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Abstract

The space of all solutions to the string equation of the symmetric unitary one-matrix
model is determined. It is shown that the string equation is equivalent to simple conditions
on points V; and V5 in the big cell G of the Sato Grassmannian Gr. This is a conse-
quence of a well-defined continuum limit in which the string equation has the simple form
[P,Q_] =1, with P and Q_ 2 x 2 matrices of differential operators. These conditions on
Vi and V5 yield a simple system of first order differential equations whose analysis deter-
mines the space of all solutions to the string equation. This geometric formulation leads
directly to the Virasoro constraints Ly, (n > 0), where L,, annihilate the two modified-KdV

T-functions whose product gives the partition function of the Unitary Matrix Model.
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1. Introduction

Matrix models form a rich class of quantum statistical mechanical systems defined by
partition functions of the form [ dM e*%trV(M), where M is an N x N matrix and the
Hamiltonian trV (M) is some well defined function of M. They were originally introduced
to study complicated systems, such as heavy nuclei, in which the quantum mechanical
Hamiltonian had to be considered random within some universality class [1,4] .

Unitary Matrix Models (UMM), in which M is a unitary matrix U, form a particularly
rich class of matrix models. When V(U) is self adjoint we will call the model symmetric.
The simplest case is given by V(U) = U + UT and describes two dimensional quantum
chromodynamics [5-7] with gauge group U(N). The partition function of this theory can
be evaluated in the large-N (planar) limit in which N is taken to infinity with A\ = ¢g2N
held fixed, where g is the gauge coupling. The theory has a third order phase transition
at A\ = 2 [6]. Below ). the eigenvalues '@ of U lie within a finite domain about o = 0 of
the form [—a., a.] with a. < w. The size of this domain increases as A increases until the
eigenvalues range over the entire circle at A = A..

In the last two years, matrix models have received extensive attention as discrete
models of two dimensional gravity. In this context, the one-matrix Hermitian Matrix
Models (HMM), in which M is a Hermitian matrix, are the clearest to interpret since a
given cellular decomposition of a two dimensional surface is dual to a Feynman diagram
of a zero dimensional quantum field theory with action trV(M). In the double scaling
limit of these models, the potential can be tuned to a one parameter family of multicritical
points labelled by an integer m. This scaling limit is defined by N going to infinity and
A — Ao with t = (1 — %)N% and y = (1 — A—);)N% held fixed. This requires
simultaneously adjusting m couplings in the potential to their critical values. At these
multicritical points the entire partition function (including the sum over topologies) is
given by a single differential equation (the “string equation”) and can serve as a non-
perturbative definition of two dimensional gravity coupled to conformal matter [8-11].
This multicriticality may also be described by universal cross-over behaviour in the tail of
the distribution of the eigenvalues [12].

UMM have also been solved in the double scaling limit [13-17] and their general
features are very similar to the HMM. At finite N they exhibit integrable flows in the
parameters of the potential similar to the HMM [18-21] and in the double scaling limit
they lie in the same universality class as the double-cut HMM [20-23]. The world sheet

1



interpretation of the UMM is not, however, very clear [22]. In view of this it seems
worthwhile to explore their structure further.

It is well known [24] that the string equation of the (p,q) HMM can be described as
an operator equation [P, Q] = 1, where P and @ are scalar ordinary differential operators
of order p and ¢ respectively. They are the well defined scaling limits of the operators of
multiplication and differentiation by the eigenvalues of the HMM on the orthonormal poly-
nomials used to solve the model. The set of solutions to the string equation [P, Q] = 1 was
analyzed in [25] by means of the Sato Grassmannian Gr. It was proved that every solution
of the string equation corresponds to a point in the big cell Gr(*) of Gr satisfying certain
conditions. This fact was used to give a derivation of the Virasoro and W-constraints
obtained in [26,27] along the lines of [28-31] and to describe the moduli space of solutions
to this string equation. The aim of the present paper is to prove similar results for the
version of the string equation arising in the UMM. It was shown in [32] that the string
equation of the UMM takes the form [P, Q | = const., where for the k' multicritical point
P and Q_ are 2 x 2 matrices of differential operators of order 2k and 1 respectively. For
every solution of the string equation one can construct, with this result, a pair of points
of the Gr(®) obeying certain conditions. These conditions lead directly to the Virasoro
constraints for the corresponding 7-functions and give a description of the moduli space of
solutions. We stress that the above results depend solely on the existence of a continuum
limit in which the string equation has the form [P, Q | = const. and the matrices of differ-
ential operators P and Q_ have a particular form to be discussed in detail in subsequent
sections. Our results do not depend on other details of the underlying matrix model.

