
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

7-1991

Fault-Tolerant Load Management for Real-Time Distributed Fault-Tolerant Load Management for Real-Time Distributed

Computer Systems Computer Systems

Arif Ghafoor

Ishfaq Ahmad
Syracuse University, School of Computer and Information Science

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ghafoor, Arif and Ahmad, Ishfaq, "Fault-Tolerant Load Management for Real-Time Distributed Computer
Systems" (1991). Electrical Engineering and Computer Science - Technical Reports. 108.
https://surface.syr.edu/eecs_techreports/108

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/108?utm_source=surface.syr.edu%2Feecs_techreports%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-24

Fault-Tolerant Load Management for
Real-Time Distributed Computer Systems

Arif Ghafoor and Ishfaq Ahmad

July 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Abstract

This paper presents a fault-tolerant scheme applicable to any decentralized load balanc­

ing algorithms used in soft real-time distributed systemS. Using the theory of distance-transi­

tive graphs for representing topologies of these systems, the proposed strategy partitions

these systems into independent symmetric regions (spheres) centered at some control points.

These central points, called fault-control points, provide a two-level task redundancy and

efficiently re-distribute the load of failed nodes within their spheres. Using the algebraic

characteristics of these topologies, it is shown that the identification of spheres and fault -con­

trol points is, in general, is an NP-complete problem. An efficient solution for this problem is

presented by making an exclusive use of a combinatorial structure known as the Hadamard

matrix.

Assuming a realistic failure-repair system environment, the performance of the pro­

posed strategy has been evaluated and compared with no fault environment, through an ex­

tensive and detailed simulation. For our fault-tolerant strategy, we propose two measures of

goodness, namely, the percentage of re-scheduled tasks which meet their deadlines and the

overhead incurred for fault management. It is shown that using the proposed strategy, up to

80 % of the tasks can still meet their deadlines. The proposed strategy is general enough to be

applicable to many networks, belonging to a number of families of distance transitive graphs.

Through simulation, we have analyzed the sensitivity of this strategy to various system param­

eters and have shown that the performance degradation due to failures does not depend on

these parameter. Also, the probability of a task being lost altogether due to multiple failures

has been shown to be extremely low.

Key Words : Fault-tolerant Load Balancing, Multicomputer Systems, Network Partitioning,

Distance-'fransitive Graphs, Performance Evaluation, Thsk Scheduling.

1. Introduction

A major advantage of distributed computer systems is the availability of a large number

of autonomous computers which can provide an enhanced processing speed, through coordi­

nation. A special class of distributed systems is multicomputers which consist of a large num­

ber computing nodes connected by a high bandwidth network [2]. If the resource allocation is

carefully managed, a large-scale multicomputer can be much more cost effective and effi­

cient as compared to expensive supercomputers. With the continuing advancements in micro­

processors and high speed networks, one can envisage such a high performance system for a

-1-

wide range of applications [11]. An important use of multicomputers is to support real-time

applications. For real-time systems, two important considerations need to be taken into ac­

count, namely; time and reliability.

Time is considered to the most crucial resource to manage in real-time systems since the

occurrence of events must follow some timing constraints [32]. While for non-real-time sys­

tems, the main performance measures include average system response time, throughput and

resource utilization, in real-time systems, each task has some pre-specified execution dead­

lines which must be met for safe system's operation. In other words, in real-time systems, the

performance should be evaluated by successful execution of individual tasks within certain

time period, rather than the average system behavior. Real-time systems are further classi­

fied as soft and hard [32]. In soft real-time systems, a task is considered lost if it does not meet

its deadline [24] whereas in a hard real-time system, the failure to meet a deadline can be

catastrophic [33].

The design of a large-scale multicomputer system for real time applications entails effi­

cient and quick means of resource sharing such as load balancing on the computing nodes.

Inefficient scheduling can lead to a load imbalance on various nodes which can significantly

increase the waiting times of tasks scheduled at heavily loaded nodes which in tum hinders

new tasks to meet their deadlines. An essential property of a dynamic scheduling strategy is to

balance the load across the system by transferring load from heavily loaded nodes to lightly

loaded nodes. Dynamic load balancing has been considered the inevitable solution for this

problem because the time dependent fluctuations in the load patterns across the system need

to be balanced dynamically [7], [10], [14], [16], [30], [38].

