
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

12-1991

An Efficient Neural Algorithm for the Multiclass Problem An Efficient Neural Algorithm for the Multiclass Problem

Rangachari Anand
Syracuse University

Kishan Mehrotra
Syracuse University, mehrotra@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Anand, Rangachari; Mehrotra, Kishan; Mohan, Chilukuri K.; and Ranka, Sanjay, "An Efficient Neural
Algorithm for the Multiclass Problem" (1991). Electrical Engineering and Computer Science - Technical
Reports. 136.
https://surface.syr.edu/eecs_techreports/136

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/136?utm_source=surface.syr.edu%2Feecs_techreports%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-40

An Efficient Neural Algorithm for the
Multiclass Problem

R. Anand, K Mehrotra, C. Mohan, S. Ranka
December, 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

An Efficient Neural Algorithm for the

Multiclass Problem

Rangachari Anand, Kishan Mehrotra, Chilukuri K. Mohan,

and Sanjay Ranka

4-116 Center for Science and Technology,

School of Computer and Information Science,

Syracuse University, Syracuse, NY 13244-4100

(e-mail: kishan@top.cis.syr.edu)

December 11, 1991

Abstract

One connectionist approach to the classification problem, which has gained pop

ularity in recent years, is the use of backpropagation-trained feed-forward neural

networks. In practice, however, we find that the rate of convergence of net output

error is especially low when training networks for multi-class problems. In this paper,

we show that while backpropagation will reduce the Euclidean distance between the

actual and desired output vectors, the difference between some of the components of

these vectors will actually increase in the first iteration. Furthermore, the magnitudes

of subsequent weight changes in each iteration are very small, so that many itera

tions are required to compensate for the increased error in some components in the

initial iterations. We describe a modular network architecture to improve the rate of

learning for such classification problems._ Our basic approach is to reduce a K-class

problem to set of K two-class problems with a separately trained network for each of

the K problems. We also present the results from several experiments comparing our

new algorithm and approach with standard backpropagation, and find that speedups

of about one order of magnitude can be obtained.

Key words: Backpropagation, Modular Networks, Classification Problems, Multi

class problems, Feedforward Networks.

1 Introduction

Classification, the assignment of an object to one of a number of predetermined

groups, is of fundamental importance in a number of areas ranging from image and

speech recognition to the social sciences. Consequently, a number of statistical classi

fication techniques have been developed. These are based primarily on Bayes's rule.

In the classification problem, we assume that a pattern can belong to exactly one

of K classes. We are provided with a training set, T, consisting of sample patterns

which are representative of all classes along with class membership information for

each pattern. Using the training set, we deduce rules for membership in each class and

create a classifier, which can then be used to assign other patterns to their respective

classes according to these rules.

One connectionist approach to the classification problem, which has gained pop

ularity in recent years, is the use of backpropagation-trained feed-forward neural

networks [10]. Backpropagation is based on the method of steepest descent [5], and

is one of the most widely used training algorithms for feed-forward neural networks.

Since these networks can be taught arbitrary non-linear mappings, it is relatively

straightforward to use them for pattern classification tasks [4].

A feed-forward neural network computes a real output vector when presented

with a real input vector. The output of the network may be controlled by varying

parameters called weights. The training set for a K-class problem consists of a set of

pattern vectors representative of each class along with their desired output vectors.

When training a network with backpropagation, we start by assigning random values

to the weights. In each step of training, the backpropagation algorithm prescribes

changes to the weights designed to reduce the magnitude of the difference between

the actual output vector and the desired output vector.

When training a network with backpropagation for a two-class problem in which

the numbers of exemplars for the two classes differ greatly (i.e., the training set

is imbalanced), we have observed that the rate of convergence of net output error

is especially low. In [1] we have described a modified version of backpropagation

which is faster than standard-backpropagation for two-class problems with imbalanced

training sets by as much as one order of magnitude. In this paper, we consider

K-class problems, where K > 2, and the training sets for all or most classes are

1

approximately equal in size. We consider the error vector obtained by considering

the errors associated with K output nodes of the neural network and show that while

backpropagation will reduce the Euclidean distance between the actual and desired

output vectors, the difference between some of the components of these vectors will

actually increase in the first iteration. Furthermore, the magnitudes of the subsequent

weight changes in each iteration are very small. Hence, many iterations are required

to compensate for the increased error in some components in the initial iterations.

