosphate-buffered saline (PBS) from the bursa copulatrix (aka. uterus), seminal 

receptacle and paired spermathecae (the vast majority of sperm were in the bursa), 

dried, fixed, stained and then counted under epifluorescence microscopy at 400X.  

For progeny production, each female was initially retained in the vial in which 

mating took place, transferred to a fresh vials on days 2, 4 and 6 henceforth, and 

discarded on day 10.  All progeny eclosing from these vials was quantified.  

 

It was important to confirm that long-sperm males, in both many and few sperm 

treatments, transferred no more sperm than short-sperm males.  Otherwise, a 

statistically significant effect of the factor “sperm length” could arise but in fact 

be attributable only to a sperm quantity effect.  In order to avoid comparing the 

fertilization success of “virgin” males with that of previously mated males, all 

males inseminated at least one female prior to being used in an experimental 

mating.  Long- and short-sperm line males in the “many sperm” treatments mated 

twice or once, respectively, prior to the experimental mating (Fig. 3A).  Long- 

and short-sperm line males in the “few sperm” treatments mated four or five 

times, respectively, prior to the experimental mating (Fig. 3A).  This protocol was 

conservative in that any probable asymmetry in the number of sperm numbers 
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transferred, between lines within either the “many sperm” or “few sperm” 

treatment categories, was biased in the direction of long-sperm line males 

transferring fewer sperm than did short-sperm line males (Fig. 3A). 

 

Organization of sperm within females 

We quantified how sperm from long-sperm and short-sperm line males became 

organized within the seminal receptacle of twice-mated females through two 

separate experiments.  First, the general organization of sperm throughout the SR, 

independent of line of sperm origin, was established by “mapping” the position of 

every sperm within the seminal receptacle in vivo (N = 20 females evenly 

distributed across two female treatments [short-SR and long-SR selection lines] 

by two male order treatments [long-sperm line male first and short-sperm line 

male second and vice-versa]), using the identical protocols and timing of assay to 

that used in the sperm precedence experiment described above (and used in Miller 

and Pitnick 2002).  Twenty-four hours following remating, females were flash 

frozen in liquid nitrogen and then frozen to the surface of media at -20°
 
C until 

dissection.  The SR of females was later dissected out, fixed and stained with 2% 

orcein in 60% acetic acid (Gilbert 1981; Gilbert et al. 1981).  The absolute 

number of stained sperm heads residing within each consecutive 0.10 mm long 

section of the SR were counted across the entire organ at 400 X using differential 

interference contrast microscopy (Fig. 5).  The diameter of the SR lumen was also 

measured every 0.10 mm (N = 10 females per line) to assess any morphological 

variation co-varying with the pattern of sperm distribution (Figs. 5 & 6).  This 

experiment established that sperm adopt a non-random, bimodal spatial frequency 
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distribution across the proximal and distal regions of the SR (Figs. 5 & 6).  

 

In the second experiment, each female was mated to one long-sperm and one 

short-sperm line male, and distribution of sperm from the two competing males 

within each female’s SR was quantified by estimating the proportion of both 

sperm types within the proximal SR and distal SR sperm “sub-populations.”  This 

experiment used the identical four mating treatments (N = 30 females per 

treatment), protocols and timing of assay described above for the sperm 

organization and sperm competition experiments.  Again, females were frozen in 

liquid nitrogen after 24 h and then frozen to the surface of media at –20°
 
C to 

await dissection.  The SR of these females was later dissected into PBS containing 

0.10 % Triton-x.  A dissection technique was employed that results in removal of 

all sperm from the SR as a single, intact, rope-like mass without altering the 

relative position of sperm within the mass (Fig. 7).  These preparations were 

dried, fixed, stained and mounted.  Under these conditions, it was not possible to 

measure the total length of individual sperm.  However, the length of sperm heads 

could be accurately measured, adn this was done under epifluorescence at 1000X 

as described above.  For each female, the heads of all sperm occupying the 

proximal end of each SR were measured, as were a random sample of 100 sperm 

occupying the distal end of the SR.  Due to the challenging nature of the 

dissection technique, not all dissections were successful and hence final sample 

sizes of treatments vary (N = 19–29). 
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Because the respective distributions of sperm head lengths for the long- and short-

sperm lines overlap (Fig. 2), we used an EM (Expectation Maximization) 

algorithm to estimate the proportions of the two sperm categories (long and short) 

in the observed mixed distributions (Hasselblad 1966; Ott 1979).  The algorithm 

is implemented in the program NOCOM available from 

ftp://linkage.rockefeller.edu/software/utilities/.  

 

In order to estimate the proportions we determined the means and variances of the 

two categories to be used in the algorithm.  Estimates of the variances of each 

category were obtained from earlier observations on sperm lengths in non-mixed 

distributions (data illustrated in Fig. 2).  These were found to be similar and 

estimated to be S
2  

= 0.25.  The estimates for the two means were obtained from 

decomposition of the overall data (n = 12,181) using a known common standard 

deviation (0.5), and unknown proportions (p
1
, p

2
).  The two means were estimated 

to be û
1
 = 9.21 and û

2
 = 10.14. Throughout the analysis we used these conditions 

(û
1
 = 9.21, û

2
 = 10.14, common S = 0.5) to estimate proportions of the two sperm 

types in the distal/proximal parts of the SR of (1) each female, and (2) females 

pooled over each treatment category.  Note, however, that when neither means 

nor proportions were provided, such that both had to be estimated by the NOCOM 

program, the resulting estimated proportions were nearly identical to those 

presented.  