The paper is organized as follows. In section 2 we review the double scaling limit of
the UMM in the operator formalism [32]. Since the square root of the specific heat flows
according to the mKdV hierarchy we note that its Miura transforms flow according to KdV
and thus give rise to two 7-functions related by the Hirota bilinear equations of the mKdV
hierarchy [33-35]. In section 3 we derive a description of the moduli space of the string
equation in terms of a pair of points in Gr() related by certain conditions. In section 4 we
show the correspondence between points in Gr(® and solutions to the mKdV hierarchy.
The Virasoro constraints are derived from invariance conditions on the points of Gr(®
along the lines of [28,29] . This is most conveniently done in the fermionic representation
of the 7-functions of the mKdV hierarchy. Finally in section 5 we determine the moduli

space of the string equation. It is found to be isomorphic to the two fold covering of the
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space of 2 x 2 matrices <Pz~j(z)>, where P;;(z) are polynomials in z such that Py, (z) and

Pyo(z) are even polynomials having equal degree and leading terms and Pyo(z) and Pyq(2)

are odd polynomials of lower degree satisfying the conditions Pyo(2) + P11(z) = 0.
2. The Symmetric Unitary Matrix Model

In this paper we will study the UMM defined by the one matrix integral
U N T
N = DUeXp{—XTrV(U—I—U )}, (1)

where U is a 2N x 2N or a (2N + 1) x (2N + 1) unitary matrix, DU is the Haar measure
for the unitary group and the potential

U)=> grU*, 2)

k>0

is a polynomial in U. As standard we first reduce the above integral to an integral over

the eigenvalues [6,36] z; of U which lie on the unit circle in the complex z plane.

75 = /{H A Pexpl -3 YoVt )} ®)

27r7z

where A(z) = [] (zr — z;) is the Vandermonde determinant. The Vandermonde determi-
k<j
nant is conveniently expressed in terms of trigonometric orthogonal polynomials [37]

c,ﬂf(z) =2"+2z "+ Z ain_i( 2" 4 z*"+i) N
i=1

= ici(zil)

where for U(2N+1) nis a non—nega’rive integer and i,,q, = 1 and for U(2N) n is a positive
half-integer and i,,q, = 7 — & . The polynomials ¢ (z) are orthogonal with respect to the

inner product

(ehici) = § g el L V(4 2)) 6l ()" ek (2)

2Tz

+
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The expression for the Vandermonde determinant is

e (22

where j=1,...,2N,i=31.3 .. N—ifor U2N)and j=1,....,2N+1,i=0,1,...,N

for U(2N + 1) (where the line ¢, (z) = 0 is understood to be omitted). Then the partition

2

A =

(6)

function of the model is given by the product of the norms of the orthogonal polynomials

[19]

Z]T{, = Hed’ie‘z’; = T](\[+)T](\/-_) ) (7)
n
In constructing the continuum limit of the UMM we will also need the orthonormal func-
tions
mi(2) = e e RV () 8)
such that

The action of the operators z3 = z £ % and 20, on the 7;f(z) basis is given by finite term

recursion relations [19,32]