We propose a modular network architecture to improve the rate of learning for

such classification problems. In this architecture, each module is a single-output

network which determines whether a pattern belongs to a particular class, thereby

reducing a K-class problem to a set of K two-class problems. A module for class C1c is

trained to distinguish between patterns belonging to classes C1c and its complement

Ci;. If there are approximately equal numbers of exemplars for each of the K classes,

there will be many more exemplars for class C1c than for class C~c. This corresponds to

the two class problem (C1c vs. C~c) in which the training sets are naturally imbalanced

and the modified algorithm in [1] applies.

The modular approach yields a good speedup in training times in several ways:

1. The sum of the numbers of iterations needed to train the individual modules

in the modular approach is less than the number of iterations needed to train

a nonmodular network for the same task.

2. The time taken for one iteration, when training a module of a modular net

work, is less than the time taken for one iteration when training the equivalent

non-modular network. This is because the modules in a modular network are

generally smaller than the equivalent nonmodular network.

3. Since the modules can be trained independently, we can train them in parallel.

In our implementation, we have used a simple distributed batch queueing system

to train the modules in parallel on a cluster of high-speed workstations.

There has been considerable interest in developing modular neural networks. Stud

ies of human and other brains suggest that there is considerable specialization in

different parts of the brain. Minsky [6] describes a model of the human brain viewed

as a collection of interacting modules called agents. While each agent is capable only

2

of performing simple actions, the agents collectively behave in an intelligent manner.

The approach of this paper differs from such models in that modularity is planned

by the network-builder, attempting an optimal use of resources, whereas that is not

possible in a completely self-organizing network.

Rueckl et al. [11] have studied the problem of analyzing images in which one of

a number of known objects could occur anywhere. The goal was to train a network

to identify the location and also recognize the object in the image. They found that

training time was shorter when two separate networks were used for this task. Jacobs

et al. [3] have studied the problem of training a modular network so that the modules

learn to specialize in different tasks. In their architecture, the modules compete for

the right to learn particular patterns. They claim that such a system is more robust

and will generalize better. However such a system is likely to use far more resources

than a system in which modules co-operate on related tasks.

The problem of modularity has been approached from a more pragmatic viewpoint

in the area of speech recognition. Waibel et al. [15] have devised a technique called

"connectionist glue" by means of which it is possible to train networks for different

tasks and then connect them together. In this manner, networks can be built in an

incremental manner. However, in this technique, emphasis is on reducing the com

plexity of the problem by partitioning rather than finding a solution that addresses

all of the training set collectively.

The rest of this paper is organized as follows. We present an analysis of the reason

for the observed slow rate of convergence of standard backpropagation in section 2.

In section 3, we describe a simple modular network architecture which overcomes

these difficulties. Each module in such a network is trained with a modified version

of backpropagation, which we have described in a previous paper [1]. In section 4

we consider three examples to illustrate the improvement achieved due to modularity

and in section 5 we make some concluding remarks.

2 Analysis of backpropagation

In this section, we analyze the reasons for the poor rate of convergence of error when

training nonmodular networks for classification problems. Overall, the goal of training

is to reduce the error for all outputs for all exemplars. Our analysis shows that the

3

overall weight changes for the output layer weights are negative in the first iteration

of the backpropogation training process. Magnitudes of subsequent changes are also

small. Hence, the rate of convergence of error is very slow.

2.1 Definitions

In order to explain the reasons for the observed phenomenon, it is necessary to recall

some of the well-known properties of feed-forward networks. In this section, we define

these concepts and introduce necessary notation.

