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Bayesian Limits on Primordial Isotropy Breaking

C. Armendariz-Picon and Larne Pekowsky
Physics Department, Syracuse University,

Syracuse NY 13244-1130, USA

It is often assumed that primordial perturbations are statistically isotropic, which implies, among
other properties, that their power spectrum is invariant under rotations. In this article, we test this
assumption by placing model-independent bounds on deviations from rotational invariance of the
primordial spectrum. Using five-year WMAP cosmic microwave anisotropy maps, we set limits on
the overall norm and the amplitude of individual components of the primordial spectrum quadrupole.
We find that there is no significant evidence for primordial isotropy breaking, and that an eventually
non-vanishing quadrupole has to be subdominant.

I. INTRODUCTION

Observations of the cosmic microwave background
show that the early universe contained tiny density per-
turbations, from which structures developed as the uni-
verse expanded. In recent times, we have gained a
wealth of information about these primordial perturba-
tions. We have precisely measured their spectrum, and
we have placed quite stringent limits on their properties
[1]. Prompted by these advances, the nature of the pri-
mordial perturbations has entered the standard cosmo-
logical model, a set of a few parameters and assumptions
that summarizes what we know about our universe.

There is however an assumption in the standard cosmo-
logical model that has not been subject to much obser-
vational or theoretical scrutiny: the statistical isotropy
of the primordial perturbations. Cosmological perturba-
tions are statistically isotropic if their probability distri-
bution functionals are invariant under rotations, which
implies in particular that the power spectrum of sta-
tistically isotropic perturbations only depends on the
magnitude of the wave vector, P(k) = P(k). Though
some papers have analyzed the impact of statistically
anisotropic perturbations on structure [2, 3, 4], while
others have proposed mechanisms for their generation
[5, 6, 7, 8, 9, 10, 11], to date no model-independent limits
on the deviations from statistical isotropy of the primor-
dial perturbations exist.1 In this article we set precise
bounds, and thus verify one of the key ingredients in our
understanding of the origin of structure.

II. STATISTICAL ANISOTROPY

In order to study deviations from statistical isotropy,
we need to find an appropriate way to parametrize those
deviations. Following [2], we expand the primordial

1 On the other hand, the statistical isotropy of the CMB itself has
been extensively investigated: see [12] and references therein.

power spectrum PR(k) in spherical harmonics,2

PR(k) =
√

4π
∑
`m

P`m(k)Y`m(k̂), (1)

which in fact is the most general form the spec-
trum can take. For statistically isotropic perturbations
only the “monopole” P00 is non-zero, whereas a non-
vanishing P`m for ` 6= 0 is what characterizes statistically
anisotropic Gaussian perturbations.

We assume that the multipole components can be ap-
proximated by power laws,

P`m(k) = Alm ·
(

k

2 · 10−3Mpc−1

)ns−1

, (2)

with a common spectral index ns. This is in fact what
many of the models of primordial isotropy breaking pre-
dict [5, 6, 10]. In any case, because the range of scales
we consider is relatively small, our results should also ap-
ply for mildly scale-dependent primordial spectrum mul-
tipoles, even if they do not share the same spectral index.
Note that the A`m are not completely arbitrary: by defi-
nition the power has to be positive definite and invariant
under spatial inversion. The first condition requires that
the A`m be a “square”, while last condition implies the
vanishing of A`m for odd values of `. For our purposes,
however, it suffices to treat the A`m (for even `) as free
parameters.

We shall use cosmic microwave measurements to put
constraints on the multipoles of the power spectrum. The
reader should be aware that the multipole space we have
been considering here is quite different from the multi-
pole space of the temperature anisotropies. Nevertheless,
the two are not completely independent. A statistically
anisotropic power spectrum induces correlations between

2 We adhere to the normalization conventions of [1], which differ
from those of [2].
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temperature multipoles with different values of ` [2],

〈a∗`1m1
a`2m2〉 = 4π(−i)`2−`1

∑
`m

D(`1m1; `m; `2m2)×

×
∫
dk

k
∆`1∆`2P`m(k), (3)

where the ∆` are the radiation transfer functions, and D
is a product of Clebsch-Gordan coefficients. Note that
equation (3) also applies for multipole expansions in real
spherical harmonics,

Y real
`m ≡

{ √
2 ReY`m, m ≥ 0√
2 ImY`−m, m < 0.

