
Syracuse University Syracuse University 

SURFACE SURFACE 

Chemistry - Faculty Scholarship College of Arts and Sciences 

1-1975 

The Lippmann Equation and the Ideally Polarizable Electrode The Lippmann Equation and the Ideally Polarizable Electrode 

Jean- Pierre Badiali 
I'Universite Pierre et Marie Curie 

Jerry Goodisman 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/che 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
Badiali, Jean- Pierre and Goodisman, Jerry, "The Lippmann Equation and the Ideally Polarizable Electrode" 
(1975). Chemistry - Faculty Scholarship. 73. 
https://surface.syr.edu/che/73 

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been 
accepted for inclusion in Chemistry - Faculty Scholarship by an authorized administrator of SURFACE. For more 
information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/che
https://surface.syr.edu/cas
https://surface.syr.edu/che?utm_source=surface.syr.edu%2Fche%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=surface.syr.edu%2Fche%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/che/73?utm_source=surface.syr.edu%2Fche%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Lippmann Equation and the Ideally Polarizable Electrode 223 

The Lippmann Equation and the Ideally Polarizable Electrode 

Jean-Pierre Badlali and Jerry Goodlsman* 

“Physique des Liquides et Electrochimie, ” Groupe de Recherches do CNRS, Associ.4 A la Facult6 des Sciences, 75230 Paris, Codex 05, 
France (Received June 4, 1978) 

Publications costs assisted by Syracuse University 

The Lippmann equation for the ideally polarizable interface is normally derived by thermodynamics, using 
the Gibbs dividing surface. Therefore, the quantities appearing in the Lippmann equation can have no ref- 
erence to the actual charge distribution in the interfacial region. For example, the quantity referred to as 
surface charge is actually a sum of surface excesses, rather than the integral of a true charge density. In this 
article we derive, by statistical mechanical methods, the Lippmann equation for a model a t  the molecular 
level, thus giving a precise physical definition to all quantities which appear. First, we derive the conditions 
for mechanical equilibrium for a system (the interface between metal and solution) in which an electric 
field is present, and whose properties are inhomogeneous and anisotropic. From the balance of forces, we 
obtain equations for the surface tension. in terms of the pressure, electric field, electric charge density, and 
electric polarization a t  each point within the system. Considering a spherically symmetric system (mercury 
drop), we then proceed to a direct calculation of the change in the surface tension produced by a change in 
the potential drop across the interface, maintaining thermal equilibrium, constant temperature, and the 
pressure and chemical composition in homogeneous regions (on the boundaries of the interfacial region). 
Since an ideally polarizable interface does not permit charge transport across it, we introduce a surface 
within the interface on which the charge density is always zero. This surface serves to divide the interfacial 
region into two parts, thus allowing the surface charge to be defined as the integral of the charge density 
over the metal side of the interface. Only the solution side is treated by statistical mechanics. Boltzmann 
distributions for charged and polarizable species (solute and solvent) are used to guarantee thermal equi- 
librium. The Lippmann equation is obtained (a) considering only ions and supposing a dielectric constant 
equal to that of vacuum and (b) considering ions and molecules in thermal equilibrium, and a dielectric 
constant varying from point to point and changing with field. Finally, the response of our system to an im- 
posed alternating potential is considered. A direct calculation of the impedance shows that it behaves, in 
the low-frequency limit, as a pure capacitance, and that the value of this capacitance is the derivative of 
the previously defined surface charge density with respect to the potential drop across the interface. 

I. Introduction 
The Lippmann equation and the concept of the capacity 

of the double layer have long been of fundamental impor- 
tance in electrochemistry, and continue to play an impor- 
tant role in modern developments.lS2 Nevertheless, there 
are a certain number of ambiguities connected with these 
concepts which do not seem to have been adequately clari- 
fied in the literature. 

The Lippmann equation is concerned with the surface 
tension of the interface between an ideally polarizable elec- 
trode and an ionic solution. (Recently, an extension of the 
equation to a reversible electrode has been given.l) Accord- 
ing to this equation, the change in surface tension, divided 
by the change in the potential drop across the interface, 
gives the negative of the surface charge density (charge per 
unit area) of the electrode, if certain parameters are held 
constant. Keeping the Helmholtz (parallel-plate condens- 
er) model of the double layer in mind, this permits the 
identification of (a) the second derivative of the surface 
tension with potential and (b) the capacity of the double 
layer obtained from impedance measurements. Thus a con- 
nection is made between the two principal methods for ob- 
taining information on double layer structure. 

* Address correspondence to this author a t  the Department of 
Chemistry, Syracuse University, Syracuse, New York 13210. 

A number of proofs of the Lippmann equation have been 
given, all by thermodynamic  method^.^ The use of thermo- 
dynamics gives the equation great generality, but at  the 
same time means that the actual forces and interactions 
which determine the surface tension and its variation with 
potential are not considered. Correspondingly, the exact in- 
terpretation of the quantities appearing in the equation is 
not specified, but must await the use of a model. This can 
lead to problems in the interpretation of experimental re- 
sults; for example, it is sometimes nece~sary l )~  to distin- 
guish between the “free” surface charge and the “thermo- 
dynamic” surface charge-it is the latter which enters the 
Lippmann equation. 

When the Gibbs dividing surface is used for the deriva- 
tion of the Lippman equation, one can say nothing about 
the location of the charge or the distribution of the poten- 
tial in the interface, since there is no interfacial region in 
the Gibbs picture. In particular, the charge of the double 
layer is not defined geometrically; the total charge is zero, 
so that each position of the Gibbs dividing surface leads to 
a different geometrically defined charge +Q on one side 
and a charge -Q on the other. The charge appearing in the 
Lippmann equation is actually a combination of Gibbs sur- 
face excesses. Of course, thermodynamically derived results 
constitute necessary conditions which must be obeyed by 
any particular model, and are useful in discussionl,5 of such 
models. 
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224 Jean-Pierre Badiali and Jerry Goodisman 

In this article, we consider several models for the ideally 
polarizable electrode and derive the Lippmann equation 
from statistical mechanical considerations, without re- 
course to thermodynamics. This allows the unambiguous 
definition, in terms of microscopic properties, of all the 
quantities which appear. Surprisingly, no derivation of this 
kind seems to have been presented in the literature, in 
spite of the long history of the Lippmann equation. Ther- 
modynamic reasoning is universally used, followed by in- 
terpretation in terms of models. 