RE
K (10)
N OF N
0.75) = - 5 S0 () + {y [ H02)nn [nE
r=1 n
N k
- + F
+ 2)\ ;(Uz )n,W*Tﬂ-nfr(z) ’
1 + ot T pt
'Wherelﬁf::e¢$_¢ffl,62$ ::e¢$—¢i,17T% ::%%?. g;ZZ(Qn+1 QH)+(RT,, Rn)’and

=Tk

(0 ) = ;[ P E (2 (20.V (24)) mE(2)

2Tz



The double scaling limit corresponding to the k" multicritical point is defined by N — oo
and A = A., with ¢t = (1 — %)N%, y=(1- %)N% held fixed. Tt was shown in [32]

that the operators z4+ and zd, have a smooth continuum limit given by

z+—>2+N_ﬁQ+, Z_—)*ZN_ﬁQ_,

(11)

1
20, — N4 Py |

where Q4 are given by

[ (0+v)(0—v) 0 12
Q+< 0 (81))(8+?))> 2

and Py, by

Pr = (f?;i %’“) : (13)

2 is proportional to the specific heat

Here 0 = % and © =t + y. The scaling function v
—021In Z of the model. The operators Py, are differential operators of order 2k. The same
assertions hold if we introduce sources tox41(t; = x) and deform the & multicritical

(k—1)
potential Vi to Vi(z) — Zt2l+1W(z)N22k+1 . From [20,, z_] = z4 it follows that
I

P, Q-] =1, (14)

where Q_ has the form (12) and Py has the form (13). We stress here that this equation
holds for the system perturbed away from the multicritical points as well as exactly at
multicriticality. Our main aim is to study equation (14) - the string equation for the
UMM.

For completeness we will present here some information about the solutions of (14)
that was obtained in [32] (or follows from the same analysis). Most of these facts will also
follow from the results of Sections 3-5; the reader may go directly to these sections.

It is proved in [32] that P}, are given at the k! multicritical point by
Pk == f)k -, (15)

where

B =y {0+ 0)[(0 )@+ o))y (16)
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and a, ' = 2(2k+1) Y (—1)" 12 F(k]—ggf—i_)lflz:jg+1)' Here W, denotes the differential part of
=1
a pseudodifferential operator ¥. One can give the corresponding expression P = — Y (2[4
1>1

1)t25+1f’l — x for perturbations from the k'™ multicritical point. These expressions can be

used to get an ordinary differential equation for the specific heat v in the form
DRy [u] = agvz, (17)

where D = 9+ 2v, u = v —v', and Ry, [u] are the Gel’'fand-Dikii potentials defined through

the recursion relation
1., 1 1
ORgy1]u] = 18 — 5(811, + ud) | Rg[u], Rolu] = 7" (18)

In the non-critical model the analogous equation is

> (20 + 1)t 1 DRy[u] = —va . (19)
I>1
The equation [20,,z.] = z_ in the continuum limit becomes [Py, Q4] = 2Q  and is

consistent with the relation Q% = Q..
Equation (17) is closely related to the mKdV hierarchy. Indeed, by slightly modifying

the calculations of [22,23], one can show that v flows according to the mKdV hierarchy

ov

— —ODRy[u]. 20
T ulu (20)
By introducing scaling operators
oK) = InZz 21
(o) = 5o 1)
one can show that
(oro000) = 200DR[u] . (22)

Then {ogo0) = —v% and (opo000) = (opog) imply equation (20).

_90
Otag 41

If v flows according to mKdV, then the functions u; = v + v’ and us = u = v? — o'

will flow according to KdV, being related to v by the Miura transformation. The flows of

17 and ue have associated T-functions 73 and 7 such that

u = —20%Inm, s = —20%In 1. (23)



Then

v=0aln2 (24)
T1

v? = —0%In (1172)

3

The Miura transformation u; = v? + v’ yields the simplest bilinear Hirota equation of the
mKdV hierarchy [33-35], namely

D7 -1y =119 — 27{Th + 117§ =0 (25)

where D denotes the Hirota derivative. The structure of this hierarchy will be examined
further in section 4. Note that (24) shows that the partition function Z of the UMM is
given by

7 =T1-To (26)

with the two mKdV 7 functions being related by (25) .

