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Abstract

This paper considers various estimators using panel data seemingly unrelated regressions
(SUR) with spatial error correlation. The true data generating process is assumed to be SUR with
spatial error of the autoregressive or moving average type. Moreover, the remainder term of the
spatial process is assumed to follow an error component structure. Both maximum likelihood and
generalized moments (GM) methods of estimation are used. Using Monte Carlo experiments, we
check the performance of these estimators and their forecasts under misspecification of the
spatial error process, various spatial weight matrices, and heterogeneous versus homogeneous

panel data models.
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1 Introduction

Since Zellner’s (1962) seminal paper on seemingly unrelated regressions (SUR)
analyzing multiple equations with correlated disturbances, various extensions
have been proposed, for e.g., to deal with the serially correlated case, the
nonlinear case, the misspecified case, and SUR with unequal number of ob-
servations, see Srivastava and Dwivedi (1979).! Of particular interest for this
paper are the extensions of SUR to panel data utilizing the error component
model, see Avery (1977), Baltagi (1980), Magnus (1982) and Prucha (1984) to
mention a few. Some applications of SUR panel data with error components
include Verbon (1980) who estimated a set of four labor demand equations,
using data from the Netherlands on 18 industries over 10 semiannual peri-
ods covering the period 1972-79; Beierlein, Dunn and McConnon (1981) who
estimated six equations describing the demand for electricity and natural
gas in the northeastern United States using data on nine states comprising
the Census Bureau’s northeastern region of the USA for the period 1967-77;
Brown, Kleidon and Marsh (1983) who studied the size-related anomalies in
stock returns using a panel of 566 firms observed quarterly over the period
June 1967 to December 1975; Howrey and Varian (1984) who estimated a
system of demand equations for electricity by time of day. Their data were
based on the records of 60 households whose electricity usage was recorded
over a five-month period in 1976 by the Arizona Public Service Company;
Sickles (1985) who modeled the technology and specific factor productivity
growth in the US airline industry; Wan, Griffiths and Anderson (1992) who
estimated production functions for rice, maize and wheat production using
panel data on 28 regions of China over the period 1980-83; Baltagi, Griffin
and Rich (1995) who estimated a SUR model consisting of a translog variable
cost function and its corresponding input share equations for labor, fuel and
material using panel data of 24 U.S. airlines over the period 1971-1986; Eg-
ger and Pfaffermayr (2004) who used industry-level data of bilateral outward
FDI stocks and exports of the U.S. and Germany to other countries between
1989 and 1999 to study the effects of distance as a common determinant
of exports and foreign direct investment (FDI) in a three-factor New Trade
Theory model; and more recently, Baltagi and Rich (2005) who estimated a
SUR model consisting of a translog cost function and its corresponding in-

'For a monograph dedicated to SUR models and their extensions, see Srivastava and
Giles (1987), also, the chapter by Fiebig (2001).



put share equations for production workers, nonproduction workers, energy,
materials, and capital utilizing the National Bureau of Economic Research
(NBER) manufacturing productivity database file. The panel data covered
459 manufacturing industries at the SIC 4-digit level over the period 1959
1996.

In addition, SUR models have been extended to allow for spatial autocor-
relation, see Anselin (1988a,b). In fact, Anselin (1988a) derived a Lagrange
Multiplier test for spatial autocorrelation in a SUR context. This paper ex-
tends Anselin’s (1988a,b) SUR spatial model to the panel data case. This
more general model allows for correlation across space, time and equations.
It combines the simplicity of dealing with heterogeneity in the panel using
an error component model and spatial correlation using a spatial autoregres-
sive (SAR) or spatial moving average (SMA) disturbances. In this context,
Wang and Kockelman (2007) derived the maximum likelihood estimator (un-
der the normality assumption) of a SUR error component panel data model
with SAR disturbances. They applied it to estimation of crash rates in 169
cities in China over the period 1999-2002.

The next section presents the seemingly unrelated regressions (SUR)
panel model with spatial correlated error components. Section 3 presents
the various estimators considered including maximum likelihood and gener-
alized moments (GM) methods. We propose extensions of the Kapoor, et
al. (2007) GM method to deal with SUR panel with SAR error component
structure. Also, extensions of the Fingleton (2008a) GM method and Wang
and Kockelman (2007) maximum likelihood (ML) method to deal with SUR
panel with SMA error component structure. Section 4 gives the Monte Carlo
design. The true data generating process is assumed to be SUR with spatial
error of the autoregressive (SAR) or moving average (SMA) type. More-
over, the remainder term of the spatial process is assumed to follow an error
component structure. Section 5 gives the Monte Carlo results along with sen-
sitivity checks of these results to misspecification of the spatial error process,
various spatial weight matrices, heterogeneous versus homogeneous spatial
and panel estimators, and their performance in out of sample prediction.
Section 6 concludes.



2 SUR with spatially correlated error com-
ponents

Consider the set of M equations:
yj:Xjﬁj—i-éfj,j:l,...,M (1)

where y; is (TN x 1), X; is (TN x k;), 3,1is (k; x 1), and the (T'N x 1) error
vector ¢; follows a spatial autoregressive (SAR) or a spatial moving average
(SMA) process. Those processes can be expressed as :

J (IT X AjoN) Uj + Uj SMA

where I7 is an identity matrix of order 7', W;y is an (N x N) known spatial
weights matrix, p; is the spatial autoregressive parameter and A; is the spatial
moving average parameter for equation j = 1,... , M. The diagonal elements
of the spatial weight matrices W;y are zero. We assume that the matrices
(I N — piW; N) are non-singular, and that the row and column sums of the
matrices W;y are bounded uniformly in absolute value for j = 1,..., M.
The matrix of exogenous regressors X; has full column rank and its elements
are uniformly bounded in absolute value. In contrast to much of the classical
literature on panel data, we group the data by periods rather than units. This
grouping is more convenient for modelling spatial correlation via (2). The
disturbance term u; of the processes (2) follows an additive error components
structure:

Uj = Lpfby +v; (3)

. /
where Z, = 17 @ Iy, v is a (T x 1) vector of ones; p; = (py, ... ,py;) and
/ .
vj = (V11j, -y UN1js - V1T, ---, UNT;) are random vectors with 0 means and
covariance matrix

2
1 ;o o, IN 0
E( "V v ) = at 4
( v; ) ( Hy Yy ) ( 0 UgﬂITN (4)

for jand [ =1,2,..., M, see Baltagi (1980). We note that the specification
of u; corresponds to that of classical one-way error component model, see
Baltagi (2008). In fact, if p; = 0 (vesp. \; =0), Vj = 1,2,..., M, so that

3



there is no spatial autocorrelation, then this reduces to the usual SUR panel
model with error components suggested by Avery (1977) and Baltagi (1980).
Following Baltagi (1980), the covariance matrix of u is given by

O, =F (uu,) = [Q;] (5)

where );; is a typical submatrix of 2, given by
le =F (u]u;> = O'ijl (JT ® IN) + U?;leTN (6)

where Jp = tpiy is a (T x T') matrix of ones. (6) can also be written as

Q= U%le1 + U%lez (7)

with
Q = Jr®lIy (8)
Q = (Ir—Jr) @Iy 9)

where Jr = Jp/T and al = 05+ To, . The matrices Q1 and Q, are
symmetric, idempotent and orthogonal to each other. Furthermore, ()1 +
Q2 = Iry, tr@Q1 = N and trQ,; = N (T —1). Replacing j; in (5) by its
value, given in (6) we get

Q,=2, Iy (10)
where ¥, = Q, ® Jr + Q, ® Ir. Alternatively, from (7)

Qu:QI®Q1+Qv®Q2 (11)

where 2, = [aiﬂ], O = [ o1, ] and (2, = [ o3 l], all of dimension (M x M).
Then, the inverse of that covariance matrix is given by

Q="' Iy (12)
or

Q;129I1®Q1+Q;1®Q2 (13)



see Baltagi (1980). From (2) and (3), the spatial-RE specification of the
(T'N x 1) error vector €; of equation j can be expressed as:

gj = (tr ® Hyj) pj + (It @ Hyj) vj (14)

with Hy; = Byt = (Iy —p;Wjn) " for SAR-RE and Hy; = Dy; =
(In + AW, ) for SMA-RE. The corresponding (I'N x T'N) covariance ma-
trix of (14) is given by:

Ajl = F (5].52) = a'ijl (JT (29 HNjH]/Vl) + O‘?}jl [IT (02 HNjH]/VJ (15)
or
Ajl = (U%jjT + Ugj (IT - ‘_]T)> ® HNJ'HJ,V; (16)

with Hy;Hy, = (BEVZBNJ')A for SAR-RE and Hy;H}, = (Dn;Dy,) for
SMA-RE. Combining the set of M equations, we get

y=XB+e¢ (17)
with
A=E (ee’) — AQ A’ (18)
where A is a block-diagonal matrix defined as
Ay 0 .. 0
A _ (.) ‘. ‘. . (19)
DT T 0
0 -+ 0 Aywy

with typical block matrix A;; = Ip ® Hy, for j =1,..., M. Following the
properties of the matrices {2, and A, we obtain the inverse covariance matrix
of € defined as

At = (A’)1 Q1A (20)

or

AL = (A'>_1 (St @Iy) At (21)



3 SUR spatial panel estimation

Consider the SUR spatial panel model given in (1) - (3). The true generalized
least squares (GLS) estimator of 3 is given by

BGLS = (X/A51X>_1 X’A;ly

’ -1 ’
= (xTorxt) XUty (22)
with typical element of the jth equation
Xy = (Ir®Hy))X; (23)
y; = (Ir® Hy;)y; (24)

The y; and X7 can be viewed as the result of a spatial Cochrane-Orcutt type
transformation of the original model. More specifically, premultiplication of
(1) and (2) with (Ir ® Hy;) yields

Yi = Xi0; +u (25)
since €; = (It ® Hy;) uj. Stacking the set of M equations, we get
vy =X"F+u (26)

with y* = A7ly and X* = A71X. In light of the properties of (13), we can
write

Q=000+ 0,22 Qy (27)

Guided by the classical error component literature, we note that a convenient
way of computing the GLS estimator 3¢ is to further transform the model
in (26) by premultiplying it by €, Y2 The GLS estimator of 3 is then
identical to the OLS estimator of 8 computed from the resulting transformed
model. ©, /% and Ql_l/ ? can be obtained from a Cholesky decomposition of
Q, and €, see Kinal and Lahiri (1990). We note that if p; = 0 (resp. A; = 0),
Vi =1,2,...,M, so that there is no spatial autocorrelation, then the GLS
estimator reduces to that proposed by Avery (1977) and Baltagi (1980) for
the SUR panel data model.