We consider two descriptions of the “solution:” ions lo- 
cated in a region of dielectric constant e0 (corresponding to 
a gas, a fused salt, or a plasma), and ions located in a region 
of dielectric constant e, which may vary from point to 
point. The electrode (metal side of the double layer) is 
taken as an external source of potential; a variation in its 
charge leads to variations in the potential drop across the 
“solution” and in the surface tension. Further discussion of 
the models is given in section 11. For each model of the so- 
lution, we derive the laws of mechanical equilibrium from 
purely microscopic considerations, employing Newton’s 
laws for the coulombic interactions between the particles of 
which the atoms and molecules are composed. From the 
equilibrium conditions an equation for the surface tension 
is deduced. This is done for the case of dielectric constant 
eo (only ions present) in section 111, and for the case of di- 
electric constant t: (ions and polarizable species present) in 
section V. The change in the surface tension and its ratio to 
the change in potential drop are computed directly. Then 
the Lippmann equation is derived in the two cases (sec- 
tions IV and VI). 

I t  is universal to refer2s6 to the derivative of the surface 
charge density with respect to the potential drop across the 
double layer as the differential capacity of the double layer. 
In the case of the simple Helmholtz (parallel-plate con- 
denser) model,2 this quantity is evidently the capacity, in 
the sense of the impedance. However, it  does not seem to 
have been shown in the literature that the ideally polariza- 
ble electrode actually behaves, to an alternating imposed 
voltage, as a capacitative circuit element. 

In section VII, we show in general that, for sufficiently 
low frequency w of the alternating voltage, the ideally po- 
larizable electrode presents an impedance of (i wC)- ’ ,  
where the capacitance C is the derivative of the electrode 
charge with respect to the potential drop across the inter- 
face. In conjunction with the results of the preceding sec- 
tions, this means that the second derivative of the surface 
tension with respect to the potential drop is indeed identi- 
cal with the capacity obtained from impedance measure- 
ments. This fact is well established experimentally by the 
work of F r ~ m k i n , ~  Cachet,s and others. 

Section VI11 contains a summary of our results and some 
discussion. We believe that the work presented here can be 
important in giving significance at  the microscopic ( i e . ,  
molecular) level to some of the macroscopic ( i e . ,  thermo- 
dynamic) laws of electrochemistry. 

11. Models Employed 
A number of previous workers9 have discussed electroca- 

pillary phenomena in statistical mechanical terms. The re- 
view of Ono and KondolO contains particularly valuable 
discussions of such work. In summary, it may be said that 
these authors attempt a more rigorous and general treat- 
ment than we present here, and consequently arrive at  
more complicated and mathematical results. We attempt to 

emphasize physical concepts and thus work with simplified 
models. 

We do not attempt, for example, to treat the entire sys- 
tem of solvated ions, metal ions, electrons, solvent mole- 
cules, etc., but define at the outset the separation of the 
system into two phases. The existence of a surface of sepa- 
ration is fundamental to our definition of the ideally polari- 
zable electrode: for there to be no charge transfer across the 
interface, it suffices that there be a surface on which the 
charge density always vanishes. We identify this surface as 
the surface which separates the phases. 

The system is taken as spherically symmetric, since the 
experimental measurements of electrocapillarity, to which 
our theoretical results are always implicitly referred, in- 
volve the mercury drop. Thus, the metal phase is found in 
the region r < r z  and the solution phase in the region r > 
rz .  The interface region extends from the surface r -I r, to 
the burface r = re, where r,  < rz  < re and all properties are 
homogeneous for r < r, and r > re. 

The interactions within the metal phase are never con- 
sidered. This does not imply the region r < r z  does not 
contribute to the surface tension or to the potential drop 
across the interface. We are not interested in the calcula- 
tion of the surface tension itself, but in the calculation of 
the change in the surface tension which accompanies a 
change in the potential drop, with the aim of indicating the 
physical effects which must be taken into consideration to 
produce the Lippmann equation. Thus, we assume that the 
contributions of the region r < 1’2 to the surface tension 
and to the potential drop are independent of the potential 
drop. The potential difference between r z  and r,  will be 
independent of the overall potential drop if the charge dis- 
tribution within the metal phase remains unchanged. This 
is the case, for example, if the charge of the metal is on the 
surface (in which case the potential difference between r 2 

and r,  vanishes). 
We consider explicitly the ions and atoms of the solution, 

interacting with each other and with the electrode or metal 
phase. The distribution of these ions and atoms is sup- 
posed to be determined by a Boltzmann-like distribution 
function. We suppose that the potential of the metal acting 
on an atom or ion of the solution is the sum of an electro- 
static part of a “chemical” part. The former is the interac- 
tion of a charged or polarizable particle with a charged 
sphere; it depends on the total charge of the sphere but not 
on how this charge is distributed. 

The second contribution is a potential W,(r )  ( r  > r z )  
which may be different for each species, thus taking into 
account specific chemical effects. Since r2: divides the 
metal phase from the solution phase, W, for charged 
species should approach infinity as r approaches rx. It is 
reasonable to suppose that the chemical force due to the 
electrode dies off rapidly with r? so that WL has become 
constant for r > re. We make no other assumption as to the 
behavior of W, between r 2: and re (it may be totally repul- 
sive or contain an attractive part, corresponding to adsorp- 
tion). However, we assume that W, is independent of the 
charge of the electrode. This assumption has been com- 
monly accepted as a realistic one by physical chem- 
i~i ,s;3a,c7~l it  is a t  the root of the division of the electrochem- 
ical potential into electrical and chemical parts. 

When the charge of the electrode is changed, we assume 
that the atoms and ions of the solution rearrange them- 
selves to form a new state of equilibrium, Le., a canonical 
distribution obtains before and after the change. However, 
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since overall electroneutrality must be maintained, the sys- 
tems before and after the change are different, containing 
different numbers of particles. In conformity with the role 
of the electrode as an external source of potential, all its 
properties, including the value of r z ,  are supposed to be 
unchanged. 

Within this general framework, two models for the solu- 
tion phase are considered. First, in sections I11 and IV, we 
consider ions in a medium of dielectric constant to (vacu- 
um). There is no polarization of the medium. This is appro- 
priate to ions in the gas phase (plasma) or a molten salt. 
The only electrostatic interactions are the attractions and 
repulsions between point charges. Short-range interionic 
interactions may be considered to be included in the pres- 
sure. It will be assumed that the change in the pressure 
which accompanies a change in the potential drop across 
the interface may be approximated by the change in kinetic 
pressure, ZnkkT. This means that the contribution of the 
short-range interactions to the pressure change is supposed 
to be relatively unimportant. This assumption is parallel to 
the assumption that the potentials of chemical force Wi (I^) 
are independent of potential drop. 