Network architecture: A schematic diagram of a feed-forward network is shown in

figure 1. The nodes in the network are organized in the form of layers. There are no

interconnections among nodes in the same layer. The output of each node in a layer

feeds into all nodes in the next layer through weighted connections. No computation

is performed by the input la.yer: it merely receives the input pattern and distributes

the components to the first hidden la.yer. In this paper we analyze networks with one

hidden la.yer.

The number of nodes in the output layer depends on the class membership repre

sentation used. We ha.ve chosen a discrete class membership representation for sim

plicity. In this representation we use one node in the output layer for each class- i.e.,

there are K nodes in the output layer. Although other representations are possible,

we have found experimentally that training is more accurate when this representation

is used.

Notation: A feed-forward network with one hidden la.yer (HL) is shown in figure 2.

There are I+ 1 nodes in the input la.yer for input patterns of length I; the additional

node represents the bias, 6, in the function 1/(1 + e-<w·x+B)) computed a.t each node.

HL contains L + 1 nodes including a node for the bias term. There are K nodes in

the output layer.

The exemplars of class Ck form the set

Tk = {(x(j,k), t(j,k)) : j = 1, ... , nk, k = 1, ... , K}.

For a. K-class problem, the training set Tis T1 U ... U TK. Throughout this pa.per

the ranges of j and k a.re: j = 1, ... , nk and k = 1, ... , K. The input vector for the

jth exemplar of the kth class is x(j,k) = (x~j,k), ... , xY+~), the target vector is t(j,k) =

4

Input layer Hidden layer 0 (Output layer) i Hidden layer 2 ! l Hidden layer 1

r- -, r- -, r-*-, r- -,

Figure 1: A multilayer feed-forward network for a. K-cla.ss problem.

(. lc) (. lc) . (. lc) (. lc)
(t/' , •.• , t k'), the output vector of the hidden layer is yb,lc) = (y/' , ... , Yl.f-1),

and finally, the network output is the K-dimensional vector z(j,lc) = (zlj,lc), ••• , z~,1c)).
r ~c> r ~c> · In the above vectors x/f.1 = 1, y£.f.1 = 1, and the elements of tb,lc) satisfy

t~·lc) - 1- f

t~j,lc) - f, for i =f:. k,

where f is a small positive real number. The hidden nodes outputs {ylj,lc), ••• , y¥•/c)}

(. lc) ,;xf.j,lc)w •
are computed as y '' = • 1+;;x<'·">w.' for s = 1, ... , L and similarly the network

{ (j.lc) (j,lc) (. lc) eY(j,lc),.
outputs z1 , ... , zK } are z/' = y(J li) , for s = 1, ... , K. Due to the nature 1+e ' "•
of the sigmoid function, (1:: ..), the values Yij,lc) and zij,lc) are always positive and in

the range (0, 1) for all values of s.

In this network, the weight assigned to the link from the rlh node of the input

layer to the sth node of the H L is denoted by w•,r· The vector of weights on the links

from the input layer to the sth node in H L is denoted by

5

Input layer HL Output layer

Figure 2: Notation for identifying nodes and weights in a network.

and we refer to all weights between the input layer and H L collectively as

w = (w~, ... ,wL).

The weight of the link from the rth node of the hidden layer to the sth output node

is denoted by lls,r, weights on links from nodes in the hidden layer to the sth node

of the output layer are given by ll8 , i.e., ll8 = (lls,b •.. , lls,L+l) and we refer to all the

weights on links between HL and the output layer as v . Thus

Finally, all weights of the network are denoted by W, i.e., W = (v , w).

Gradients: The net error for the training set, E(W), can be written in terms of

the sum of K x K components, each component representing the net error associated

with one network output for one class of patterns. That is,

K K
E(W) = L L E(k,t) (W),

k=ll=l

where

E(k,t) (W) = E (t~i,k) - z~i,k)) 2

i=l

6

represents error associated with fth output node for patterns of class k.