Let p; (resp. A;j), Eil and Eiﬂ be estimators of p; (resp. A;), Uiz and U%ﬂ.

The corresponding feasible GLS estimator of (3, say B raLss 1S then obtained

6



by replacing p; (resp. A;), U%ﬂ and 012)]-1 by those estimators in the expression
for the GLS estimator

N SN B
BraLs = (X* QJIX*) X1,y (28)
where X* = A~1X and Ut = A\_ly. This estimator can be easily computed
as an OLS estimator on a transformed system of equations described above.
We propose a FGLS procedure that can be obtained in two steps :

e Estimate each equation with SAR-RE (resp. SMA-RE) process us-
ing the GM spatial panel data estimator proposed by Kapoor, et al.
(2007) (resp. Fingleton (2008a)) to obtain consistent estimates of p,
(resp. /)\\]) for j =1,..., M. We can also estimate p; (resp. /)\\]) us-
ing the GM cross-section estimator proposed by Kelejian and Prucha
(1999) (resp. Fingleton (2008b)). This computes the cross-sectional
GM estimator for each equation with SAR disturbances (resp. SMA
disturbances) for each timAe period and averages the estimates over time

%j =1/T Zle ﬁjt (resp. Xj =1/T Z?zl Ajt)-

e Knowing the true disturbances u;, the analysis of variance estimates
of ), and Q; are given by (), = U'QU/N(T —1) and Q) = UQU/N
where U = [uy, ... ,up] is the NT' x M matrix of disturbances for all M
equations, see Avery (1977) and Baltagi (1980). Using the consistent
estimates of the residuals from step 1, one obtains consistent estimates
of 2, and ;.

e Obtain @FGLS as in (28) using p; (resp. /):]) from step 1 and €, and
from step 2.

The GM estimation method is computationally simple and yields consis-
tent estimates under mild conditions given in Kapoor, et al. (2007). This
was suggested as an alternative to the standard MLE (under normality of the
disturbances) which is computationally demanding even for the single equa-
tion case. Under normality of the disturbances, the log-likelihood function is
given by:

1

L= mnlAd 5y~ XO) AT (y — X0) (29)



and basic mathematical manipulations result in the following:

I — 2
—L(y—XB) (A) (@ Iy) A (y — XP)

M
NS +T S In|H:
Pl T n ) (30)

The parameters in (30) are intertwined, and the first order conditions of
maximization are non-linear. However, the model can be estimated using a
three-step method (see Wang and Kockelman (2007))? :

e First, 0 can be estimated using a feasible generalized least squares
estimator (FGLS), conditional on Q,, 2, and p (resp. A), ie., by
maximizing the conditional likelihood L(3/p, 2, €,).

e Second, 2, and 2, can be estimated conditional on # and p (resp. A),
i.e., by maximizing the conditional likelihood L(f,,€,/5,p). These
two steps are iterated until the optimal €, €2, and 3 are found (con-
ditional on p (resp. A)).

e Third, we maximize the concentrated log-likelihood function
L(p/Qy,Qy, B) over p (resp. A). The optimized values of Q,, Q, and
[ from the first two steps are plugged in the likelihood and the values
of p are obtained by non-linear optimization. The estimated p (resp.
A) then re-enters the estimation of €,, Q, and §. This procedure is
iterated until convergence.

4 Monte Carlo design

In this section, we consider the Monte Carlo design to study the small sample
performance of several estimators of a SUR with spatial error components
disturbances. The data generating process (DGP) considers two specifica-
tions on the remainder errors (2), namely SAR and SMA. We suppose that
M = 2, then our spatial SUR specification is:

y1 = Bo1t+Xifi1te (31)
Y2 = /80,2 + X2/81,2 + &2

2Wang and Kockelman (2007) consider only the SAR-RE. We provide the extension
here for the SMA-RE specification.




or
y=X0G+¢ (32)
where

Box
. LTN X1 0 0 _ ﬁl,l
X = < 0 0 ity Xo ) and § = Bos

51,2

with 81 = 811 = Boa = B12 =1, try is an (T'N x 1) vector of ones, (X1, X5)
are two explanatory variables. Following Baltagi, Egger and Pfaffermayr
(2007), the DGP of x;;, j = 1,2, is defined by:

.I‘jﬁ = (SjJ' + Wjﬂ't (33)

with 6, ~ 4id.U (=7.5,7.5) and w; ;4 ~ 7d.U (—5,5). The (2NT x 1) spatial-
RE vector of the disturbances ¢ is:

e=Alp+] (34)

where the matrix A is defined by (19) with W, = Wy = Wy where Wiy is the
spatial weight matrix defined by Kelejian and Prucha (1999). We use two
weight matrices which essentially differ in their degree of sparseness. The
weight matrices are labelled as “s ahead and s behind” with the non-zero
elements being 1/(2s), s = 1 and 5. This row normalizes the weight matrices
so that their elements sum to one. We generate the error components term
as:

(:u_l_'U) NN(Oazu@)IN)?Eu:Qu®JT+QU®IT (35)

The variance-covariance matrices €2, and €2, are defined by:

2 2
o P,O0u O o PO, O
_ 1% [ S D) _ V1 vY V1Y V2
Q, = < ! 9 ) and 2, = < 5 )

pp,a-}zbl UHQ a-u2 pUU'UI UU2 UUQ
with?
2 2 2 2 _
oy = op, =10y, =0, =1,p,=p,=05

3We consider other values for the variances but the results were qualitatively similar
to those reported in our tables.



In order to generate the vector of disturbances (p + v), we use the Cholesky
decomposition*. We consider several individual and time dimensions N =
(50,100), T = (10, 20). For all experiments, 1000 replications are performed.

For each experiment, we consider the following 18 estimators:

Homogeneous estimators (without spatial):

1. The pooled OLS equation by equation which ignores the individual het-
erogeneity, the spatial correlation and the correlation across equations.

2. The random effects (RE) estimator, equation by equation, which as-
sumes that the pu;’s are iid(0, O'i), and independent of the remainder
disturbances v;;’s. This estimator accounts for random individual ef-
fects but does not take into account the spatial autocorrelation nor the
correlation across equations.

3. The fixed-effects (FE) estimator, equation by equation, which accounts
for fixed individual effects but does not take into account the spatial
autocorrelation and correlation across equations.

4. Zellner’s (1962) SUR-FGLS estimator which ignores the individual het-
erogeneity and spatial correlation.

5. The SUR fixed effects (FE) estimator which ignores spatial autocorre-
lation but takes into account the correlation across equations.

6. The SUR-ML random effects (RE) estimator which ignores spatial cor-
relation.

1As (u+v) ~ N (0,2, ® In) and p and v are uncorrelated, u ~ N (0, (2, ® Jr @ Iy))
and v ~ N (0, (2, ® InT)), then,

UE(CU®INT)|:%; ] andu:(C’NQ@LT@IN)[%; ]

where (NT)uy, (NT)uz) and ((N)aq, (N)az) are IIN(0,1) random variables. C,, (resp.
Cy) is the lower triangular matrix defined by the decomposition: @, = C,C], (resp.
Q, = C,C}) namely

C,= 7 - and C, = ( v 0 )
PuTu, Tusr/1—Pp ! PuOvs  Ovan/1 =P}
(see Anderson (1984)).

10



10.

11.

12.

13.

14.

15.

SUR-FGLS random effects (RE) estimator which ignores spatial corre-
lation.

Homogeneous estimators (with spatial):

The SUR-ML random effects (RE) estimator which takes into account
the spatial autocorrelation of the SAR type.

The SUR-ML random effects (RE) estimator which takes into account
the spatial autocorrelation of the SMA type.

The SUR-ML fixed effects (FE) estimator which takes into account the
spatial autocorrelation of the SAR type.

The SUR-ML fixed effects (FE) estimator which takes into account the
spatial autocorrelation of the SMA type.

The SUR-FGLS random effects (RE) estimator which takes into ac-
count the spatial autocorrelation of the SAR type, using the GM method.
In the first step, we estimate each equation with SAR-RE process using
the GM spatial panel data estimator proposed by Kapoor, et al. (2007)
to obtain consistent estimates of p;, j = 1, 2.

The SUR-FGLS random effects (RE) estimator which takes into ac-
count the spatial autocorrelation of the SMA type, using the GM
method. In the first step, we estimate each equation with SMA-RE
process using the GM spatial panel data estimator proposed by Fingle-
ton (2008a) to obtain consistent estimates of A;, j =1, 2.

Heterogeneous estimator (without spatial):

The average heterogeneous OLS, equation by equation, to obtain a
pooled estimator, see Pesaran and Smith (1995).

Heterogeneous estimators (with spatial):

The average heterogeneous SUR assuming a SAR specification on the
remainder disturbances using Kelejian and Prucha (1999) GM approach
to estimate p;,. This estimates cross-sectional GM-OLS with SAR dis-
turbances for each time period and averages the estimates over time.

11



16. The average heterogeneous SUR assuming a SMA specification on the
remainder disturbances using Fingleton (2008b) GM approach to es-
timate th. This estimates cross-sectional GM-OLS with SMA distur-
bances for each time period and averages the estimates over time.

17. The SUR-FGLS random effects (RE) estimator which takes into ac-
count the spatial autocorrelation of the SAR type, using GM-Average-
within residuals. In the first step, we estimate p;, j = 1,2, using the
GM cross-section estimator proposed by Kelejian and Prucha (1999).
This computes the cross-sectional GM estimator for each equation with
SAR disturbances for each time period and averages the estimates over

time p; = 1/T >0 By, 5 = 1, 2.