3. The Sato Grassmannian

The partition function of the UMM was shown in Section 2 to be the product of two
mKdV 7-functions 7 and 7. As will be explained in Section 4, any 7 function that can
be represented by a formal power series corresponds to a point of the big cell of the Sato
Grassmannian Gr(%). It will be shown that the mKdV flows can be described by the flows
of two points V;, Vo € Gr(®) that are related by certain conditions preserved by the flows.
The string equation will impose further conditions that will pick out a unique pair (V, V3).
It will further impose constraints on the 7-functions, which turn out to be the expected
Virasoro constraints [22,23]. The treatment described here follows closely that for the case
of the HMM [25-31].

Consider the space of formal Laurent series

H:{Zanz", ap =0 for n>0}

n

and its decomposition
H=H,®H_,

where Hy = {>_ anz", a, =0 for n > 0}. Then the big cell of the Sato Grass-
n>0

mannian Gr() consists of all subspaces V' C H comparable to H,, in the sense that the

natural projection 74 : V — H_ is an isomorphism.
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Consider the space ¥ of pseudodifferential operators W = Y w;(z)0* where the
i<k

functions w; () are taken to be formal power series (i.e. w;(z) = Y wipz®, wip =0, k>
k>0
0). W is then a pseudodifferential operator of order k. It is called monic if wy(z) = 1

and normalized if wg_1(z) = 0. The space ¥ forms an algebra. The space of monic,
zeroth-order pseudodifferential operators forms a group G.

There is a natural action of ¥ on H defined by
x™0" H — H

d
¢%(*E

)" (2)" ¢

Then it is well known [38] that every point V' € Gr(®) can be uniquely represented in the
form V = SH, with S € G. This will imply that for every operator Q_ we can uniquely
associate a pair of points Vi, Vo € Gr(9).

Indeed, consider S; and Sy € G such that

SQ S '=9_ (27)
where 5
v (S 0\ =~ [0
(3 20
Then
S1(0+v)S; =10
(29)
Sy(0 —v)Syt =0
which imply that
51(82—’&1)5;1:62 ’LL1:’U2+’U/,
(30)

So (0% — ?1,2)52_1 =02 wuy =020,
The existence of S; € G follows from the general fact [39] that for every monic normalized

pseudodifferential operator £ of order n there exists an S such that SLS~! = 9".

Given S7, one can determine Sy from
S1(0 +v) = 08S,.

By taking formal adjoints of (29) and (30), it is easy to show that S; and Sy be made
simultaneously unitary. Indeed, from (30) we obtain
(S, (0 —a)s] = 0° =
(S18])~10%(8:8)) = 9* = (31)
5151 = f(az) )
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where f is arbitrary. Similarly S5} = ¢(92). But since (27) implies

s$h (5 a)esn=(5 0). (32)

then )
aaty _ ( f0%) 0
ssh= (100 0)
gives
dg = [0,
of =g0,

or, f = g. Therefore S; and Sy can be simultaneously chosen to be unitary, i.e 5151' =1
and SZS;r = 1.

Since V' C Gr(® is given uniquely by V = SH,, the operator Q_ determines two
spaces V3 = S1Hy and Vo = SoH,. Conversely given spaces V7 and V, determine Q_
uniquely. The operator Q_, however, is a differential operator and V7, V5 cannot be arbi-

trary. Indeed, since every differential operator leaves H, invariant, we obtain

(8 + U) H+ C H+ <:>Sf1352 H+ C H+
IV, C W, (33)

SzVoCVy

Similarly, z Vo C V;.
The string equation will impose further conditions on V; and V5. After transformation

with the operator S equation (14) becomes

[P(k), Q,] =1 (34)

~

where 75(k) = SP(k).SA”*l. The solution to (34) is

5 0 —z + fi(0)
Py = <—x AT) 0 ) (3)

which gives Py = SiH(—z+ fk(a))Sg and PJ(rk) =S (—z+ fk((‘)))Sl. Consistency
requires therefore that —z + f3(9) must be self adjoint f(0) = fx(0%). For the k™"
multicritical point Py, is a differential operator of order 2k. Therefore (0% = 0% +. ...