(4)

For convenience we shall work here with the latter. In
that case both a`m and P`m are real, and D is a linear
combination of the complex D, determined by the uni-
tary transformation that relates real and complex spher-
ical harmonics.

III. BAYESIAN ANALYSIS

In this work we follow a Bayesian approach to infer-
ence, that is, we consider the posterior probability of the
amplitudes A`m, given that we observe the temperature
anisotropies a,

P (A`m|a) ∝ L(a|A`m)P (A`m). (5)

The function L(a|A`m) is the likelihood, and P (A`m)
is the prior. For notational convenience we gather the
pair of multipole indices (`,m) into a single index α, and
we collect all the temperature anisotropies in a vector a,
with components aα.

Unfortunately, full-sky maps of the cosmic microwave
background with well-defined error properties do not ex-
ist, because galactic contamination cannot be reliably re-
moved from some regions of the sky. We are thus forced
to deal with masked skies c, from which those regions are
excluded,

c(r̂) = M(r̂) · δT
T

(r̂). (6)

The function M is the mask and δT/T are the tempera-
ture anisotropies. To proceed further, it is useful to have
the counterpart of equation (6) in multipole space, which
can be readily shown to be

c = M b, where

M`m,`1m1 =
∑
`2m2

D(`m; `1m1; `2m2)√
4π

M`2m2 , (7)

and the b`m are the spherical harmonic coefficients of the
unmasked sky map.

But our troubles do not end here. In a real experi-
ment, instruments have noise, and beams do not have in-
finite resolution. In addition, temperature maps are not

provided as smooth functions over the sky, but rather,
as pixelized functions over the sphere. Adding the in-
strument noise n to the cosmic microwave temperature,
Tobserved = TCMB + n, and convolving the signal with,
respectively, the instrument and pixel window functions
W and H we arrive at the multipoles of the temperature
map,

b = HW a + n. (8)

We assume that both W and H are diagonal and m-
independent. In particular, we do not take beam and
pixel asymmetries into account.

The only problem left is to calculate how likely a par-
ticular temperature vector c is. Assuming that the tem-
perature multipoles are Gaussian, inserting equation (8)
into (7), and substituting into the analogue of equation
(5) we obtain

P (A`m|c) ∝ 1
det 1/2C

exp
(
−1

2
c · C−1c

)
P (A`m), (9)

where C is the covariance matrix of the masked temper-
ature multipoles,

C = (MHW )A(MHW )T +MNMT , (10)

and A is the covariance matrix of the unmasked tempera-
ture anisotropies, equation (3). The matrix N is the pixel
noise covariance matrix, with multipole components

N`1m1,`2m2 = ∆a
∑
`m

D(`1m1; `2m2; `m)√
4π

N`m, (11)

where ∆a is the area of each pixel in the temperature
map, and N`m is the discrete spherical harmonic trans-
form of the noise variance,

N`m =
∑
i

∆aNi Y`m(r̂i), where 〈ninj〉 ≡ Niδij .

(12)
The indices i and j run over all the pixels on the sphere.

IV. DATA AND IMPLEMENTATION

A. Data

We analyze the five-year WMAP foreground-reduced
V2 and W1 differential assembly temperature maps [1].
These are the maps with the lowest noise in the V and W
frequency bands, which are the ones less exposed to fore-
ground contamination. We do not consider combined fre-
quency band maps here because they are averages of in-
dividual differential assemblies with direction-dependent
weights. In general, for such averages the matrix W is
not diagonal.

Because of computational limitations, it is not possi-
ble to analyze all the data in the maps. If we restrict
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our analysis to temperature multipoles with ` ≤ `max we
need to consider covariance matrices with a number of
elements that scales like `4max, which quickly become in-
tractable as `max grows. In reality, one has to work with
even larger matrices, because the masking aliases power
from high multipoles to low multipoles. If the mask is
band-limited at `Mmax, by equation (8) the multipole `max

of the masked sky contains contributions from unmasked
multipoles at `max + `Mmax. Hence, not only do we have to
limit the amount of masked multipoles, but also the mask
bandwidth. We restrict our analysis to masked temper-
ate multipoles up to `max = 62, and to a mask with
bandwidth `Mmax = 92. Some of the masked multipoles
have to be discarded however, as described below.

