
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

9-1988

Joyce Performance on a Multiprocessor Joyce Performance on a Multiprocessor

Per Brinch Hansen
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu

Rangachari Anand
Syracuse University, School of Computer and Information Science

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hansen, Per Brinch and Anand, Rangachari, "Joyce Performance on a Multiprocessor" (1988). Electrical
Engineering and Computer Science - Technical Reports. 28.
https://surface.syr.edu/eecs_techreports/28

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/28?utm_source=surface.syr.edu%2Feecs_techreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

JOYCE PERFORMANCE ON A MULTIPROCESSOR

Per Brinch Hansen and Anand Rangachari

School of Computer & Information Science
Syracuse University

Syracuse, New York 13244, U.S.A.

CIS-88-5

SCHOOL OF COMPUTER

AND INFORMATION SCIENCE

~j PERFORMANCE ~ A ~~PROCESSOB

PER BRINCH HANSEN AND ANAND RANGACHARI

School of Computer and Information Science
Syracuse University

Syracuse, New York 13244

September 1988

AbstrAQ~ - Joyce is a parallel programming language based
on CSP and Pascal. The language has been moved from the IBM
PC to the Encore Multimax. The paper explains how the
multiprocessor implementation of Joyce was guided by
performance evaluation. The measurements show that the
speed-up or Joyce programs follows Amdahl's law.

lndex Ierms - Programming languages, concurrent program
ming, communicating agents, multiprocessors, language
implementation. performance evaluation. Joyce.

I. INTRODUCTION

Joyce is a parallel programming language based on CSP and
Pascal [1, 2, 31. The language has been moved from the IBM
PC to the Encore Multimax [4, 5, 6l. This paper explains
how the multiprocessor implementation of Joyce was guided
by performance evaluation. The measurements show that the
speed-up of Joyce programs is determined by Amdahl's law
[7].

II. BENCHMARK

The purpose or the performance experiments was to enable us
to make a meaningful choice between different
implementations or Joyce. Initially, we learned two lessons
the hard way.

Our first benchmark was a parallel prime sieve [1]. This
turned out to be a poor benchmark, since its performance is
limited not only by the Joyce implementation but also by
the sieve algorithm.

Copyright (c) 1988 Per Brinch Hansen

JOYCE PERFORMANCE ON A MULTIPROCESSOR 2

On a parallel computer, performance measurements are
often distorted by unpredictable factors. These include
operating system overhead, the presence of other users and
incorrect measurement procedures.

Our initial efforts were inconclusive until we realized
these problems and established two guidelines:

1. A benchmark must be utterly simple to reveal only the
performance limitations of the language implementation.

2. Performance
they agree with
observed.

measurements
an analytic

should be trusted only if
model of the phenomena

Joyce is well-suited for highly parallel computations in
which a large number of processes exchange short messages.
To find out if this programming style is practical on a
multiprocessor, we used a benchmark with 200 independent
pairs of processes as shown in Fig. 1. Each pair consists
of a sender, which outputs a fixed number of messages
through an unbuffered channel, and a receiver, which inputs
the messages from the channel. The messages each occupy one
word.

Senders Receivers

Fig. 1. Benchmark.

The benchmark pushes the multiprocessor to its practical
limits in three ways:

1. The number of processes executed simultaneously is an
order of magnitude larger than the number of processors
available.

2. To make the relative overhead
large as possible, the processes

of communication as
exchange the smallest

JOYCE PERFORMANCE ON A MULTIPROCESSOR 3

possible messages and perform minimal computations.

3. After each communication, a process migrates from one
processor to another in order to distribute the load evenly
among the processors.

In the following, we will also use the benchmark to
illustrate the programming concepts of Joyce.

A Joyce program consists of nested procedures. Each
procedure defines a class of identical processes known as
agents.

~~ BM(io: iosym>;
~D§~ q = 200 {agents};

m = 3500 {messages per agent};
n = 4 {iterations per message};

~~stream= [data(integer>l;

~&§~ SENDERCc: stream; m, n: integer>;
~~I i, k: integer;
RWD SEND §.D,g;

~S§n~ RECEIVER<c: stream; m: integer>;
~ j, k, n: integer;
begin RECEIVE ~D,g;

~ c: stream; i: integer;
.bWD ACTIVATE~;

Each pair of agents communicates through a channel c of
type stream. Through this channel, the agents can transmit
a sequence of named symbols. The benchmark uses only one
kind of symbol (named data). This symbol carries a message
of type integer.