 

To evaluate the validity of the mixed-distribution model (two component) as 

compared to a model based on one component (u
1
 = u

2
, σ = 0.5) we used a 
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likelihood-ratio (LR) test of the hypothesis that the one-component model 

provides the same fit as the two-component model, i.e., LR = -2(L1 - L2) where L1 

and L2 are the log-likelihoods of the one-component and two-component models 

respectively. In this case the LR statistic is distributed as a Χ
2 
with 2 degrees of 

freedom when the number of observations are large (Thode et al. 1988).  We 

calculated the LR statistic for the pooled data in each of the four treatment 

categories and found that all showed significant improvement of fit using the two-

component model (P < 0.001). 

 

We further assessed the efficacy of the decomposition algorithm for estimating 

the proportions of two sperm populations within sperm mixtures by conducting a 

simulation experiment.  Empirical observations of sperm head lengths for the 

long- and short-sperm lines (Fig. 2; long sperm n = 279, short sperm n = 265) 

were used to create a series of mixed distributions of known proportion of the two 

sperm types.  Each mixed distribution had a sample size of n = 50, corresponding 

to the approximate minimum numbers counted in samples from the proximate end 

of the SR of individual females.  In the simulation, the proportion (p) of the long 

sperm type (1-p for the short sperm type) was specified as 0.l0, 0.30, 0.50, 0.70 or 

0.90.  A random number generator was used to select n
1
 = p*n long sperm and n

2
 

= (1-p)*n short from the empirical data sets; thus, the proportion was known for 

the mixing process.  The proportion of long sperm in the simulated mixed 

distributions were then estimated using the EM algorithm.  Only p was estimated 

using the original head length means of the long and short sperm (10.67 and 9.73 
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µm, respectively) and a common variance of 0.25.  For each specified p, 20 

females (each with 50 sperm) were used to estimate 20 p values Table 1.   

 

Note that the bias in the estimate at p = 0.10 (in particular) was due to the 

variance of the short-sperm class in the sample being higher than the value of 0.25 

used in the model, whereas the long-sperm class had a variance of 0.25.  Because 

the recommendation for use of the EM algorithm (Hasselblad 1966; Ott 1979) is 

to use a common variance, we chose to use the smaller of the two empirically 

determined values, as additional simulations showed this approach to be 

conservative, with higher variances resulting in greater proportional 

representation by the longer sperm class. 

 

Results 

 

Variation in sperm and SR dimension 

There was relatively little within-male variation in total sperm length in the 

selection lines.  An analysis of mean male sperm length based on 20 sperm per 

male and 15 males per line for the combined long-sperm and short-sperm lines 

revealed that measuring only a single sperm captures 80.4% of the variation in 

sperm length within males.  Means based on measures of two sperm per male 

captures 91.2% of the variation, and the number of sperm required to estimate 

mean sperm length asymptotes at 4 sperm, with 96.1% of the variation captured 

(Fig. 1).   
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The total length of sperm differed significantly between the long-sperm and short-

sperm selection lines (F = 5356.08, P < 0.0001, n
long

 = 278, n
short

 = 265) and 

exhibited non-overlapping distributions (Fig. 2).  Sperm head length similarly 

differed significantly between the two lines (F = 340.93, P < 0.0001, n
long

 = 278, 

n
short

 = 265), although the distributions largely overlap (Fig. 2).  A regression 

analysis of sperm head length on total length using all data from both the long-

sperm and short-sperm lines results in a highly significant relationship between 

these two characters (R
2
 = 0.348, F

1, 541
 = 289.28, P < 0.0001).  However, 

performing the analysis separately by line reveals no significant relationship 

between sperm head and total length within either the long-sperm line (R
2
 = 

0.0000, F
1, 276

 = 0.001, P = 0.973) or the short-sperm line (R
2
 = 0.0004, F

1, 263
 = 

0.119, P = 0.731) (Fig. 2).   

 

The total length of the female’s SR also differed significantly between the long-

SR and short-SR selection lines (Fig. 6), exhibiting non-overlapping distributions. 

The SR was found to be a heterogeneous structure, as the diameter of the organ’s 

lumen varied across its length.  The lumen of the organ at its entrance, where it 

emanates from the anterior-ventral bursa, is relatively wide, with an inner 

diameter of approximately 27 µm.  The lumen in this region appears funnel-like, 

rapidly narrowing to approximately 7 µm over the proximal 0.3 mm of organ 

length.  The inner diameter of the lumen remains this narrow for approximately 

1.1 mm and 1.4 mm in the short-SR line and long-SR line females, respectively.  

At this point, the inner diameter of the lumen abruptly widens and remains 20 - 25 
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µm wide throughout the distal region of the SR, before tapering down to 13 µm at 

the organ’s terminus (Figs. 5 & 6).   

 

 

 

Contribution of sperm quality and quantity to competitive fertilization success 

Both sperm quality (i.e., length) and sperm quantity contributed significantly to 

male competitive fertilization success (Table 2).  Specifically, both longer sperm 

and greater numbers of sperm independently contributed to increased male 

competitive fertilization success. These results thus replicate the sperm quality 

advantage reported by Miller & Pitnick (2002).  There were also three significant 

interactions: “sperm length x sperm number,” "sperm length x prior progeny" and 

“sperm length x sperm number x prior progeny."  We evaluated the slopes of the 

interaction terms and determined that none influenced the interpretation of the 

main effects.  The significant "sperm length x sperm number" interaction is of 

particular interest, as it indicates that the advantage in sperm competition afforded 

by sperm quality increases as the number of sperm competing declines (Table 2; 

Fig. 4).   

 

Organization of sperm within females 

The distribution of sperm throughout the SR was found to be heterogeneous.  