By using the freedom to redefine S; by a monic, zeroth-order, pseudodifferential operator

9



R =1+ r;0~" with constant coefficients r;, it is easy to show that all negative powers in
i>1
f1(0%) may be eliminated. The proof shows that all powers below 9~' can be eliminated

by R, and a 07! term is forbidden by self-adjointness. Therefore

(@) =0+ Y fila)o**D (36)

1<i<k

By Fourier transforming, the action of P on H is represented by

k
=~ ([0 A _d 2 L
Py = <Ak 0 > ,where A = = + ;a,z and «; =const. (37)
Given the constants «;, we can calculate the operator P . Since Sy(0 — v)(d +
v)Sy 1 = 02 implies S[(9 — v)(d + v)]F" 285t = 82! then using S1(0 + v)S; L = 9 we
obtain
$1(0+0)[(0 =)@+ )] 728, = 0% (38)

Transforming back to H, we obtain
k
P(k) = Sl_l(*l' + Z (11822)82
i=0

k
=S (-t o)Sa+ Y Sy 1078, (39)
i=1
k
=S (—o+ag)S2+ Y ai(d+0)[(0—v)(@+v)]" 2
i=1
Comparing with (16) and since S7'2Sy = 2 + 3 ¢;()0™*, we conclude that at the k"
i>1
multicritical point, ap = 1 and «; = 0 for « < k. Moreover, by perturbing away from the

multicritical points we see that

The requirement that P be a differential operator is equivalent to the conditions
A Vi C Vo and A Vo C Vi. The space of solutions to the string equation is the space of
operators Q_ such that there exists Py with [Py, @_] = 1. We conclude that this space

is isomorphic to the set of elements Vi, Vo € Gr() that satisfy the conditions:

zVicVa, zVoCWy
Ak VicVy AkVQ Wi

(41)
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for some Ay = 4L + Ek: a; 2%

It is now easy tz():ghow that the string equation is compatible with the mKdV flows
(20). We will show in the next section that the mKdV flows for the scaling function v are
equivalent to the condition

0
Otak+1

Vo= (i=1,2). (42)
Then V;(t) = exp{>_ tor4122*t1}V; = v(t, 2)V; and (41) imply
k

z2y(z,)V1 C y(t, z)Va = 2z Vi(t) C Va(t)

(43)
Ak(f) ’}/(Z, t)Vl C ’}/(t, Z)Vg = Ak(f) Vl(t) C Vg(t) ,

where

Ap(t) = yARry ™' = A~ ) (2K + Dtopy 27 (44)
k

and analogous equations with V; and V5 interchanged. This is clearly consistent with (40).

From (41) we see that 22, zA and A? leave V] 5 invariant. In the next section we show
that this fact implies Virasoro constraints for the 7-functions associated with the mKdV
flows of the UMM.

4. The mKdV 7-functions and the Virasoro constraints

In this section we will describe the 7-function formalism for the mKdV system and
give a derivation of the Virasoro constraints on the 7-functions of the UMM. These will
be derived from the invariance conditions (41) on the spaces V; and V5 following the lines
of [28,29] for the HMM. The idea is to transform the Virasoro generators into fermionic
operators in the fermionic representation of GL(00) using the boson-fermion equivalence.
Then using the correspondence between GI(oco)-orbits of the vacuum and Gr(®), annihi-
lation of the 7-function by the Virasoro constraints L,, is shown to be equivalent to the
invariance of V € Gr(® under the action of operators 22" Axqy. In [25,30], it was shown
that Agxg4y was nothing but the operator P of the HMM acting on Gr(©), and the Virasoro
constraints were proved from the string equation. We summarize below these results and
derive the Virasoro constraints for the UMM from the conditions (41).