In each iteration of the standard backpropagation algorithm we compute V E(W),

the gradient vector of the error surface. Since net error decreases most rapidly in the

direction exactly opposite to that of the gradient vector, the weights are changed in

the direction of-V E(W). Backpropagation is summarized in the following equation:

W(m + 1) = W(m)- .XVE(W(m)),

where W (m) is the weight vector of the network at the beginning of the mth iteration,

.X, a positive constant, is the learning rate, and .XV E(W (m)) is the change in weights.

Weight change computation:

In the backpropagation algorithm, all weight changes consist of a product of the

error signal for a node and the output of another node. The weight change in Vs,r due

to the (j, k)th exemplar is given by:

~v!~;k) .X x Error signal of output node s X Output of rth node of HL

- .X ((t~i,k)- z!i,k))z!i,k)(1- z!i,k))) (y~i,k)) (1)

for s = 1, ... , K. Overall change in V 8 ,r due to exemplars of the kth class is obtained

by adding the right hand side of the above equation over j = 1, ... , nk and finally

over all exemplars by adding for k = 1, ... , K. Similarly, the weight change in Ws,r

due to the (j, k)th exemplar is given by:

~w!~;k) - .X x Error signal of sth node of HL x Output of rth input node
K

- .X I: ((t~j,k)- z!j,k))z!j,k)(1- z!j,k))vi,s) Y!j,k)(1- Y!j,k))x~i,k) (2)
i=l

for s = 1, ... , L; r = 1, ... , I+ 1. This expression is summed over j = 1, ... , nk to

get the contribution due to exemplars of the kth class and again over k = 1, ... , K

to get the overall change in the weight.

The contribution of the (j, k)th exemplar to the gradient vector, V E(j,k)(W) is:

(3)

where ~v (j,k) = (~v tj,k), ... , ~v ~,k)) and similarly ~w(i,k) = (~wtj,k), ... , ~w~·k)).
Finally, the gradient vector V Ek(W) is defined as follows:

n1c

V Ek(W) = I: V E(j,k)(W), for k = 1, ... , K. (4)
j=l

7

2.2 Analysis of weight changes

In this section, we examine the expected values of the weight changes in the first iter

ation of the backpropagation algorithm. These weight changes are given by equations

(1) and (2) above.

Since we need to compute expected values of complicated functions of random

variables, we follow the general procedure outlined below to find approximations of

these (expected) values. In the following discussion '~' is used to indicate approxi

mate equality.

Let g be some twice differentiable function of random variable u. Suppose that

we wish to obtain £ (g(u)), the expected value of g(u) and it is difficult to obtain.

Then, using the Taylor's series expansion of g(u) with respect to u upto three terms,

about £(u) = p,, and taking the expected value of the expansion we get,

£(g(u)) ~ £ (g(p,) + g'(p,) ·(u-p)+ ~(u-p)· g"(p) ·(u-p))

_ { g(p,) + !9''(p) £ ((u- p)2) if u is a scalar

g(p) +! Ei Ej g:j(p,) £ (((ui -p,,)(uj- Pi)) if u is a vector,

where g~j(p) denotes the second derivative of g(u) with respect to the ith and jth

components of u. In particular, if u's are uniform random variables between -1 and

+1, all statistically independent of each other, then £((ui -p,,)(ui- Pi))= 0 fori =f:. j

and ! for i = j. Thus, in this particular case,

1
£(g(u)) = g(O) + 6 ~g::,(o).

'
(5)

Several expected values arise in our analysis. To simplify the presentation we use

£(·) to denote the expectation of a certain quantity of interest with respect to all

weights W, and £v (-) denotes the conditional expectation with respect to v , while

w remains fixed. Recall that initially all weights are assigned random values between

-1 and +1, from a uniform distribution. In particular, initially £(v(r,s)) = 0, and

£(vlr,s)) = l· Similar results also hold for each W(r,s)·

Proposition 1 For any weight llr,s, associated with a link from the hidden layer to

the output layer, the conditional expected weight change satisfies:

Cv (tlv!!;'>) "'Ayl;·•>(2t¥·~ -l) (u- t. (Y!;.•>)')

8

in the first iteration of backpropagation.