There was a spatially bimodal distribution of sperm heads with relatively few 

heads clustered in the proximate (0.5 mm) end of the organ, followed by a 

roughly 1.0 mm long section containing virtually no sperm heads, and finally a 
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great many sperm heads distributed throughout the distal end (approximately 

40%) of the organ (Fig. 6).  The central region lacking sperm heads was not void 

of sperm, but rather was occupied by the tails of the sperm heads residing in the 

proximal end of the SR.  The transition in the SR from the lumen containing only 

the flagella of the proximate “cohort” of sperm heads to it containing a great 

many sperm heads in the distal region is coincident, in both short-SR and long-SR 

lines, where an abrupt widening of the lumen by approximately four times occurs 

(described above; Figs. 5 & 6). 

 

Analysis of variance (ANOVA) treating female line (long-SR or short-SR) and 

male mating order (long-sperm line male first/short-sperm line male second or 

vice versa) revealed highly significant effects of female line on the total number 

of sperm stored in the SR (F
1, 17

 = 83.71, P < 0.0001; mean ± se: long-SR line: 200 

± 7, short-SR line: 117 ± 6), as well as in the number of sperm occupying both the 

proximate (F
1, 17

 = 105.95, P < 0.0001; mean ± se: long-SR line: 52 ± 3, short-SR 

line: 26 ± 1) and the distal regions   (F
1, 17

 = 42.87, P < 0.0001; mean ± se: long-SR 

line: 148 ± 8, short-SR line: 91 ± 6).  In all categories, long-SR line females 

stored more sperm than did short-SR line females (Fig. 6), confirming the report 

by Miller & Pitnick (2003).   

 

There was no significant effect of male mating order on either the total number of 

sperm stored (F
1, 17

 = 2.00, P = 0.18) or on the number of sperm in the distal region 

of the SR  (F
1, 17

 = 0.45, P = 0.51).  There was, however, a significant effect of 

male order on the number of sperm stored in the proximal region of the SR (F
1, 17

 = 
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7.38, P = 0.015), with females from both lines storing more sperm in the proximal 

region when their second mate was a long-sperm line male (Fig. 6).  There were 

no significant female line by male mating order interaction effects.   

 

Following the discovery that sperm within the SR are spatially organized into two 

discrete populations: proximal and distal (Fig. 6), we investigated the contribution 

of short and long sperm to each of these populations in twice mated females.  

Using the same four mating treatments described immediately above, sperm were 

dissected from the SR and the heads of all sperm occupying the proximal end 

were measured, as were a haphazard sample of sperm heads from the distal region 

of the SR.  These observed mixed distributions of sperm head length data were 

decomposed using the EM algorithm to estimate the proportions of long and short 

sperm in three sequential analyses.  First, all sperm head length measures from 

both regions of the SR from all females and all four treatments were combined 

prior to decomposition in order to estimate the proportions of long and short 

sperm that were stored by females.  Second, the four mating treatments were 

analyzed separately, yet within each treatment all sperm head length data from the 

proximal and distal regions were respectively combined for decomposition 

analysis.  Third, the proportions of long and short sperm found in the proximal 

and distal regions of the SR were uniquely estimated for each experimental 

female. 

 

The experiment-wide analysis of all sperm measured generated estimated 

proportions of 0.32 and 0.68 for the short and long sperm, respectively.  Thus, 
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despite each female having been inseminated by one short-sperm line and one 

long-sperm line male, with both mating orders equally represented, approximately 

twice as many sperm from long-sperm line males was found to reside within the 

SR of females.  Although these males inseminate more sperm than do short-sperm 

line males (Fig. 3A, first mating), this difference is not significant (F
1, 8

 = 2.50, P = 

0.153, N = 10; mean ± se: short-sperm line: 2375.4 ± 95.2; long-sperm line: 

2553.8 ± 60.6), and could not account for the disparity in number of sperm stored.   

 

In the next analysis, which discriminated among treatments and proximal and 

distal regions of the SR but combined data for all females with treatments, the 

proximal region of the SR was estimated to comprise 80 – 94% long sperm and 

the distal region 45 – 78% long sperm (Table 3).  Not surprisingly, given the well-

established pattern of second-male sperm precedence in D. melanogaster, long-

sperm biased proportions were higher when the long-sperm line male was the 

second mate.  It is a striking, however, that short-sperm line males do not achieve 

greater than 55% representation in the distal region of the SR, even when mating 

second, and they never achieve higher than 20% representation in the proximal 

region of the SR (Table 3). 

 

In the analyses conducted on a per female basis, estimated proportions of long and 

short sperm in the proximate and distal regions of the SR reveal an extreme bias 

in the pattern of sperm storage.  Across all four treatments, mean sperm head 

lengths were consistently longer in the proximal versus the distal region of the SR 

(Table 4; Fig. 8).  Irrespective of mating order, the sperm of long-sperm line 
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males never contributes less than 60% on average to the sperm present in the 

distal end of the SR, and never less than 83% on average to the sperm in the 

proximate end of the SR (Table 4).  The difference in the representation of both 

sperm categories between the proximal and distal regions was highly significant 

(P < 0.0001) in all treatments (Table 4).  The greatest disparity (22 - 23% 

difference on average) between the proximal and distal ends of the SR in the 

proportional representation of sperm was observed in the two treatments with 

short-sperm line males mating second.  In these two treatments, long sperm 

accounted for 60 – 67% on average of the sperm present in the distal end of the 

SR, yet accounted for 83 – 90% on average of the sperm in the proximal end 

(Table 4).  An ANOVA testing the difference between the proximal and distal 

regions of the SR in the proportion of long sperm (N = 93) found no significant 

effect of female line (F
1, 89

 = 0.30, P = 0.5834), but significant effects of both male 

mating order (F
1, 89

 = 10.09, P = 0.0021) and the female line by male mating order 

interaction effect (F
1, 89

 = 4.77, P = 0.0315).   

