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Liberating the Inflaton from Primordial Spectrum Constraints

C. Armendáriz-Picón
Enrico Fermi Institute and Department of Astronomy and Astrophysics,

University of Chicago.

I discuss a mechanism that renders the spectral index of the primordial spectrum and the inflation-
ary stage independent of each other. If a scalar field acquires an appropriate time-dependent mass,
it is possible to generate an adiabatic, Gaussian scale invariant spectrum of density perturbations
during any stage of inflation. As an illustration, I present a simple model where the time-dependent
mass arises from the coupling of the inflaton to a second scalar. The mechanism I propose might
help to implement a successful inflationary scenario in particle physics theories that do not yield
slow-roll potentials.

I. INTRODUCTION

Observations impose significant constraints on eventu-
ally successful inflationary models. Current experimental
results are consistent with a nearly scale invariant spec-
trum of Gaussian, adiabatic perturbations [1]. There is a
wide class of inflationary models that yield such a spec-
trum [2]. In essentially all these models, the spectrum
is nearly scale invariant because the universe expansion
closely resembles a de Sitter stage [3]. In many cases how-
ever, particularly when trying to embed inflation within
particle physics theories, it turns out that it is difficult to
obtain quasi de Sitter inflation, either because potentials
are too steep [4] or because the slow-roll regime does not
overlap with the regime where the theory is under control
[5].

Unlike the slope of the primordial spectrum, its am-
plitude does not necessarily depend on the inflationary
epoch itself. If primordial perturbations originate from
the decay of a “curvaton” field [6], or from the fluctuat-
ing couplings “constants” of the inflaton [7, 8], the final
amplitude of the spectrum turns out not to be directly re-
lated to inflation. Nevertheless, these scenarios still had
to contain a stage of de Sitter inflation, in order for the
perturbations in the curvaton or the coupling constants
of the inflaton to be to scale invariant.

In this paper, I propose a mechanism that additionally
decouples the spectral index from the physics of the in-
flaton. In this scenario, fluctuations are imprinted on a
“test” scalar field whose mass changes with time. The
time-varying mass reproduces the effects of gravity dur-
ing a de Sitter stage, even though the universe is not
expanding exponentially fast. At the end of inflation the
fluctuations imprinted in the test field are transferred
to the decay products of the inflaton by the mechanism
proposed by Dvali, Gruzinov and Zaldarriaga [7]. In that
way, the liberated inflaton does not have to satisfy con-
straints from the amplitude and slope of the primordial
spectrum.

The paper is organized I follows. In Section II, I de-
scribe how a scalar with a time-varying mass can lead
to a scale invariant spectrum of primordial density per-
turbations. In Section III, I present an example where
the changing mass is due to the coupling to the scalar

that drives inflation. In Section IV, I try to extend the
mechanism to a non-inflating universe, and in Section V
I draw the conclusions.

II. TIME-VARYING MASS

Consider a test scalar field ϕ with mass m in an ex-
panding, flat, linearly perturbed Friedmann-Robertson-
Walker universe,

ds2 = a2(η)
[

(1 + 2Φ)dη2 − (1 − 2Φ)d~x2
]

. (1)

Here, a is the scale factor and Φ the gravitational poten-
tial (in longitudinal gauge). Neglecting for the moment
metric perturbations, the scalar field equation of motion
is

v′′k +

(

k2 +m2a2 − a′′

a

)

vk = 0, (2)

where v = aϕ, a prime denotes a derivative with respect
to conformal time η, and the subindex k denotes the k
Fourier component. Because Eq. (2) is linear in v, the
equation of motion for ϕ and its perturbations δϕ agree.

For simplicity, let me momentarily consider a power-
law inflating universe,

a ∝ |η|
β

1−β . (3)

In cosmic time, the last equation corresponds to a ∝ tβ .
Hence, the universe inflates for β > 1, and in that case
conformal time η runs from −∞ to 0. Suppose now
that the squared mass of the field is proportional to the
squared Hubble parameter,

m2 = c ·H2, (4)

where c is a (dimensionless) constant coefficient. Such
a relation simply arises for instance if the scalar is non-
minimally coupled to gravity,

Lϕ =
1

2
∂µϕ∂

µϕ+
c · β

12(2β − 1)
Rϕ2, (5)

or, as I discuss in Section III, it can arise from the cou-
pling of ϕ to a second scalar field χ,

Lϕ =
1

2
∂µϕ∂

µϕ− 1

2
m2(χ)ϕ2. (6)

http://arXiv.org/abs/astro-ph/0310512v1
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Also, it has been observed that supersymmetry breaking
in the early universe induces scalar field masses of the
order of the Hubble parameter along flat directions [9].
For our present purposes though, it will suffice to treat
Eq. (4) as a phenomenological relation.

