
Syracuse University Syracuse University 

SURFACE SURFACE 

Physics College of Arts and Sciences 

1992 

Unitary One Matrix Models: String Equation and Flows Unitary One Matrix Models: String Equation and Flows 

Konstantinos N. Anagnostopoulos 
Syracuse University 

Mark Bowick 
Syracuse University, Physics Department 

Follow this and additional works at: https://surface.syr.edu/phy 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Anagnostopoulos, Konstantinos N. and Bowick, Mark, "Unitary One Matrix Models: String Equation and 
Flows" (1992). Physics. 55. 
https://surface.syr.edu/phy/55 

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been 
accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/phy
https://surface.syr.edu/cas
https://surface.syr.edu/phy?utm_source=surface.syr.edu%2Fphy%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fphy%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/phy/55?utm_source=surface.syr.edu%2Fphy%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


SU-4238-504Unitary One Matrix Models:String Equation and Flows�
Konstantinos N. Anagnostopoulos and Mark J. Bowick1Physics DepartmentSyracuse UniversitySyracuse, NY 13244-1130, USAAbstractWe review the Symmetric Unitary One Matrix Models. In particular we discuss thestring equation in the operator formalism, the mKdV ows and the Virasoro Constraints.We focus on the � -function formalism for the ows and we describe its connection tothe (big cell of the) Sato Grassmannian Gr(0) via the Plucker embedding of Gr(0) into afermionic Fock space. Then the space of solutions to the string equation is an explicitlycomputable subspace of Gr(0) �Gr(0) which is invariant under the ows.

February 29, 1992� Invited talk delivered by M. J. Bowick at the Vth Regional Conference on Mathe-matical Physics, Edirne, Turkey; December 15-22, 1991.1E-mail: Konstant@suhep.bitnet; Bowick@suhep.bitnet.



1. IntroductionOne Matrix Models are quantum mechanical systems whose partition function is de-�ned by an integral of the form:ZM = Z dM expf�N� trV (M)g ; (1)whereM is an N�N matrix and the potential V (M) is a polynomial inM . In the last fewyears, there has been tremendous progress [1{4] in matrix models through the discovery ofa connection of a certain class of these models to two dimensional gravity coupled to (p; q)minimal conformal matter. This happens when M is a hermitian matrix (HMM) or whenone considers generalizations to a (q � 1) hermitian multi-matrix model (MHMM), where(q � 1) hermitian matrices are coupled linearly to each other [5]. In the former simplercase, the Feynman graphs of the zero dimensional �eld theory are viewed as being dual toa discrete dynamical polygonation of an oriented two dimensional Riemann surface. Thenthe perturbation series can be summed in the formZM = 1Xh=0N�Zh (2)where � = V �E+L is the Euler character of the corresponding surface and h is its genusgiven by � = 2�2h. Since the number of vertices V , edges E and loops L of the Feynmangraph correspond respectively to the number of faces F , edges E and vertices V of thedual graph, the above series can be shown to correspond to the discretized version of thepartition function of pure two dimensional gravityZGra =Xh XT 1C(T ) exp���BA+ 14�GB �� : (3)In (3) A is the area of the surface, �B and GB the bare cosmological and Newton's constantand C(T ) is the symmetry factor of the polygonation corresponding to dividing by thevolume of the di�eomorphism group of the surface. The equality of (2) and (3) is achievedby identifying � = e��B and N = e 14�GB . The action in (3) can also be viewed as theaction of a string theory embedded in zero dimensional spacetimeSstr = log�B Z d2�pgR+ �B Z d2�pg : (4)1