 

Discussion 

 

Mechanisms of Sperm-female Interaction 

Sperm quality (i.e., length) significantly contributed to male fertilization success 

(Fig. 4, Table 2).  This result confirms the findings of Miller & Pitnick (2002) and 

supports the conclusion that the relatively long sperm flagella of some Drosophila 

species are the product of sexual selection (Karr and Pitnick 1996; Miller and 

Pitnick 2002; Pitnick et al. 1999a; Pitnick and Markow 1994).  Miller & Pitnick 
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(2002, 2003) postulated that sperm quality attributes were likely to coevolve with 

female reproductive tract design, and supported this contention using 

experimental evolution techniques to reveal significant sperm morphology by 

female reproductive tract morphology interactions on male competitive 

fertilization success.  Here we identify likely mechanisms underlying this sperm-

female interaction, thus revealing the means by which female tract design 

generates sexual selection on sperm design.   

 

The seminal receptacle is the only female sperm-storage organ of many 

Drosophila species and, for those species utilizing both the SR and the 

spermathecae, the SR is believed to be the primary reservoir of sperm used for 

fertilization (Pitnick et al. 1999a).  When an egg descends the common oviduct 

and enters the bursa to await fertilization, the anterior egg pole with its micropyle 

(the tube through which the fertilizing sperm must travel) occupies a "fertilization 

chamber" at the orifice of the SR (see Figure 1 of (Sander 1985).  It is reasonable 

therefore to assume that sperm occupying the proximal end of the SR are better 

positioned to compete for access to the egg micropyle than are sperm more 

distally located in the organ, and hence take precedence over them.  It is thus 

relevant that the lumen of the SR was found to be heterogeneous across the length 

of the organ, being narrow throughout the proximal end and wide in the distal 

end.  This morphology was coincident with a nonrandom distribution of sperm 

within the organ.  Two discrete subpopulations of sperm were found in the SR of 

all females: a relatively small and well-organized group in the proximal half of 
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the organ and a larger and more haphazardly organized group in the distal half 

(Figs. 5 and 6).      

 

Two putative mechanisms by which longer sperm achieve a fertilization 

advantage were identified.  First, irrespective of mating order, longer sperm were 

more likely to be stored in the SR than were shorter sperm.  Long-sperm line 

males contributed over 60% of the sperm in the SR on average when they were 

first mates, and over 90% on average when they were second mates (Table 4).  

This effect may be attributed in part to long-sperm line males transferring more 

sperm per ejaculate than short-sperm lines males (see Fig. 3, mating sequence = 

1).  However, the male line difference in number of sperm transferred was not 

statistically significant (long-sperm line: 2553.8 ± 60.6; short-sperm line: 2375.4 

± 95.2; F = 2.498, N = 10, P = 0.153), and so is unlikely to explain the dramatic 

sperm length effect.  Consistent with this biased proportional representation of 

longer sperm, a greater absolute number of sperm was found in the SR when 

long-sperm line males mated second (compare black with white bars in Fig. 6).  

Thus longer sperm are better at occupying and/or retaining their occupancy in the 

SR than are shorter sperm.  Second, with regard to occupancy in the proximal 

region of the SR, longer sperm are better at displacing shorter sperm, and better at 

resisting being displaced by shorter sperm (Tables 3 and 4; Fig. 8).  We do not 

know how having a longer flagellum confers these storage advantages to sperm.  

 

In an earlier report (Miller & Pitnick 2002), the fertilization advantage of longer 

sperm was observed in long-SR line females only, whereas the distributional 
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effects of sperm length were observed here in both short-SR and long-SR line 

females (Tables 3 and 4; Fig. 8).  We can only speculate on the basis for the 

different results.  It is our strong suspicion that previously observed favoritism by 

long-SR females for longer sperm that was not demonstrated in females with short 

receptacles is likely attributable to the inability of short-SR females to store many 

sperm proximally, coupled with the immense overlap in sperm length present in 

the earlier study.  Previously, sperm selection lines could not be directly competed 

against one another in situ, as no mechanism for identifying sperm type within the 

female was developed, and offspring were indistinguishable.  As a result, previous 

studies (Miller and Pitnick 2002) competed selection line males against LH
M
-BW 

strain males carrying a brown-eyed (BW) marker in order to assign paternity to 

resulting progeny.  It was our discovery that sperm head length alone could be 

used to assign sperm paternity within the SR that allowed us to directly compete 

males from differing selection lines in this study.  As sperm selection lines were 

therefore competed against each other only indirectly in the past (and directly 

against a control male with high degree of sperm length overlap), it is possible 

that even short-SR females are capable of effecting a biased distribution in the 

current study, given the more extreme disparity in sperm length between 

competitor males. 

 

In conceptualizing the results presented here, one could classify the mechanisms 

examined as male-mediated or female-mediated, and to attribute them to either 

sperm competition or cryptic female choice (or more specifically, female sperm 

choice).  We suggest, however, that such definitions are not meaningful as there is 
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a single continuum defining male- and female-mediated processes influencing 

postcopulatory reproductive success (Eberhard 1998; Eberhard 2000).   At one 

end of this continuum, there is sperm competition in its most narrow sense, with 

exploitation competition to fertilize eggs or interference competition among 

sperm (see (Baker and Bellis 1987), but note that such interference competition 

among sperm has never been demonstrated, e.g., (Moore et al. 1999), and no 

interaction with, or fertilization bias generated by, the female reproductive tract.  