Proof:

The proof is obtained as an application of equation (5) when g(u) is replaced by

6.v~i~k). Recall that the expectation is taken with respect to v only; consequently, ,
Yij,k)'s are constants and in particular y~t{ = 1. Details are straightforward. 0

Proposition 2

ew ((Y!j,k)) 2)

ew ((Y!i,k)) 3) ~

in the first iteration of backpropagation.

Proof: The proof is obtained by applying equation (5) with g(u) identified as yii,k),

(y!i,k)) 2, and (y!i,k) r respectively. 0

Proposition 3 The unconditional expectation of the weight change in v~!/> satisfies:

e(6.v(i,k)) ~ ~(2t(i,k) - 1) (..!!.. - __£_ - L + 2llx(i,k)l12)
s,r r 192 768 9204

in the first iteration of the backpropagation algorithm.

The expression for ev (6.v~!~k>) obtained from proposition 1 can be expanded as

follows:

where [i-=/:- s] = 1 if i = s and 0 otherwise. We then apply the results obtained from

proposition 2. 0

9

Proposition 4 For each weight wi~~k) between an input node and a hidden layer node,

the expected value is

in the first iteration of backpropagation.

Proof: When we take the conditional expectation of the expression in equation (2)

with respect to 11 , the product yii,k)(1 - yii,k))xii,k) is a constant. Use of equation

(5), with g(u) replaced by (t~i,k)- z~i,k))z~i,k)(1- z~i,k))v;,8 , gives

e(t(i,k) - z~j,k))z~j,k) (1 - z~j,k))v· ,.... - __!_y(i,k)
1 1 1 1 I ,s ,_., 48 B

for i = 1, ... , K and s = 1, ... , L + 1. The rest of the proof is straightforward. 0

Proposition 5 The unconditional expectation of the change in each weight, wi~~k),

satisfies

e(~w(i,k)) ~ -.X K [~ - .]__ II x(i,k) 112] x<i,k)
s,r 48 8 96 r

in the first iteration of backpropagation for s = 1, ... , L.

Proof: The proof follows readily from proposition 4 and proposition 2. 0

2.3 Analysis of changes in errors

From the results obtained above we infer below that the expected weight changes are

negative. Since the node output functions [(1 + e-ut1] are monotonically increasing,

we expect that output values zii,k), s = 1, ... , K will decrease as a result of the

changes in the first iteration. Now, since t~,k) ~ 1, we find that E(k,k)(W) values will

increase, and since t~i,k) ~ 0 for s =f. k, E(k,l)(W) values will decrease.

It remains to be shown that the prescribed weight changes for all weights in the

network in the first iteration are expected to be negative, i.e.,£(~ W) < 0. In the

case of the w weights, this is implied by proposition 5 because the leading term of

the expected value is - K x~i,k) /384 which is clearly negative due to the reason that

10

all inputs x~i,k) are between 0 and 1. Only if I is very large or if all II x2 II are near 1,

this quantity will be positive. Moreover, these weights influence z/s only through y's

and therefore their influence on the network's outputs is of secondary significance.

In the case of the v weights, we see from proposition 3 that the sign of the

expected weight change is largely determined by the expression (2t~i,k) - 1). Now,

(2t~j,k) - 1) > 0 for class Cr and (2t~j,k) - 1) < 0 for the other K - 1 classes. Since K

is generally large, it follows that the cumulative effect of all classes on the expected

weight change will be negative. [This holds for L < 44 since the influence of the term

containing llx(j,k)ll2 is small. Even if L ~ 44, a similar argument holds if the weight

change is positive.]