In sections V and VI we include the effect of polarizable 
atoms, which give a dielectric constant t different from €0. 

These atoms represent the solvent. It should be noted that 
we use the word “atom” in a general way, to include mole- 
cules, ions, etc. The polarization at  each point is given by ( t  

- q ) E ,  where E is the electric field a t  this point. The value 
of t may differ from point to point, because the number of 
polarizable atoms differs (electrostriction) or because the 
polarizability per atom differs (saturation). The latter ef- 
fect may be less important than the former.12 Interactions 
between ions and solvent atoms which are not electrostatic 
in character may be included in the model, provided that 
their effects on the change of pressure are unimportant 
compared to the change of kinetic pressure. 

111. Balance of Forces for Interacting Ions 
In this section, we calculate conditions for mechanical 

equilibrium between molecular entities composed of 
charged particles which interact according to Coulomb’s 
law. Each molecular entity is charged but nonpolarizable. 
Of course, it is necessary to imagine additional short-range 
interactions to ensure stability of the system. From the 
laws of mechanical equilibrium we derive an expression for 
the surface tension. 

The formalism we employed was used by Mazurl3 in a 
discussion of the electromagnetic properties of matter from 
a statistical mechanical point of view. The “atoms,” num- 
bered by an index k ,  are composed of point particles of 
masses m k k  and charges e k k ,  located at  positions R k k .  The 
position of the constituent particle, numbered by ki, rela- 
tive to the center of gravity R k  of the atom k ,  is denoted by 
r k L ,  where 

and the charge density a t  point R at  time t is 

P(R, t )  = ( 1 eki6(Rk - R ) f )  = (2 ekF(Rk - R ) f )  (3) 
k i  k 

where e k  = Z i e k r .  
Following Mazur, we derive the equilibrium of forces by 

calculating the time rate of change of the translational mo- 
mentum density pm v, where the mass density is 

P,(R, t )  = ( C mk,6(Rk - R ) f )  = (C mkb(R, - R ) f )  
k ,  i k 

(4 1 
and the mean velocity is 

V = (E m$k6(Rk - R ) f ) / ( C  mk6(Rk - R ) f )  (5) 
k k 

We obtain 

a(p,d la t  = -v,*(P,vv + p,) + 
(mkfik6(Rk - R ) f )  (6) 

k 

where 

PK = (C mk&k - V)&k - V)S(Rk - R ) f )  
k 

is the kinetic pressure tensor. At thermal equilibrium, P k  

= nkT times the unit tensor, where n is the number of 
atoms per unit volume. We consider a system in static equi- 
librium, so that v = 0, and a ( p m  v)/at = 0. Our treatment is 
purely classical, and considers explicitly only the coulombic 
interactions between the particles of which the atoms are 
composed. We thus introduce ad hoc a contribution to the 
pressure tensor which is due to exchange forces, van der 
Waals forces, and other interactions which cannot be ex- 
plained by classical electrostatics. Denoting it by ps, and 
setting eq 6 equal to zero, we have 

k 

The electrostatic force F k  = m k &  may be considered as 
including a contribution of an external electric field IFxt 
and a contribution of the other particles. In general 

mli.iik = mkiRki = e k i F X t ( R k i )  - 
i i 

( Z 2 k )  

vki (4.ir€o)-’e,ie,j[Rki - Rrj1-l (8) 

The quantities R k i  may be expanded in a Taylor series in 
r k i .  In this section, we consider only zero-order terms, 
which corresponds to taking into account only the interac- 
tions between the total charges of the atoms. Then 

i Z , j  

( 2 2 k )  

“ Z k f i k  = - (47J€o)-’vk 1 ekez IRk - Rl 1 

and m k  = Z i m k i .  Let f represent the statistical distribution vR* (pK + ps) = ( EelPt(Rk)e,6(Rk - R ) f )  + 
function in phase space, so that the average value of a dy- k 

namical quantity a‘is given by (af ) , the fences indicating (4.ir€o)-’J{ C ekez(-VkIRk - Rz 1-’)6(Rk - R )  X 
integration over the phase space. In particular, the proba- k ,  1 

6(Rl - R’)f) dR’ = EeXt(R)p(R) - (4?i€o)-* x 

ek6 ( R ~  - R )  c el  6 (R, - p ) f )  dR! 

bilty per unit volume of finding the center of gravity of the 
k t h  atom at  point R at  time t is given by ( 6 ( R k  - R ) f ) ,  
where 6 is the Dirac delta function. Thus the number densi- 
ty of atoms at  point R at time t is Jv, I R - ~ t  1 ( (9) 

k 1 
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226 Jean-Pierre Badiali and Jerry Goodisman 

The last quantity in fences is a sum of two-particle distri- 
bution functions. We write the two-particle distribution 
function for particles k and 1 as a product of one-particle 
distribution functions multiplied by a correlation factor 

(S(Rk - R)5(R, - R') f )  = 

(6(Rk - R)f)(F(R, - R')f)(1 + hk,(R,R')) (10) 

The correlation function h k l  (R,R') depends on R' and on 
R - R', approaching zero as I R - R1 approaches infinity. 
Thus the last term in (9) is 
-(4?7€0)' C J v ~ I R  - R' I-'e,e,(ti(R, - R Z ~ )  x 

kt 

(8(R, - R')f)(l + hk,(R, R')) dR' = 2 e,p','(R) x 

x J E , ( R , R ' )  dR' - (4i~~o)- ' /V,lR - R'1-I x 
k 

2 

ekp'k'(R)C e1p'''(R')hk,(R, R') dR' 

where E1 (R,R') is the average electric field at R due to 
particles 1 at  R'. Since this quantity, summed over 1 and 
integrated over R', is the average electric field at R due to 
particles in the system, we may combine it with Eext (R) to 
obtain the total electric field at  R, E ( R ) .  Now eq 9 be- 
comes 
' R ( P K  + ps) = E@) - (47i'€o)-' x 

k 1 

S V ,  1 R - R' I -' eke,p'k'(R)p'2'(R')hk,(R, R') dR' 
k, 1 

The last term may be written as 

-(4aco)-'~,j" - R' I - *  C ekelp'k)(R)p(Z'(R') x 
A, 1 

hk,(R,R') dR' + (4?~€~) - ' ) "  lR - R'[- 'C e,p"'(R')  x 
1 

V R [  C ekp'k'(R)hk,(R, R')] dR' -VRpu + F*(R) 
k 

Finally 

VR+, + Pu + ps) = E(R)p(R) + F*(R)  (11) 
Of the three contributions to the pressure tensor, p~ and 

pu are isotropic. The contribution due to short-range forces 
is anisotropic, even if the forces themselves are central, be- 
cause it involves the two-particle distribution function. If 
the forces are extremely short range (hard spheres, in the 
limit) the anisotropy disappears. The force P ( R )  is also 
anisotropic; in fact, it  has only one nonvanishing compo- 
nent, in the radial direction, in the case of spherical sym- 
metry. In a homogeneous medium, P and pu vanish. We 
note that P is intrinsically due to interparticle correla- 
tions and cannot be expressed in general as the gradient of 
a pressure since v X P is not zero. 