When program execution begins, a single agent defined by
the outermost procedure BM is automatically activated. This
initial agent activates the senders and receivers

The statement

ACTIVATE: i :: 0;
H.b.il~ i < q .d.2
beg:i,n

+Cj
SENDER(c, m, n>;
RECEIVER(c, m);
i := i + 2

n.d

+C

JOYCE PERFORMANCE ON A MULTIPROCESSOR 4

creates a new channel and assigns a reference to the
channel to the variable c. Strictly speaking, it should be
called "the channel denoted by c". However, we will often
refer to it simply as "the channel c".

The agent statements

SENDER(c, m, n>;
RECEIVER(c, m)

activate a new pair of agents with access to the same
channel c. These agents run in parallel with all other
agents (including the initial agent).

A sender produces and outputs m messages

SEND: i :: 1;
wh il.e i <= m ..d.Q
begin

COMPUTE;
cldata(n);
i :: i + 1
~

A receiver inputs and consumes m messages

RECEIVE: j :: 1;
!dl.i.il j < = m ..d.Q
.bu.i.n

c?data(n >;
COMPUTE;
j := j + 1

nd

A communication between two agents takes place when a
sender is ready to output on a channel c

cldata(n)

and a receiver is ready to input from the same channel

c?data(n)

The communication assigns the value of the parameter n of
the sender to the local variable n of the receiver. Cin
general, the effect of a communication is to assign the
value of an output expression e to an input variable x.)

For each communication, an agent performs a local
computation simulated by a loop

COMPUTE: k :: 1;
whil§ k <= n gg k := k + 1

JOYCE PERFORMANCE ON A MULTIPROCESSOR 5

The amount of computation can be varied by changing the
number of iterations n.

When a sender <or receiver) reaches the end of its
procedure. it terminates. When all senders and receivers
have terminated. the initial agent terminates. This
completes the program execution.

III. THE ENCORE MULTIMAX

The Encore Multimax 320 at Syracuse University is a
multiprocessor with 18 NS32332 processors. A shared bus
connects the processors to a shared memory of 128 Mb. Each
processor has a local cache of 64 kb which maintains local
copies of memory locations accessed by the processor. When
a processor writes a value into a memory location. the
value is stored in both the local cache and the memory
location. If other caches contain previous copies of the
same location. these copies are removed.

Any memory location can be used as a spinlock to ensure
that processors do not access shared data structures
simultaneously. When a processor waits on a closed lock. it
reads the lock into its cache once and continues to fetch
it from the cache until another processor changes the lock
by opening it.

The Joyce
interpreted
language.

IV. THE MULTIPROCESSOR KERNEL

compiler generates portable code which is
by a kernel of 2300 lines written in assembly

The benchmark creates a fixed number of agents which
exchange thousands of messages. The performance of such a
program is limited by the speed of communication (but not
by the initial creation of channels and agents).
Consequently. we will consider only how the processors
execute agents and synchronize communications. For a
detailed explanation of the multiprocessor kernel. see [51.

Every channel and agent is represented by a memory
segment of fixed length called an activation record. Agent
records can be chained together to form queues of agents.

The agents that are ready to run wait in queues known as
ready queues (Fig. 2). Every processor has its own ready
queue. When a processor is idle. it selects an agent from
its ready queue and executes it until the agent either
terminates or waits for a communication to take place.

A channel that can transfer several different kinds or
symbols has a separate agent queue for each symbol. Since
the benchmark agents exchange one kind or symbol only. each
channel has just one queue.

JOYCE PERFORMANCE ON A MULTIPROCESSOR 6

When a running agent p is ready to communicate on a
channel, its processor examines the channel queue to see if
a matching agent q is waiting to communicate on the same
channel. In that case, the processor retrieves the output
value e and the address of the input variable x from the
activation records of p and q, assigns e to x, and moves q
from the channel queue to the shortest ready queue.
However, if no other agent is ready to communicate on the
channel, the processor enters p in the channel queue and
selects another running agent (if any) from its ready
queue.

Communicating agents circulate between ready queues and
channel queues until they terminate.