18. The SUR-FGLS random effects (RE) estimator which takes into ac-
count the spatial autocorrelation of the SMA type, using GM-Average-
within residuals. In the first step, we estimate \;, 7 = 1,2, using the
GM cross-section estimator proposed by Fingleton (20085). This com-
putes the cross-sectional GM estimator for each equation with SMA
disturbances for each time period and averages the estimates over time

N =0T N j=1,2

We focus on the estimates Bl,l, 31727 D1 Xl, Doy XQ, the standard errors

~2 N2 A2 A2

o lox ; ~2 ~2
05,003, > and the variance components o, , 0, , 0,0 o2 . Follow-

Ocry Ogye

9 Mo 9 v1? v
ing Kapoor, et al. (2007), we adopt a measure of dispersion which is closely
related to the standard measure of root mean square error (RMSE) defined

as follows:

/
bias? + (Q)T 2 (36)
1.35

where bias is the difference between the median and the true value of the
parameter, and I() is the interquantile range defined as ¢; — co where ¢
is the 0.75 quantile and ¢, is the 0.25 quantile. Clearly, if the distribution
is normal the median is the mean and, aside from a slight rounding error,
1Q)/1.35 is the standard deviation. In this case, the measure (36) reduces to
the standard RMSE.

Moreover, we check the prediction-performance of the 18 alternative esti-
mators considered. Here, we use the usual RMSE criterion and compute the

RMSE =
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out of sample forecast errors for each predictor associated with the 18 esti-
mators. An average RMSE is calculated across the N individuals at different
forecasts horizons.

5 Monte Carlo results

5.1 The Spatial Dependence Specification Effect
5.1.1 RMSE performance of the estimators

Table 1 gives the RMSE for the various estimators considered when the
true DGP is a SUR panel model with SAR-RE remainder disturbances.
The sample size is (N,T) = (50,10), the weight matrix is W (1,1), i.e.,
one neighbor behind and one neighbor ahead. The spatial coefficients are
(p1,p2) = (0.5,0.3) with 02 =02 =1,05 =0, =1landp, =p, =05.
Focusing on the RMSE of the slope coefficient of the first equation (3, ;), we
observe the following results: Not surprisingly, OLS and average OLS per-
form the worst because they ignore the spatial correlation, the individual het-
erogeneity and the cross-equation correlation. Taking into account only the
cross-equation correlation by performing Zellner’s SUR estimation ignoring
the spatial effects and the individual heterogeneity reduces the RMSE from
0.02546 for OLS to 0.02234 for Zellner’s SUR. Interestingly, if one performed
RE or FE ignoring the spatial effects and the cross-equation correlation, the
reduction in RMSE would have been even more (0.01776 and 0.02019, re-
spectively). Correcting for both individual heterogeneity and cross-equation
correlation by performing SUR-FE and SUR-FGLS RE reduces the RMSE
further to 0.01769 and 0.01577, respectively.

Note also that SUR-RE leads to similar RMSE for feasible GLS and ML,
respectively 0.01577 and 0.01593. Correcting for spatial correlation, individ-
ual heterogeneity and the cross-equation correlation by performing SUR-ML
or SUR-FGLS SAR-RE yields the lowest RMSE of 0.01123 (for feasible GLS)
and 0.01140 (for the corresponding ML). The RMSE for SUR SAR-FE using
ML is 0.01308. If the wrong spatial structure was used in the estimation, i.e.,
SMA rather than SAR, the corresponding RMSE for SUR SMA-RE would be
0.01599 for ML and 0.01767 for the SUR-ML SMA-FE. Ignoring the individ-
ual effects but not the spatial correlation or the cross-equation correlation,
by applying Average SUR SAR yield a RMSE of 0.01855. Interestingly, this
RMSE remains almost the same had one misspecified the SAR process and
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performed Average SUR SMA. If we take into account the individual effects,
the corresponding heterogeneous RMSE for SUR-FGLS SAR-RE (av.) is
0.01116 and 0.01213 for SUR-FGLS SMA-RE (av.).

Similar results are obtained had we focused on the slope coefficient of the
second equation (3;,. Only the magnitudes of the RMSEs would have been
different. For example, the RMSE of OLS is 0.02655, that of FE is 0.01566,
that of RE is 0.01464. Zellner’s SUR is 0.02332. SUR-FE is 0.01477 and
SUR-FGLS RE is 0.01417 and 0.01432 for SUR-ML RE. The lowest RMSE
is obtained for SUR SAR-RE (0.01230) whether FGLS or ML. Misspecifying
the SAR process by a SMA process yields a RMSE of 0.01336 for SUR, SMA-
RE by FGLS and 0.01248 by ML. The corresponding RMSE for SUR-ML
SMA-FE is 0.01512. The heterogeneous estimators yield a RMSE of 0.2685
for average OLS, 0.02146 for Average SUR SAR and 0.02081 for Average
SUR SMA. The corresponding heterogeneous RMSE for SUR-FGLS SAR-
RE (av.) is 0.01250 and 0.01232 for SUR-FGLS SMA-RE (av.).

Table 2 gives the RMSE for the various estimators considered when the
true DGP is a SUR panel model with SMA-RE remainder disturbances.
The sample size is N = 50 and 7' = 10, the weight matrix is W (1,1), i.e.,
one neighbor behind and one neighbor ahead. The spatial coefficients are
(A1, A2) = (0.5,0.3) with 02 =07, =1, 05 =07, =1and p, = p, = 05.
Focusing on the RMSE of the slope coefficient of the first equation (3, ;),
we observe the following results: OLS and average OLS still perform the
worst. Zellner’s SUR (0.02136) performs better in terms of RMSE than OLS
(0.02488) but worse than RE (0.01475), FE (0.01747), SUR-FE (0.01564),
SUR-ML RE (0.01336) and SUR-FGLS RE (0.01343). Correcting for spatial
correlation, individual heterogeneity and the cross-equation correlation by
performing SUR-ML or SUR-FGLS SMA-RE yields the lowest RMSE of
0.01044 and 0.01025, respectively. If the wrong spatial structure was used
in the estimation, i.e., SAR rather than SMA, the corresponding RMSE for
SUR SAR-RE would be 0.01038 for FGLS, 0.01052 for ML. Similar results
are obtained for the slope coefficient of the second equation (3, ,.

Table 3 gives the RMSE for the various estimators considered when the
true DGP is a SUR panel model with SAR-RE remainder disturbances. All
the parameters are the same as in Table 1, except the spatial coefficients
which are now (p;,p,) = (0.8,0.5) rather than (0.5,0.3), implying higher
spatial autocorrelation of the SAR type. Focusing on the RMSE of the slope
coefficient of the first equation (3, ;), we observe the same performance as in
Table 1 but the magnitude of the RMSE almost doubles for some estimators.
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For example, OLS and average OLS still perform the worst because they
ignore the spatial correlation, the individual heterogeneity and the cross-
equation correlation. They yield RMSE that is now of the order of 0.0501 and
0.0505 rather than 0.0255 and 0.026, as in Table 1. Zellner’s SUR estimation
ignoring the spatial effects and the individual heterogeneity yields a RMSE
of 0.0449 rather than 0.0223 as in Table 1. If one performed RE or FE
ignoring the spatial effects and the cross-equation correlation, the RMSE
would have been 0.0289 and 0.0345, rather than 0.0178 and 0.0202, as in
Table 1. Correcting for both individual heterogeneity and cross-equation
correlation by performing SUR-FE and SUR-FGLS RE yield RMSE of 0.0313
and 0.0273, rather than 0.0177 and 0.0158, as in Table 1.

SUR-RE leads to similar RMSE for feasible GLS and ML, 0.0273 and
0.0272 in Table 3 rather than 0.0159 and 0.0158, as in Table 1. Correcting
for spatial correlation, individual heterogeneity and the cross-equation cor-
relation by performing SUR-ML or SUR-FGLS SAR-RE yields the lowest
RMSE of 0.0107 (for feasible GLS) and 0.0110 (for the corresponding ML).
This is compared to 0.0112 and 0.0114 in Table 1. The RMSE for SUR
SAR-FE using ML is 0.0116 in Table 3 compared to 0.0131 in Table 1. If the
wrong spatial structure was used in the estimation, i.e., SMA rather than
SAR, the corresponding RMSE for SUR SMA-RE would be 0.0125 for ML
and 0.0138 for the SUR-ML SMA-FE in Table 3 compared to 0.0160 and
0.0177 in Table 1. Ignoring the individual effects but not the spatial correla-
tion or the cross-equation correlation, by applying Average SUR SAR yield a
RMSE of 0.0196 in Table 3 compared to 0.0186 in Table 1. Interestingly, this
RMSE is very different from Average SUR SMA (the misspecified estimator)
which is now 0.0222 in Table 3 rather than 0.0190 in Table 1. If we take
into account the individual effects, the corresponding heterogeneous RMSE
for SUR-FGLS SAR-RE (av.) is 0.0111 and 0.0148 for SUR-FGLS SMA-RE
(av.) in Table 3 compared to 0.0112 and 0.0121 in Table 1.

Similar results are obtained had we focused on the slope coefficient of the
second equation (3;,. Only the magnitudes of the RMSEs would have been
different. For example, the RMSE of OLS is 0.0285 in Table 3 compared
to 0.0266 in Table 1, that of FE is 0.0204 in Table 3 compared to 0.0157
in Table 1, that of RE is 0.0183 in Table 3 compared to 0.0146 in Table 1.
Zellner’s SUR is 0.0254 in Table 3 compared to 0.0233 in Table 1. SUR-
FE is 0.0178 and SUR-FGLS RE is 0.0167 in Table 3 compared to 0.0148
and 0.0142 in Table 1. The lowest RMSE is obtained for SUR-ML SAR-
RE, 0.0120 in Table 3 compared to 0.0123 in Table 1. Misspecifying the
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SAR process by a SMA process yields a RMSE of 0.0132 for SUR SMA-RE
in Table 3 compared to 0.0134 in Table 1. The corresponding RMSE for
SUR-ML SMA-FE is 0.0140 in Table 3 compared to 0.0151 in Table 1. The
heterogeneous estimators yield a RMSE of 0.0287 for average OLS in Table 3
compared to 0.0269 in Table 1. Average SUR SAR and Average SUR SMA
yield RMSE of 0.0200 and 0.0207 in Table 3 compared to 0.0215 and 0.0208
in Table 1. The corresponding heterogeneous RMSE for SUR-FGLS SAR-
RE (av.) and SUR-FGLS SMA-RE (av.) are 0.0121 and 0.0129 in Table 3
compared to 0.0125 and 0.0123 in Table 1.