Next, we consider the nature of weight changes in v's in later iterations. For any

weight llr,a, we find that the weight change in the first step is positive when processing

an exemplar belonging to class Cr and negative for exemplars belonging to all other

classes. Since the error E(r,r)(W) increases after the first iteration, we expect that the

magnitude of the positive weight changes to llr,s increases after the first iteration. On

the other hand, we expect that the magnitude of the negative weight changes for llr,s

will decrease since E(k,r)(W) (k =/= r) decreases after the first iteration. In various

experiments we have found that the positive and negative weight changes very nearly

cancel each other after the first few iterations, resulting in very small changes in v

weights in later iterations. Since the magnitude of the net weight change applied

in each iteration is small, the net error converges slowly. A plot showing prescribed

positive and negative weight changes for an output weight in a typical problem is

shown in figure 3.

3 Modular networks

In this section, we describe a modular network architecture for k-class problems which

overcomes the problems with standard backpropagation discussed in the previous

section. Our approach is to split a k-class problem into k two-class problems. A

modular network is a collection of modules, each of which is a single-output feed

forward network which is used to distinguish one class of patterns from patterns

belonging to the remaining classes. In other words, a module for class Ck is trained

11

4~----~----~----~-----r----~.----~

2

o~~,~==========~~~~~~~==~ ,-::::::-:::::::::::::::::::::::::::::::.:::::

-

-2 ,',.. -
1.' ..

_1 ~· -., ..
-6

1,'
t:

-8 \ ~
\ L'

10 \ 0:

- \ ~· . ,.
-12 - ~ ... ~·

-
-
-
-

-14~--------~·------------~---------~·--------~i------------~--------~

0 10 20 30 40 50 60

Figure 3: Positive (solid line), negative (dotted line), and net (dashed line) weight

changes for an output layer weight in a typical K-class problem. The x-axis indicates

the number of iterations.

to distinguish between patterns belonging to classes ck and ck .
Modular and nonmodular networks are shown in figure 4.

The modules are trained independently in parallel. Similarly, the modules operate

in parallel when classifying patterns. In the modular network, each module computes

one element of the output vector. Each module has one hidden layer. The required

number of nodes in the hidden layer is no larger than the number of nodes in an

equivalent nonmodular network.

Since a training set for a K-class problem generally contains approximately equal

numbers of exemplars for all classes, the training set for module k will contain many

more exemplars for class Ck than for Ck . When training a network with backprop

agation for such a two-class problem in which the numbers of exemplars for the two

classes differ greatly (i.e., the training set is imbalancecl), we have observed that the

rate of convergence of net output error is especially low [1].

In an imbalanced training set, the class with more exemplars is called the dominant

class while the other is called the subordinate class.

12

p 0

Non-modular network

p

Modular network

Figure 4: Modular architecture

In an earlier paper, we showed that the low rate of convergence of net error occurs

because the negative gradient vector computed by backpropagation for an imbalanced

training set does not initially decrease the error for the subordinate class. Conse

quently, in the initial iteration, the net error for the exemplars in the subordinate

class increases significantly. The subsequent rate of convergence for the exemplars

of the subordinate class is very low. To solve this problem, we suggested a modi

fied algorithm for calculating a direction in weight-space which is downhill for both

classes. Using this algorithm, we have been able to accelerate the rate of learning by

one order of magnitude for two-class classification problems.

We find that the speedup in training time with our modified algorithm improves as

the level of imbalance in the training set increases. Hence, in the context of modular

networks, the advantage in training time enjoyed by the modular approach becomes

increasingly significant as the number of classes increases.

13

4 Numerical results

We present a comparison of the training times and generalization abilities of modular

and nonmodular networks for three different problems. In the first example, we

analyze the well-known Fisher's Iris data set [2]. The second problem is in speech

recognition while the third example is in character recognition.

4.1 Fisher's Iris data

Fisher's Iris data set contains 150 patterns belonging to three classes. There are 50

exemplars for each class and each input is a 4-dimensional real vector. The original

patterns were translated and scaled such that each element of the input vector lies

within the range [0, 1). In the modular network and in each module 4 nodes were

used in the hidden layer. The learning rate A was set to 0.05 for each module and for

the nonmodular network.

Training was stopped for the nonmodular network when two exemplars remained

misclassified. In the case of the modular network, training of module 1 was stopped

when all exemplars in its training set were correctly classified. In the case of modules

2 and 3, training was stopped when altogether only two exemplars remained misclas

sified. Reasons for stopping in the above manner are due to the well known property

of the the Fisher's data that two exemplars cannot be correctly classified.