In what follows, we shall neglect F* (however see Appen- 
dix, eq A6). This is apparently done by other authors who 
write the equations for mechanical equilibrium in terms of 
macroscopic or average quantities. We use the remaining 
expression 

v*p = E(R)pGR) (12) 
to express the condition of mechanical equilibrium in the 
presence of an electric field. We consider the spherically 
symmetric region between a sphere of radius ri and a 
sphere of radius re - E is necessarily in the radial direction, 
while p has a t  each point two independent components, pp.~ 
along the radial direction and p~ in all perpendicular direc- 
rections. The properties of the system are homogeneous for 

r < rc and r > re, and vary continuously from rc to re. Our 
first goal is to derive a convenient expression for the sur- 
face tension in terms of the pressure and electric field a t  
each point in the system. 

We have first the experimental definition of the surface 
tension (Laplace equation): 

Pi - P, = 2dY5 (13) 
Here, p c  and p e  are the (isotropic) pressures for rL and re, u 
is the surface tension, and r ,  the radius of the surface of 
tension. Another expression for u and r, ,  is obtained by 
noting that the three-dimensional interfacial region is sup- 
posed to behave as a geometric surface of radius r ,, rL < r , 
< re, on which the surface tension acts. This means that, 
instead of taking into account the actual values of p~ and 
p T a t  each point in the interface, we may consider that our 
system consists of a homogeneous bulk phase with pressure 
p c  and corresponding values of other properties for r < r ,, 
a homogeneous bulk phase with pressure p e  and corre- 
sponding values of other properties for r > r,, and a ten- 
sion u acting at  r ,. 

In the Appendix we show that the volume force Ep is 
equivalent, in the case of spherical symmetry, to a surface 
force, i .e. ,  the integral of Ep over any volume is equal to 
the integral of the normal component of a fictitious pres- 
sure over the surface bounding the volume. In particular, 
one can use the force laws which obtain in the absence of 
field, provided one replaces p T by p r r  + Sef i2  and p N, the 
radial component of the pressure, by p~ - 1/ILcfi2 (see eq 
A4). Now we consider the part of the interfacial region con- 
tained between the half-plane 4 = 0 and the half-plane 4 = 
a, where $J is the polar angle. In calculating the work done 
in increasing a by da,  a virtual displacement which main- 
tains the symmetry of the system, we may use the exact de- 
scription of the forces in terms of p~ and p~ or the de- 
scription in terms of u and r ,,. Equating the two, we obtain 
the desired equation for u and r u. 

The normal force acting on the area between the circles r 
and r + dr and between the rays 8 and 8 + d8 (8 = azi- 
muthal angle) is p ~ ( r ) r  = dr d8 and the distance moved by 
these points during the displacement is r sin 8 da.  Thus, 
replacing p T by p T + l/&,E2, as indicated above, the work 
done in increasing a by da,  including the effect of the elec- 
tric field, is 

w = Joid81redr(PT(Y) + '/2€0E2)g Sin 0 d a  (14) 

If we consider the system as having a pressure p c  for r < 
r,, a pressure p e  for r > ra,  and a tension u at r = ro,  the 
work is 

d r  peg sin 0 - or: sin 0 d a  (15) 

since u is a tension. Equating the expressions for W and 
rearranging, we find 

1 

or: = 1, (pi - p ,  - %c0E2).j! d r  + 

( P ,  - P T  - Y~€o~)? d r  (16) L: 
This equation has also been derived by Sanfeld and oth- 
ers14 using other arguments. 

Other equations are possible, but (16) has several advan- 
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tages for our purposes. We are interested in calculating the 
change in u which accompanies a change in potential, keep- 
ing interior and exterior pressures, temperature, and other 
parameters constant. The explicit appearance of p ,  and p e  
in (16) makes it easy to ensure that they are held constant 
when u is changed. A second advantage is the way in which 
r, enters (16). When u changes, r, will certainly change as 
well, and the calculation of Ar ,  would be troublesome. As 
we will see below, use of (16) makes such a calculation un- 
necessary. 

We now proceed to the calculation of Au and the change 
in U, the potential drop across the double layer, leading to 
the Lippman equation. In the Lippmann equation, as de- 
rived thermodynamically, pressure, temperature, and 
chemical potentials of bulk phases are held constant in cal- 
culation of AalAU. Our derivation will give a precise sense 
to these conditions. 

IV. Lippmann Equation for Phase of Dielectric 
Constant €0 

We start from eq 16 and 13, which define u and rg .  For a 
change in the interface which maintains p ,  and pe  con- 
stant, we have 

Aur: + 2 u ~ ~ A v ~  = 

- Jr: A ( p T  + 1/,c,E2).i! d r  + pir;Ar,, - PeY?Aro 

By virtue of (13), the terms in Aro disappear, leaving 

(17) 

The second integral may be written in terms of the electro- 
static potential +: 

-(4n)'lJE.V+ dT = -(4a)- 'S+BdS + (4a)'lS$(V*E) d r  

Since E = 0 on the boundary surface (the spheres of radii r, 
and re) ,  the surface integral vanishes. Using the Poisson 
equation, we have 

Aur: = -Li A p T r 2  d r  - y2s A(4!'p)y2 d r  (18) 

for a change maintaining p ;  and p e  constant. By the defini- 
tion of the ideally polarizable electrode (see section 11), 
there is a surface, corresponding to r = rz:, on which the 
charge density vanishes: p(rz)  = 0. This surface also serves 
to divide the electrode or metal phase from the solution 
phase. Thus the electrode charge is obtained by integrating 

t the charge density from r, to r 2 and the electrode surface 
charge density Q is obtained by dividing the electrode 
charge by 4ar z2. Similarly the charge of the solution is ob- 
tained by integration of p from r to re. The charge densi- 
ty p is supposed to vanish for r l  r; and r h re. Since the 
electric field is zero at  r = r; and at r = re, we must have 
the electroneutrality condition 

re re 

T i  

L: r 2 p  dv = -QrE2 (19) 

As discussed in section 11, our model permits us, in calcu- 
lating Au and AU, to consider only the solution part. The 
change in U is produced by addition of charge to the metal 
phase, which produces a rearrangement of charge density 
in the solution, whose total charge must change to maintain 
electroneutrality. In summary, the electrode is considered 

as a system of fixed properties, whose charge may be varied 
without changing its other properties. 