If a is given by Eq. (3), and m2 is given by Eq. (4)
the equation of motion (2) reads

v′′k +

(

k2 − ν2 − 1/4

η2

)

vk = 0, (7)

where

ν =

√

(9 − 4c)β2 − 6β + 1

2(β − 1)
. (8)

The solution of Eq. (7) with appropriate “adiabatic vac-
uum” initial conditions [10] is

vk =

√

π(−η)
2

Hν(−kη), (9)

whereHν is the Hankel function of the first kind. Because
the fluctuations in ϕ arise from vacuum fluctuations, δϕk

is a Gaussian variable.
The power spectrum Pϕ is a measure of the mean

square fluctuations of ϕ on comoving lengthscales 1/k,
and it is defined by [11]

Pϕ =
k3

4π2

|vk|2
a2

. (10)

Cosmologically relevant modes are larger than the Hub-
ble radius at the end of inflation. In this long-wavelength
limit, the power spectrum is then

Pϕ =
22ν |Γ(ν)|2

8π3

(

β − 1

β

)2ν−1

H2·
[

(

H

H∗

)β−1
k

k∗

]ns−1

.

(11)
Note that the amplitude of the spectrum is time-
dependent. The comoving scale k∗ is an arbitrary ref-
erence scale, and H∗ denotes the value of the Hub-
ble constant when that scale crosses the Hubble radius,
a/k∗ = H−1

∗
. In the following, I denote by k∗ the scale

that corresponds to our present Hubble radius. The spec-
tral index is

ns − 1 = 3 − 2ν. (12)

A scale invariant Harrison-Zeldovich spectrum, corre-
sponds to ns = 1. Hence, from Eqs. (8) and (12) scale
invariance requires

c =
3β − 2

β2
. (13)

Because cosmic microwave background anisotropies [1]
limit the departures from ns = 1 to less than about ten
per cent, for given β or order one, c has to agree with Eq.
(13) roughly to that accuracy. Therefore, from Eq. (4),

the squared mass is positive during power-law inflation,
negative (tachyonic) during pole-like inflation and van-
ishing for de Sitter inflation. Here, I restrict myself to
1 < β ≤ ∞. If c is given by Eq. (13) the power spectrum
is then

Pϕ =

(

β − 1

β

)2
H2

4π2
. (14)

Thus, whereas the fluctuations of ϕ in de Sitter approach
a constant value H/2π, they decay as a−1/β if β 6= ∞.

The mechanism I have just described successfully gen-
erates a scale invariant spectrum of perturbations in ϕ,
which is not what is required. Current experiments favor
a scale invariant spectrum of Gaussian, adiabatic, den-

sity perturbations. Hence, perturbations in ϕ need to be
transferred to perturbations in the radiation produced at
the end of inflaton. As I mention in detail in next Sec-
tion, this can be accomplished if the field ϕ determines
the value of the couplings constants of the inflaton to its
decay products [7, 8]. Of course, if primordial density
perturbations originate form fluctuations in ϕ, it is im-
portant that perturbations due to the inflaton be signifi-
cantly smaller than the ones due to the spatial variation
of ϕ. The power spectra of scalar metric perturbations
PΦ and gravitational waves Ph seeded during inflation
are (see for instance [10])

P inf
Φ ∼ β

H2
∗

M2
Pl

(

k

k∗

)

−
2

β−1

∼ β P inf
h . (15)

Because both spectra are red, the highest amplitude in
an observable mode is attained for the present horizon k∗.
Cosmic microwave measurements have determined that
PΦ ∼ 10−10. Hence, in order for scalar perturbations
seeded during inflation not to account for the observed
anisotropies, cosmic inflation has to occur at a low energy
scale,

β
H2

∗

M2
Pl

≪ 10−10. (16)

This also implies that gravitational waves have a negligi-
ble impact on the cosmic microwave background.