The noise power in the WMAP temperature maps is
anisotropic, because different parts of the sky are ob-
served a different number of times. Though the monopole
` = 0 is the dominant noise component, we also keep mul-
tipoles with ` = 2, to make sure that anisotropies in the
noise do not creep into our estimate of the primordial
spectrum quadrupole. In any case, at `max + `Mmax = 154,
our errors are dominated by cosmic variance.

B. Mask

Starting from the WMAP 5-year temperature analy-
sis/KQ85 mask3 at HEALPix4 resolution Nside = 512,
we construct our analysis mask by sequentially follow-
ing these steps: i) Smooth with a Gaussian beam of
FWHM=1440 arcmin, ii) set pixels i with Mi < 0.92 to
0, and to 1 otherwise, iii) smooth again with a Gaussian
beam of FHWM=492 arcmin, and, finally, iv) set mask
multipoles with ` > `Mmax = 92 to zero. The first step de-
grades the mask and eliminates its small scale features.
The second ensures that the degraded mask still masks
the galactic region. The third step removes the substruc-
ture introduced by step two. And the last step ensures
that the mask is band-limited at the desired multipole
value.

Figure 1 shows the logarithm of the absolute value of
our mask. Because our mask is band-limited, it cannot
reproduce the the original KQ85 mask. In particular, it
does not cover the catalogued point sources, and it does
not exactly vanish in the contaminated galactic region.
To quantify the bias caused by an eventual galactic or
point source contamination, we simulate 25 statistically
isotropic random maps, and set the temperature of those
pixels that would have been excluded by the original
KQ85 mask to its value in the actual foreground-reduced
V2 map. We then mask this artificial maps with our de-
graded mask and estimate the values of the amplitudes
A`m using our analysis pipeline. Their weighted means

3 This mask is available at http://lambda.gsfc.nasa.gov
4 The HEALPix web site is at http://healpix.jpl.nasa.gov

FIG. 1: Logarithm of the absolute value of our analysis mask
(top) and actual KQ85 mask (bottom). The absolute value
of our mask in the innermost (black) regions of the galaxy is
smaller than 10−9. Our analysis mask covers 55% of the sky.

are collected in the last column of Table I. Of course, it is
still possible for unresolved point sources to further con-
taminate our data, but this contamination is expected to
be small at our resolution [13]. To make sure that our
bounds do not depend on the mask, we repeat our anal-
ysis using a mask with `Mmax = 98 and 60% sky coverage,
and verify that this change does not significantly alter
our results.

C. Markov Chain Monte Carlo

We sample the posterior probabilities in equation (9)
with Monte Carlo Markov chains of 4 · 104 elements.
Thus, the 95% credible intervals we quote in the next sec-
tion actually correspond to about 95± 0.1% probability
content. We check for convergence of our chains using the
spectral analysis method described in [14]. All our chains
satisfy the convergence criteria described therein. We
pick the starting point from previous runs, so no burn-in
period is needed

Because the matrix M is ill-conditioned, one cannot
accurately calculate the inverse of C in the likelihood
function (9) numerically. Instead, we determine the sin-
gular value decomposition of MT , MT = U ·Σ · V T , and
consider the likelihood with d = V T c as data. Those
modes dα with Σαα < Σ11 ·

√
c(A) · f are removed from

the analysis. The factor f = 2.2 · 10−16 is the floating
number precision of our computer, and c(A) ≈ 103 is the
condition of the matrix A. The cut keeps 3523 out of
3965 modes.

We calculate the radiation transfer functions in equa-
tion (3) with a modified version of CMBEASY [15]. Since
we fix the cosmological model, the transfer functions have
to be computed only once.

http://lambda.gsfc.nasa.gov
http://healpix.jpl.nasa.gov
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FIG. 2: Kernel-smoothed marginalized posterior probability
distributions. The vertical lines mark mean-centered 95%
credible intervals. Note that the bias caused by galaxy and
point sources has not been removed.

V. RESULTS

Previous work on cosmological parameter estimation
has focused on the properties of the scalar component
of the power spectrum P00. We proceed beyond the
monopole, and constrain the simplest deviation from sta-
tistical isotropy, namely, the quadrupole of the primor-
dial spectrum P2m. As discussed in [2], or just by sym-
metry, the expectation of scalar estimators of the tem-
perature anisotropy multipoles C` only depends on P00.
Hence, we can trust the cosmological parameters derived
from fits to the angular spectrum C` even if primor-
dial perturbations are statistically anisotropic. Here we
use the ΛCDM parameters listed in the WMAP five-
year cosmological parameter table at [16]. To check
whether our limits depend on the assumed cosmological
model, we repeat the analysis with the WMAP five-year
ΛCDM+TENS parameter set [16]. Within statistical er-
rors, our results do not change.