First we introduce the fermionic representation of GL(o0) on the Fock space F of free

fermions. The fermionic operators are defined to satisfy the anticommutation relations

(i dly =65, {dnvsy={wlgj} =0 (i€2). (45)

11



The vacuum |0 > satisfies
Pil0>=0 for i>0, Plo>=0 for <0, (46)
and the states ( m > 0)

m>=l . pl0>] | —m >=_myr.. . 10]0 > (47)

are the filled states with charge m and —m respectively. The operators w;-r and ; have
been assigned charges 1 and —1 respectively and the vacuum |0 > charge 0. The normal

ordering is defined by

'i' .
ot o — apt tooo J Yty >0
s = — < iy >= v 48
Then the fermionic representation of the algebra gl(oo) is defined by !
_ Y 1 F 49
rr(a)lx > tYiagy x> a€gl(oo) [x >€ (49)

1,]

and of the group GL(c0) by

RF(Q)(%”LMQ---%MQ )\ —m>=

(50)
(@19 (i (9 (g)ia ) [ =m0 >

for m > 0 such that (yTg) ; = wT_j for 5 > m. In (50), g € GL(cc) and (¢Tg); = w;fgj,;
and (gv); = gij¢j. The above representation conserves the charge and therefore preserves
the decomposition

F = @mEZF(m)

where F("™) is the space of states with charge m. The first step in order to establish the

boson-fermion correspondence is to define the current operators

Jo=Y_tf 0 mez (51)

re’z

! Note that this representation of gl(co) and GL(c0) is equivalent to the infinite wedge

representation [34].
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which satisfy the bosonic commutation relations
[Ty JIn) = MOy, _p, . (52)

Then we define an isomorphism ¢ : F — B where the bosonic Fock space B = @meZB(m) &~

Clt1,ta,...,;u,u '] of polynomials in #1,%,...,;u,u ! by the requirement
m —1 0 —1
a(\m > ) =u", oJy,o "= . (n>0) oJy,o " =-nt_, (n<0). (53)
n

Then the state |x >€ F is represented in B by

™ (tu,u”t) = u™ < m|ezv21 thp|x >= Z u™TX (1) (54)
me7Z meZ
Note that ¢ = @®mez0m, where o, @ F™ — B = ymClty t,y,...] and 7(t) =

@mEZTm(t)-
Then one observes that if the state |g >q belongs to the GL(o0) orbit of the vacuum
(i.e. |[g >0 = g|0 > for some g € GL(c0)), then > wj\g >0 @Yjlg >0 = 0 leads to the
JEZ
bilinear Hirota equations for the 7-functions of the KP hierarchy (see [33 35] for details).
The KP 7-function belongs to the GL(o0) orbit of the vacuum and is given by

7 =< 0je2=r>1"7410 > € GL(o0) - 1. (55)

Similar considerations apply for the £*! modified KP (mKP) hierarchy. This is defined

by the equation Z wj-|g >k ®9ilg >0= 0 where |g >j belongs to the GL(c0) orbit of
the state [k > of](e4z7). Kac and Peterson [33] showed that this is equivalent to the mKP
r-function 7(t) = 13 (t) @ 70(t) lying on the GL(o0) orbit of |k > & |0 >.

One can go further and observe that the Kac-Moody algebra of s, (thought of as
sly (n, Clu, u'])) when embedded in gl(co) has irreducible highest weight representations
on the space B(,) = @fﬁ;llBg?)) where Bg?)) = Clt;|j # 0modn] c B(™). Therefore one
can restrict the mKP(resp. KP) hierarchies and obtain the so called n-reduced mKP (resp.
KP) hierarchies. Then one can show [33] that the r-function 7,y = @} 7% belongs to the
SL, orbit of the sum of the highest weight vectors @:’T’L;lolm. We are mainly interested in
the second reduced mKP hierarchies. Then the simplest bilinear Hirota equations give for
uj = —20°In7;,i = 1,2 and v = In 7 equations (23) and (24), and we obtain the mKdV

hierarchy.
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Now we want to establish the relation between elements of Gr(®) and fermionic states.