Processors Ready queues Channel queues

Fig. 2. Queuing network.

V. EXECUTION TIMES

The execution times of Joyce programs running on an Encore
Multimax 320 are expressed in terms of

n the number of iterations.
p the number of processors.

The following execution times Cin us) apply to operands of
simple types

JOYCE PERFORMANCE ON A MULTIPROCESSOR 7

Constant 4. 1
Variable 4.8
·- 4.7 ·-<= 4.7
+ 5.5
cldata(n) 93 + 5.2p
c?data (n) 93 + 5.2p
HJU.l~ B .d.Q s 5.3 + B + (8.5 + B

The execution times of other operations,
creation of channels and agents, are listed

Communication times increase with
processors p. If a Joyce program runs on 10
input or output of a single integer takes

93 + 5.2 X 10 : 145 US

+ S)n

including the
in [5 J.
the number of
processors, the

The most likely explanation of this phenomenon is the
following: When a processor inputs or outputs a message, it
scans a shared table of length p to find the shortest ready
queue. The processor then increments the length of that
queue. Since the processors share the ready queues, this
change eventually forces every processor to refetch the
updated value from memory. Later, we will show that the
scaled overhead of 5.2 us per processor effectively limits
the possible speed-up of Joyce programs when the number of
processors is increased.

The benchmark consists of cyclical agents. In each cycle,
an agent participates in a single communication and
performs a local computation. The cycle time of a sender is
determined by adding the following execution times:

Hbil~ i <= m..d.Q 8.5 + 4.8 + 4.7 + 4.8
begin

k ·- 1 ; 4.8 + 4.7 + 4.1 ·-while k <= n ,g.Q 5.3 + 14.3 + (8.5 + 14.3)n
k ·- k + 1 ; (4.8 + 4.7 + 4.8 + 5.5 + 4.1>n ·-c I data Cn); 93 + 5.2p

i ·- i + 1 4.8 + 4.7 + 4.8 + 5.5 + 4.1 ·-
~

The cycle time

t(p) = 173 + 47n + 5.2p

increases with the amount of computation n and the number
of processors p. A receiver has the same cycle time.

VI. AMDAHL'S LAW

JOYCE PERFORMANCE ON A MULTIPROCESSOR 8

Consider the execution of q cyclical agents each of which
communicates m times. The agents have identical cycle times
of the form

t(p) = a + bp

where ~ and b are constants.
A single processor can obviously execute such a program

in time

TC1) = q m t(1) = q m (a+ b)

We will show that p processors can execute the same
program in time

TCp) = q m t(p)/p = q m (a/p + b)

T(1) and T(p) are called the sequential and parallel
execution times of the program.

The parallel speed-up

S(p) = T(1)/T(p)

defines how many times faster the program runs on p
processors compared to a single processor.

The speed-up can be rewritten as follows

p

S(p) = ------------1 + (p- 1)f

where

r = b/(a + b)

is the fraction of time each agent spends on scaled
overhead. This is also known as Amdahl's law [7].

For our benchmark with q = 200 agents. we have

173 + 47n
T(p) = 200m <--------- + 5.2) us

p

We used three variants of the benchmark called BM1. BM2.
and BM3. The execution times of these benchmarks were
measured on 1-10 processors. Each benchmark used a
different value of n to obtain a different speed-up. The
number of messages m was selected to make a benchmark run
for approximately 30 s on ten processors.

Table 1 shows the predicted performance of these

JOYCE PERFORMANCE ON A MULTIPROCESSOR 9

benchmarks. The speed-up is limited by minute fractions of
scaled overhead (f = 0.001 - 0.029>.

BM m n T(p) s f

--------------------------------------1
2
3

6500
3500

300

0 22~.9/p + 6.8
~ 252.7/p + 3.6

10~ 303.7/p + 0.3

0.029
0.01~
0.001

Table 1. Predicted performance of benchmarks.

The curves and plotted points in Fig. 3 represent the
predicted and measured execution times of BM1. The model
also accurately predicts the run times of BM2 and BM3.

T(p) (seconds)

250

225

200

175

150

125

100

75

so

25

0
p

1 2 3 4 5 6 7 8 9 10

Fig. 3. Execution times of BM1.