Table 4 gives the RMSE for the various estimators considered when the
true DGP is a SUR panel model with SMA-RE remainder disturbances.
Compared to Table 2, all the parameters are the same except the spatial
coefficients which are now (A1, A\2) = (0.8, 0.5) rather than (0.5,0.3) , implying
higher spatial autocorrelation of the SMA type. Focusing on the RMSE of
the slope coefficient of the first equation (3,,), we observe the following
results: OLS and average OLS still perform the worst with RMSE of 0.0270
and 0.0274 in Table 4 compared to 0.0249 and 0.0251 in Table 2. Zellner’s
SUR yields a RMSE of 0.0236 in Table 4 compared to 0.0214 in Table 2. RE
yields 0.0156 in Table 4 compared to 0.0148 in Table 2. FE yields 0.0189
in Table 4 compared to 0.0175 in Table 2. SUR-FE yields 0.0177 in Table
4 compared to 0.0156 in Table 2. SUR-ML RE yields 0.0151 in Table 4
compared to 0.0134 in Table 2. SUR-FGLS RE yields 0.0151 in Table 4
compared to 0.0134 in Table 2. Correcting for spatial correlation, individual
heterogeneity and the cross-equation correlation by performing SUR-ML or
SUR-FGLS SMA-RE yields the lowest RMSE of 0.0058 and 0.0061 in Table
4 compared to 0.0104 and 0.0103 in Table 2. If the wrong spatial structure
was used in the estimation, i.e., SAR rather than SMA, the corresponding
RMSE for SUR SAR-RE would be 0.0076 for FGLS, 0.0082 for ML in Table
4 compared to 0.0104 and 0.0105 in Table 2. Similar results are obtained for
the slope coefficient of the second equation (3, , but the magnitudes of the
RMSEs are higher.

5.1.2 Forecast Accuracy

Table 5 gives the forecast RMSE results when the true DGP is a SUR panel
model with SAR-RE remainder disturbances. The sample size is still N =
50,7 = 10, and the weight matrix is W(1,1). In general, for (p;,py) =

(0.5,0.3) with 02 =02 =1, 02 =o. =1and p, = p, = 0.5, the lowest
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forecast RMSE is that of SUR SAR-RE (ML, FGLS and FGLS (av.)). This is
followed closely by SMA-RE. Misspecifying the SAR by an SMA in an error
component model does not seem to affect the forecast performance as long
as it is taken into account. However, the magnitudes of the RMSE in Table 5
(where the true DGP is a SAR-RE process) are higher than those in Table 6
(where the true DGP is a SMA-RE process). Once again, the forecast RMSE
based on ML and FGLS are quite similar. Pooled OLS, SUR-FGLS, average
heterogeneous OLS, average SUR SAR and average SUR SMA perform worse
in terms of forecast RMSE than spatial /panel homogeneous estimators. This
forecast performance is robust whether we are predicting one period, two
periods or 5 periods ahead and is also reflected in the average over the five
years. The gain in forecast performance is substantial once we account for
RE or FE and is only slightly improved by additionally accounting for spatial
autocorrelation.

Tables 7 and 8 lead to similar RMSE as those reported in Tables 5 and 6
except that the magnitudes of the RMSEs for the first equation are almost
double for some forecasts. Compared to Tables 5 and 6, all the parame-
ters are the same except for the spatial coefficients which are now higher
(p1, p2) = (A1, A2) = (0.8,0.5) rather than (0.5,0.3), implying higher spatial
autocorrelation. In Table 7, when the true DGP is a SAR panel model with
SAR-RE remainder disturbances, the average RMSE is around 2 for the first
equation compared to 1 in Tables 5 and 6. OLS, SUR-FGLS, Average SUR
SAR and Average SUR SMA continue to perform badly yielding the worst
RMSE forecasts.

5.2 Sensitivity Analysis
5.2.1 The spatial Weight Matrix effect

For the various estimators considered, Tables 9 and 10 report the RMSE
results as Tables 1 and 2 except that the weight matrix is changed from a
W(1,1) to W (5,5), i.e., five neighbors behind and five neighbors ahead.
Except for the magnitudes of the RMSE, the same rankings in terms of
RMSE performance are exhibited as before.

For forecasts accuracy, Tables 11 and 12 report the forecast RMSE results
as Tables 5 and 6 except that the weight matrix is now W (5, 5) rather than
W (1,1) . Except for the magnitudes of the forecast RMSE, the same rankings
in terms of RMSE performance are exhibited as before. From our limited
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experiments, we conclude that our results are robust to the W matrices
considered.

5.2.2 Stronger correlation across equations

In Table 13, we consider a set of experiments with higher correlation across
equations. In particular, we let p, = p, = 0.9 rather than p, = p, = 0.5 as in
Table 1. The sample size is still fixed at (IV,T') = (50, 10) , the weight matrix
is W(1,1), i.e., one neighbor behind and one neighbor ahead.; the spatial
coefficients are (p;, p,) = (0.5,0.3) with 07, =02 =1, 0% =02, = 1. Table
13 gives the RMSE for the various estimators considered when the true DGP
is a SUR panel model with SAR-RE remainder disturbances. Focusing on the
RMSE of the slope coefficient of the first equation (3, ;), we observe that the
estimators that correct for spatial correlation, individual heterogeneity and
the cross-equation correlation continue to give the lowest RMSE. Comparing
these results with those in Table 1, we find that the RMSE of the SUR-ML
SAR-RE estimator is reduced from 0.01140 in Table 1 to 0.00614 in Table
13, while that of OLS increased from 0.02546 in Table 1 to 0.03048 in Table
13. The former takes into account the stronger cross-equation correlation,
while the latter does not. In fact, the gain in RMSE, as we go from OLS to
SUR-FGLS is more substantial in Table 13 than in Table 1. The former is
a reduction of RMSE from 0.0255 to 0.0223, while the latter is a reduction
of RMSE from 0.0305 to 0.0140. Similar comparisons substantiate this gain,
with RMSE of SUR-FE falling from 0.0177 in Table 1 to 0.0089 in Table 13.
Similar results are obtained had we focused on the slope coefficient of the
second equation (3 ,.

Does this gain in RMSE in the estimates translate into better RMSE
forecasts? Table 14 gives the forecast RMSE results when the true DGP
is a SUR panel model with SAR-RE remainder disturbances, generated by
the corresponding estimates given in Table 13. Comparing the forecasts to
those in Table 5 with weaker cross-equation dependence, we see that better
estimates in terms of RMSE do translate into better RMSE forecasts for all
the homogeneous estimators accounting for spatial effects and heterogeneity.
However, the reduction in RMSE forecasts is not huge. This also is true for
other estimators like FE, RE, SUR-FE, SUR-ML RE and SUR-FGLS RE,
but it does not hold for SUR-FGLS for example.
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6 Conclusion

Our Monte Carlo study finds that when the true DGP is SUR with a SAR-RE
or SMA-RE remainder disturbances, estimators and forecasts that ignore het-
erogeneity /spatial correlation and cross-equation correlation, perform badly
in terms of the RMSE criteria. For our experiments, accounting for het-
erogeneity improves the RMSE forecast performance by a big margin, and
accounting for spatial correlation improves the RMSE forecast performance,
but by a smaller margin. Ignoring both leads to the worst forecasting per-
formance. Heterogeneous estimators based on averaging perform worse than
homogeneous estimators in forecasting performance. These Monte Carlo ex-
periments confirm earlier empirical studies that report similar findings but
now for multiple equations and SUR estimation.
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Table 1 - RMSE of coefficients, standard errors and variances - (p,p,) = (0.5,0.3), (p,,p.) = (0.5,0.5), (N,T)=(50,10), SAR data generating process for g W(1,1), 1000 replications

B, G . % al) al) & @ a 6, o
Homogeneous estimators
(without spatial)
oLS 0.02546 0.00214 0.02655 0.00109 O O O O O O
RE 0.01776 0.00579 0.01464 0.00320 O O 0.57852 0.27427 0.54896 0.16645
FE 0.02019 0.00832 0.01566 0.00492 O O O O 0.55235 0.16874
SUR-FGLS 0.02234 0.00083 0.02332 0.00117 O O O O O O
SUR-FE 0.01769 0.00481 0.01477 0.00194 O O O O 0.39753 0.08118
SUR-ML RE 0.01593 0.00373 0.01432 0.00128 O O 0.56557 0.28513 0.54844 0.16776
SUR-FGLS RE 0.01577 0.00377 0.01417 0.00131 O O 0.57422 0.28732 0.54617 0.16729
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.01140 0.00051 0.01230 0.00041 0.03544 0.03895 0.21047 0.21461 0.06703 0.06530
SUR-ML SMA-RE 0.01599 0.00052 0.01248 0.00042 0.04065 0.03934 0.37615 0.23816 0.33543 0.11636
SUR-ML SAR-FE 0.01308 0.00127 0.01361 0.00059 0.03561 0.03983 O O 0.12174 0.12376
SUR-ML SMA-FE 0.01767 0.00161 0.01512 0.00064 0.05470 0.03958 O O 0.19288 0.06885
SUR-FGLS SAR-RE 0.01123 0.00047 0.01231 0.00042 0.03761 0.04425 0.21307 0.22302 0.06850 0.06661
SUR-FGLS SMA-RE 0.01155 0.00093 0.01336 0.00047 0.10315 0.05350 0.54627 0.24893 0.47524 0.12746
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 0.02602 0.00241 0.02685 0.00127 O O O O O O
Heterogeneous estimators
(with spatial)
Average SUR SAR 0.01855 0.00314 0.02146 0.00214 0.06758 0.05327 O O O O
Average SUR SMA 0.01895 0.00384 0.02081 0.00213 0.10453 0.06167 O O O O
SUR-FGLS SAR-RE (av.) 0.01116 0.00055 0.01250 0.00047 1) 1) 0.21215 0.21548 0.07578 0.06757
SUR-FGLS SMA-RE (av.) 0.01213 0.00097 0.01232 0.00052 (2) (2) 0.50194 0.27247 0.42749 0.14235

(1) We have used the average values 51 and /%2 of average SUR SAR estimator.  (2) We have used the average values /Tl et /Tz of average SUR SMA estimator.