Considerable research has been done for task scheduling and load balancing or load

sharing for both soft [23], [24], [31] and hard real-time systems [25], [33], [35]. Load balanc­

ing can be carried out with a centralized or a decentralized model. In a centralized model

[10], a single node gathers the global information about the state of the system and assigns

tasks to individual nodes. On the other hand, in a decentralized case, each node executes a

scheduling algorithm by exchanging state information with other nodes [7], [10], [14], [30],

[33].

The second consideration for a real-time system is the issue of reliability. Since, with the

increase in the size of the system, the likelihood of failure of its components (processors and

links) also increases, the problem of task scheduling becomes more complex. Moreover, in a

large system, it is also very likely that computing resources become unavailable for a variety of

other reasons such as some processors may have to be shut off or isolated from the rest of the

system for maintenance purpose or due to failure of other attached I/0 devices. In addition

to load balancing, overhead incurred as a result of collection of state information, communi-

-2-

cation delays, etc., can cause sever performance degradation (15], [28], even for non-real­

time systems. This problem is acute in real-time environment where not only task execution

must be controlled to meet deadlines, but also the failure of nodes must be tolerated to main­

tain an acceptable performance of the system [8], [29]. Means must be provided to handle

failures and unavailability of nodes so that the operation of the rest of the system remains

uninterrupted and the performance is not adversely affected. Mechanisms must also be pro­

vided to redistributed the unfinished computational load from the unavailable nodes to the

operational nodes. Moreover, there should be some way of redirecting new tasks arriving to

the nodes which are failed and are unavailable.

The above two requirements entail a dynamic load re-distribution strategy. These strate­

gies need to be designed carefully since the re-injection of computational load from the failed

nodes to the rest of the operation system can make some nodes unstable. Therefore, simple

load distribution strategies can not be applied for system under failure.

Designing load balancing strategies for real-time systems is an important issue and a few

schemes have been proposed in the recent literature[8], [9], [35]. However, very little has

been explored for large-scale systems, where the failure of component is also a critical issue.

In this paper, we propose a fault-tolerant load redistribution strategy for large-scale multi­

computers. The proposed scheme is general in the sense that it is applicable to any distributed

load balancing scheme. Also the proposed strategy is based upon a more realistic assumption

about the failure situations, than the one given in earlier work [8). In previous studies failure

have been assumed to be static in the sense that a given number of nodes are assumed to fail

simultaneously without any subsequent recovery or repair. However, the static failure as­

sumption does not hold for real life systems where failures are generally randomly occurring

events. Furthermore, the failed components can be diagnosed and repaired off-line and can

be re-integrated back into the system [29]. The second realistic assumption made in this pa­

per is that the incoming tasks to the failed nodes cannot be simply ignored. Due to real-time

constraints, some means are required to to handle tasks arriving at the failed nodes.

In summary, the proposed strategy has the following objectives.

(1) The main objective is to propose a fault-tolerant task scheduling strategy with decentral­

ized control which has the flexibility to allow the system to continue to be operational in

spite of failure of nodes. The failed nodes are assumed to be repaired subsequently.

(2) The proposed strategy is applicable to both real and non real-time systems. However, the

emphasis in this paper is in real-time systems, with any decentralized scheduling scheme.

(3) To provide fault-tolerance for both real-time and non real-time environments, some kind

of load replication scheme is required to keep redundant copies of tasks within the system

-3-

so that in case of a failure, the affected tasks can be re-scheduled. The system should be

able o sustain a large number of failures. Therefore, a certain level of redundancy is re­

quired in case the nodes with redundant copies also fail. In this paper, we assume two­

level redundancy, that is, two copies of every task are kept in the system.

(4) A system can consist of hundred or thousands of nodes which can fail or become unavail­

able due to some other reasons, from time to time. An efficient strategy is required to

select a set of nodes which are responsible for the re-distribution of effected tasks.