Although for simplicity I have focused on power-law
inflation, this scenario can be easily generalized to any
epoch of inflation. Suppose that an arbitrary a(t) is
given. All we need is that in the given FRW spacetime
there is no particle horizon. Then, the integral

ηe − η ≡
∫ te

t

dt̃

a(t̃)
(17)

diverges as t approaches cosmic time origin ti. There-
fore, conformal time runs from −∞ to ηe, where ηe is
an arbitrary end time which I shall identify with the end
of inflation. In such a spacetime there is an apparent
“event horizon”, i.e. light emitted at time t can reach
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an observer before time te only if it is emitted within a
physical distance

dE = a(η)(ηe − η). (18)

Note that this apparent event horizon is not in general a
real event horizon, since the upper limit in the integral
(17) is kept fixed and finite. The apparent event horizon
is not the Hubble radius H−1 either, though in many
cases they are roughly the same.

Suppose now that the mass of a scalar field is given by

m2 =
a′′

a3
− 2

d2
E

. (19)

Because there is an arbitrary freedom in the coupling of ϕ
to a second scalar field, such an evolution of the squared
mass can be always achieved. Substituting Eq. (19) into
Eq. (2) I get

v′′k +

(

k2 − 2

(ηe − η)2

)

vk = 0. (20)

A conformal time shift in Eq. (7) leads to Eq. (20).
Hence, the solutions of the latter equation are given by
Eq. (9), with −η replaced by ηe−η. At early times, ηe−η
approaches infinity, i.e. all modes are initially within the
horizon, a/k ≪ dE . At late times, ηe−η approaches zero
and all the modes are super-horizon sized, a/k ≫ dE . In
this long-wavelength limit, the spectral index is still given
by Eq. (12), where, from Eqs. (20) and (7), ν = 3/2.
Again, this corresponds to a scale invariant spectrum.

III. A CONCRETE EXAMPLE

It might seem that the procedure described above is
extremely fine-tuned since, according to Eq. (19), the
time evolution of a squared mass has to accurately reflect
the a-priori independent expansion history. However, in
the presence of (non slow-roll) inflationary attractors, it
turns out that the required values of the squared mass
come about surprisingly naturally.

Consider for instance two coupled scalar fields in the
presence of Einstein gravity,

∫

d4x
√−g

[

− M2
Pl

16π
R+

1

2
∂µϕ∂

µϕ+
1

2
∂µχ∂

µχ− (21)

−
(

1 +
4π β c

3β − 1
· ϕ2

M2
Pl

)

V (χ) + Lm

]

.

Here, MPl = G−1/2 ≈ 1019 GeV is the Planck mass, and

V (χ) = V0 exp

(

−
√

16π

β

χ

MPl

)

. (22)

In our example, the field ϕ is assumed to remain at ϕ = 0.
Hence, it is sufficient to consider a quadratic ϕ2 term in

the action (21). The inclusion of higher even powers of
ϕ in the action will not change our results1. Exponen-
tial potentials and couplings naturally appear in string
theory (from the dilaton), and/or in theories with extra
dimensions (from the radion). Lm stands for additional
matter terms only relevant during reheating; I shall write
them down below.

Suppose that initially the field ϕ sits at the origin
ϕ = 0. Because the squared mass of the field is posi-
tive, ϕ = 0 is a stable solution of the background equa-
tions. If ϕ = 0, the field χ effectively evolves in the single
field potential (22). These potentials are known to have
power-law inflationary attractors [12], along which the
expansion of the universe is given by Eq. (3) and

V (χ)

M2
Pl

=
3β − 1

8πβ
H2. (23)

The coefficient in front of ϕ2 in the action (21) implies
that the field ϕ has a χ-dependent mass

m2
ϕ(χ) =

8π β c

3β − 1

V (χ)

M2
Pl

. (24)

Thus, from Eqs. (24) and (23), along the inflationary
attractor the squared mass of ϕ is precisely given by Eq.
(4).

The linearized equations for the perturbations are [13]

δϕ′′ + 2Hδϕ′ + k2δϕ− 4ϕ′ Φ′ + 2m2
ϕ a

2 ϕΦ +

+ m2
ϕ a

2 δϕ+
dm2

ϕ

dχ
a2 ϕ δχ = 0, (25)

δχ′′ + 2Hδχ′ + k2δχ− 4χ′Φ′ + 2
dV

dχ
a2 Φ +

+
dm2

ϕ

dχ
a2 ϕ2 Φ +

d2V

dχ2
a2 δχ+

+
1

2

d2m2
ϕ

dχ2
a2 ϕ2 δχ+

dm2
ϕ

dχ
a2 ϕ δ ϕ = 0, (26)

Φ′ + HΦ =
4π

M2
Pl

(ϕ′δϕ+ χ′δχ′) , (27)

where H ≡ a′/a. Consequently, to linear order around
the solution ϕ = ϕ′ = 0, perturbations in ϕ do not couple
to inflaton or metric perturbations and vice versa. In
particular, substituting δϕ = v/a into Eq. (25) yields
Eq. (2). In summary, our model satisfies the assumptions
made in Section II.