Then (2) gives the genus perturbation expansion with �B = 1N , the bare string coupling.The naive continuum theory is taken by letting N !1. In this case the area A divergesand the polygonated surface is thought to approach a smooth Riemann surface. For acritical value �c of �B the increasing entropy of large surfaces compensates the Boltzmannfactor and the system undergoes a (third order) phase transition. If the critical point isapproached in an arbitrary way, only the sphere Z0 contributes to (2). The remarkableobservation [1{4] was that since the singular part of Zh � (�B � �c)�(1+ 12k ) with k apositive integer, one can obtain contributions from all genera by simultaneously takingthe large N -limit and letting �B approach its critical value �c in a coordinated way. Theinteger k labels a series of multicritical points reached by tuning k parameters in thepotential V (M). Introducing a cuto� a in the theory, we de�ne the string coupling �0 andrenormalized cosmological constant �R to be�0 = a�(2+ 1k )N ; �R = �B � �ca2 : (5)The double scaling limit is de�ned by taking N !1 and �B ! �c while keeping �0 and�R �xed. Then the continuum limit of (2) becomesZstr = 1Xh=0��Zh ; (6)with � = �0�R . The series (6) is horribly divergent. It is non-Borel summable since everyterm increases as (2h)!. This reects our ignorance in summing the perturbation series ofstring theory although the �xed genus partition function Zh can be calculated and is wellde�ned. Happily, the theory is exactly solvable at the multicritical points and its dynamicalcontent is given by a single di�erential equation, the string equation. The string equationis a di�erential equation in the variable x satis�ed by the speci�c heat �@2 logZ, with�2 = x�(2+ 1k ). It possesses solutions that in the weak coupling limit �! 0 are asymptoticto (6) and we say that the double scaling limit provides a non-perturbative de�nition ofZstr. Indeed comparison with calculations directly from the continuum theory indicatesthat Zstr corresponds to two dimensional gravity coupled to (2k�1; 2) minimal conformalmatter. Even more interesting is the discovery that the double scaling limit of (q � 1)MHMM gives two dimensional gravity coupled to (p; q) minimal conformal matter [5].Unitary One Matrix Models (UMM) form another interesting class of matrix models.These are de�ned by (1) with M being a unitary matrix U . The interest in those models2



arose a long time ago when Gross and Witten [6] showed that the partition function oftwo dimensional U(N) QCD on a lattice is given by ZQCD = (ZU ) Va2 and that the theoryundergoes a third order phase transition in the large N limit (V is the volume of the twodimensional world and a is the lattice cuto�). The theory was also shown to posses adouble scaling limit N !1 and �! �c with t = (1� nN )N 2k2k+1 and y = (1� ��c )N 2k2k+1held �xed [7,8]. The string equation is a 2kth order di�erential equation of the functionv in the variable x = t + y, with v2 = �@2 logZ. It has solutions that are asymptotic to(6) in the limit x ! 1 with �2 = x�(2+ 1k ). The identi�cations of those solutions withconformal �eld theories coupled to two dimensional gravity or other interesting systemsis still, however, an interesting open problem. Some interesting suggestions have beenmade in [9]. Moreover, the surface interpretation of UMM is not as clear as in the case ofHMM. In [10] Neuberger views the unitary matrix as U = eiM where M is hermitian andintroduces N�N hermitian fermionic matrices  and  to exponentiate the Haar measuredU ! dMdet( �U�M ). The resulting surfaces contain an in�nite number of types of bosonicvertices forming bosonic \webs" and fermionic loops forming their boundaries that mightallow a stringy interpretation of the UMM. For another interesting suggestion see [11]. Itis also interesting to note that UMM belong to the same universality class as the HMMin a di�erent class of multicritical points, the double-cut HMM [9,12]. This is expectedsince the critical behaviour is governed by the scaling of the density of the eigenvalues atthe edge of its support [13] and the eigenvalues of the two models models scale identicallythere.The continuum theory obtained in the double scaling limit has a very rich mathemat-ical structure. When one considers perturbations by the scaling operators < �k > withsources tk, the dependence of the speci�c heat (or its square root for the UMM) on the\times" tk is given by KdV ows [5,14] for the HMM and mKdV ows for the (symmetric)UMM. The partition functions of the theory are found to be given by the corresponding� -functions [15{17] which can be thought as sections of a line bundle over the UniversalGrassmannian. Furthermore the � -functions that solve the string equation are annihilatedby constraints which for the one matrix model are the Virasoro constraints [15{18]. Allof those results have counterparts in the discrete theory. The integrable ows are nowwith respect to the couplings in the potential V (M). For the UMM these are given byToda ows on the half line [19] and the partition function is given by the product of twoToda-chain � -functions. The Virasoro constraints Ln have the simple interpretation of3