Aura2 = - (A4p  + + A p ) r 2  d r  (20)  

If we take, as we may without loss of generality, the poten- 
tial a t  r = r z  as zero, the potential a t  a point r > rx  is 
given by 

We now have 

A p T y 2  d r  - y2 1: 1: 

(21 )  
Since U is supposed to be the potential drop in going from 
the electrode to the homogeneous region of the solution 

re 1 Q 
€0 

U = Le --pr dv + -re (22 )  

where (19) has been used. Now suppose that Q is changed 
to Q + AQ, so that, a t  each point between rz: and re, p 
changes to p + Ap and + changes to + + A+. A direct calcu- 
lation using eq 19,21, and 22 yields 

c 0 -  * l: d r l l d v '  A ~ ( Y ' ) ~ ( Y ) ( Y ' Y ~  - rr") 

and 
re 

A+pr2 dv = le + A p r 2  d r  1; 
In the calculation of APT, we consider only the kinetic 
pressure contribution, nkT, assuming that the other con- 
tributions do not change appreciably with AQ. Since the 
temperature is to be held constant during the change 

where n; ( r )  is the concentration of ion i. Thus wehave 

Aur; = - k T F i  re A n i r 2  d r  - J c ( A + p ) r 2  re d r  (23 )  
c 

In changing Q we are supposed to go from one equilibri- 
um state to another, and to maintain the properties of the 
solution where it is homogeneous, corresponding to holding 
chemical potential constant. The equilibrium condition will 
be imposed by assuming Boltzmann distributions before 
and after the change in Q, with n, (r,)'constant. Thus 

( 2 4 )  
The potential energy V;(r) contains an electrostatic part 
qiJ.(r) and a chemical part W;(r) due to the electrode (see 
section 11). Therefore, since n;(r,) is constant 

An, ( r )  =nt(ye)  exp(-[Vi(v) - V i ( y e ) I / k T ) ( - q i / k T ) A ( ~ ( ~ )  

n J r )  = n i ( y e )  exp(-[Vi(v) - Vi(ye)I/kT) 

- # ( y e ) )  = Z i ( V ) ( - q i / k T ) ( A + ( y )  + A u )  

We have used the fact that $(re) = -U. Substituting into 
(23) 
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Now p = Zniqi, so the first part of the “pressure” term can- 
cels out the “electrostatic” term. The similarity of “kinetic 
pressure” and electrostatic terms has been discussed by 
Frenkel,gb who emphasized the dangers of neglecting one 
while changing the other. 

Equation 25 may now be written 

A o T ~ , ~  = J “ p A U v 2  d7’ = AU(-&YZ2)  

Now the effective thickness of the interfacial region is, in 
reality, always very small compared to its radius. For ex- 
periments with a mercury drop, the radius of the interface 
is of the order of 500 y, while the thickness of the interfa- 
cial region is about 100 A. Since r g  and r x  both lie within 
the interfacial region, their values are essentially equal. 
Thus A a  = -QAU; the Lippmann result is proved. 

V. Balance of Forces in the Presence of a Polarizable 
Medium 

In this section we consider the possibility of having net 
dipole moments on some molecules. Returning to eq 7 and 
8, we retain terms through second order in the r k i  in the 
Taylor series expansions, and, following Mazur, neglect 
quadrupole moments. The electric dipole moment of mole- 
cule h is defined as 

YE 

We now have 

.ZkRk = ekEeXt(Rk)  f pk*VkEeXt(Rk) - v k  x 
( Z # k )  

+ elpk‘Ukt + ekplUZk + pkp i :Tk l )  (27) 
1 

where we have introduced the following abbreviations: 

Vk, (ea€.,)-‘  IRk - Rl 1 
uk, (4aco)-’VklRk - f ? l  I - ‘  

T , ,  E (4nco)‘ivkV, 1 Rk - R ,  1 -‘ 
We must now calculate, for insertion in eq 7 

(??z,R,6(Rk - R l f )  = E e x t ( R )  + P * V , E e X t ( R )  - 

J ~ R ’ [ ~ ~ ~ , ( V R V , , ~ ( R  - R,)fJ(R’ - R l ) f )  -t 
k ,  I 

ei(vRp,*Uk,f’(R - Rk)(R’ - R , ) f )  f 

~ , ( V , ~ J * U Z ~ ~ ( R  - & I 6 @ ‘  - R , ) f )  + 
( V ~ p k p r : T k 1 6 ( R  - Rk)6(R’ - R , ) f ) ]  (28) 

Here P is the electric dipole moment per unit volume, 

P = Fk6(R - R ) 
< k  k f> 

i .e. ,  the polarization. 
As in section 111, we may separate terms corresponding 

to local properties from terms corresponding to correla- 
tions. For example, the dipole moment of molecule k a t  
point R, for a given configuration of charges of other parti- 
cles, is equal to its average value plus a fluctuation or corre- 
lation term. Similarly, the two-particle distribution func- 
tions are written as products of one-particle distribution 
functions and a correlation factor 1 + hki(R,R’) (eq 10). 
Some of the terms reflecting the correlations may be writ- 
ten as divergences of local pressure tensors as shown by 
Mazur13 and interpreted as representing short-range forc- 
es. There remain terms which cannot be so written, as in 

section 11. Assuming that these can be ignored we have 
from (2) 
V,-p’  = pEeXt (R)  + P * V p T e X t ( R )  + p E ‘ ” ( R )  + 

P * V R E “ ’ ( R )  + P E ‘ ~ ’ : ( R )  + P * V R E “ ’ ( R )  (29) 
Here V R ~ ’  includes all short-range terms which can be 
written as divergences, and 

E‘”(R) = -(4ac0)-1vR JdR’P(R’ )  IR - R’ I - ‘  
= - (4a60)- ivR JdR’P(R’ )*V, , lR  - R’l -‘ 

representing, respectively, the field a t  R due to the ionic 
charges and the field a t  R due to molecular dipoles. 