JOYCE PERFORMANCE ON A MULTIPROCESSOR 10

Figure 4 shows excellent agreement between the predicted
and measured speed-up of the benchmarks. BM1 is an extreme
example of a computation in which parallel agents exchange
very short messages with minimal processing of each
message. This benchmark defines a lower bound on speed-up.
Most programs will perform better! It is encouraging that
ten processors can speed this demanding benchmark up by a
factor of almost eight. BM2 and BM3 show that one can get
arbitrarily close to linear speed-up by increasing the
amount of computation per communication.

soo
10

9

8

7

6

s

4

3

2

1

1 2 3 4 s 6 7 8 9 10

Fig. 4. Speed-up of benchmarks.

VII. SCALED BENCHMARK

Several researchers have pointed out that linear speed-up
can be achieved by scaling a computation up as the number
of processors increases. See, for example, [8].

From the previous benchmarks. we derived a scaled

JOYCE PERFORMANCE ON A MULTIPROCESSOR 11

benchmark that demonstrates this principle. We assume that
each agent communicates a fixed number of words m and
performs a fixed computation for every word. The idea is to
reduce the communication time by sending a block of n
integers in each message.

~~block= arrai [1 •• nl ~integer;
stream= [data(block)l;

n.r x: block;

The input Cor output) of n integers takes

c?data<x> 96 + 1.7n + 5.2p us

A fixed computation per word is simulated by letting the
agents examine every integer in a message. To account for
this. we need the average execution time of the following
statements in senders and receivers. respectively:

x[kl := y Y :: X[k) 35 us

In the scaled benchmark. the receivers repeat the
following cycle b times. where b = m/n is the number of
blocks received

b := m.Qi~ n;
wbj.le j <= b .d..Q
~Kill

c?dataCx>;
k :: 1;
while k <= n .d..Q

begin
y := x[kl;
k := k + 1

~;
j := j + 1

§1!S1

The cycle time of a receiver Cor sender) is

t(p) = 176 + 83n(p) + 5.2p

As a result of the scaling. the message length n(p) is a
function of the number of processors p.

The cycle time is of the form

t(p) = a + bn(p) + cp

where •· b and ~ are constants.
A linear speed-up

JOYCE PERFORMANCE ON A MULTIPROCESSOR 12

S(p) = p

is obtained if each processor uses the same amount of time
per message word independent of the number of processors
used. that is

t(p)/n(p) = t(1)/nC1>

or

n<p> c
= 1 + ----- (p- 1)

n(1) a+ c

Since the message length can be increased by multiples of
one word only, we chose

n(1) = (a+ c)/c =ale+ 1

Consequently,

n(p) = a/c + p

and

tCp)/n(p) = b + c

For the scaled benchmark, we have

n(p) = 176/5.2 + p = 34 + p words/message

and

t(p)/n(p) = 83 + 5.2 = 88.2 us/word

If 40 pairs of agents each communicate 42500 integers, we
have

T(p) = T(1)/p: 80 X 42500 X 88.2/p us= 299.9/p s

Figure 5 shows the predicted and measured linear speed-up
of the scaled benchmark.

JOYCE PERFORMANCE ON A MULTIPROCESSOR 13

S(p)

10

9

8

7 Scaled Benchmark

6

5

4

3

2

p
1

1 2 3 4 5 6 7 8 9 10

Fig. 5. Speed-up of scaled benchmark.

VIII. THE COST OF POLLING

If a receiver does not know in advance how long a stream of
messages is, the sender can output a (possibly empty)
sequence of data symbols followed by an eos symbol which
signals the end of the stream. In that case, the channels
must be of the following type

~~ stream= [data(integer), eosl;

A sender now behaves as follows

SEND;
cleos

while a receiver executes the algorithm

JOYCE PERFORMANCE ON A MULTIPROCESSOR

more := true;
H.b.i.l~ more .d.Q

~.Ql.l
c?data(n) -> COMPUTE I
c?eos -> more := false
~

14

The polling statement delays the receiver until the sender
is ready to output one of the two possible symbols on the
channel c:

1. If the sender outputs a data symbol, the receiver
inputs the symbol, performs a local computation, and
repeats the execution of the polling statement (since more
remains true>.

2. If the sender outputs eos, the receiver inputs the
symbol and terminates the loop (by setting more to false).

The channel c has an agent queue for each of the two
symbols it can transmit. The polling is implemented by
examining these queues one at a time to determine if
another agent is ready to output one of the symbols. If the
examination is unsuccessful, the corresponding processor
reenters the receiver in its own ready queue and selects a
running agent from the same queue.