corresponding to invariance of the partition function under speci�c transformations, whichfor the UMM are given by �U = �n(Un+1 � U1�n).An interesting observation is that the string equation can be written in the form[P;Q] = 1 where P and Q are di�erential operators for the HMM [5] and 2� 2 matrices ofdi�erential operators of speci�c order for the UMM [20]. They correspond to the continuumlimits of operators acting on the space of orthonormal functions used to solve the model.One can use this form of the string equation to determine easily the points in the UniversalGrassmannian that solve the string equation [21]. For the UMM these are found tocorrespond to a pair of points V1 and V2 in the (big cell of the) Sato Grassmanniansatisfying certain invariance conditions. It is very important that the mKdV evolution ofV1 and V2 gives new solutions to the string equation. The � -functions that correspond toV1 and V2 are shown to satisfy the Virasoro constraints in this formalism [22] since theconstraints are derived from the same invariance conditions that solutions to the stringequation satisfy [23{26].This article is organized as follows. In section 2 we review the discrete formulationof the symmetric UMM. The method of the orthogonal polynomials in the trigonometricbasis is summarized and the Toda ows and Virasoro constraints are discussed. In section3 we describe the double scaling limit and describe how the mKdV ows arise. In section 4we give a non-rigorous approach to the connection between the Sato Grassmannian and themKdV ows starting from the �nite dimensional Grassmannians. In section 5 we describethe connection of the Sato Grassmannian to the solutions to the string equation.2. The Symmetric Unitary Matrix ModelIn this paper we will study the UMM de�ned by the one matrix integralZUN = Z DU expf�N� TrV (U + Uy)g ; (7)where U is a 2N � 2N or a (2N + 1)� (2N + 1) unitary matrix, DU is the Haar measurefor the unitary group and the potentialV (U) =Xk�0 gk Uk ; (8)is a polynomial in U . As standard we �rst reduce the above integral to an integral overthe eigenvalues [6,27] zi of U which lie on the unit circle in the complex z plane.ZUN = Z fYj dzj2�izj g j�(z)j2expf�N� Xi V (zi + z�i )g ; (9)4



where �(z) = Qk<j (zk � zj) is the Vandermonde determinant. The Vandermonde determi-nant is conveniently expressed in terms of trigonometric orthogonal polynomials [28]c�n (z) = zn � z�n + imaxXi=1 ��n;n�i( zn�i � z�n+i)= �c�n (z�1) (10)where for U(2N+1) n is a non-negative integer and imax = n and for U(2N) n is a positivehalf-integer and imax = n� 12 . The polynomials c�n (z) are orthogonal with respect to theinner product hc+n ; c+mi = I dz2�iz expf�N� V (z + z�)g c+n (z)�c+m(z)= e�+n �n;m ;hc�n ; c�mi = e��n �n;m ;hc+n ; c�mi = 0 : (11)
The expression for the Vandermonde determinant isj�(z)j2 = ����det� c�i (zj)c+i (zj)� ����2 ; (12)where j = 1; : : : ; 2N , i = 12 ; 32 ; : : : ; N � 12 for U(2N) and j = 1; : : : ; 2N +1, i = 0; 1; : : : ; Nfor U(2N +1) (where the line c�0 (z) � 0 is understood to be omitted). Then the partitionfunction of the model is given by the product of the norms of the orthogonal polynomialsZUN =Yn e�+n e��n = � (+)N � (�)N : (13)The functions � (+)n and � (�)n are Toda chain � -functions on the half line [19]@2��n@g21 = e��n+1���n � e��n���n�1 ; (14)with solutions e��n = �(�)n+1�(�)n .The orthogonal basis of polynomials chosen is especially useful for constructing theoperator formalism of the theory. When acting on the basis of orthonormal functions��n (z) = e���n =2e� N2�V (z+)c�n (z) (15)5