Table 2 - RMSE of coefficients, standard errors and variances - (A3,A;) = (0.5,0.3), (pypy) = (0.5,0.5), (N,T)=(50,10), SMA data generating process for g, W(1,1), 1000 replications

~

A~

B, G . % al) al) e & S,
Homogeneous estimators
(without spatial)
oLS 0.02488 0.00258 0.02497 0.00133 O O O O O O
RE 0.01475 0.00533 0.01532 0.00317 O O 0.28950 0.24350 0.15034 0.08454
FE 0.01747 0.00727 0.01685 0.00468 O O O O 0.15245 0.08576
SUR-FGLS 0.02136 0.00101 0.02124 0.00096 O O O O O O
SUR-FE 0.01564 0.00416 0.01476 0.00182 O O O O 0.08210 0.09430
SUR-ML RE 0.01336 0.00321 0.01369 0.00122 O O 0.28952 0.24251 0.15174 0.08527
SUR-FGLS RE 0.01343 0.00324 0.01364 0.00124 O O 0.28950 0.24350 0.15034 0.08454
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.01052 0.00053 0.01219 0.00043 0.04559 0.04016 0.30281 0.22340 0.22305 0.10913
SUR-ML SMA-RE 0.01044 0.00043 0.01225 0.00046 0.03427 0.03805 0.22293 0.21804 0.06961 0.06732
SUR-ML SAR-FE 0.01109 0.00114 0.01363 0.00076 0.04500 0.04064 O O 0.29984 0.19095
SUR-ML SMA-FE 0.01065 0.00068 0.01351 0.00069 0.03590 0.04159 O O 0.14357 0.12701
SUR-FGLS SAR-RE 0.01038 0.00052 0.01233 0.00044 0.04043 0.04654 0.25640 0.20979 0.23270 0.11318
SUR-FGLS SMA-RE 0.01025 0.00050 0.01224 0.00046 0.05005 0.04877 0.22611 0.22248 0.07623 0.06928
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 0,02513 0,00281 0,02586 0,00151 O O O O O O
Heterogeneous estimators
(with spatial)
Average SUR SAR 0.01855 0.00169 0.02003 0.00221 0.12443 0.11145 O O O O
Average SUR SMA 0.01809 0.00191 0.01991 0.00220 0.15609 0.15127 O O O O
SUR-FGLS SAR-RE (av.) 0.01065 0.00066 0.01217 0.00045 1) 1) 0.25806 0.21525 0.21868 0.11204
SUR-FGLS SMA-RE (av.) 0.01057 0.00073 0.01238 0.00054 (2) (2) 0.22717 0.21401 0.07641 0.06975

(1) We have used the average values 51 and /%2 of average SUR SAR estimator.  (2) We have used the average values /Tl et /Tz of average SUR SMA estimator.



Table 3 - RMSE of coefficients, standard errors and variances - (p,p,) = (0.8,0.5), (p,,p,) = (0.5,0.5), (N,T)=(50,10), SAR data generating process for g W(1,1), 1000 replications

ﬂl,l al}u ﬁl,z 0-[?12 pl (/11) '02 (/12 ) 0-;1 ajz 0-\’21 0‘/22
Homogeneous estimators
(without spatial)
oLS 0.05013 0.01424 0.02849 0.00376 O O O O O O
RE 0.02888 0.02004 0.01830 0.00620 O O 3.22824 0.57870 3.63262 0.54886
FE 0.03446 0.02443 0.02035 0.00810 O O O O 3.64291 0.55224
SUR-FGLS 0.04487 0.01112 0.02544 0.00194 O O O O O O
SUR-FE 0.03133 0.01863 0.01782 0.00480 O O O O 3.17056 0.39762
SUR-ML RE 0.02722 0.01612 0.01667 0.00398 O O 3.19514 0.57676 3.63526 0.54994
SUR-FGLS RE 0.02732 0.01618 0.01673 0.00399 O O 3.22824 0.57870 3.63262 0.54886
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.01099 0.00045 0.01196 0.00047 0.01753 0.03274 0.22834 0.21819 0.06646 0.07006
SUR-ML SMA-RE 0.01247 0.00069 0.01209 0.00051 0.06444 0.04365 1.67204 0.38003 1.78838 0.32833
SUR-ML SAR-FE 0.01158 0.00075 0.01389 0.00078 0.01762 0.03445 O O 0.11922 0.12456
SUR-ML SMA-FE 0.01381 0.00129 0.01396 0.00097 0.06343 0.04426 O O 1.51494 0.20143
SUR-FGLS SAR-RE 0.01074 0.00060 0.01217 0.00050 0.03789 0.03958 0.24267 0.22953 0.07599 0.07284
SUR-FGLS SMA-RE 0.01347 0.00109 0.01308 0.00079 0.11130 0.07787 1.91341 0.60358 2.07121 0.47600
Heterogeneous estimator
(without spatial)
Av, Heterogeneous OLS 0.05049 0.01427 0.02871 0.00391 O O O O O O
Heterogeneous estimators
(with spatial)
Average SUR SAR 0.01963 0.00180 0.01999 0.00227 0.06362 0.07497 O O O O
Average SUR SMA 0.02217 0.00218 0.02071 0.00246 0.11213 0.08191 O O O O
SUR-FGLS SAR-RE (av.) 0.01114 0.00086 0.01205 0.00061 ) ) 0.27143 0.23005 0.13520 0.08290
SUR-FGLS SMA-RE (av.) 0.01482 0.00125 0.01286 0.00099 2 2 2.09611 0.61613 2.29132 0.48191

(1) We have used the average values :61 and O, of average SUR SAR estimator.  (2) We have used the average values /Tl et /T2 of average SUR SMA estimator.



Table 4 - RMSE of coefficients, standard errors and variances - (A3,A;) = (0.8,0.5), (py,py) = (0.5,0.5), (N,T)=(50,10), SMA data generating process for g, W(1,1), 1000 replications

~

A~

B, G . % al) al) e & S,
Homogeneous estimators
(without spatial)
oLS 0.02699 0.00803 0.02418 0.00331 O O O O O O
RE 0.01560 0.01107 0.01574 0.00538 O O 0.42318 0.29278 0.33808 0.14859
FE 0.01888 0.01324 0.01700 0.00695 O O O O 0.34093 0.15069
SUR-FGLS 0.02364 0.00616 0.02188 0.00161 O O O O O O
SUR-FE 0.01765 0.00988 0.01537 0.00399 O O O O 0.21336 0.08155
SUR-ML RE 0.01511 0.00879 0.01413 0.00331 O O 0.42305 0.28840 0.33971 0.15046
SUR-FGLS RE 0.01509 0.00883 0.01411 0.00333 O O 0.42318 0.29278 0.33808 0.14859
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.00818 0.00295 0.01086 0.00063 0.13047 0.05209 0.46744 0.29246 0.42871 0.22050
SUR-ML SMA-RE 0.00580 0.00035 0.01037 0.00045 0.01797 0.03334 0.22604 0.21937 0.07380 0.06861
SUR-ML SAR-FE 0.00897 0.00355 0.01236 0.00123 0.12926 0.05185 O O 0.48573 0.29829
SUR-ML SMA-FE 0.00630 0.00044 0.01178 0.00070 0.01871 0.03529 O O 0.12208 0.12417
SUR-FGLS SAR-RE 0.00757 0.00239 0.01085 0.00057 0.04697 0.04173 0.47380 0.24607 0.47900 0.23567
SUR-FGLS SMA-RE 0.00606 0.00118 0.01029 0.00053 0.07528 0.05362 0.29167 0.22997 0.14846 0.07485
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 0.02742 0.00822 0.02486 0.00348 O O O O O O
Heterogeneous estimators
(with spatial)
Average SUR SAR 0.01322 0.00116 0.01728 0.00161 0.08245 0.07566 O O O O
Average SUR SMA 0.01081 0.00106 0.01747 0.00185 0.12439 0.10375 O O O O
SUR-FGLS SAR-RE (av.) 0.00783 0.00258 0.01085 0.00073 1) 1) 0.46123 0.25117 0.46342 0.22262
SUR-FGLS SMA-RE (av.) 0.00636 0.00175 0.01081 0.00076 (2) (2) 0.24400 0.22193 0.11145 0.07949

(1) We have used the average values 51 and /%2 of average SUR SAR estimator.  (2) We have used the average values /Tl et /Tz of average SUR SMA estimator.



Table 5 - Forecasts RMSE - (p;,p,)= (0.5,0.3), (p,,p.)= (0.5,0.5), (N,T)=(50,10), SAR data generating process for g, W(1,1), 1000 replications