Equation 29 may now be written 

v R ’ p  = pJ!?(R) + P’V,&(R) (30) 
where E(R) = IFXt + 13J1) + a2) is the total field at point R. 
It must be remembered that certain contributions which 
are undeniably of electrostatic origin, but include the effect 
of correlations, have been included in the “pressure” term 
and others have been ignored. There is thus some arbitrari- 
ness in writing the electrical force as the right member of 
eq 30. Mazur13 and Sanfeld14 have discussed this point in 
detail, and emphasized that the balance of forces may be 
written in a number of apparently different ways; in each 
case the meaning of pressure is different. 

If we use (30) in the place of (12) to calculate the equilib- 
rium condition for a volume of our system, we obtain 

Jp*dS  = JpEdT + S P - V E  dT (31)  
Although the right side of (30) is not the gradient of a ten- 
sor, so that the volume integrals in (31) cannot in general 
be written as surface integrals, simplification is possible in 
the case of spherical symmetry. The vectors E and P are 
necessarily in the radial direction a t  each point in our sys- 
tem. Then, as shown in the Appendix (eq 7), the right side 
of (31) may be replaced by the integral over the surface of 
the normal component of a fictitious pressure. This means 
that we may calculate forces by ignoring the electric field 
terms and replacing p T by p T + Y2toEr2 and p N by p N + 
(’/& - c)Er2. 

Again, we consider the volume and the fictitious dis- 
placement of sectiori 111. Equation 14 is unchanged, since 
only the tangential pressure enters. Therefore, eq 16 is un- 
changed. As previously, we now have to consider a change 
in U and the corresponding change in surface tension a, 
while assuring that we pass from one state of equilibrium to 
another, maintaining constant the internal and external 
pressure, the temperature, and the composition of the two 
phases in homogeneous regions. 

VI. Lippmann Equation in the Presence of 
Polarization 

We take as our point of departure eq 17. We assume no 
contributions from the region r < r z  so that our basic 
equation for the change in surface tension is 

NOW, the Poisson equation is 

where D = E E  and the dielectric constant E at each point 
may depend on the electric field and on the position. The 
polarization is related to the field and the dielectric con- 
stant by 

V*D = p 
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p = (E - EO)E 
The electric polarization a t  each point is proportional to 
the number of molecules per unit volume. The nature of 
these “molecules” is not specified, and their properties may 
be considered as depending on the chemical environment, 
in particular on the distance from the electrode. We have in 
mind, of course, induced polarization due to orientation of 
permanent dipole moments by an electric field. 

As before, we take into account, in the calculation of 
Ap T, only the change in the kinetic pressure. At constant 
temperature, this is AnkT. Now, however, the total con- 
centration n includes a contribution from solvent mole- 
cules, as well as from the ions. For simplicity, we assume 
that we may separate the two kinds of particles: the ions 
are nonpolarizable and the solvent molecules are not 
charged. 

Thus 

(33) 

where the subscript 0 refers to the solvent. We assume, for 
all species, a Boltzmann distribution. For the ions we have 
eq 24, which led to 

A n , ( r )  = n i ( r ) ( - g i / k T ) ( A 4 ( r )  + A U )  (34) 

The electrostatic energy of an orientable or polarizable 
molecule is given by 

- r” @E’ dE’ 
J O  

where CY is the molecular electric polarizability and E the 
electric field. The molecules may of course be rotating 
species possessing permanent dipole moments. The value 
of a! may differ from point to point and may also depend on 
E’ (dielectric saturation effect): it  is well known that a 
strong enough electric field can essentially totally orient 
the solvent molecules, reducing their response to an addi- 
tional imposed field and hence decreasing CY. The variation 
of CY with position is the electrostrictive effect: because the 
energy of a molecule decreases with field, such molecules 
tend to concentrate in regions of higher electric field. This 
means that the dielectric constant varies from point to 
point because the number of molecules changes. Thus in 
the equation 

E - eo = n0a 
we assume that no follows a Roltzmann distribution 

(35) 

Here noe is the concentration of solvent a t  r = re (where E 
= O), which is supposed to remain constant. The potential 
W O  is due to the electrode, and may include an attraction 
leading to adsorption, as well as a repulsive potential for r 
g r x .  However, we suppose W O  is independent of U, as in 
the case of the corresponding potential for the ions. This 
corresponds to a separation of “electrostatic” and “chemi- 
cal” effects. 

Now we may write 

Ano = noe exp [( i E a E ’  dE‘ - WO(v)),/kT] x 

A (  LE aE’ d E ’ ) / k T  = n o ( a /  k T ) E A E  (36) 

-p(A4J + AU) + % ( E  - E & @ )  
This in turn is used in eq 32, giving 

Aar: = i : p A # r 2  d r  + A U S r e p r 2  d r  - 

l2 

The terms in €0 vanish, and 

The first integral in this equation may be treated by using 
Poisson’s equation and integrating by parts 

We have used the fact that Dvanishes at r = re while + and 
A$ vanish at  r = rx. Note that A here signifies “the change 
in” and not the Laplacian. 

Finally, eq 37 becomes 

Aov: = L : A E * o r 2  d r  - LE E E * A E v ~  d r  - AUQrE2 
re 

which may be rewritten 

A O / A U  = - Q Y ~ ~ , / Y ;  = -Q (38) 

Thus we again have the Lippmann equation. 
We emphasize that in the present case, where E differs 

from €0, it was necessary to consider the distribution of sol- 
vent molecules and how it changes with U. As before, the 
anisotropy in the pressure tensor does not enter; indeed, we 
assume that the change in the kinetic pressure with U is 
more important than the change in the other contributions 
to pressure. By starting from a microscopic picture and 
using statistical mechanics, we were able to enumerate the 
changes contributing to the satisfaction of the Lippmann 
equation. The statistical mechanical treatment, in contrast 
to the thermodynamic one, allows explicit definition of the 
quantities entering the equations. 