such that h�+n (z); �+m(z)i = I dz2�iz �+n (z)��+m(z)= �n;m ;h��n (z); ��m(z)i = �n;m ;h�+n (z); ��m(z)i = 0 ; (16)
the operators z� = z � 1z and z@z give �nite term recursion relationsz+ ��n (z) =qR�n+1��n+1(z)� r�n ��n (z) +pR�n ��n�1(z) ;z� ��n (z) =qQ�n+1��n+1(z)� q�nsQ�nR�n ��n (z)�qQ�n ��n�1(z) ;z@z��n (z) = �N2� kXr=1(v�z )n;n+r��n+r(z) + �nsQ�nR�n � N2� (v�z )n;n���n (z)+ N2� kXr=1(v�z )n;n�r��n�r(z) ; (17)
where R�n = e��n���n�1 , Q�n = e��n���n�1 , r�n = @��n@g1 , q�n = (Q�n+1�Q�n )+(R�n+1�R�n )r�n�r�n , and(v�z )n;n�r = I dz2�iz ��n�r(z)� fz@zV (z+)g��n (z) :Then the discrete string equation is given by the relation [z@z; z�] = z�.Invariance of the partition function under the transformations�nU = �(Un+1 � U1�n) n � 1 ;implies that the partition function is annihilated by the Virasoro constraintsLn = 1Xk=0 kgk @@gk+n + 12 X1�k�n @2@gk@gn�k : (18)In [19] it was argued that the string equation can be viewed as a consistency condition ofthe integrable hierarchy and the Virasoro constraints.3. The Double Scaling Limit6



The continuum limit of (7) is taken by letting N ! 1. Then the eigenvalues �i,where zi = ei�i , become continuously distributed over the unit circle jzj = 1 and theirdistribution is described by the density of eigenvalues�(�) = dsd� ; s = iNZ ac�ac �(�)d� = 1 0 < ac � � : (19)If �(�) is given, quantities of physical interest, like the free energy Fsph = 1N2 logZ, canbe calculated. For example the saddle point approximation of (7) givesFsph = 2� Z ac�ac d��(�)V (2 cos�) + P Z ac�ac d�d��(�)�(�) log j sin �� �2 j+ const: ; (20)where P denotes the principal value of the integral. Then one can think of the eigenvaluesas a Dyson gas of electric charges on the unit circle subject to their mutual Coulombrepulsion and an external potential V . In the weak coupling limit �!1 the eigenvaluestend to distribute uniformly on the circle, whereas in the strong coupling limit �! 0 thecharges are localized, say at the point z = 1. The system undergoes a phase transitionprecisely when the eigenvalue distribution develops a cut at z = �1 and it happens when�c = 1. Near the cut �(�) scales as�k(�) � ck(1� sin2 �2 )k �! � ; (21)and we obtain a third order phase transition with F � (���c)2+ 1k [6]. The kth multicriticalpoint is obtained by tuning k couplings in the potential V (U) to their critical values.The double scaling limit [7,8] corresponding to the kth multicritical point is de�nedby N ! 1 and � ! �c, with t = (1 � nN )N 2k2k+1 , y = (1 � ��c )N 2k2k+1 held �xed. It wasshown in [20] that the operators z� and z@z have a smooth continuum limit given byz+ ! 2 +N� 22k+1 Q+ ; z� ! �2N� 12k+1 Q� ;z@z ! N 12k+1 Pk ; (22)where Q� are given by Q� = � 0 @ + v@ � v 0 � ;Q+ = � (@ + v)(@ � v) 00 (@ � v)(@ + v)�= Q2� ; (23)
7