In this scenario, females are passive vessels in which sperm competition takes 

place.  Such conditions, however, may only be met outside of females, in 

externally fertilizing species.   On the cryptic female choice end of the continuum 

are mechanisms such as sperm ejection by females (e.g., (Pizzari and Birkhead 

2000).  In most instances, it will not be possible to discriminate male- from 

female-mediation in the evolution of sperm traits.  As argued by Eberhard 

(Eberhard 1996; Eberhard 1998), female morphology, physiology and behavior 

determine the playing field and the rules of the game by which males compete.  In 

Drosophila, for example, there may be raffle-like exploitation competition among 

sperm from different males to fertilize ova, with relatively long sperm at an 

advantage due to selective bias generated by female reproductive tract 

morphology (among a host of other factors).  Hence, male-by-female interactions 

are expected to explain a significant amount of the variation in fertilization 

success (Arthur et al. 1998; Clark et al. 1999; Miller and Pitnick 2002; Otronen et 

al. 1997). 
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It should be noted that mechanisms of sperm precedence examined here in no way 

preclude the existence of additional factors contributing to differential male 

fertilization success in D. melanogaster.  Consistent with our results, numerous 

reports have suggested that rival sperm displace resident sperm within the female, 

although this process had not previously been directly observed (Gilchrist and 

Partridge 1995; Gilchrist and Partridge 2000; Gromko et al. 1984; Lefevre and 

Jonsson 1962; Price et al. 1999; Scott and Richmond 1990).  Non-sperm seminal 

proteins (i.e., Acps) are also known to mediate the fate of sperm within females 

(Wolfner 1997) and hence are likely candidates to mediate sperm competition 

(Chapman 2001; Chapman et al. 2000).  Acps have been experimentally 

implicated in sperm incapacitation, but the experimental tests of such effect have 

been indirect and the evidence is thus generally unconvincing (Civetta 1999; 

Clark et al. 1995; Harshman and Prout 1994; Price et al. 1999).  Moreover, one 

claim of having demonstrated sperm incapacitation (Price et al. 1999) was not 

repeatable by another laboratory (P. Mack, personal communication), and direct 

tests of sperm incapacitation in Drosophila (Snook and Hosken 2004) and in 

humans (Moore et al. 1999) suggest that seminal fluids do not kill rival sperm.  

Rather, it appears for Drosophila that loss of resident sperm is the result of  

females releasing stored sperm from the SR after copulation with a second male 

(Snook and Hosken 2004). 

 

Sperm Quality and Quantity Effects on P2 

 Results of the P2 experiment in which both sperm quality and quantity were 

independently manipulated indicate that both ejaculate attributes independently 
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influence the pattern of second male sperm precedence in D. melanogaster (Table 

2, Fig. 4).  The preliminary experiment assaying the number of sperm transferred 

by males from the two lines indicate that the significant sperm quality effect on 

P2 is unlikely attributable to males from the long-sperm line having transferred 

greater numbers of sperm.  In fact, the test was conservative in that long sperm-

line males are estimated to have transferred fewer sperm than did short sperm-line 

males (Fig. 3A).  The magnitude of the sperm quality effect on P2 (Table 2) is 

striking, especially when considering that the sperm quality disparity between 

treatments was small relative to the sperm quantity disparity.  Long-sperm line 

males produce sperm that are approximately 28% longer than the sperm of short-

sperm line males, whereas males from the "many sperm" treatments are estimated 

to have transferred 362% more sperm than did males from the "few sperm" 

treatments.   

 

The major disparity observed between mating treatments was the sheer difference 

in numbers of stored proximate sperm.  Long-SR females were shown to store 

nearly twice as many sperm proximately on average (Figure 6), and this was 

verified by our observations of intact receptacles from each treatment in the SR 

orientation experiment.  Comparing this data with the quantity v. quality progeny 

data, we are left to explain the relatively high P2 exhibited by short-sperm males 

in the progeny study when examination of sperm storage indicates that Short-

sperm males are at a severe disadvantage, even when they are the second male to 

mate.  Since paternity was impossible to assign if long-sperm males were to be 

directly competed against short-sperm males, LH
M
-BW dominants that had not 
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been selected for sperm length were used as a baseline for the progeny study, as in 

Miller and Pitnick 2002 .  We can infer that the degree of overlap between sperm 

types was great enough to allow short sperm a fair chance at fertilization when 

competed against 'average' males.  However as shown above, Short-sperm males 

still experienced significantly lower P2 than their long counterparts in both 'many' 

and 'few' treatments.   

 

There was also a significant sperm length by sperm number interaction effect on 

P2 (Table 2) that is attributable to the sperm length effect being greater in 

magnitude when few sperm were competing than when many sperm were 

competing (Fig. 4).  This result suggests that selection on sperm size will have a 

positive, self-reinforcing momentum.  To the extent that sperm quality trades off 

with sperm quantity (Oppliger et al. 1998; Pitnick 1996), as a lineage responds 

directionally to selection for increased sperm quality, the strength of selection will 

intensify as sperm quantity declines, resulting in species for which males produce 

relatively few gigantic sperm (Bjork and Pitnick 2006).  This interaction may in 

part explain why, contrary to theory based on "Bateman gradients", the 

"opportunity for sexual selection" (Shuster and Wade 2003; Wade 1979; Wade 

and Arnold 1980) does not decline with increasing sperm length (Bjork and 

Pitnick 2006).    

 

Sperm numbers are predicted by theory to be important to male competitive 

fertilization success (Parker 1984b; Parker 1998), and empirically demonstrated to 

be important here and elsewhere (Birkhead and Møller 1998a; Simmons 2001).  
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Nevertheless, results presented here indicate that, for D. melanogaster, sperm 

quality to a certain extent evolutionarily trumps sperm quantity.  Large sperm 

have significant costs associated with their production (Pitnick 1994), including a 

reduction in the number of sperm produced (Pitnick 1996), the need for relatively 

large testes (Pitnick 1996) and delayed male reproductive maturity (Pitnick et al. 