(5) Re-scheduling of tasks should not cause instability in the system and tasks should be re­

distributed to only those nodes which are lightly loaded. The communication delays and

dumping of lightly loaded nodes with tasks from other nodes are generally two main fac­

tors that can cause "turbulence" in the system. This turbulence can cause the system to

enter into the state of instability or "task thrashing" which can prevent new tasks at opera­

tional nodes to miss their deadlines.

(6) For a real-time system, re-scheduling of tasks should be quick and efficient so that most

of the tasks, which would have been lost otherwise, can still meet their deadlines, without

affecting the underlying normal decentralized load balancing algorithm.

(7) The total load entering into the system should not decrease, if some nodes in the system

are out of order. The newly arriving tasks at those nodes should be redirected to the op­

erational nodes. This re-direction of new load should also not cause any instability and

performance degradation.

As mentioned above, one of the objectives is to smoothly re-balance the load of failed

nodes with minimum impact on the normal load balancing. This can be achieved if the nodes

re-scheduling the backup tasks, which we will refer to as Fault Control Points (FCPs), have

some partial knowledge of the global load of the system. The selection of FCPs is a crucial

factor to the fault-tolerant performance of the systems, especially in terms of re-scheduling

and reducing chances of missing deadlines. In a centralized approach, a single FCP can man­

age redundant load for the whole system. However, the failure of the FCP itself can eliminate

fault-tolerance capability, and therefore, this scheme is highly vulnerable to failure. On the

other hand, if a fully distributed scheme is used where each node acts as an FCP, the global

knowledge of the system load has to be acquired by each node which is a costly solution in

terms of overhead and the generation of overhead traffic can seriously effect the system's per­

formance (15]. If limited knowledge, such as only the load of immediate neighbors, is used,

the scope of re-scheduling a task to a suitable destination becomes rather limited. Clearly, a

semi-distributed scheme with a fewer number of FCPs, each having some partial knowledge

of the global state of the system, would be an ideal choice.

-4-

It has been observed that, in a distributed system, there is always a high probability that

some nodes are idle while some are overloaded [7]. As the system size increases, this proba­

bility also increases. The load re-distribution strategy should be able to exploit this phenom­

enon by redirecting the backup and newly arrived load to the best possible nodes. According­

ly, in this paper, we propose a semi-distributed load re-distribution strategy which is based on

partition of the system's topology into multiple symmetric regions (spheres). Each sphere is a

cluster of nodes and has a number of fault-tolerant control points (FCPs). The total number

of FCPs is relatively small, resulting in a low overhead (in terms of communicating tasks

among nodes and FCPs) to provide fault-tolerance. At the same time, the number of FCPs is

large enough to effectively monitor the failures in the network and manage load re-distribu­

tion within their spheres. Load re-distribution is carried out within individual spheres where

the scheduler of each sphere acts as a centralized controller for its own sphere. Each node, is

assigned two types of FCPs, for storing two redundant copies of ever task present at the node.

FCPs with the first-level redundancy will be termed as primary FCPs and the other as second­

ary FCPs. The complete description about the system model is presented in Section 4. We

show that, in general, an optimal determination (we describe this determination in Section 3)

of FCPs in a network is an NP-complete problem. However, for a class of interconnection

structures, known as distance transitive graphs (DT) [20], we propose a remarkable network

partitioning and FCPs identification scheme based on a combinatorial structure known as the

Hadamard matrix.

Assuming a realistic failure-repair system environment, the performance of the pro­

posed strategy has been evaluated and compared with no fault environment, through an ex­

tensive and detailed simulation. For our fault-tolerant strategy, we propose two measures of

goodness, namely, the percentage of re-scheduled tasks which their deadlines and the over­

head incurred for fault management. It is shown that using the proposed strategy, up to 80 %

of the tasks can still meet their deadlines. The proposed strategy is general enough to be

applicable to many networks, belonging to a number of families of distance transitive graphs.

Through simulation, we have analyzed the sensitivity of this strategy to various system param­

eters and have shown that the performance degradation due to failures does not depend on

these parameter. Also, the probability of a task being lost altogether due to multiple failures

has been shown to be extremely low.