4.2 Speech recognition

The data used in this example is for a speech recognition problem and was obtained

from the Univ. of California at Irvine (UCI) repository of machine learning databases

and domain theories. The input patterns are 10 element real vectors representing

vowel sounds which belong to one of 11 classes. While the training set contains

90 exemplars for each class, we used 45 exemplars from each class for training the

networks and the remaining 45 to test for generalization ability. As in the previous

examples, the patterns were translated and scaled so that each component lies within

[0, 1).

The nonmodular network, as well as each module in the modular network, contains

20 hidden nodes. The learning rate, A, was set to 0.1 for both the modular and

14

nonmodular approach. When training the nonmodular network and when training

each module of the modular network, training was stopped when the mean square

error for each network output was reduced to 0.01.

4.3 Character recognition

This training set was also obtained from the UCI repository of machine learning

databases and domain theories. This is a 26 class problem: the goal is to recognize

digitized patterns. The input patterns are 16 element real vectors. Each element of

the input vector is a numerical attribute computed from a pixel array containing the

letters. The training set consists of 1000 exemplars with approximately 35 exemplars

per class. The test set contains 4000 patterns. The patterns were translated and

scaled such that each component of the input vector lies within [0, 1).

The nonmodular network, as well as each module in the modular network, contains

15 hidden nodes. The learning rate, ..\, was set to 0.01 when training the nonmod

ular network and 0.04 for the modular networks; these were the highest rates that

permitted convergence (did not lead to oscillations).

We performed two comparative experiments with this training set. In the first

experiment, training was stopped when the mean square error for each network output

was reduced to 0.007 for each module and the nonmodular network. In the second

experiment, the goal was to reduce the mean square error for each network output to

0.003. This was found to be possible only with the modular approach.

4.4 Results

A summary of results is shown in the table below. For each example, five separate

training runs were performed, each with different random initial weights. The num

bers in figure 5 are the average results from these five runs. All time measurements

were in seconds, on an IBM RS6000/530 workstation.

15

Max. No. Max. Time Total Total Fraction of Fraction of

Iterations Needed No. of Time Errors on Errors on

Needed for to train Iterations for Training Test

any Module any Module Needed Training Samples Samples

Fisher's

Iris Data:

Nonmodular 831 31.6 831 31.6 1.3% -
Modular 260 6.25 457 11.0 1.3% -
Speedup 3.20 5.06 1.8 2.87 - -

Speech

Recognition:

Nonmodular 9938 8844.8 9938 8844.8 7.7% 44.7%

Modular 1765 600.2 9555 3248.6 5.5% 45.7%

Speedup 5.63 14.7 1.0 2.77 - -

Char. Recog.

target MSE 0.007:

Nohmodular 7674 10130 7674 10130 14.0% 25.6%

Modular 554 399 5520 3974 10.4% 25.0%

Speedup 13.9 25.4 1.4 2.5 - -

Char. Recog.

target MSE 0.003:

Nonmodular

(no convergence) - - - - - -
Modular 1500 1080 16267 11712 3.4% 20.7%

Figure 5: Summary of performance comparison of nonmodular and modular networks.

16

5 Concluding remarks

Multi-class classification problems are common in real life, and are a prime candidate

for neural network methods. However, the standard backpropagation algorithm is too

slow to converge for such problems. Instead, a modular approach works best, where

each module separately learns to 'recognize' each class. When there are many classes,

the training sets are mostly imbalanced, i.e., there is a preponderance of training sam

ples which are negative examples for each module. Hence standard backpropagation

is again slow. Best results are achieved for modular networks on using a new training

algorithm, in which imbalance of training samples is explicitly accounted for.