If an agent is unable to complete simple input Cor
output), it waits in a channel queue until the
communication can take place. Polling is a more expensive
form of communication which may waste processor time by
examining the same channel queues repeatedly.

In Fig. 6, the curve represents the speed-up of the
simple benchmark BM1. The plotted points show the measured
speed-up of the corresponding polling benchmark.

JOYCE PERFORMANCE ON A MULTIPROCESSOR 15

S(p)

10

9

8 BM1

7 • PBMl

6

5

4

3

2

p
1

1 2 3 4 5 6 7 8 9 10

Fig. 6. Speed-up with and without polling.

IX. DESIGN DECISIONS

The most crucial design decisions are the number of ready
queues used, the number of locks required, and the
selection of the ready queue in which an agent is entered
after a communication. The challenge is to balance the work
load evenly among the processors with minimal loss of
efficiency. Several possibilities were evaluated and
rejected. ·

1. Load balancing is trivial if the processors share a
single ready queue. A lock associated with the queue
ensures that the processors never attempt to access the
queue simultaneously. We did not really expect this simple
idea to work well for agents that communicate frequently,
but were curious to find out how poor it is. As you might
expect, the common lock becomes a bottleneck which forces
the processors to work sequentially when they select or
reactivate agents. With ten processors, the speed-up of a

JOYCE PERFORMANCE ON A MULTIPROCESSOR 16

benchmark similar to BM1 was 2.7 only.

2. From then on we used a separate ready queue for each
processor. A processor always selects a running agent from
its own ready queue. In order to balance the load among the
processors, a processor must be able to enter agents in the
ready queues of other processors. So each ready queue must
have its own lock. The processors refer most often to their
own ready queues. Rarely will several processor compete for
access to the same queue. Consequently, idle processor time
caused by locking is largely eliminated. (This was verified
by experiment.)

However, when several ready queues are used, it is more
difficult to keep the load evenly balanced between them.

3. At one point, it seemed reasonable to let each
processor reactivate agents cyclically among the ready
queues starting with its own ready queue. Unfortunately,
this simple algorithms turned out to be unstable. Due to
random fluctuations, one of the ready queues will always at
some point be somewhat longer than the other ready queues.
When an agent from the longer queue communicates, it will
eventually enter a channel queue and, later, join one of
the shorter ready queues. Since that ready queue is short,
the agent is soon resumed, and moves via a channel queue to
the next short queue, and so on. After a few more
communications, the agent is right back where it came from
- in the long queue. This unstability makes some processors
work overtime, while others are underutilized.

4. Our next idea was to maintain a table of the lengths
of the ready queues. When a processor reactivates an agent,
it scans the table and enters the agent in the shortest
ready queue. This algorithm might increase the chance of
processor delays, if the agent had to lock and unlock every
ready queue during a search. We avoid this problem by
scanning the table without locking the queues. After
finding the shortest queue, a processor locks that queue
only before entering an agent. Occasionally, several
processors may select the same queue simultaneously and
extend it. However, this will only temporarily make a queue
slightly longer than it should be. The imbalance will be
corrected as soon as some of the agents communicate and
move to other ready queues.

5. When the length of a ready queue does not include the
running agent, another anomaly can occur. Consider a Joyce
program with two agents only running on two processors. If
an agent p running on one of the processors communicates
with the other agent q, while q is waiting in a channel

JOYCE PERFORMANCE ON A MULTIPROCESSOR 17

queue, the processor may enter q in its own (empty) ready
queue. Both agents now run on the same processor, while the
other processor is idle. (This phenomenon was also
demonstrated by experiment.) In the final kernel, the queue
length defines the number of agents currently served by a
processor. This is the number of agents waiting in the
ready queue plus the running agent (if any).

6. The previous algorithm can be improved further by
measuring the amount of processor time used by an agent
from the moment it is selected as a running agent until it
enters a channel queue. When an agent is reactivated, its
previous time slice is used as an estimate of its next time
slice. The length of a ready queue is replaced by the
estimated amount of processing time needed to allocate
another time slice to each of the running and waiting
agents. Although one can construct unusual Joyce programs
that run faster under this scheduler, it does not improve
the performance of ordinary programs, such as the
benchmarks. So our present choice is the simpler scheduler
described previously.