1st year 2sd year 3th year 4th year 5th year Average

eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2
Homogeneous estimators
(without spatial)
oLs 1.3768 1.1978 15050 1.3082 1.5534 1.3510 1.5791 13729 15959 1.3881 1.5220 1.3236
RE 1.0324 0.8936  1.1466  0.9924 1.1931 1.0320 1.2184 1.0536 1.2336 1.0675 1.1648 1.0078
FE 1.0367 0.8974 11512  0.9966 1.1980 1.0364 1.2234 1.0580 1.2385 1.0718 1.1696 1.0120
SUR-FGLS 1.3776 1.1987 15060  1.3089 1.5543 1.3517 1.5799 1.3735 15967 1.3886 1.5229 1.3243
SUR-FE 1.0366 0.8972 11510 0.9964 1.1977 1.0360 1.2232 1.0577 1.2382 1.0715 1.1693 1.0118
SUR-ML RE 1.0337 0.8954  1.1482  0.9943 1.1946 1.0338 1.2201 1.0555 1.2353 1.0695 1.1664 1.0097
SUR-FGLS RE 1.0324 0.8935 1.1466  0.9924 1.1931 1.0320 1.2184 1.0536 1.2336 1.0675 1.1648 1.0078
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 1.0319 0.8933  1.1462  0.9922 1.1927 1.0318 1.2180 1.0533 1.2331 1.0673 1.1644 1.0076
SUR-ML SMA-RE 1.0322 0.8935 1.1464  0.9923 1.1929 1.0319 1.2182 1.0535 1.2334 1.0674 1.1646 1.0077
SUR-ML SAR-FE 1.0362 0.8970  1.1507  0.9963 1.1974 1.0359 1.2229 1.0575 1.2378 1.0713 1.1690 1.0116
SUR-ML SMA-FE 1.0366 0.8972 11510 0.9964 1.1977 1.036 1.2232 1.0577 1.2382 1.0715 1.1693 1.0118
SUR-FGLS SAR-RE 1.0318 0.8933  1.1461  0.9922 1.1926 1.0317 1.2179 1.0533 1.2330 1.0672 1.1643 1.0075
SUR-FGLS SMA-RE 1.0322 0.8933  1.1465 0.9921 1.1929 1.0317 1.2182 1.0533 1.2333 1.0672 1.1646 1.0075
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 1.3768 11979 15051  1.3083 1.5535 1.3510 1.5792 13729 15960 1.3881 15221 1.3236
Heterogeneous estimators
(with spatial)
Average SUR SAR 1.3779 1.1992 1.5064  1.3096 1.5547 1.3524 1.5801 1.3743 15970 1.3893 1.5232 1.3249
Average SUR SMA 1.3785 11991 1.5068  1.3095 1.5554 1.3524 1.5807 1.3742 15976 1.3893 1.5238 1.3249
SUR-FGLS SAR-RE (av.) 1.0319 0.8933  1.1461  0.9921 1.1926 1.0317 1.2179 1.0533 1.2330 1.0672 1.1643 1.0075
SUR-FGLS SMA-RE (av.) 1.0320 0.8934  1.1463  0.9922 1.1927 1.0317 1.2180 1.0533 1.2331 1.0672 1.1644 1.0075




Table 6 - Forecasts RMSE - (A;,A;)= (0.5,0.3), (py.pv)= (0.5,0.5), (N,T)=(50,10), SMA data generating process for g W(1,1), 1000 replications

1st year 2sd year 3th year 4th year 5th year Average

eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2
Homogeneous estimators
(without spatial)
oLs 1.1803 1.1438 1.292 1.2537 1.3306 1.2934 1.3526 1.3126  1.3674 1.3259 1.3046  1.2659
RE 0.8820 0.8538  0.9806  0.9491 1.0186 0.9871 1.0398 1.0059 1.0526 1.0185 0.9947 0.9629
FE 0.8854 0.8569  0.9841  0.9525 1.0227 0.9907 1.0441 1.0097 1.0567 1.0223 0.9986 0.9664
SUR-FGLS 1.1812 1.1444  1.2928  1.2542 1.3312 1.2939 1.3531 1.3132 1.3680 1.3266 1.3053 1.2665
SUR-FE 0.8850 0.8568  0.9837  0.9524 1.0223 0.9905 1.0436 1.0095 1.0562 1.0221 0.9982 0.9663
SUR-ML RE 0.8819 0.8538  0.9805  0.9492 1.0185 0.9871 1.0396 1.0059 1.0525 1.0185 0.9946 0.9629
SUR-FGLS RE 0.8819 0.8538  0.9804  0.9492 1.0185 0.9871 1.0395 1.0058 1.0524 1.0185 0.9946 0.9629
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.8813 0.8535 0.9799  0.9490 1.0180 0.9869 1.0391 1.0057 1.0520 1.0183 0.9941 0.9627
SUR-ML SMA-RE 0.8812 0.8534  0.9798  0.9489 1.0180 0.9869 1.0391 1.0057 1.0520 1.0183 0.9940 0.9626
SUR-ML SAR-FE 0.8845 0.8567  0.9831  0.9522 1.0219 0.9904 1.0432 1.0093 1.0558 1.0219 0.9977 0.9661
SUR-ML SMA-FE 0.8844 0.8566  0.9830  0.9522 1.0219 0.9904 1.0432 1.0093 1.0558 1.0219 0.9976  0.9660
SUR-FGLS SAR-RE 0.8813 0.8535 0.9798  0.9489 1.0180 0.9869 1.0391 1.0056 1.0519 1.0182 0.9940 0.9626
SUR-FGLS SMA-RE 0.8812 0.8534  0.9797  0.9488 1.0180 0.9868 1.0391 1.0056 1.0519 1.0182 0.9940 0.9626
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 1.1803 11438 1.2921  1.2537 1.3306 1.2934 1.3526 1.3126  1.3675 1.3259 1.3046 1.2659
Heterogeneous estimators
(with spatial)
Average SUR SAR 1.1822 1.1447  1.2932  1.2546 1.3318 1.2942 1.3535 1.3135 1.3685 1.3269 1.3058 1.2668
Average SUR SMA 1.1823 1.1447  1.2934  1.2545 1.3320 1.2941 1.3536 13134 1.3686 1.3268 1.3060 1.2667
SUR-FGLS SAR-RE (av.) 0.8813 0.8535 0.9798  0.9489 1.0180 0.9869 1.0390 1.0056 1.0519 1.0182 0.9940 0.9626
SUR-FGLS SMA-RE (av.) 0.8813 0.8535 0.9798  0.9489 1.0180 0.9869 1.0391 1.0056 1.0520 1.0182 0.9940 0.9626




Table 7 - Forecasts RMSE - (p;,p,)= (0.8,0.5), (p,,p,)= (0.5,0.5), (N,T)=(50,10), SAR data generating process for g, W(1,1), 1000 replications

1st year 2sd year 3th year 4th year 5th year Average

eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2
Homogeneous estimators
(without spatial)
oLs 2.3527 1.3836 2.5796  1.5167 2.6582 1.5641 2.7033 15872 27335 1.6030 2.6055 1.5309
RE 1.7891 1.0390 1.9849  1.1538 2.0680 1.1998 21112 12223 21350 1.2373 2.0176 1.1704
FE 1.7947 1.0428 1.9905 1.1578 2.0755 1.204 2.1192 1.2267 2.1422 1.2417 2.0244 1.1746
SUR-FGLS 2.3546 1.3842 25813 1.5175 2.6598 1.5649 2.7046 15880 2.7348 1.6039 2.6070 1.5317
SUR-FE 1.7941 1.0427 19897 1.1576 2.0747 1.2038 2.1184 1.2264 2.1414 12415 2.0236 1.1744
SUR-ML RE 1.7893 1.0392 19850 1.1541 2.0682 1.2000 21111 12223 21352 1.2374 2.0177 1.1706
SUR-FGLS RE 1.7892 1.0392 1.9849 1.1541 2.0681 1.1999 2.1110 1.2223 2.1351 1.2374 2.0177 1.1706
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 1.7868 1.0382 19815  1.1533 2.0653 1.1991 2.1082 1.2216  2.1323 1.2366 2.0148 1.1698
SUR-ML SMA-RE 1.7871 1.0383 19820 1.1533 2.0657 1.1992 2.1085 1.2216 2.1325 1.2367 2.0152 1.1698
SUR-ML SAR-FE 1.7923 1.0421 19877 11571 2.0730 1.2032 2.1166 1.2258 21396 1.2409 2.0218 1.1738
SUR-ML SMA-FE 1.7925 1.0421 19878 1.1571 2.0731 1.2032 2.1167 1.2258 2.1398 1.2409 2.0220 1.1738
SUR-FGLS SAR-RE 1.7867 1.0382 19814  1.1532 2.0652 1.1990 2.1082 12215 21323 1.2366 2.0148 1.1697
SUR-FGLS SMA-RE 1.7897 1.0382 19851  1.1531 2.0691 1.1990 2.1122 1.2215 2.1360 1.2366 2.0184 1.1697
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 2.3527 1.3836 25797  1.5167 2.6583 1.5641 2.7035 15872 27336 16030 2.6056 1.5309
Heterogeneous estimators
(with spatial)
Average SUR SAR 2.3625 1.3853 2.5856  1.5185 2.6650 1.5656 2.7086 15887 2.7389 1.6046 2.6121 1.5325
Average SUR SMA 2.3663 1.3854 25888 1.5186 2.6687 1.5657 2.7124 15889 2.7425 1.6048 2.6157 1.5327
SUR-FGLS SAR-RE (av.) 1.7867 1.0382 19815  1.1532 2.0652 1.1991 2.1082 1.2215 2.1322 1.2366 2.0148 1.1697
SUR-FGLS SMA-RE (av.) 1.7890 1.0383 19842  1.1532 2.0682 1.1991 21111 12216 21351 1.2367 2.0175 1.1698




Table 8 - Forecasts RMSE - (A3,A;)= (0.8,0.5), (p,,p.)= (0.5,0.5), (N,T)=(50,10), SMA data generating process for g, W(1,1), 1000 replications

1st year 2sd year 3th year 4th year 5th year Average

eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2
Homogeneous estimators
(without spatial)
oLs 1.2754 1.1856  1.3961  1.2999 1.4381 1.3404 1.4622 1.3602 1.4783 1.3739 1.4100 1.3120
RE 0.9550 0.8870 1.0612  0.9860 1.1029 1.0251 1.1260 1.0443 1.1397 1.0572 1.0769  0.9999
FE 0.9584 0.8903 1.0649  0.9895 1.1073 1.0288 1.1307 1.0482 1.1440 1.0611 1.0811 1.0036
SUR-FGLS 1.2764 1.1862  1.3970  1.3005 1.4389 1.3410 1.4628 1.3609 1.4789 1.3746 1.4108 1.3126
SUR-FE 0.9580 0.8902 1.0644  0.989%4 1.1068 1.0286 1.1302 1.0479 1.1435 1.0609 1.0806 1.0034
SUR-ML RE 0.9548 0.8870 1.0611  0.9862 1.1028 1.0251 1.1258 1.0442 11396 1.0572 1.0768 1.0000
SUR-FGLS RE 0.9548 0.8870 1.0611  0.9862 1.1028 1.0251 1.1258 1.0442 1.1396 1.0572 1.0768  0.9999
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.9538 0.8865 1.0600 0.9857 1.1020 1.0246 1.1250 1.0438 1.1388 1.0568 1.0759  0.9995
SUR-ML SMA-RE 0.9537 0.8863  1.0599  0.9855 1.1018 1.0245 1.1248 1.0437 1.1386 1.0567 1.0758 0.9994
SUR-ML SAR-FE 0.9571 0.8898  1.0635  0.9890 1.1060 1.0282 1.1293 1.0475 1.1427 1.0605 1.0797 1.0030
SUR-ML SMA-FE 0.9570 0.8897  1.0633  0.9889 1.1059 1.0281 1.1292 1.0474 1.1426 1.0604 1.0796 1.0029
SUR-FGLS SAR-RE 0.9537 0.8864  1.0599  0.9856 1.1019 1.0245 1.1249 1.0437 1.1387 1.0567 1.0758 0.9994
SUR-FGLS SMA-RE 0.9537 0.8863  1.0599  0.9855 1.1019 1.0245 1.1249 1.0437 1.1386 1.0567 1.0758  0.9993
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 1.2754 1.1856  1.3962  1.2999 1.4382 1.3404 1.4623 1.3602 1.4783 1.3739 1.4101 1.3120
Heterogeneous estimators
(with spatial)
Average SUR SAR 1.2781 1.1868 1.3980 1.3013 1.4402 1.3415 1.4637 1.3614 1.4800 1.3752 1.4120 1.3132
Average SUR SMA 1.2782 1.1868  1.3983  1.3013 1.4405 1.3415 1.4640 1.3614 1.4802 1.3752 1.4122 1.3132
SUR-FGLS SAR-RE (av.) 0.9537 0.8864  1.0599  0.9856 1.1019 1.0246 1.1249 1.0437 1.1387 1.0567 1.0758 0.9994
SUR-FGLS SMA-RE (av.) 0.9537 0.8864 1.0599  0.9855 1.1018 1.0245 1.1248 1.0437 11385 1.0567 1.0757 0.9994