1995a; Pitnick et al. 1995b).  For species with giant sperm, the reduction in the 

number of sperm produced by each male, the increased metabolic cost of growing 

and maintaining larger testes (Pitnick 1996) and the protracted age at first 

reproduction in males relative to females, can in extreme environmental 

circumstances result in sperm limitation within populations (Pitnick 1993; Pitnick 

and Markow 1994).  It has thus remained an outstanding question for such species 

as to why hypothetical males that mature rapidly and produce many tiny sperm 

would not have a fitness advantage.  The present study suggest that, due to biases 

imposed by the design of the female reproductive tract, the numerous sperm of 

such males would be unlikely to enter the population of sperm that have a chance 

at fertilization, i.e. the proximate population. 

 

Males of internally fertilizing species do not ejaculate directly onto eggs.  In fact, 

female reproductive physiology has evolved complex mechanisms to control the 

process of fertilization (Birkhead et al. 1993; Eberhard 1996; Eberhard 1998; 

Walker 1980).  For many species this includes specialized sperm-storage organs 

(e.g., (Pitnick et al. 1999a).  As a consequence, sperm-female interactions can be 

multifarious, complex and protracted, and may include biochemical, 

physiological, morphological and behavioral adaptations of both the female and 
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of sperm (Sivinski 1984).  Presumably this is why fish sperm are larger in 

internally fertilizing than in externally fertilizing species (Stockley et al. 1997), 

and why, throughout the animal kingdom, there is a general evolutionary pattern 

of sperm becoming more complex with the origin of internal fertilization 

(Baccetti 1986).  It therefore seems unlikely that only sperm numbers should be 

subject to postcopulatory sexual selection.   

 

Most theoretical treatments have modeled sperm competition as either a “fair 

raffle” with the probability of a given male siring an offspring dependent only 

upon the proportional representation of his sperm in the female (Parker 1970a; 

Parker 1982; Parker 1984b; Parker 1990a; Parker 1990b; Parker et al. 1972; 

Parker et al. 1996; Parker et al. 1997), or as a “loaded raffle” with the sperm from 

the second of two males competitively weighted as a function of the sperm 

precedence pattern, but otherwise having fertilization success influenced only by 

sperm numbers (Parker 1990a; Parker et al. 1997).   Two models have made 

fertilization success dependent both on the size and number of competing sperm.  

In each, the competitive weight of a sperm increases with its size, and size and 

number trade off, either immediately or over evolutionary time.  Sperm size is set 

by the marginal value theorem and is independent of sperm competition risk 

(Parker 1993; Parker and Begon 1993).  With diploid control of sperm size, the 

analysis (Parker 1993) suggests that increased sperm size will evolve only when 

the competitive benefits of size become more important as sperm numbers 

increase or when sperm size correlates positively with sperm longevity.  

Predicting the evolutionary response in sperm size is more difficult when sperm 
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size is under haploid control (Parker and Begon 1993).  A final model examines 

male ejaculate allocation when females exercise sperm choice (Ball and Parker 

2003).  However, female choice was defined only as a general discrimination of 

“favorable” or “unfavorable” ejaculates as a reflection of male quality, and thus is 

not relevant to consideration of sperm form evolution. 

 

 

Exceptions and Unknowns 

Of the numerous comparative analyses that have examined the relationship 

between sperm size and the risk of sperm competition (see Introduction), five 

studies have failed to find a significant positive relationship.  One of these studies 

was of fish (Stockley et al. 1997) and the remaining four were of mammals 

(Anderson and Dixson 2002; Gage and Freckleton 2003; Harcourt 1991; Hosken 

1997).  These findings too, however, are perhaps consistent with the conclusions 

of this report, given that most of the fish species included in the analysis have 

external fertilization, and mammals are unusual in lacking specialized organs and 

(in most cases) the capacity for prolonged sperm storage by females.  With these 

conditions, the timing of sperm release during a spawn in fish or of insemination 

relative to ovulation in mammals (Ginsberg and Huck 1989; Huck et al. 1989) and 

the number of sperm transferred may be the most important attributes conferring 

fertilization success upon males.   Although longer sperm tails are expected to 

generate greater propulsive force and hence swim faster (Cardullo and Balta 

1991; Dresdner and Katz 1981), the dynamics of motility can differ within the 

ovarian fluid of a spawn in fish (Turner and Montgomerie 2002) and are expected 
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to be complex and are virtually unknown within female reproductive tracts 

(Woolley 2003).  Moreover, sperm longevity may be an important contributor to 

fertilization success in fish and mammals.  No relationship between sperm length 

and the longevity of motility was found in a study of Atlantic salmon (Gage et al. 

1998).  However, this association has not yet received adequate testing (Morrow 

and Gage 2001b).  The more probing question may be why a positive relationship 

between sperm size and sperm competition was found in another study of fish 

(but limited to cichlids; (Balshine et al. 2001)) and in a study of frogs (Byrne et al. 

2003), which also predominantly have external fertilization.   

 

It must also be noted that lack of a positive relationship between sperm size and 

the risk or intensity of sperm competition in comparative studies provides at most 

only weak evidence against the hypothesis that larger sperm are more 

competitive.  In zebra finches, sperm flagellum length exhibits a negative genetic 

correlation with the length of the midpiece, which also contributes to sperm 

performance (Birkhead et al. 2005).  As discussed above, sperm size has also been 

demonstrated to trade off with sperm number (Oppliger et al. 1998; Pitnick 1996) 

and with life history characteristics important to fitness (Pitnick 1996; Pitnick et 

al. 1995a).  The balance of selection on complex male phenotypes in a lineage 

may not favor larger sperm, but this may not mean that, all other things being 

equal, males producing relatively long sperm would not accrue a competitive 

fertilization success advantage.  Our understanding of net selection on sperm traits 

is further complicated by issues of possible sex-biased inheritance (Birkhead et al. 