Rather than directly constraining the amplitude of the
anisotropic components of the power spectrum, it is more
convenient to study the posteriors of the monopole A00

Parameter V2 W1 W1 |V 2 Bias

A00 × 109 2.42± 0.11 2.39± 0.11 2.40± 0.08 0.02

R2−2 −0.04± 0.09 −0.03± 0.10 −0.04± 0.07 0.01

R2−1 −0.03± 0.08 −0.02± 0.08 −0.03± 0.06 −0.03

R20 0.05± 0.10 0.04± 0.10 0.04± 0.07 −0.02

R21 0.08± 0.09 0.08± 0.09 0.08± 0.07 0.03

R22 −0.07± 0.10 −0.02± 0.09 −0.04± 0.07 −0.05

||R2|| < 0.24 < 0.22 < 0.19

TABLE I: Sample mean and 95% credible intervals from the
posterior distributions. In the last column we also list an
estimate of the bias caused by galactic and point source con-
tamination.

and the ratios

R2m ≡
A2m

A00
. (13)

In the analysis of the V2 and W1 maps we impose a
Gaussian prior on A00 based on its determination by the
WMAP experiment [1], and flat priors on the remaining
parameters R2m. If we replace the former by a uniform
prior, we obtain nearly the same limits. The agreement
of our constraints on A00 with those of the WMAP team
provides a reassuring consistency check. We also analyze
the W1 map using Gaussian priors derived from the re-
sults of our V2 analysis. This is what we label as W1|V 2.
The posterior distributions of the parameters in W1|V 2
are plotted in Figure 2. Sample mean and 95% credible
intervals derived from the V2, W1 and W1|V 2 runs are
listed in Table I, along with the bias caused by the im-
perfect mask. In order to quantify the overall magnitude
of the quadrupole, we use its norm

||R2|| ≡
√∑

m

R2
2m, (14)

which is invariant under rotations.
We might also extend our analysis to assess whether

statistically isotropic perturbations are a better model
for the data. Since we cannot compute the Bayesian
evidence within our approach, we determine instead
three non-exclusively Bayesian measures that have been
widely used in the literature: the effective chi squared,
χ2

eff ≡ −2 logLmax, the Akaike Information Criterion
(AIC) and the Bayes Information Criterion (BIC) (see
for instance [17].) Their differences under the assump-
tions of a non-vanishing and vanishing quadrupole are
listed in Table II.

VI. CONCLUSIONS

Inspection of Table I quickly reveals that the amplitude
of the quadrupole components is consistent with statis-
tical isotropy. In particular, if there is a non-vanishing
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Criterion V2 W1

∆χ2
eff −6.0 −3.2

∆AIC 4.0 6.8

∆BIC 34.8 37.6

TABLE II: Comparison between fits to the data with a non-
vanishing and a vanishing quadrupole, ∆X = Xani − Xiso.
The inclusion of a quadrupole in the primordial power spec-
trum requires five additional parameters.

quadrupole in the primordial spectrum, it clearly has to
be subdominant. The results in Table II also imply that
there is no evidence for primordial statistical anisotropy.
Although a non-zero primordial quadrupole significantly
increases the likelihood, the information criteria that pe-
nalize the introduction of additional parameters strongly
favor isotropy.

Because any deviation from statistical isotropy can be
cast as in equation (1), the limits that we have found are
mode-independent, and can thus be directly applied to
any of the models for the generation of (adiabatic) sta-
tistically anisotropic perturbations discussed in the liter-
ature [5, 6, 8, 9, 10, 11]. We have not studied how our
bounds constrain the parameters of these models, but it
should be straight-forward to do so. On the other hand,
our null results confirm again the predictions of the sim-

plest inflationary models.
The study of the statistical isotropy of the primordial

perturbations is still in its infancy, and our analysis is
just a first step toward preciser measurements of the pri-
mordial spectrum. With more data, improved analysis
techniques, and better control of systematics, it should
be possible in principle to obtain much tighter constraints
[3].

Note added

Shortly before submission of this manuscript, a
preprint with significant overlap with the work presented
here appeared on the arXiv [19].
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