The proposed strategy is applicable to both large parallel and distributed systems. For

example, a Hypercube topology can be extended beyond a parallel processing environment

by assuming that the virtual communication network topology of a distributed system is iso­

morphic to the hypercube provided the number of nodes in the system is Z'. For virtual topol­

ogy, if the number of nodes in the system is not equal to Z', virtual nodes can be added to

-5-

complete the topology (19]. The same idea can also be extended to any distributed system

having a number of nodes possessed by any DT graph discussed in this paper.

The remainder of the paper is organized as follows. Section 2 gives an algebraic charac­

terization of distance transitive interconnection networks. In Section 3, we state the problem

of determining the set of FCP and their assignments to nodes. The determination of spheres

for load re-distribution by using Hadamard matrices is also discussed in the same section.

Section 4 describes the characteristics and assumption about the system. It further discusses

the task replication and re-scheduling strategies. Simulation results showing the evaluation

of the proposed model are given in Section 5. Section 6 presents the concluding remarks.

2. Distance-Transitive Topologies for Large Distributed Systems

As mentioned earlier, the virtual communication topology of a parallel and distributed

systems can be represented by a DT graph. In case, the number of nodes in the system is not

equal to the nodes in a DT network, pseudo nodes can be added to complete the topology

(19]. In this section, we describe some of the infinite families of DT graphs which can repre­

sent topologies of distributed systems. We also introduce the notion of range of load redistri­

bution and present some definitions and terminology which are used to characterize these

topologies and their property of symmetry. The reason for analyzing DT graphs that many of

the existing and previously proposed interconnection networks, including the Hypercube to­

pology, are indeed distance-transitive. We show that distance-transitivity is a highly desir­

able property since these graphs are shown to be node-symmetric which helps in designing

parallel and distributed systems with semi-distributed control. We focus on a class of DT

graphs which are governed by two algebraic structures known as the Hamming and the John­

son Association Schemes [5]. The graphs belonging to these schemes include the Hamming

graph (the hypercube), the Sphere (Johnson) graph [5], and their derivatives. In order to de­

fine the DT topologies, we need the following definitions.

The network of a system can be represented by an undirected graph, A = < U, E >

where U represents the set of nodes and E is the set of edges (communication links) joining

the nodes. Let U = { 0, 1, 2, ... , (N -1)} be the set of N nodes in the system, including the

pseudo nodes if required. The degree of each node, denoted by n, represents the number of

edges incident on it. The degree is assumed to be constant. A path in A is a sequence of

connected nodes and the length of the shortest path between nodes i and j is called the

graphical distance and is represented as L;i .

Definition: Let a be a binary codeword. The Hamming weight w(a) of a is equal to the

number of 1 's in a.

Definition: The Hamming Distance, Hxy, between two binary codewords,

x = (Xt.X2, •. . Xn) andy= (Yt·Y2· ... ··Yn) of some length n, is defined as

Hxy = l{iiX; = y;, 1 s, i s n}l where x, y E {0, 1} •

In other words, Hamming distance, between two codewords, is the number of different bits in

codewords.
Definition: Let k = Mtu[L;iiVi,j,O s i,j, s N-1]. k is called the diameter of the net-

work A.

Definition: Given a set of nodes C, its graphical covering radius r in the graph A is defined

as: r = Max;eu{Minjec{L;j))

Definition: Let G(A) be the automorphism group of A . A is said to be distance-transi­

tive, if for each quartet of vertices u, v, x, y, E A, such that Lu,v = 4 3 , there is some

automorphism gin G(A) satisfying g(u) = x and g(v) = y .

Definition: A distance-regular graph is a weaker case of distance-transitive graph. A graph

of diameter k is distance-regular if

V(i,j, l) E [O ••• n]3, V(x,y) E U,

Lxy = l ~ I {z E U,L;u = i,4z = i}l = pfi ,

where I y I represents the cardinality of some set y and p'9 are constants whose values are

dependent on the characteristics of the graph.

Distance-regularity is an important property in terms of describing range of load redistri­
bution which affects the number of messages generated for gathering state information for

redistributing the load of failed nodes. This range is defined later in the section.