VII. Capacity of the Ideally Polarizable Electrode 
In this section, we consider the response of an ideally po- 

larizable electrode to an imposed alternating potential, 
with a view to a direct calculation of the impedance. We re- 
call that, as part of our definition of the ideally polarizable 
electrode, we used the existence of a surface on which p = 0 
(section 11). We also wish to recall that the changes in ACT 
and AQ were supposed to be carried out in such a way that 
the system passes from one equilibrium state to another. 

Let the potential U across the electrode be the steady 
potential U ,  plus the alternating potential Uoeiwt. The ef- 
fect of the alternating potential is to induce an alternating 
current, which, divided into UOeL yields the impedance. 
No continuous current is possible because no charge can 
pass the surface r = rz. The current may be calculated at  
any point in the circuit, provided that one considers the 
total current, which is conserved. This current is Substituting into eq 33, we have 
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J -  pv + aD/at (39) 
The term p v represents the transport of charge with veloci- 
ty v; the second term is the displacement current. On the 
surface r = r 2,  only the displacement current is present. 

We thus have to calculate aDz/at. If the frequency w of 
the applied voltage is sufficiently small, we may invoke the 
adiabatic theorem,16 which states that while the Hamilto- 
nian is being changed, the system remains in a state of 
equilibrium a t  each instant. In a state of equilibrium, all 
properties of the system are determined by the external, 
macroscopic parameters. Therefore the value of DZ a t  any 
time depends only on the value of the external parameters 
a t  that time, so that Dz varies only by virtue of the varia- 
tion of these parameters. If the pressure, temperature, 
composition a t  re, etc. are kept constant, there is only one 
parameter which varies, namely, the potential across the 
system. 

The fact that Dz varies with time only through the vari- 
ation of U is expressed mathematically as 

Thus we have for the impedance 

The impedance is clearly that of a capacitance, the capacity 
being 

It  will be remembered that this partial derivative is to be 
calculated by changing U in such a way that the system is 
always in a state of equilibrium. 

Equation 40 establishes that, as w approaches zero, the 
ideally polarized electrode behaves as a true capacity 
toward the perturbation of the voltage across it by an alter- 
nating potential. If there is no matter on the surface r = 
r 2,  D z = E Z. In any case, Gauss’s theorem permits us to 
show that D z  = Q, where - Q r z 2  is the total charge of the 
solution. 

Combining this result with that obtained previously, we 
have 

c = ag/au = -a2a/au2 (41) 
This result is familiar in electrochemistry but a general 
demonstration of the existence of the capacity of the ideal- 
ly polarizable electrode seems not to have been presented. 

VIII. Conclusions 
We have derived the Lippmann equation by a nonther- 

modynamic method, in terms of a specific physical model. 
We attempted in our model and in our derivation to simu- 
late the actual experimental conditions for which the valid- 
ity of the Lippmann equation is demonstrated (spherical 
electrode, solution of constant composition, etc). This does 
not seem to have been done previously. 

Our proof is quite different from the usual thermody- 
namic one, and it gives an explicit physical meaning to all 
quantities entering the equation. This is not true when the 
equation is derived thermodynamically. For example, the 
charge per unit area of the electrode Q appears3 as a com- 
bination of Gibbs surface excesses, which are invariant to 
the position of the Gibbs dividing surface. Clearly, this sur- 
face can play no role in separating the solution from the 
metal phase. One has to invoke a specific model which as- 

c = aD,/au 

signs charged species to one side of the interface or the 
other. No spatial separation between the components of 
the solution and metal phases is implied by the thermody- 
namic treatment. 

Furthermore, the thermodynamic treatment can say 
nothing about how the charged species are actually distrib- 
uted in the interfacial region or about how they interact. 
By introducing a model we come to grips directly with the 
structure of the interfacial region. Correspondingly, we are 
forced to consider the existence of a physical surface which 
divides the solution phase from the metal phase. However a 
natural way of introducing such a surface is given by the 
model itself. An ideally polarizable electrode does not allow 
the passage of a steady-state current between the region 
outside the interface and the region inside. This can be as- 
sured if p vanishes at  some point in the circuit, i.e, on a 
surface r = r z .  The surface on which the charge density 
vanishes is a natural one for dividing up the charge of the 
system. The charge density for r < r 2  is assigned to the 
metal and that for r > r I: to the solution. 

In addition to the surface r = r z  on which p vanishes, 
our models involve charged and polar entities (ions and 
molecules). I t  is clear that these entities may be relatively 
complex. We require simply that the charge density at any 
point be expressible in terms of densities of ions at  that 
point and that the polarization of the medium be expressi- 
ble in terms of the densities of molecules and the electric 
field at that point. We have furthermore introduced, for 
the density of each chemical species, a Boltzmann distribu- 
tion with a potential energy consisting of independent elec- 
trical and chemical parts, the electrical part depending on 
the total electrical potential or field at  a point. Actually, 
the assumption of a Boltzmann distribution is not neces- 
sary, since we have used only the equation for the relative 
change of concentration with a change in electric potential 
or electric field. Our assumption, strictly speaking, is that 
the change in concentration a t  a given point depends essen- 
tially on the change of the electrical condition (eq 34 and 
36). The Boltzmann distribution with independent chemi- 
cal and electrical parts is sufficient, but not necessary, for 
this purpose. 

This brings us to an important point; because we are in- 
terested in calculating the change in the surface tension 
rather than the surface tension itself, we were able to arrive 
at a concrete and explicit result. A number of physical 
quantities, which are difficult to calculate in a reasonable 
way, do not enter, since they may be reasonably supposed 
to be unimportant to the change of surface tension. That 
our model is insufficient for calculation of the surface ten- 
sion itself becomes evident in the following example. 

Using eq 13 to eliminate pi from eq 16 we have 

If we neglect (a) the contribution of the region ri < rz ,  (b )  
the contribution to the pressure other than the kinetic 
pressure, and (c) the chemical force potential Wi, we have 

where n,, is the concentration of species i at re. In the ex- 
pansion of the exponential, the leading term cancels out 
the “1” and the next term vanishes because 2;iqinie = p(r,) 
= 0.  The following term in the expansion gives a negative 
contribution to p ,  - p ~ .  Since - 1 / 2 e d P  is necessarily nega- 
tive, (42) predicts n to be negative. This is because we have 
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ignored the contribution of the metal phase and of the 
short-range repulsion in W;. In our model, both of these are 
assumed independent of potential, so that they give a posi- 
tive but constant contribution to u as a function of poten- 
tial. A t  the potential of zero charge the electric field and 
the concentration gradients vanish. At other potentials, 
these give a negative contribution to u, as shown above. 
That o goes through a maximum at  the point of zero charge 
is well known. 