2005; Pizzari and Birkhead 2002).   
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Careful consideration must be given to another exception to the findings 

presented here and in Miller and Pitnick (2002).  Morrow and Gage (Morrow and 

Gage 2001a) conducted similar experimental evolution studies of sperm length 

with the cricket, Gryllus bimaculatus (which has ~1 mm long sperm).  After five 

generations of bidirectional selection on sperm length, long-sperm, short-sperm 

and medium-sperm (control) line males were competed against one another.  In 

contrast to our results, altering sperm length in this cricket elicited no correlated 

response in sperm competitiveness (Morrow and Gage 2001b).  In a follow-up 

sperm competition experiment with these selected populations (albeit no further 

selection beyond the initial five generations), paternity success was assayed 

relative to continuous variation in sperm length and sperm number among 

competing pairs of males (Gage and Morrow 2003).  In striking contrast to our 

results, along with a significant positive relationship between sperm number and 

fertilization success, there was a significant negative relationship between sperm 

length and fertilization success (partial correlations were conducted to control for 

any covariance between sperm length and number).  There were two differences 

between the Drosophila and Gryllus projects that may have contributed to the 

contrasting results.  First, although both selection programs produced non-

overlapping sperm length distributions between experimental populations, the 

extent of this divergence was greater in the Drosophila study (28% versus 4.5%).  

Second, only sperm length was experimentally manipulated in the Gryllus study, 

whereas both sperm length and the interacting component of the female 

reproductive tract were manipulated in the Drosophila study.  To the extent that 
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male-by-female interactions determine the relative fertilization success of 

competing males (Clark et al. 1999; Miller and Pitnick 2002; Miller and Pitnick 

2003; Otronen et al. 1997), it is unclear what outcome to predict from altering the 

trait of only one sex.  Nevertheless, interpretational caution is warranted until 

more work can be conducted on these and other systems. 

 

We currently lack any understanding of the adaptive significance of female sperm 

choice (note that we here exclude consideration of choice for genetic 

compatibility).  In the case of Drosophila, for example, SR length/morphology is 

the proximate basis of female sperm choice for sperm length (Miller and Pitnick 

2002).  An experimental evolution study has demonstrated a significant 

developmental time cost to females of growing a longer SR (Miller and Pitnick 

2003).   In the extreme case of D. bifurca with its 58 mm long sperm (Pitnick et 

al. 1995b), females have 82 mm long SRs (Pitnick et al. 1999a).  The existence of 

substantive costs associated with female discrimination are an important 

consideration, irrespective of the specific forces acting on the evolution of the 

preference.  

 

The sexually-selected sperm hypothesis (Keller and Reeve 1995; Pizzari and 

Birkhead 2002) was proposed to explain the evolution of multiple mating by 

females.  According to this model, to the extent that additive genetic variation 

underlies differential male fertilization success, female propensity for polyandry 

is favored because it increases the probability of producing sons with superior 

fertilizing ability.  The model was not intended to explain female-generated 
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selection for any specific sperm attribute, and any of the traditional models for the 

evolution of female mating preferences: good genes, runaway selection, sensory 

exploitation, and sexually antagonistic coevolution, may apply to sperm choice 

(Miller and Pitnick 2002).  A recent comparative study of Drosophila, however, 

reveals how the sexually-selected sperm and good genes models might 

collectively explain the evolution of female sperm choice for long sperm (Schoff 

et al. 2006).  Interestingly, central to this explanation is the negative relationship 

between sperm size and the number of sperm produced.  Even extreme variation 

in the developmental environments encountered by males has little impact on 

sperm size (Amitin and Pitnick 2006; Gage and Cook 1994).  However, the 

number of sperm produced by males is highly condition-dependent (e.g., (Gage 

and Cook 1994).  Across eight species of Drosophila, nearly all of the 

interspecific variation in the level of condition-dependence of the number of 

sperm produced and transferred to females was explained by relative testis mass 

(which is predominantly associated with sperm length; Pitnick 1996).  In other 

words, when sperm are “cheap,” any male can produce and inseminate a great 

quantity.  But when each sperm is “expensive,” only high quality males (Hunt et 

al. 2004; Tompkins et al. 2004) can produce a large quantity.  A long-sperm 

preference may thus be a form of indirect mate choice: by evolving biases in favor 

of longer sperm, females can turn raffle based sperm competition into a 

mechanism of discrimination for high quality sires (Schoff et al. 2006; Wiley and 

Poston 1996).   
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Tables and Figures 

 

 

Table 1. Specified proportion (p) of long sperm in mixed  

distributions, estimated proportion of long sperm by the  

EM algorithm and 90% confidence intervals for the  

estimates for the simulation study. 

 
Specified p 

 

 
Estimated p 

 
90% CI 

 
0.10 

 

 
0.16 

 
0.06 to 0.25 

0.30 0.34 0.21 to 0.42 

0.50 0.52 0.37 to 0.68 

0.70 0.69 0.59 to 0.80 

0.90 0.88 0.77 to 0.97 
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Table 2.  Analysis of covariance of second male sperm precedence (P2) for 

postcopulatory sexual selection experiment with fully factorial variation in sperm 

quality (i.e. length) and sperm quantity.  Prior progeny = number of progeny 

produced prior to remating by female; d.f. = degrees of freedom; MS = type III 

mean square. 