and Pk by Pk = � 0 PkPyk 0 � : (24)Here @ � @@x and x = t + y. The scaling function v2 is proportional to the speci�c heat�@2 lnZ of the model. The operators Pk are di�erential operators of order 2k. The sameassertions hold if we introduce sources t2k+1(t1 � x) and deform the kth multicriticalpotential Vk to Vk(z)�Pl t2l+1Vl(z)N 2(k�l)2k+1 . From [z@z; z�] = z+ it follows that[P;Q�] = 1 ; (25)where P = �Pl�1(2l + 1)t2l+1~Pl � x with ~Pl = Pl + x. The function v(x) becomes afunction of x and the times ft2l+1g and obeys the string equationXl�1(2l + 1)t2l+1D̂Rl[u] = �vx : (26)where D̂ = @+2v, u = v2�v0, and Rk[u] are the Gel'fand-Dikii potentials de�ned throughthe recursion relation@ Rk+1[u] = �14@3 � 12(@u+ u@)�Rk[u] ; R0[u] = 12 : (27)The dependence of v on the times ft2l+1g is given by the mKdV ows@v@t2k+1 = �@D̂Rk[u] : (28)It is very important that (28) is compatible with the string equation. It can be shown (seealso section 5) that solutions to the string equation ow with (28) to other solutions of(26). The kth multicritical point is reached when t2k+1 = � ak2k+1 and all other times arezero. In this case the string equation becomesD̂Rk[u] = akvx : (29)This is a 2kth order di�erential equation which as x!1 has asymptotic solutions of theform v � x 12k �1 + 1Xl=1 vlx�l(2+ 1k )� ; (30)8



which upon the identi�cation �2 = x�(2+ 1k ) gives the genus expansion of the speci�c heatv2 � x 1k �1 + 1Xh=1 fh�2g� ; (31)where fh = 2vh +Pl1+l2=h vl1vl2 .The connection to the � -function formalism of the mKdV hierarchy is shown by notingthat the speci�c heat v2 can be written in the form [17]v2 = �@2 log (�1�2) (32)with �1 and �2 the � -functions of the mKdV hierarchy (28). These are simply connected tothe Miura transformed functions u1 = v2+v0 and u2 = v2�v0 by ui = �2@2 log �i ; i = 1; 2.Then the partition function is given byZ = �1 � �2 ; (33)which is the continuum analog of (13).The Virasoro constraints [17] are obtained by �rst substituting (28) into (26) and thenusing (32). The result is L0�i = ��i ; (34)with L0 = P1k=0(k + 12)t2k+1 @@t2k+1 + 116 and � an arbitrary constant. The ows and therecursion relations relate Ln+1 to Ln and one obtainsLn�i = 0 with n � 1 ; (35)where Ln =P1k=0(k+ 12)t2k+1 @@t2(k+n)+1 + 12Pnk=1 @2@t2k�1@t2(n�k)+1 . We will further discussthe Virasoro constraints in section 5.4. The mKdV Hierarchy and the Sato GrassmannianAs we already mentioned in the introduction, the analysis of the solutions of thestring equation in the Sato Grassmannian Gr depends crucially on the association of themKdV � -functions �1 and �2 to points V1 and V2 in the big cell of the Sato GrassmannianGr(0). In this section we take a pedestrian approach to explaining this association and thereader familiar with the subject might want to skip to the next section. For more rigoroustreatments on the subject see [22] and the references therein.9



Since the Sato Grassmannian is an in�nite dimensional generalization of �nite dimen-sional Grassmannians, we start by reviewing the relevant concepts in the �nite dimensionalcase. For a nice review along these lines see [29]. The Grassmannian Gr(k;N) consistsof all k-dimensional linear subspaces of CN . A point V 2 Gr(k;N) is described by abasis fvig with i = 1; : : : ; k and a basis of the orthogonal complement of V fwig withi = k + 1; : : : ; N . Then the pair (v; w) speci�es a point in Gr(k;N). A pair (v0; w0),however, gives the same point if(v0; w0) = (v; w)�A B0 C � :Then Gr(k;N) ' GL(N)=Pwith P = ��A B0 C ��. The relation between Gr(k;N) and fermions is established byconsidering the GL(N) representation on a fermionic Fock space F de�ned by the vacuajk >= e1 ^ : : : ^ ek < kj = iek : : : ie1 < ijk >= �ik ; (36)where feig is a basis of CN and iei(ej) = �ij is the inner product operator. The fermionicoperators are de�ned by  yi = ei ^ j� >  yi = iei j� > ; (37)and satisfy canonical anticommutation relationsf i;  yjg = �ij ; f i;  jg = f yi ;  yjg = 0 : (38)The vacua jk > carry charge k and  yi ( i) create a charge +1(�1). Then yi jk >= 0 i = 1; : : : ; k  ijk >= 0 i = k + 1; : : : ; N< kj yi = 0 i = k + 1; : : : ; N < kj i = 0 i = 1; : : : ; k ; (39)The Plucker embedding is de�ned by assigning to every point V 2 Gr(k;N) a statejv >= c v1 ^ : : : ^ vk with vi =X vijej ; (40)where fvig is a basis of V and c is an arbitrary constant. A change of basis vi ! aijvjcorresponds to c! (det a) c and the state jv > is well de�ned. The condition y[vi]jv >= 0 8i ; (41)10