Consider V' € Gr(®) spanned by the vectors {¢;} (i = 0,1,2,...) where ¢; = 3 ¢irz* € H.
kEZ

Associate to every ¢; € V a fermionic operator ¢1[¢;] by

Vg = binth} (56)

keZ

and to every V € Gr(") the state |v > belonging to the GL(co) orbit of the vacuum and
such that
PHgllo >=0 Vi, (57)

where V is spanned by the functions {¢;}. Then because bilinear fermionic operators
0= :layy;: (58)
2

satisfy
Wi al =Y ainte, [a,9]] =) vlax, (59)
K

k

we can associate to them operators a acting on H by

ah(z)=>_ (Zakh>zk (h(z) € H). (60)

k i
Then if
a1 < a1 and a9 <> as then
o (61)
a1, 2] < [a1, az].
Moreover, one can prove [28,29] that if [v > corresponds to V € Gr(), then
alv >= const.|v > aV C V. (62)

The proof follows immediately from the remark that [a,9T(¢)] = ¥ (ap) (see (59)). Thus if
alv >= const.|v > and ¢ € Vie. YT(¢)|v >= 0, then ¢ (ag)|v >= (ayT(¢) T (¢p)a)|v >=
0 and hence a¢p € V. In other words aV C V. In a similar way one can establish the
implication in (62) in the reverse direction. From the above discussion we see that if V; o
are to describe mKdV flows then they should correspond to states |v; >€ GL(cc) - |0 >

and |vg >€ GL(00) - |1 >. Then since |v; >=exp{ Y t,Jp}|v; > or
p>1

v >¢= Joga1|v; >y, (63)
Otopy1
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equation (60) yields (42).

Consider the Virasoro operators

2n—1

EZKanp+ d;” n>0 (64)

p_fC)O

acting on the 7-functions associated with the states |g >;

i(t) =<i— 1 exp{) _tpJy}lg > i=12. (65)
p=>1
Then shift the times f2;41 — f2;41+ 5755 for i < k, where the o; are defined in (37). Then
Ti(t) = 7/(t) =< i— 1] exp{)_(t, +t{) ]} g >i,
p2>1
Tt Jop 1 st Jop i1
L, — L. = e Lo o (66)
k
=Ln + Z pJa(ntp)+1
p=0

In [28,29] it was shown that the fermion operators L], correspond via (60) to the operators

1 1 d b
- 2n+1A — _ 2n+1 .21
57 57 (_dz + pgzo ;i ) . (67)

Then, because of (62), invariance of Vi 5 under z?"*!1A (see (41) ) implies that the 7-

functions 7; are annihilated by the L,,’s for n > 1 and
L()Ti = UT; . (68)

The constant g is an arbitrary parameter. Such a parameter does not appear for L, (n > 1)
by closure of the Virasoro algebra. As pointed out in [23] it is the same for the two 7-
functions and it cannot be determined by the closure of the algebra since, contrary to
the HMM, L_; is absent. If one includes boundary conditions then there exists a one
parameter family of solutions to the string equation with the correct scaling behaviour at
infinity [40]. It has been suggested in [23] that the parameter of such a particular solution
is related to p. The Virasoro constraints are then those of a heighest weight state of
conformal dimension p. Although L. is absent one should bear in mind the additional

constraints arising from the interrelation of 71 and 75 determined by equation (41).
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5. Algebraic Description of the Moduli Space

In this section we attempt to give a complete description of the moduli space of the
string equation (14). As already mentioned, the space of solutions to (14) is isomorphic
to the set of points V3, Vy of Gr(%) that satisfy the conditions (41). Therefore we will start
by describing the spaces Vi, Vs.