We have performed several experiments comparing our new algorithm and ap

proach with standard backpropagation, and found that speedups of upto one order of

magnitude can be obtained. The number of iterations is smaller, each iteration takes

less time, there is much greater scope for parallelism, and in some cases (with low

error tolerance), the new approach led to convergence whereas standard backpropaga

tion completely failed to converge. The improvement in performance is more marked

when the problem specifies a large number of classes. The method can be usefully

applied to practical multi-class classification problems where backpropagation has so

far been used, to improve speed and error tolerance.

References

[1] Anand, R., Mehrotra, K. G., Mohan, C. K., and Ranka, S., "An improved al

gorithm for neural network classification of imbalanced training sets", Technical

Report Number SU-CIS-91-29, School of CIS, Syracuse University, Syracuse

(New York), Aug. 1991.

[2] James, M. "Classification Algorithms", John Wiley and Sons, 1985.

[3] Jacobs, R. A., Jordan, M. I., and Barto, A. G., "Task decomposition through

competition in a modular connectionist architecture: The what and where vision

tasks", COINS Technical Report 90-27, University of Massachusetts, Amherst,

1990.

17

[4) Kohonen, T., Barna, G., and Chrisley, R. "Statistical Pattern Recognition with

Neural Networks: Benchmarking Studies", Proceedings of the International Con

ference on Neural Networks, 1988, Vol-I, pp 61-68.

[5) Kowalik, J., and Osborne, M. R., "Methods for unconstrained optimization prob

lems", American Elsevier Publishing Company Inc., 1968.

[6] Minsky, M., "The society of mind", Simon and Schuster, 1986.

[7) Ostrowski, A. M., "Solution of equations in Euclidean and Banach Spaces",

Academic Press, 1973.

[8) Pierre, D. A., "Optimization theory with applications", John Wiley and Sons,

Inc., 1969.

[9) Plaut, D. C., and Hinton, G. E., "Learning sets of filters using back-propagation",

Computer Speech and Language", Vol. 2, 1987, pp 35-61.

[10] Rumelhart, D. E., and McClelland, J. L. "Parallel Distributed Processing, Vol

ume 1", MIT Press, 1987.

[11] Rueckl, J. G., Cave, K., R., and Kosslyn, S.M. "Why are "What" and "Where"

processed by separate cortical visual systems? A computational investigation",

Journal of Cognitive Neuroscience, Vol. 1, No. 2, 1989.

[12) Smieja, F. J., "Multiple network systems (Minos) modules: Task division and

module discrimination", Proceedings of the 8th AISB conference on Artificial

Intelligence, Leeds, April1991. Also available from neuroprose repository.

[13] Sontag, E. D., and Sussmann, H. J. "Backpropagation separates when percep

trons do", Proceedings of the International Conference on Neural Networks, 1988,

Vol-1, pp 639-642.

[14) Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., and Alkon, D. L., "Acceler

ating the Convergence of the Back-Propagation Method", Biological Cybernetics,

Vol. 59, 1988, pp 257-263.

18

[15] Waibel, A., Sawai, H., and Shikano, K., "Modularity and Scaling in Large Phone

mic Neural Networks", IEEE Trans. on Accoustics, Speech and Signal Processing,

Vol. 37, No. 12, December 1989.

19

	An Efficient Neural Algorithm for the Multiclass Problem
	Recommended Citation

	SU-CIS-91-40_001c
	SU-CIS-91-40_002c
	SU-CIS-91-40_003c
	SU-CIS-91-40_004c
	SU-CIS-91-40_005c
	SU-CIS-91-40_006c
	SU-CIS-91-40_007c
	SU-CIS-91-40_008c
	SU-CIS-91-40_009c
	SU-CIS-91-40_010c
	SU-CIS-91-40_011c
	SU-CIS-91-40_012c
	SU-CIS-91-40_013c
	SU-CIS-91-40_014c
	SU-CIS-91-40_015c
	SU-CIS-91-40_016c
	SU-CIS-91-40_017c
	SU-CIS-91-40_018c
	SU-CIS-91-40_019c
	SU-CIS-91-40_020c
	SU-CIS-91-40_021c
	SU-CIS-91-40_022c