with  y[vi] =P vij yi de�nes equivalently the state jv > up to the constant c.Then a 2 gl(N) acts on F byâj� >=X yi aij j j� > j� >2 F ; (42)and on the space of operators on F by[ i; â] =Xk aik k ; [â;  yi ] =Xk  ykaki : (43)The action of g 2 GL(N) is de�ned by exponentiation of (42). For exampleĝ yi1 yi2 : : :  i1 i2 : : : j0 >= ( yg)i1( yg)i2 : : : (g )i1(g )i2 : : : j0 > (44)with ( yg)i �  yjgji and (g )i � gij j. Then a gl(N) operator a acting on V 2 Gr(k;N)by a v =P(aijvj)ei corresponds to a fermionic operator â =P yi aij j . Then if â1 $ a1and â2 $ a2, equations (43) give [â1; â2]$ [a1; a2] : (45)Moreover note that if âjv >= const:jv >, a V � V : (46)The state jv > belongs to the GL(N) orbit of the state jk >. Since for jv >= v1^: : :^vkevery vector vi can be written in the form vi = g ei for some �xed g 2 GL(N), we havethat jv >= ĝjk > as de�ned in (44). Therefore the image of Gr(k;N) under the Pluckerembedding can be identi�ed with the orbit GL(N)jk >.The � -functions are given by fermion correlators�OV =< O >V=< kjOjv > ; (47)with O a zero charge operator. Since the topology of Gr(k;N) is non-trivial, we divideit into cells (Ua; a 2 I). A point V 2 Ua is represented by a basis fv(a)i g and the statejv >(a)= v(a)1 ^ : : : ^ v(a)k . Then if V 2 Ua \ Ub we have v(a)k = a(ab)ki v(b)i and�O(a)V = det a(ab) �O(b)VTherefore the � -functions are really sections of a determinant line bundle over Gr(k;N)whose transition functions are given by det a(ab).11



Most of the results carry over almost unchanged to the in�nite dimensional case. Forthe in�nite dimensional vector space we consider the space of formal Laurent seriesH = fXn anzn ; an = 0 for n� 0 gand its decomposition H = H+ �H� ;where H+ = fPn�0 anzn ; an = 0 for n � 0 g. Then the big cell of the Sato Grass-mannian Gr(0) consists of all subspaces V � H comparable to H+, in the sense that thenatural projection �+ : V ! H+ is an isomorphism. Then V admits a basis of the formf�i(z)gi�0 where �i(z) = zi + lower order terms. The Plucker embedding (40) is de�nedby the semi-in�nite wedge productjv >= c �1(z) ^ �2(z) ^ : : : : (48)Care has to be taken so that a GL(1) change of basis �i(z)! aij�j(z) does not introducein�nities, since det a can be in�nite. We choose a set of admissible bases for V 2 Gr tobe those whose matrix relating f�+(�i(z))gi�0 to fzigi�0 di�ers from the identity by anoperator of trace class. Then the fermionic representation is de�ned on the Fock spacebuilt on the vacuum state of zero chargej0 >= 1 ^ z ^ z2 ^ : : : ; (49)by fermions  yi and  i de�ned as in (37). The states (m > 0)jm >=  ym : : :  y1j0 > ; j �m >=  �m+1 : : :  0j0 > (50)are the �lled states with charge m and �m respectively. The generalization of gl(N) isgiven by gl(1) and is represented on F by its central extension gl�(1) withâ =Xi;j :  yi aij j : (51)where :  yi j : =  yi j� <  yi j >= � yi j i > 0� j yi i � 0 (52)12