First choose vectors ¢1(z), ¢2(z) € Vi, such that

¢1(z) = 1 + lower order terms, ¢o(2z) = z + lower order terms

Then the condition 22 V; C V; and 7, (V1) & H, shows that we can choose a basis for V;

¢17 ¢27 22¢1, 22¢2, s

Since zVy C V5 and 74 (V2) & H, we can choose a basis for V5 to be

wv Z¢1, Z¢2, Z3¢1: Z3¢2: fee

where ¢(z) = 1 4 lower order terms. Using z Vo C V; we have z¢p = a¢p; + [Sp2. Choose
¢1, ¢2 such that z¢p = ¢o. Then we obtain the following basis for Vi, Vo (¢ = ¢1):

Vi ¢= Z¢=Z2¢: 237707---

(69)
Va ¢:Z¢= Z2¢=Z3¢7---

Then it is clear that ¢, specify the spaces Vi, V5. Using the conditions AV; C V5 and
AV,y C Vi we obtain

(dii + fu(2%))d = Poo(2)¢ + Por(2)y -
(% + (22 = Pio(2)p + Pri(2)1.

The polynomials Pyo(z) and Piq1(z) are odd whereas Py1(z), P1o(z) are even. Comparing
both sides of (70) we find that because deg(fx) = 2k, deg(FPp1(2)) = deg(Pio(z)) = 2k and
deg(Py11(2)), deg(Poo(z)) < 2k and that the coefficients of the leading terms of Pyq(z) and
Pyo(z) are equal to ay.

Equations (70) can be rewritten in the form

Dx = Bap(2)x (71)
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where y = (f;),

b= <% di:;) - Bale) = <P00(21M£k(22) Pn(SOl(Zf)k(Zz)> ' 72)

The requirement that ¢, 1 be solutions of the form 1 + (lower order terms), rather than
exponential, puts further constraints on the matrix Bog(z). It requires that the eigen-

values A(z) of B must vanish up to O(z72%), i.e AMz) = Y. Az7%"!. Indeed then

i>1
x ~ exp [FA(2')dz’ ~ exp—2L ~ 1 — Xz7! + ..., as desired. But then detBag(z) is
of O(z=*) and
1 1
for(2%) = §(P00(Z) + P11(2)) £+ \/Z(POO(Z) + P11(2))2 — A4+ 0(z7%) (73)

where A(2) = Pyo(2)P11(2) — Po1(2)Pio(2). Since f(2?) is an even function of z, the odd
parity of Pyg(z) and Pj1(z) determine that Pyo(z) + Pi1(z) = 0.

Conversely, given a 2 x 2 matrix | P;;(z) | with Pyi(2), Pig(2) even polynomials of

degree 2k and Pyo(z), P11(z) odd polynomials of degree < 2k such that Pyo(z) + P11(z) =

0, we will show that we obtain exactly two solutions to the string equation (34). The

eigenvalues A(1:2)(2) of <Pij(z)> are given by
A2 () = £/—A(2) (74)

k N
and \D(2) = 2 /\;7,)’22] (1 =0,1). Then the matrix By of (72) with

j=-—o

k
@), 2y @),2m @) G _JO ~m=>0
fo (27) = Z Oy 2 Oy — A = {7& 0 at least for 0 > m (75)

m=—0oQ

will have determinant at most of O(2~*). Then the system (70) will have solutions ¢(z)
and 1(z) of the form ¢(z), ¢¥(z) = const. + lower order terms. We can set the constant to
one by requiring that the leading terms of the polynomials Py;(z) and Pjo(z) are equal.
Since we know from the discussion at the end of section 3 that the m < 0 terms of the
operator A can be gauged away, we see that each eigenvalue )\(’:)(z) specifies a unique
solution to the string equation (34).

Hence the space of solutions to the string equation (14) is the two fold covering of the

space of matrices (R,(z)) with polynomial entries in z such that Pyi(z) and Pio(z) are

17



even polynomials having equal degree and leading terms and Pyo(z) and P;i(z) are odd

polynomials satisfying the conditions Pyo(z) + P11(z) = 0 and degPyg(z) < degPy1(z).
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