Definition: Let vf be the number of nodes which are at a graphical distance i from a node

x. This number is a constant for Vx e U and is called the i-th valency. It is given as vf = p~.
We can classify DT networks into two classes, namely, the antipodal networks and podal

networks. These classes and some of the networks belonging to these classes are described

below.

2.1 Antipodal Networks

In an antipodal network every node has an exactly one diametric node, that is node which

is at distance k, the diameter. Such a pair is called antipodal pair. Many well known networks

fall into this category, such as ring network with even number of nodes, the binary Hypercube

etc. In this paper, we discuss two such networks which are briefly described below.

The Dinan n-cube Network Qn

-7-

The binary n-cube network (Hypercube), which we denote as Qn, consists of 2n nodes.

Here each node is represented as a binary vector where two nodes with binary codewords x

andy are connected if the Hamming distance Hxy = 1. Then for every node x in Qm the valency

sequence is given as:

vr =(7) for i = 0, 1' 2 .. n

and L"' = H,., and k=n. Quis a distance-regular graph.

The Binomial Network r n [20]

This network has for its vertex set the binary codewords of length 2n-1 and Hamming

weights n and n-1. 1\vo vertices are connected if and only if they are at a Hamming distance 1.

Such a network has degree n, diameter 2n-1, and(~) nodes.

We will denote such a network as ru. It is known that for these networks. Lxy = Hxy

[20]. For every node x in this graph, the valency sequence is given as:

vj = (~) (n .-~ . - -z z for z - 0, n - 1, 1, n - 2, 2, .. k, k, 0, where k- n-1.

Note, that rn is a sub-graph of Qs, where s=2n-1. This graph belongs to the Johnson

Association Scheme [5].

3.2 Podal Networks

For podal networks there do not exist any antipodal pairs. Some podal DT graphs are

described below.

The Bisectional Network Bn [18]

A Bisectional Network is isomorphic to a folded Hypercube and is generated using all the

binary codewords of length n with even weights. A node x in a Bisectional network is con­

nected to a neighbor y if Hxy = n -1 [18]. We will denote a Bisectional network as Bn. The

degree of a Bn network is n (odd) and it has zn-1nodes. For Bn, k=(n-1)12 and

Lxy = Min(Hxy , H~) where H~ = n- Hxy.

For every node x in Bn , the valencies are given as

vj =(~) z for i = 0, 1, 2 . . n.

The Binary Odd Network On [17]

The Odd graph is constructed by using binary codes with constant Hamming weight. This

graph also belongs to the Johnson Association Scheme [5]. An Odd graph On has for its vertex

-8-

set the binary codewords of length 2n -1 and Hamming weight n -1. Two vertices in On are

connected if and only if the Hamming distance between them is 2n-2. It has degree n, diame-

ter k = n - 1 and (~: P nodes. Also, for On graphs, Lxy = Min(Hxy , H~)where
H~ = 2n - 1 - Hxy . The Odd graph 03 is the celebrated Peterson graph [17].

0 _ (n) (n -1)
Foreve:rynodexin On[17], i - i i fori= O,n-1,1,n-2,2, .. k

3. The Network Partitioning Strategy

In this section, we describe the criteria for partitioning both the podal and anti-podal DT

topologies. We show that, in general, partitioning of the interconnection network and the

selection of the set of fault-control points (FCPs), can be modeled as a problem which is NP­

hard. Subsequently, we propose an efficient solution, for partitioning and finding the set of

FCPs for the above mentioned networks, based on a combinatorial structure called Hada­

mard matrix. The proposed solution is "efficient" in the sense that the whole network is

uniformly partitioned into spheres where each sphere is symmetric and is equal in size. In

Section 3.3, we describe some properties of proposed use of Hadamard matrix for partition

and in Section 5.3, we evaluate the efficiency and "goodness" of this scheme.

Based on this partitioning, we then propose a fault-tolerance strategy for an arbitrary

distributed scheduling and load balancing mechanism, both for non real-time and real-time

systems. In the proposed scheme, each sphere is assigned a subset of FCPs which are respon­

sible for:

(a) maintaining redundant (backup) copies of the tasks in the network,

(b) monitoring failures in their spheres,

(c) in case of a failure, redistributing tasks of the failed node in individual spheres, and

(d) maintaining the load status of the nodes in the spheres.