Table 9 - RMSE of coefficients, standard errors and variances - (p,p,) = (0.5,0.3), (p,,p.) = (0.5,0.5), (N,T)=(50,10), SAR data generating process for g W(5,5), 1000 replications

ﬂl,l al}u ﬁl,z 0-[?12 '01 (/11) pz (AZ ) 0-;1 ajz 0-\’21 0‘/22
Homogeneous estimators
(without spatial)
oLS 0.02568 0.00080 0.02282 0.00092 O O O O O O
RE 0.01418 0.00299 0.01536 0.00230 O O 0.25402 0.21979 0.17067 0.07611
FE 0.01582 0.00486 0.01693 0.00418 O O O O 0.17290 0.07714
SUR-FGLS 0.02254 0.00154 0.02008 0.00225 O O O O O O
SUR-FE 0.01358 0.00187 0.01478 0.00128 O O O O 0.08980 0.09783
SUR-ML RE 0.01185 0.00102 0.01338 0.00052 O O 0.25333 0.22248 0.17121 0.07682
SUR-FGLS RE 0.01195 0.00104 0.01327 0.00052 O O 0.25402 0.21979 0.17067 0.07611
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.01093 0.00045 0.01325 0.00045 0.06424 0.08307 0.20917 0.21880 0.07061 0.06730
SUR-ML SMA-RE 0.01194 0.00046 0.01329 0.00045 0.19963 0.12298 0.22208 0.21788 0.10631 0.06807
SUR-ML SAR-FE 0.01231 0.00073 0.01430 0.00087 0.06177 0.08205 O O 0.12443 0.12537
SUR-ML SMA-FE 0.01355 0.00092 0.01485 0.00092 0.06060 0.08089 O O 0.08143 0.10947
SUR-FGLS SAR-RE 0.01110 0.00043 0.01314 0.00043 0.06974 0.08956 0.21846 0.21887 0.07044 0.06726
SUR-FGLS SMA-RE 0.01205 0.00049 0.01311 0.00048 0.36022 0.23681 0.23914 0.21366 0.11497 0.07473
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 0.02634 0.00081 0.02282 0.00088 O O O O O O
Heterogeneous estimators
(with spatial)
Average SUR SAR 0.02143 0.00226 0.02029 0.00272 0.26700 0.11192 O O O O
Average SUR SMA 0.02179 0.00228 0.02039 0.00267 0.47592 0.40932 O O O O
SUR-FGLS SAR-RE (av.) 0.01081 0.00045 0.01325 0.00044 1) 1) 0.21326 0.21480 0.07674 0.06658
SUR-FGLS SMA-RE (av.) 0.01096 0.00052 0.01320 0.00050 (2) (2) 0.23240 0.21811 0.10860 0.07259

(1) We have used the average values 51 and /%z of average SUR SAR estimator.  (2) We have used the average vaIuesAi1 et /Tz of average SUR SMA estimator.



Table 10 - RMSE of coefficients, standard errors and variances - (A3,A;) = (0.5,0.3), (py,p,) = (0.5,0.5), (N,T)=(50,10), SMA data generating process for g, W(5,5), 1000 replications

ﬂl,l 0’51‘1 ﬂl,z 0-/?11 pl (Al) pz (AZ ) 0-;1 ajz 0-\’21 0‘/22
Homogeneous estimators
(without spatial)
oLS 0.02422 0.00072 0.02374 0.00094 O O O O O O
RE 0.01414 0.00240 0.01516 0.00219 O O 0.24020 0.22444 0.07397 0.06911
FE 0.01554 0.00413 0.01653 0.00405 O O O O 0.07485 0.06944
SUR-FGLS 0.02099 0.00187 0.02027 0.00231 O O O O O O
SUR-FE 0.01340 0.00129 0.01401 0.00118 O O O O 0.10170 0.11453
SUR-ML RE 0.01250 0.00059 0.01253 0.00049 O O 0.24540 0.22703 0.07454 0.06980
SUR-FGLS RE 0.01249 0.00061 0.01263 0.00050 O O 0.24020 0.22444 0.07397 0.06911
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.01246 0.00041 0.01239 0.00046 0.14452 0.09942 0.22648 0.21964 0.07437 0.07020
SUR-ML SMA-RE 0.01242 0.00041 0.01254 0.00047 0.12224 0.11156 0.22454 0.22175 0.06624 0.06683
SUR-ML SAR-FE 0.01311 0.00073 0.01389 0.00090 0.14090 0.09387 O O 0.14845 0.13283
SUR-ML SMA-FE 0.01314 0.00070 0.01387 0.00088 0.12736 0.11480 O O 0.11823 0.12111
SUR-FGLS SAR-RE 0.01234 0.00041 0.01231 0.00045 0.14528 0.08202 0.21945 0.21855 0.07578 0.07057
SUR-FGLS SMA-RE 0.01237 0.00042 0.01221 0.00047 0.14403 0.13633 0.22383 0.22322 0.06521 0.06814
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 0.02450 0.02380 0.00072 0.00088 O O O O O O
Heterogeneous estimators
(with spatial)
Average SUR SAR 0.02080 0.00225 0.02046 0.00272 0.20462 0.06256 O O O O
Average SUR SMA 0.02113 0.00227 0.02047 0.00265 0.34952 0.30770 O O O O
SUR-FGLS SAR-RE (av.) 0.01252 0.00041 0.01236 0.00045 1) 1) 0.22012 0.21598 0.07297 0.06913
SUR-FGLS SMA-RE (av.) 0.01260 0.00047 0.01264 0.00049 (2) (2) 0.23060 0.22370 0.06672 0.07143

(1) We have used the average values 51 and /%2 of average SUR SAR estimator.  (2) We have used the average values /Tlet /Tzof average SUR SMA estimator.



Table 11 - Forecasts RMSE - (p;,p.)= (0.5,0.3), (p,,p.)=(0.5,0.5), (N,T)=(50,10), SAR data generating process for g, W(5,5), 1000 replications

1st year 2sd year 3th year 4th year 5th year Average

eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2
Homogeneous estimators
(without spatial)
oLs 1.1821 1.1379  1.2910 1.2430 1.3341 1.2835 1.3581 1.3050 1.3716 1.3178 1.3074 1.2574
RE 0.8861 0.8479  0.9858  0.9419 1.0260 0.9793 1.0488 0.9989 1.0630 1.0124 1.0019 0.9561
FE 0.8894 0.8509 0.9895  0.9453 1.0298 0.9828 1.0525 1.0023 1.0668 1.0159 1.0056 0.9594
SUR-FGLS 1.1830 11386  1.2918  1.2434 1.3350 1.2840 1.3588 1.3057 1.3722 1.3184 1.3082 1.2580
SUR-FE 0.8892 0.8506  0.9893  0.9449 1.0295 0.9824 1.0523 1.002 1.0665 1.0156 1.0054 0.9591
SUR-ML RE 0.8861 0.8478  0.9857  0.9416 1.0260 0.9791 1.0488 0.9987 1.0629 1.0122 1.0019 0.9559
SUR-FGLS RE 0.8861 0.8478  0.9857 0.9416 1.0260 0.9791 1.0487 0.9987 1.0628 1.0122 1.0019 0.9559
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.8859 0.8478 0.9855  0.9416 1.0258 0.9790 1.0485 0.9987 1.0626 1.0122 1.0016 0.9559
SUR-ML SMA-RE 0.8861 0.8478  0.9857  0.9416 1.0259 0.9791 1.0487 0.9987 1.0627 1.0122 1.0018 0.9559
SUR-ML SAR-FE 0.8890 0.8506  0.9892  0.9449 1.0294 0.9824 1.0521 1.0019 1.0663 1.0155 1.0052 0.9591
SUR-ML SMA-FE 0.8892 0.8506  0.9893  0.9449 1.0295 0.9824 1.0523 1.0020 1.0665 1.0156 1.0054  0.9591
SUR-FGLS SAR-RE 0.8859 0.8477  0.9855  0.9416 1.0257 0.9790 1.0484 0.9986 1.0625 1.0121 1.0016 0.9558
SUR-FGLS SMA-RE 0.8859 0.8477 0.9854  0.9416 1.0257 0.9790 1.0484 0.9986 1.0625 1.0121 1.0016 0.9558
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 1.1821 11379  1.2910 1.2430 1.3342 1.2835 1.3582 1.3050 1.3716 1.3178 1.3074 1.2575
Heterogeneous estimators
(with spatial)
Average SUR SAR 1.1832 1.1385 1.2920  1.2433 1.3354 1.2839 1.3590 1.3056 1.3723 1.3184 1.3084 1.2580
Average SUR SMA 1.1831 11386  1.2920  1.2433 1.3353 1.2839 1.3590 1.3056 1.3723 1.3184 1.3083 1.2580
SUR-FGLS SAR-RE (av.) 0.8859 0.8477  0.9855  0.9416 1.0257 0.9790 1.0485 0.9986 1.0625 1.0121 1.0016 0.9558