The example above emphasizes one of the important 
points that emerge from calculations of the kind carried 
out in this article. In the computation of the change of u, 
we observe cancellation between contributions arising from 
electric field terms and contributions arising from pressure 
terms. This is simply because the pressure depends on the 
concentration and the concentrations of charged and polar 
species are partly determined by electrical forces. This sort 
of compensation is necessary in a demonstration of the 
Lippman equation from a molecular point of view. One can 
show this more explicitly by deducing the Lippmann equa- 
tion from the well-known Guoy-Chapman model. A discus- 
sion of the Lippmann equation in this context has recently 
been given;17 some previous work on the subject was early 
done by Herzfeld and by Frumkin.18 

Appendix 
Although the volume force Ep cannot in general be 

shown equivalent to a surface force (it is not the gradient of 
a tensor), the symmetry of the present problem permits a 
simplification of this kind. Consider the basic infinitesimal 
volume element, formed by the surfaces 
Y = Y o ,  Y = yo + dr ,  e = eo, e = eo + de, 

4 = (Po, Q = (Po + d(P 
Here 0 is the azimuthal angle and 4 the polar angle. The 
bounding surfaces may be taken as plane in the present 
discussion. The electric force on this volume is 

F = K dV€oE,.Y{’ d(Yo2E,)/dr (Al) 

where K is a unit vector in the radial direction and the vol- 
ume of the element is 

dV = Y: sin Bo d r  dB d$ 

Poisson’s equation has been used in (Al). It will be shown 
that F may be written as an integral over the bounding 
surface of d S  p’ where p’ is a fictitious pressure tensor 
with components PN’ and p T’ in the radial and tangential 
directions and d S  is the normal element of surface. 

It is clear that the integral of d S  p’ will be in the K di- 
rection so that we need calculate only the component in 
this direction to show equivalence to F. The integral of 
d S  p’ over the face defined by r = ro + dr  is 

-pN’(r0 + dr ) ( ro  + dr)’ s in  eo dB0 d(P 

and the corresponding quantity for the face r = ro is 

~ N ’ ( Y o ) ( Y o ) ’  s in  B o  dB d$ 
Expanding p N’(r0 + d r )  in a power series in dr and keep- 
ing the term first order in dr, we have a net contribution to 
K *  p - d S o f  

-(2rOpN‘ + YO” dp,’/dr) d r  dB d@ sin eo 
The total force on the faces C$ = 40 or 4 = 40 + dC$ is 
p T’(r0 )ro dr  do; to obtain the component of the force in the 
K direction, we must multiply by a direction cosine. In Fig- 

Ik 

!= I II 

Figure 1. Face of the infinitesimal volume element corresponding to 
B = constant. The faces corresponding to r e= constant and to (o = 
constant are viewed end-on. EF is normal to the face AD and k rep- 
resents the radial direction, so is normal to the faces CD and AB. 

ure 1, we show the faces 4 = 40 and 4 = 40 + d4, viewed in 
a direction perpendicular to a surface ABCD on which 6 is 
constant. The direction cosine is cos (<EFG); since E F  is 
normal to AD, cos (<EFG) = sin (<DAH). Now AB = r o  
sin 00 d+ = and = (ro + d r )  sin 00 d4, so that sin 
(<DAH) = (l/2 dr sin 00 d $ ) / ( m ) .  Since AD = dr (to the 
order of our calculations), cos (<EFG) = 1/2 sin 00 d+ and 
the net contribution of the faces considered is, in the K di- 
rection 

2(pT‘(yO)yO dY dB)(i / ,  Sin 00 d(P) 
In a similar manner, we show that the net contribution of 
the faces 0 = 00 and 0 = 00 + d0 is 

ropT’(r0) s in  Bo d r  dB d(P 
Thus the total force calculated in terms of p’ on the six 
faces is 

2p,’yO sin eo d r  dB d(P - 

d - ( r t h ’ )  s in  eo d r  d e  dQ]  (A2) d r  
Setting this quantity equal to F we obtain 

as a condition on p ~ ’  and p ~ ’ .  Equation A3 is satisfied if 
we take 

PT’ = i/z€oE? PN’ = -1/2€oE,.‘ (-44) 
Then the volume force due to the electric field is equal to 
the integral of the normal component of p’ over the surface. 
Since this holds for the basic infinitesimal volume element, 
it holds for an arbitrary volume which may be built from 
the infinitesimal elements; the contribution of the volume 
force is additive over the elements while, for the contribu- 
tion of the surface force, only that of the exterior surface 
remains. Stated another way, the force on an arbitrary vol- 
ume may be calculated by ignoring the electric field but re- 
placing the ordinary pressure tensor p by p + p’. 

Now we consider the volume defined by 
y o <  Y <  Y O + ~ Y ;  O <  e <  a; O <  $ < 2 n  

Applying our rule and demanding that the total force van- 
ish, we have 
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2 ( # ~  + $ 'T ' )~o  = d(V2pN' + r 2 p N ) / d r  
o r  

(2pT + €oE:)Yo = d[Y2(pN - i / 2 € & , 2 ) ]  (-45) 
This condition for mechanical equilibrium has been de- 
rived by Sanfeld and others.14 

The force F* of section I11 is, like the electric field, also 
in the radial direction at each point. It is not the gradient 
of a pressure-like term (V X F* # 0), but its effect can also 
be taken into account by a fictitious pressure. Since F* is a 
short-range force by virtue of hkl ,  we may suppose it to be 
included in p .  

In the presence of electric polarization, the volume force 
(see eq 31) may again be replaced by a surface force. In this 
case, the force on the basic infinitesimal volume element 
includes a term due to electric polarization P,. Equation 
A1  is replaced by 

2 d y € E d &  + P r s )  d r  (A61 F = K d V ( E r r o  d r  
where P ,  = ( e  - eo)E,. In this case we have, similarly to 
(A3) 

This is satisfied if we take 

p T '  = 1/2€0E,2 p N '  = 1 / Z ( € o  - 2€)E,2 (A71 
Thus, in the case of spherical symmetry, one can use the 
force laws valid in the absence of electric field, provided 
that the tangential pressure is replaced by PT + YzEoE,.~ 
and the radial pressure is replaced by p N + Y ~ ( E o  - 24EF2.  
Of course, the previous rule, in the absence of polarization, 
is a special case of this one. 

Jean-Pierre Badiali and Jerry Goodisman 
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