If the inflaton potential is globally given by Eq. (22)
inflation never ends. As in conventional power-law in-
flationary models, I shall assume that V (χ) develops a
minimum around χ = χend. Hence, when χ reaches the
vicinity of χend, inflation ends and χ starts oscillating,
thus reheating the universe. During the oscillating phase,

1 As long as the coefficients of those terms are not too large.
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the universe evolves as if dominated by dust, and the time
average of V (χ) is

〈V (χ)〉
M2

Pl

=
3

16π
〈H2〉. (28)

During that time the squared mass of the field is still
proportional to the squared Hubble parameter and the
shape of the spectrum for modes larger than the Hubble
radius remains unaltered. I shall assume that the am-
plitude of the δϕ perturbations hardly changes during a
short, almost instantaneous stage of reheating, though
parametric resonance might under certain circumstances
significantly boost the initial amplitude [14].

Reheating occurs due the coupling of the inflaton χ to
additional matter fields. In order to transfer the scale
invariant spectrum of perturbations imprinted in ϕ into
the decay products of the inflaton, I assume, following
[7], that the action (21) contains terms of the form

Lm = −λ0

(

1 + f
ϕ

MPl

)

χψ̄ψ. (29)

Here, the fermion ψ generically stands for the decay prod-
ucts of the inflaton, and λ0 and f are two dimensionless
coupling constants. The energy density at the end of
reheating is [15]

ρR ∼ T 4
R ∼ λ4

0

(

1 + f
ϕ

MPl

)4

m2
χM

2
Pl (30)

where TR is the reheating temperature and mχ is the
inflaton mass during the oscillating stage. Therefore, be-
cause during inflation ϕ = 0, fluctuations in ϕ produce
fluctuations in the energy density [7]

δρ

ρ
∼ δT

T
∼ f

δϕ

MPl
, (31)

which cosmic microwave background measurements [1]
require to be are around 10−5. Note that the amplitude
of the temperature perturbations is fixed by f , whereas
the reheating temperature itself is determined by λ0 and
mχ. For a given reheating temperature, one can compute
the number of e-folds of inflation N after the present
horizon left the Hubble radius,

N ∼ β

β − 1
log

(

T0 TR

H0MPl

)

, (32)

where, H0 ∼ 1026 m and T0 ∼ 3 K are respectively the
present values of the Hubble constant and the CMB
temperature. During this number of e-folds, the seeded
modes span a window in k space

kend

k∗
= exp

(

β − 1

β
N

)

=
T0 TR

H0MPl
. (33)

Thus, the amount of seeded modes does not agree with
the amount of inflation. The cosmologically accessible
window k/k∗ spans three to four logarithmic decades.

Observations are consistent with adiabatic primor-
dial perturbations, though significant amounts of non-
adiabaticity, of the order of several tenths per cent, are
still compatible with observations [16]. Because in our
scenario reheating is driven by the oscillations of a single
component, the χ field, the spectrum of density pertur-
bations produced at the end of reheating is adiabatic [17].
Current observations also restrict the amount of non-
Gaussianity of the perturbations. It is typically quan-
tified by means of the relation Φ = Φg + fNL(Φ2

g −〈Φ2
g〉)

[18], which expresses metric perturbations in terms of
a Gaussian random field Φg. The amount of non-
Gaussianity produced in our model was carefully esti-
mated in [19], where it was found that fNL is of or-
der one. This is well within the experimental limits
−58 < fNL < 134 [20], but might be potentially de-
tectable in the future [18].

To conclude this section, let me show that, at least at
first sight, this model is phenomenologically viable. As-
sume mχ ∼ 102 TeV and λ0 ∼ 10−6. From Eq. (30), the
reheating temperature is TR = 103 TeV, well above the
nucleosynthesis limit. Substituting into Eq. (33) I find
kend/k∗ ∼ 1016, which is much bigger than the required
104. Let me set β = 4. For a vanishing mass (c = 0),
power-law inflation with such an exponent would yield a
spectral index ns = 1/3 [10], very far form the experi-
mentally favored scale invariant spectrum ns ≈ 1. With
a time-dependent mass and c = 5/8, the spectrum is
scale invariant. The number of e-folds from the time our
present horizon left the Hubble radius till the end of in-
flation is then N ∼ 49, and the total number of e-folds of
inflation is larger. This suffices to explain the homogene-
ity and flatness of the universe. Let me choose in addition
V (χend) ∼ m4

χ. Then, the value of the squared Hub-

ble parameter at crossing was H2
∗
∼ 10−45M2

Pl, which
satisfies the constraint (16). If in addition we choose
λ0f/MPl ∼ 102/mχ we find that (31) reproduces the
observed value of the primordial spectrum amplitude.