is the normal ordering. The reason for introducing normal ordering is that the naiveoperator Pi;j  yi aij j maps an admissible basis to a non-admissible one.The connection of the fermion representation ofGr(0) and the KP and mKP hierarchiesis made explicit by making use of the boson-fermion equivalence in two dimensions. Thefermionic currents Jn =Xr2Z :  yn�r r : n 2 Z (53)satisfy the bosonic commutation relations[Jm; Jn] = m�m;�n : (54)By representing the bosonic Fock space by B �= C[t1; t2; : : : ; ;u; u�1], the space of polyno-mials in t1; t2; : : : ; ;u; u�1, @@tn and �nt�n (with n � 0) act as creation and annihilationoperators on B satisfying the algebra (54). Then fermionic operators can be mapped tooperators acting on B and states in F to states in B by mapping the state jm > of Fto um. Then the kth modi�ed KP hierarchy � -functions correspond to correlators (47)where O = ePp�1 tpJp and the states jv > correspond to the GL(1) orbit of ji > withi = 0; : : : ; k � 1. In particular the solutions to the second mKP hierarchy is given by two� -functions �i(t) =< i� 1j expfXp�1 tpJpggji� 1 > (i = 1; 2) ; (55)where g 2 GL(1). The modi�ed KdV hierarchy that arises in UMM is the second reducedmKP hierarchy of the above equation and it corresponds to eliminating from (55) thedependence on the even times ft2ng. Therefore every solution �1(t) and �2(t) of the mKdVhierarchy corresponds to points V1(t) and V2(t) in Gr(0) given by the states jvi(t) >=expfPp�1 tpJpggji� 1 >. Then the time dependence of Vi(t) is given by@@t2k+1 jvi(t) >= J2k+1jvi(t) > and J2kjvi(t) >= 0 ; (56)or by using the correspondence (45)@@t2k+1 Vi(t) = z2k+1 Vi(t) and z2k Vi(t) � Vi(t) : (57)Then Vi(t) = expfPk t2k+1z2k+1gVi � (t; z)Vi.13



5. The Solutions to the String EquationSince to every solution of the mKdV hierarchy correspond points V1(t) and V2(t) inGr(0) satisfying (57), one would like to determine those that are solutions to the stringequation (25). This is particularly easy because the commutator [P;Q�] is equal to aconstant [22].Consider the space 	 of pseudodi�erential operators W = Pi�kwi(x)@i where thefunctions wi(x) are taken to be formal power series (i.e. wi(x) = Pk�0wikxk ; wik = 0 ; k�0). W is then a pseudodi�erential operator of order k. It is called monic if wk(x) = 1and normalized if wk�1(x) = 0. The space 	 forms an algebra. The space of monic,zeroth-order pseudodi�erential operators forms a group G.There is a natural action of 	 on H de�ned byxm@n : H ! H�! (� ddz )m(z)n � :Then it is well known [30] that every point V 2 Gr(0) can be uniquely represented in theform V = SH+ with S 2 G. This will imply that for every operator Q� we can uniquelyassociate a pair of points V1; V2 2 Gr(0).Indeed, consider S1 and S2 2 G such thatŜQ�Ŝ�1 = ~Q� (58)where Ŝ = �S1 00 S2 � ; ~Q� = � 0 @@ 0� : (59)Then S1(@ + v)S�12 = @ ;S2(@ � v)S�11 = @ : (60)S1 and S2 can be shown to exist and are unique up to a rede�nition Si ! SiR withR = 1 +Pi�0 ri@�i and ri constants.Since V � Gr(0) is given uniquely by V = SH+, the operator Q� determines twospaces V1 = S1H+ and V2 = S2H+. Conversely given spaces V1 and V2 determine Q�14