SUR-FGLS SMA-RE (av.) 0.8859 0.8478  0.9855  0.9416 1.0258 0.9790 1.0485 0.9986 1.0626 1.0122 1.0626 1.0122




Table 12 - Forecasts RMSE - (A1,A;)= (0.5,0.3), (p,.p.)= (0.5,0.5), (N,T)=(50,10), SMA data generating process for g, W(5,5), 1000 replications

1st year 2sd year 3th year 4th year 5th year Average

eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2
Homogeneous estimators
(without spatial)
oLs 1.1256 1.1231  1.2325  1.2300 1.2688 1.2693 1.2895 1.2884 1.3039 1.3015 1.2441 1.2425
RE 0.8418 0.8378 0.9369 0.9311 0.9737 0.9689 0.9937 0.9877  1.0059 1.0002 0.9504 0.9452
FE 0.8448 0.8410 0.9398  0.9345 0.9773 0.9724 0.9974 0.9914 1.0094 1.0039 0.9538 0.9486
SUR-FGLS 1.1265 11243  1.2333  1.2307 1.2695 1.2700 1.2901 1.2890 1.3045 1.3021 1.2448 1.2432
SUR-FE 0.8447 0.8407 0.9396  0.9342 0.9771 0.9721 0.9972 0.9912 1.0092 1.0037 0.9535 0.9484
SUR-ML RE 0.8419 0.8379  0.9370  0.9312 0.9737 0.9689 0.9937 0.9878  1.0059 1.0002 0.9504 0.9452
SUR-FGLS RE 0.8419 0.8378 0.9370 0.9311 0.9737 0.9689 0.9936 0.9877  1.0059 1.0002 0.9504 0.9452
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.8418 0.8378 0.9368  0.9311 0.9736 0.9689 0.9935 0.9877  1.0057 1.0002 0.9503 0.9451
SUR-ML SMA-RE 0.8418 0.8378 0.9368  0.9311 0.9736 0.9689 0.9935 0.9877  1.0057 1.0002 0.9503 0.9451
SUR-ML SAR-FE 0.8446 0.8407 0.9395  0.9341 0.9770 0.9721 0.9971 0.9912 1.0092 1.0037 0.9535 0.9484
SUR-ML SMA-FE 0.8446 0.8407 0.9395 0.9341 0.9770 0.9721 0.9971 0.9912 1.0092 1.0037 0.9535 0.9484
SUR-FGLS SAR-RE 0.8417 0.8377  0.9367  0.9310 0.9735 0.9688 0.9935 0.9877  1.0057 1.0001 0.9502 0.9451
SUR-FGLS SMA-RE 0.8417 0.8377  0.9367 0.9310 0.9735 0.9688 0.9935 0.9877  1.0057 1.0001 0.9502 0.9451
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 1.1255 11232  1.2325 1.2301 1.2688 1.2694 1.2895 1.2884 1.3039 1.3015 1.2440 1.2425
Heterogeneous estimators
(with spatial)
Average SUR SAR 1.1264 1.1242  1.2333  1.2306 1.2696 1.2699 1.2902 1.289 1.3044 1.3021 1.2448 1.2432
Average SUR SMA 1.1263 11242  1.2332  1.2306 1.2695 1.2699 1.2901 1.2889  1.3044 1.3020 1.2447 1.2431
SUR-FGLS SAR-RE (av.) 0.8417 0.8377 0.9367 0.9310 0.9735 0.9688 0.9935 0.9877  1.0057 1.0001 0.9502 0.9451

SUR-FGLS SMA-RE (av.) 0.8418 0.8378  0.9369  0.9311 0.9736 0.9689 0.9935 0.9877  1.0058 1.0002 0.9503 0.9451




Table 13 - RMSE of coefficients, standard errors and variances - (py,p.) = (0.5,0.3), (p,,p) = (0.9,0.9), (N, T)=(50,10), SAR data generating process for g W(1,1), 1000 replications

B, G . % al) al) & & 6, o
Homogeneous estimators
(without spatial)
oLS 0.03048 0.00948 0.02529 0.00652 O O O O O O
RE 0.01758 0.01194 0.01577 0.00930 O O 0.57098 0.26661 0.54502 0.16850
FE 0.01899 0.01380 0.01808 0.01123 O O O O 0.54840 0.17083
SUR-FGLS 0.01396 0.00137 0.01168 0.00048 O O O O O O
SUR-FE 0.00885 0.00272 0.00765 0.00142 O O O O 0.39421 0.08077
SUR-ML RE 0.00860 0.00223 0.00681 0.00089 O O 0.56050 0.26195 0.54721 0.17099
SUR-FGLS RE 0.00861 0.00233 0.00680 0.00097 O O 0.57098 0.26661 0.54502 0.16850
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 0.00614 0.00022 0.00614 0.00025 0.02687 0.03251 0.22599 0.21840 0.06541 0.06684
SUR-ML SMA-RE 0.00618 0.00023 0.00637 0.00023 0.03845 0.03611 0.38920 0.24003 0.33120 0.11613
SUR-ML SAR-FE 0.00690 0.00024 0.00650 0.00043 0.02869 0.03429 O O 0.11896 0.12038
SUR-ML SMA-FE 0.00665 0.00027 0.00661 0.00050 0.03850 0.03714 O O 0.20541 0.06757
SUR-FGLS SAR-RE 0.00618 0.00024 0.00618 0.00025 0.04030 0.04226 0.23223 0.21482 0.06484 0.06779
SUR-FGLS SMA-RE 0.00657 0.00039 0.00650 0.00032 0.09695 0.05089 0.59845 0.26265 0.47097 0.12411
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 0.03048 0.00961 0.02565 0.00683 O O O O O O
Heterogeneous estimators
(with spatial)
Average SUR SAR 0.01094 0.00043 0.01149 0.00087 0.07297 0.05234 O O O O
Average SUR SMA 0.01125 0.00042 0.01175 0.00067 0.10214 0.09126 O O O O
SUR-FGLS SAR-RE (av.) 0.00621 0.00033 0.00612 0.00026 1) 1) 0.22593 0.21481 0.07742 0.06687
SUR-FGLS SMA-RE (av.) 0.00668 0.00040 0.00655 0.00037 (2) (2) 0.50394 0.24588 0.41528 0.12441

(1) We have used the average values 51 and /%2 of average SUR SAR estimator.  (2) We have used the average values /Tl et /Tz of average SUR SMA estimator.



Table 14 - Forecasts RMSE - (p;,p,)= (0.5,0.3), (pu,pv)= (0.9,0.9), (N, T)=(50,10), SAR data generating process for g, W(1,1), 1000 replications

1st year 2sd year 3th year 4th year 5th year Average

eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eqg. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2
Homogeneous estimators
(without spatial)
oLs 1.3787 1.1977 15087  1.3118 1.5542 1.3517 1.5791 1.3735 15968 1.3878 1.5235 1.3245
RE 1.0319 0.8922  1.1465 0.9936 1.1915 1.0326 1.2162 1.0539 1.2309 1.0668 1.1634 1.0078
FE 1.0354 0.8954 11501  0.9970 1.1959 1.0364 1.2210 1.0578 1.2353 1.0706 1.1676 1.0114
SUR-FGLS 1.3816 11997 15111  1.3136 1.5563 1.3536 1.5814 1.3755 15989 1.3896 15259 1.3264
SUR-FE 1.0345 0.8948  1.1493  0.9961 1.1950 1.0355 1.2200 1.0569 1.2343 1.0697 1.1666 1.0106
SUR-ML RE 1.0313 0.8918  1.1461  0.9932 1.1910 1.0320 1.2157 1.0533 1.2304 1.0662 1.1629 1.0073
SUR-FGLS RE 1.0313 0.8918  1.1460 0.9932 1.1910 1.0320 1.2157 1.0533 1.2303 1.0662 1.1629 1.0073
Homogeneous estimators
(with spatial)
SUR-ML SAR-RE 1.0309 0.8915  1.1455  0.9929 1.1907 1.0318 1.2154 1.0531 1.2301 1.0660 1.1625 1.0071
SUR-ML SMA-RE 1.0310 0.8915  1.1456  0.9929 1.1907 1.0318 1.2154 1.0531 1.2301 1.0660 1.1625 1.0071
SUR-ML SAR-FE 1.0344 0.8947  1.1492  0.9960 1.1950 1.0353 1.2200 1.0568 1.2342 1.0696 1.1666 1.0105
SUR-ML SMA-FE 1.0344 0.8947  1.1492  0.9960 1.1950 1.0353 1.2199 1.0568 1.2342 1.0696 1.1665 1.0105
SUR-FGLS SAR-RE 1.0309 0.8914  1.1454  0.9928 1.1906 1.0317 1.2153 1.0530 1.2300 1.0659 1.1624 1.0070
SUR-FGLS SMA-RE 1.0310 0.8915  1.1455  0.9928 1.1907 1.0318 1.2154 1.0531 1.2301 1.0660 1.1625 1.0070
Heterogeneous estimator
(without spatial)
Av. Heterogeneous OLS 1.3787 11978 15087 1.3120 1.5542 1.3519 1.5790 1.3736 15968 1.3879 15235 1.3246
Heterogeneous estimators
(with spatial)
Average SUR SAR 1.3814 1.1995 15109 1.3135 1.5560 1.3536 1.5809 1.3756 1.5985 1.3897 1.5255 1.3264
Average SUR SMA 1.3816 11993 15111  1.3133 1.5562 1.3533 1.5811 1.3753 15987 1.3895 1.5257 1.3262
SUR-FGLS SAR-RE (av.) 1.0309 0.8914  1.1454  0.9928 1.1906 1.0317 1.2153 1.0530 1.2300 1.0659 1.1624 1.0070

SUR-FGLS SMA-RE (av.) 1.0310 0.8915  1.1456  0.9929 1.1907 1.0318 1.2154 1.0531 1.2301 1.0660 1.1625 1.0070




	Seemingly Unrelated Regressions with Spatial Error Components
	Recommended Citation