IV. NON-INFLATING UNIVERSE

In conventional inflationary models, primordial pertur-
bations are causally seeded when modes exit the sound
horizon (which for a scalar field is of the order of the
Hubble radius). In the scenario I have previously de-
scribed, the Hubble radius and the Compton radius m−1

are of the same order, so one could argue that modes are
causally seeded because the Compton radius grows slower
than the physical wavelength of the perturbations. Sim-
ilarly, one could envisage a scenario where perturbations
are causally seeded in a non-inflating universe because
the Compton radius starts large and subsequently does
not grow fast enough. Let me illustrate this idea in a
concrete setting.

Consider this time an expanding, non-inflating uni-
verse. Then, the integral (17) converges as cosmic time
approaches the origin ti. In that case, there is a particle
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horizon

dP = a(η)(η − ηi) = a

∫ t

ti

dt̃

a(t̃)
. (34)

Suppose that in analogy with Eq. (19), the squared mass
of a scalar is given by

m2 =
a′′

a3
+m2

eff , (35)

where

m2
eff = − 2

a2(ηe − η)2
(36)

and ηe is a constant with dimensions of length. As in
Section III, such a relation can be obtained by coupling
ϕ to a second scalar χ. The rationale of considering this
squared mass becomes manifest when writing down the
field equation of motion (2), which takes the form of Eq.
(20). Thus, the equations of motion of the perturbations
both in an inflating as well as in a non-inflating universe
are formally the same. As in Section II, this leads to a
scale invariant spectrum.

There is a crucial difference though between an inflat-
ing and a non-inflating universe. In an inflating universe,
η runs from −∞ to ηe. Therefore, in Eq. (20) the k2 term
dominates at early times (short wavelength regime), and
the 1/(ηe − η)2 term dominates at late times (long wave-
length regime). This is why modes exit the Hubble ra-
dius. In a non-inflating universe though, η runs from 0
to ηe, and hence, modes start in the short-wavelength
regime only if ηe is big enough. Of course, the difference
between inflating and non-inflating spacetimes rests on
the existence or absence of particle and apparent event
horizons.

The mode evolution is shown in Figure 1. A given per-
turbation mode might be initially super-Hubble sized but
still within the Compton radius. This requires that the
total effective mass of the scalar be small compared to
the Hubble radius. Because the coupling to gravity gen-
erates a (tachyonic) mass of the order of the Hubble ra-
dius, m2 ≈ −a′′/a3 (see Eq. (2)), the former requirement
forces a cancellation between that term and the one com-
ing from the “true” mass. This is the origin of the first
term on the r.h.s of Eq. (35). Note that even though this
scenario can seed perturbations on super Hubble scales,
it does not violate causality. The reason is that the evolu-
tion of perturbations on different lengthscales is dictated
by a time-varying mass which is the same in the whole
universe. Thus, the ultimate origin of super Hubble cor-
relations is the homogeneity of the universe, which, in
the absence of cosmic inflation, we assume rather than
explain.

Can this scale invariant spectrum seeded during a non-
inflationary stage spectrum account for cosmologically
relevant modes? Consider now a stage of power-law ex-
pansion, Eq. (3), with 0 < β < 1. In that case, Eq. (36)

log(a)

log(length)

 crossing
Compton radius

1/H

Hubble radius
entry

λ

seeding
End of

m    eff
−1

FIG. 1: A schematic plot of the evolution of the different
length scales. The physical length of a given mode is shown
with a thick line. Initially, the mode is outside the Hubble
radius (dot-dashed line) but inside the Compton radius (con-
tinuous line). As the mass of the field evolves, the mode exits
the Compton radius, freezes and later enters the Hubble ra-
dius.

takes the form

m2
eff = −2

(1 − β)2

β2

[

(

H

He

)1−β

− 1

]