 

 
Source 

 

 
d.f. 

 
MS 

 
F 

 
P 

Sperm length  1 0.178 11.834 0.0010 

Sperm number  1 0.136  9.021 0.0037 

Prior progeny  1 0.216 14.340 0.0003 

Length * number  1 0.060  4.006 0.0492 

Length * progeny  1 0.077  5.094 0.0271 

Number * progeny  1 0.015  1.013 0.3175 

Length * number * 
progeny 

 1 0.066  4.350 0.0406 

Error 71 0.015   
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Table 3.  Treatment-wide number of sperm measured and EM algorithm estimates  

of the proportion of long sperm in the proximal and distal regions of the SR.   

 
Female 

First 
male 

Second 
male 

N sperm measured 
Proximal     Distal 

Proportion long sperm 
 Proximal       Distal 

 
long 

 

 
long 

 
short 

 
1075        2625 

 
0.82           0.45 

long short long 1026        2005 0.94           0.72 

short long short 319         1931 0.80           0.52 

short short long 719         2481 0.89           0.78 
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Table 4.  Mean (actual) sperm head lengths, EM algorithm estimates of the 

proportion of long sperm in the proximal and distal regions of the SR and of the 

proportion difference between the two regions, from individual female-level 

analyses.  The F-statistic and P-values are from ANOVAs testing the difference in 

proportion between proximal and distal regions. 

 
Female 

1st 
male 

2nd 
male 

 
N 

Mean head length 
Proximal    Distal 

Prop. (± SD) long sperm 
Proximal       Distal 

Prop. (± SD) 
difference 

 
F 

 
P 

 
long 

 

 
long 

 
short 

 
29 

 
  9.97        9.62 

 
0.83 ± 0.24   0.60 ± 0.33  

 
0.22 ± 0.24           

 
57.14 

 
< 0.0001 

long short long 19 10.07        9.88 0.98 ± 0.03   0.90 ± 0.09 0.08 ± 0.09           33.89 < 0.0001 

short long short 21 10.05        9.68 0.90 ± 0.15   0.67 ± 0.23 0.23 ± 0.21 42.84 < 0.0001 

short short long 26 10.15        9.94 0.91 ± 0.19   0.90 ± 0.18 0.02 ± 0.15 18.40 < 0.0001 
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Figure 1.  Relationship between the number of sperm assayed and the accuracy of 

estimation of male sperm length.   
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Figure 2. 
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Figure 2.  Relationship between sperm head length (µm) and total length of sperm 

(mm).  Best fit lines from least squares regression are shown for analyses of 

discrete selection lines (solid) and for all sperm from both lines combined 

(dashed). 
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Figure 3. 
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Figure 3.  Number of sperm transferred (A) and number of progeny eclosing (B) 

across a succession of matings by individual males from the short-sperm (circles) 

and long-sperm (squares) populations. Bars indicate 1 standard error. 
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Figure 4. 
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Figure 4.  Pattern of sperm precedence with varying sperm quality and quantity.  

White columns = short-sperm males; gray columns = long-sperm males.  Bars 

indicate 1 standard error.  Note: raw P2 scores shown here are for illustrative 

purposes only; interpretation is based on ANCOVAs of transformed P2 values 

(see text for details). 
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Figure 5.  

 

 

Figure 5.  Micrographs showing in vivo organization of aceto-orcein stained 

sperm heads within the proximate (left) and distal (right) ends of the female's 

seminal receptacle.  Both images were obtained at the same magnification.  

Arrowheads indicate select sperm; double-headed arrows indicate diameter of SR 

lumen.  Note: because these are "optical slices," only sperm heads positioned 

within the depth of field are visible. 
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Figure 6. 
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Figure 6.  Frequency histograms mapping the distribution of sperm heads 

throughout the female seminal receptacle for both (A) short-SR population and 

(B) long-SR population females.  All females were doubly mated, either first to a 

long-sperm male and next to a short-sperm male (white bars) or vice-versa (black 

bars).  See text for details of the mating and dissection procedure.  Distance 0.0 

indicates the proximate end (i.e., entrance/exit) of the seminal receptacle and the 

approximate site of egg fertilization.  Positioned above each histogram is a 

schematic illustrating the dimensions of the inner diameter of the lumen for the 

respective female lines.  Each schematic is accurately positioned relative to the x-

axis of the respective histograms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 



                                                                                       Pattarini et al.  56 



                                                                                       Pattarini et al.  57 

Figure 7.  (A) Micrograph of sperm mass removed intact from a female's seminal 

receptacle without disrupting the relative position of stored sperm.  Flourescent 

sperm heads appear bright white.  Mass is oriented with the end occupying the 

proximal end of the SR at the top of the image.  (B) Magnified view of proximal 

end of sperm mass.  Note dense clump of sperm heads at proximal end, followed 

by region containing the tails of those sperm with only a few additional heads.  

(C) Magnified view of distal region of sperm mass.  Note apparent lack of 

organization of sperm heads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8  
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Figure 8.  Decomposition of the distribution for sperm head lengths measured in 

the proximal (left) and distal (right) regions of the SR for all females from each of 

the four mating treatments.  The empirical distribution of the data is shown by 

open white circles.  Data analyses on each sperm type (measured alone in 

individual females) showed the distributions of each to be normally distributed 

with standard deviations of ~0.5.   We thus assumed a mixture of two normal 

distributions each with a variance of 0.25 in the decomposition algorithm.  The 

dark grey distribution represents the sperm from short-sperm line males, the light 

grey distribution represents the sperm from long-sperm line males and the white 

distribution represents the sum of the two distributions.  
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