uniquely. The operator Q�, however, is a di�erential operator and V1; V2 cannot be arbi-trary. Indeed, since every di�erential operator leaves H+ invariant, we obtain(@ + v)H+ � H+ ,S�11 @S2H+ � H+,@ V2 � V1,z V2 � V1 (61)Similarly, z V1 � V2. Notice that these conditions are consistent with the second equationin (57).The transformation ŜQ�Ŝ�1 = ~Q� is a similarity transformation and the string equa-tion will be left invariant if we de�ne ~P(k) = ŜP(k)Ŝ�1. Then the solution to [ ~P(k); ~Q�] = 1is easily found to be given by~P(k) = � 0 AkAk 0 � ;where Ak = ddz + kXi=0 �iz2i and �i =const. (62)The requirement that P be a di�erential operator is equivalent to the conditionsAk V1 � V2 and Ak V2 � V1. The space of solutions to the string equation is the space ofoperators Q� such that there exists P(k) with [P(k);Q�] = 1. We conclude that this spaceis isomorphic to the set of elements V1; V2 � Gr(0) that satisfy the conditions:z V1 � V2 z V2 � V1Ak V1 � V2 Ak V2 � V1 (63)for some Ak = ddz + kPi=0�iz2i.The string equation is left invariant by the ows (57). Indeedz (z; t)V1 � (t; z)V2 ) z V1(t) � V2(t)Ak(t) (z; t)V1 � (t; z)V2 ) Ak(t)V1(t) � V2(t) ; (64)where Ak(t) � Ak�1 = Ak �Xk (2k + 1)t2k+1z2k (65)and analogous equations with V1 and V2 interchanged.It is now easy to see that (63) implies the Virasoro constraints for the � -functions.Without going into the details (see [23]), we �rst notice that the operators ln = z2n+1Aleave Vi invariant z2n+1 AVi � Vi : (66)15



Then using the correspondence (45), one can construct the corresponding fermion opera-tors l̂n and from them their bosonic counterparts Ln [23]. These have the exact form asequations (34){(35). We can immediately see that they form a Virasoro algebra by notingthat ln � z2n+1 ddz are the generators of the Virasoro algebra and by using lemma (45).Since ln leave Vi invariant, then using (46) we conclude that the operators Ln annihilatethe � -functions �1 and �2 and obtain equations (34) and (35).We conclude this section by showing how conditions (63) can be used to calculate thespace of solutions to the string equation [22]. We will start by describing the spaces V1; V2.First choose vectors �1(z); �2(z) 2 V1, such that�1(z) = 1 + lower order terms ; �2(z) = z + lower order terms :Then the condition z2 V1 � V1 and �+(V1) �= H+ shows that we can choose a basis for V1�1; �2; z2�1; z2�2; : : :Since z V1 � V2 and �+(V2) �= H+ we can choose a basis for V2 to be ; z�1; z�2; z3�1; z3�2; : : :where  (z) = 1 + lower order terms. Using z V2 � V1 we have z = ��1 + ��2. Choose�1; �2 such that z = �2. Then we obtain the following basis for V1; V2 (� � �1):V1 : �; z ; z2�; z3 ; : : :V2 :  ; z�; z2 ; z3�; : : : (67)Then it is clear that �;  specify the spaces V1; V2. Using the conditions AV1 � V2 andAV2 � V1 we obtain ( ddz + fk(z2))� = P00(z)�+ P01(z) ( ddz + fk(z2)) = P10(z)�+ P11(z) : (68)Since a generic system of the form (68) will lead to exponential evolution of thefunctions � and  , the requirement that they keep their polynomial form puts severeconditions on Pij(z). A detailed calculation shows that the space of solutions to the stringequation (25) is the two fold covering of the space of matrices �Pij(z)� with polynomialentries in z such that P01(z) and P10(z) are even polynomials having equal degree and16



leading terms and P00(z) and P11(z) are odd polynomials satisfying the conditions P00(z)+P11(z) = 0 and degP00(z) < degP01(z).
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