We need to mention that for these responsibilities, the assignment of FCPs varies. For

maintaining backups, the assignment of nodes to FCPs is independent of the physical dis­

tances in the network, which results in a rather simple rule of assignment (see Section 3.1).

However, the average distance of a node to FCPs remain constant, as discussed in Section 6.3.

On the other hand, for the above mentioned functionalities (b), (c) and (d), we use spheres

centered at FCPs, as discussed in Section 3.2. In this paper, we do not address the issue of

fault-diagnosis and failure identification. A sphere based fault-diagnosis scheme can be

found in [18]. We assume the availability of some such scheme. An FCP is responsible for

optimally assigning tasks within its sphere. The approach of load re-distribution, therefore, is

semi-distributed in nature and is discussed in Section 4.

-9-

Let C be the desired set ofFCPs. There can be various possible options to select C and to

devise a fault-tolerance strategy based on this set. However, the performance of such a strat­

egy depends on the "graphical locations" of the FCPs within the network and the range of load
redistribution used by the FCPs. This range quantifies the graphical distance within which a

FCP assigns tasks of a failed node to the nodes of its own sphere, where it is located at the

center. The details ofthe backup copies, scheduling algorithm and information maintenance

scheme are described in Section 4. In order to characterize spheres and to describe network

partitioning, we need the following definitions.

Definition: Let the sphere assigned to a node x E C be denoted by S,{x), where i is the

radius of this sphere. The number of nodes in S;(j) is the total number of nodes lying at graph­

ical distances 0 throughi, from nodex. Since the number of nodes at the graphical distancei
i

is given by valency vf, the total size of the sphere is given as I S,{x) I = j ! 0v'f. It should be

noted that, in a centralized scheme where a single node acts as a FCP, i must be equal to the

diameter (k) of the network.

Definition: A 6 -uniform set C, of FCPs, is the maximal set of nodes in A , such that the

graphical distance among the FCPs is at least~ and I S;(x) I is constant Vx E C , where i is the

covering radius of C.

We need a 6 -uniform set C (for some 6 to be determined) with graphically identical

and symmetric spheres, in order to design a symmetric algorithm for FCPs. The size, I C I ,
depends on the selection of 6 . Intuitively, larger 6 yields smaller I C I , but also spheres with

larger size. It can also be observed that reducing I C I increases the sphere size and vice versa.

In addition, a number of other considerations for the provision of fault-tolerance are given

below:

(1) Since, in case of a failure an FCP needs to re-distribute tasks of the failed node to all

the nodes in the sphere, which requires the FCP to maintain state information of load of all

the nodes within the sphere (the next section regarding load re-distribution), the diameter of

the sphere should be as small as possible.

(2) Also, the size of the sphere should be small because a FCP (x) needs to send/receive

I S;(x) I messages for scheduling of failed-node tasks within the sphere.

We now describe the complexity of selecting a d -uniform set (C).

Theorem 1: For a given value of 6 > 2,

(a) Finding a uniform set C in an arbitrary graph is NP-hard.

(b) Determining the minimum sphere size is also NP-hard.

Proof: see Appendix

-10-

The above theorem provides a rather pessimistic view for finding a set C for a given DT

network. However, we present an interesting solution to select the set C in these networks
using a combinatorial structure called Hadamard Matrix. The reasons for choosing Hadamard

Matrix are given in section 3.2. Its definition is given below.

Definition: AHadamardmatrixMis ajbyjmatrixwith± 1 entries, such that MMT = ji,

M=

0 0 0 0 0 0 0 0

0 0 0 1 0 1 1 1
0 0 1 0 1 1 1 0

0 1 0 1 1 1 0 0

0 0 1 1 1 0 0 1
0 1 1 1 0 0 1 0

0 1 1 0 0 1 0 1

0 1 0 0 1 0 1 1

UC=

1 1 1 1 1 1 1 1

1 1 1 0 1 0 0 0

1 1 0 1 0 0 0 1

1 0 1 0 0 0 1 1

1 1 0 0 0 1 1 0

1 0 0 0 1 1 0 1

1 0 0 1 1 0 1 0

1 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 1

0 1 0 1 0 0 1 1

0 0 1 0 0 1 1 1

Ms= 0 1 0 0 1 1 1 0

0 0 0 1 1 1 0 1

0 0 1 1 1 0 1 0

0 1 1 1 0 1 0 0

Figure 1. An 8 x 8 Hadamard Matrix in 0-1 notation along with
its complement and supplement.