Every channel has its own lock. If a channel connects two
agents only, at most two processors can attempt to access
it simultaneously. Even that is a rare event which can
occur only if the two agents happen to be running
simultaneously. So we do not expect channel locks to reduce
processor performance.

The memory allocation of activation records takes place
in a stack as described in [5]. A single lock ensures that
processors create and remove activation records one at a
time in this program stack. Since activations and
terminations of agents and channels are rare events
compared to communications, we do not anticipate that this
lock will influence the performance of the multiprocessor
aignifican tly.

X. FINAL REMARKS

We have moved the parallel programming language Joyce from
a single processor to a multiprocessor. The main design
decisions were the number of scheduling queues used, the
number of locks required, and the implementation of load
balancing. We have treated these decisions as performance
issues and settled them by benchmark experiments. The
performance of the final product is predicted accurately by
a simple deterministic model.

ACKNOWLEDGEMENTS

JOYCE PERFORMANCE ON A MULTIPROCESSOR 18

The paper was improved by the suggestions and comments of
Birger Andersen and Gideon Frieder. This work was conducted
using the computational resources of the Northeast Parallel
Architectures Center CNPAC) at Syracuse University, which
is funded by DARPA, under contract to Rome Air Development
Center CRADC), Griffiss AFB, NY.

REFERENCES

[1] P. Brinch Hansen, "Joyce- A programming language for
distributed systems," ~!w~- fricti~ ~~
jxperi!D~· vol. 17. pp.29-50, 1987.

[2] C. A. R. Hoare. "Communicating sequential processes,"
~m. J&H• vol. 21, pp. 666-677. 1978.

[3] N. Wirth, "The programming language Pascal,"~
Inform~i~~· vol. 1. pp.35-63, 1971.

[4] P. Brinch Hansen, "A Joyce implementation," SoftHire -
~~~~ •n~ iJReri~nS§. vol. 17. pp. 267-276. 1987. 

[5] P. Brinch Hansen, A HY~iRr2Qe§sQr lmRl§mentitiQn R! 
~~. School of Computer and Information Science. 
Syracuse University. Syracuse, NY, 1988. 

[6] Encore Corp., HYltim§x Technic§l ay;mary. Encore 
Computer Corp., Marlboro, MA, 1987. 

[7] G. Amdahl, "Validity of the single-processor approach 
to achieving large-scale computer capabilities,"~. 
AFIPS ~ •• vol. 30, pp. 483-485, 1967. 

[8] J. L. Gustafson, "Reevaluating Amdahl's law,n ~. J&H, 
vol. 31, pp. 532-533, 1988. 



JOYCE PERFORMANCE ON A MULTIPROCESSOR 19 

~£ Brin~b HRD~D <F'85) is Distinguished Professor of 
Computer Science at Syracuse University. He is the designer 
of the programming languages Concurrent Pascal, Edison and 
Joyce. Dr. Brinch Hansen's text books on Operating System 
Principles (1973) and The Architecture of Concurrent 
Programs <1977> have been published in six languages. 

Anan~ jan~b~£1 received the B.S. degree in Chemistry from 
Indian Institute of Technology, New Delhi, in 1984 and the 
M.S. degree in Computer Science from Syracuse University in 
1986. He is currently pursuing the Ph.D. degree in Computer 
Science at Syracuse University. 


	Joyce Performance on a Multiprocessor
	Recommended Citation

	SU-CIS-88-5_001c
	SU-CIS-88-5_002c
	SU-CIS-88-5_003c
	SU-CIS-88-5_004c
	SU-CIS-88-5_005c
	SU-CIS-88-5_006c
	SU-CIS-88-5_007c
	SU-CIS-88-5_008c
	SU-CIS-88-5_009c
	SU-CIS-88-5_010c
	SU-CIS-88-5_011c
	SU-CIS-88-5_012c
	SU-CIS-88-5_013c
	SU-CIS-88-5_014c
	SU-CIS-88-5_015c
	SU-CIS-88-5_016c
	SU-CIS-88-5_017c
	SU-CIS-88-5_018c
	SU-CIS-88-5_019c
	SU-CIS-88-5_020c