−2

H2, (37)

where He is the value of H when η = ηe (at that
time meff diverges). Our present comoving horizon is
k∗ = a0H0. Suppose that this mode left the effec-
tive Compton radius N e-folds before the end of seed-
ing, which concluded at temperature TR. The viability
of this scenario requires that seeding ends before time
ηe. The condition of effective Compton radius crossing,
a/k∗ = |meff |−1, then translates into

(

T 2
R

HeMPl

)1−β

− e(1−1/β)N ∼ 1 − β

β

T 2
0

H0MPl

TR

T0
. (38)

Let us assume that the seeded ended before nucleosynthe-
sis. Nucleosynthesis occurs around T ∼ 1010 T0. Hence,
unless β is very close to one, Eq. (38) implies

(

T 2
R

HeMPl

)1−β

≥ 10−3TR

T0
≥ 107 ≫ 1. (39)

Using the crossing condition for the mode that left the
Compton radius at the end of inflation, one can derive
the amount of seeded modes,

kend

k∗
∼ eN T 2

R

H∗MPl

(H∗/He)
1−β − 1

(T 2
R/HeMPl)

1−β − 1
. (40)
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Evaluating the last expression in the limit (39) I find

kend

k∗
∼ 1, (41)

where I have used the fact that energy density decreases
during expansion, H2

∗
∼ ρ∗/M

2
Pl > T 4

R/M
2
Pl. Therefore,

this scenario is unable to explain the origin of the cos-
mologically relevant window k/k∗ ∼ 103. There are only
two escapes I can think of. The first is to assume that
β ≈ 1, but then, the spacetime is already at the verge of
inflating. The second is to assume that seeding proceeds
during a stage of radiation domination, β = 1/2. This
allows the end of seeding to occur after nucleosynthesis.
In that way, the estimate in Eq. (39) can avoided simply
by setting TR/T0 ∼ 103, which corresponds to the tem-
perature around the time when decoupling occurs. But
at that time, perturbations have to be already in place
and the universe is rather matter-dominated. It is doubt-
ful that this scenario can work even in such an extreme
case.

V. SUMMARY AND CONCLUSIONS

During cosmic expansion, gravity contributes a time-
dependent correction to the total effective mass of a min-
imally coupled scalar field, Eq. (2). If this total effective
mass evolves appropriately, a scale invariant spectrum of
scalar fluctuations results, Eq. (14). The ultimate origin
of the effective time-dependent mass is however not very
important. It can arise solely from the expansion of the
universe, as in a de Sitter universe or, as I have explored
in this paper, it can also arise from the coupling of the
scalar to other evolving fields. As a particular example,
I have shown that it is possible to seed a scale invariant
spectrum of perturbations in a scalar field during any
stage of power-law inflation. A concrete model that real-
izes this setting, Eq. (21), relies on two coupled scalars
and looks surprisingly simple. One of the fields is the
inflaton, which drives power-law inflation, and the other
is a test scalar field sitting at the minimum of its effec-
tive potential, upon which a scale invariant spectrum of
fluctuations is imprinted.

A scale invariant spectrum of scalar field perturbations
does not suffice however to account for the observed spec-
trum of density perturbations. If there was no way to
transfer the field perturbations to energy density pertur-
bations, this scenario would not be realistic. Recently
though, a new mechanism has been proposed to transfer
scalar field perturbations to density perturbations [7, 8].
If the couplings of the inflaton to its decays products are
field dependent, fluctuations in the latter can be con-
verted into fluctuations in matter and radiation. As any
model based on the reheating mechanism of [7], our sce-
nario predicts a substantial larger, though observation-
ally consistent, degree of non-Gaussianity in the primor-
dial spectrum. Also, there is no substantial production
of gravitational waves because the amplitude of pertur-
bations in the inflaton are assumed to be insufficient to
account for the observed temperature anisotropies.

The idea I have discussed can also explain a scale in-
variant spectrum of density perturbations during a non-
inflationary stage of expansion. In this case, modes
are seeded when they cross an effective Compton radius
which evolves in time. But the generated spectrum can-
not encompass a sufficient window of modes around the
present horizon. In this case, the origin of large (but
not large enough) scale correlations can be traced back
to the homogeneity of the universe, which is assumed,
rather than explained.

In summary, in the mechanism I have described the pri-
mordial spectrum does not depend on the nature of the
inflationary stage. As a consequence, the inflaton does
not have to account for neither the amplitude nor the
spectral index of the primordial spectrum. Hence, “lib-
erated inflation” can be useful in the context of physical
theories that do not have slow-roll potentials.
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