where I is the identity matrix and MT is the transpose of M. The complementary Hadamard

matrix, denoted as ~ , is obtained by multiplying all the entries ofMby-1. If we replace 1 by

0, and -1 by 1, the matrix is said to be in 0-1 notation. We will refer to this matrix as Hadamard

matrix M, and use the 0-1 notation in the rest of this paper. Figure 1 shows a 8 x 8 Hada­

mard matrix and its complement. It is known that Hadamard matrices of order up to 428 exist.

Furthermore, it has been conjectured that a Hadamard matrix of order n exists if n is 1, 2 or a

-11-

multiple of 4. Various methods of generating Hadamard Matrices include Sylvester's meth­

od, Paley's construction and the use of Symmetric Balanced Incomplete Block Designs

(SBffiD) [21].
Definition: Two Hadamard matrices in 0-1 notation which disagree in all but one entry in

each row are called supplements to each other.

Theorem 2: If a Hadamard matrix M comes from SBlliD, then a supplementary matrix

M also exists

Proof: see Appendix

3.1. Assignment of FCPs to Nodes for Backups

We now describe the partitioning strategy for the networks under consideration and de­

scribe rules for assigning FCPs to the nodes in the network. As mentioned earlier, each node

has two types of FCPs, the primary and the secondary FCPs, in order to provide two-level

fault-tolerance. There are many ways to assign nodes to FCPs. In this paper, we describe

simple rules for both podal and anti-podal networks and do not carry out any optimization in

this regard. However, we do provide an estimate of overhead for this assignment in Section 5,

and show the average distance is constant for all the nodes in the network. Furthermore, the

assignment of FCPs to nodes is symmetric and each node interacts with the same number of

primary and secondary FCPs. Also, each FCP manages the same number of nodes in terms of

providing backup for fault-tolerance and re-distributing the load, if required.

The set C ofFCP's for DT networks is selected from the code generated by taking combi-

nations of the rows of Hadamard matrix M, its complement M_C, or its supplement Ms. The

selection depends upon the network being podal or antipodal. For antipodal networks C con­

sists of matrices M and M_C (both suitably modified depending upon the code structure of the

network). Cis also called Hadamard code. For podal networks, the set C consists of matrices

M and Ms (both also suitably modified depending upon the code structure of the network).

The details of selecting set C for partitioning a given network are explained below.

3.1.1 Feps for the Binaey n-cube Network and Node Assipment

For Qn, (n being multiple of 4), we take the matrices M and M_C of Figure 1. Note, for this

value of n, I C I = 2n for Q,. For the rest of the values of n, the rules for selecting set Care as
follows.

Case a; Qn with n mod 4 - 1. For this case, we start with the set C obtained from Hada­

mard matrices M and M_C of size n (Figure 1). The modified set C for the network under

-12-

consideration can be generated by appending an all O's and an all 1 's column, to M and ~
respectively, at any fixed position, say at the extreme left position.

Case b: Qn with n mod 4 = 2. This case is treated the same way as the Case (a), except we

append two columns 0 and 1 toM and 1 and 0 to~- However, the all O's row in M is aug­

mented with bits 00 rather than with bits 01. Similarly, the all1 's row in~ is augmented with

bits 11 rather than with bits 10.

Case c: Qn with n mod 4 = 3. For this case, the set C consists of the rows of the truncated

matrices M and M_C in 0-1 notation. The truncated matrices (in 0-1 notation) are generated

by discarding the all O's row and column.

The FCP Assignment Rule: Once the FCPs are identified in Qn, the rule for the assign­

ment of nodes to FCPs is as follows. The FCPs having the left most bit 0 serve as primary FCPs

for those nodes which have also left most bit as 0, but the 0 serve as secondary FCPs for the

rest of the nodes in the network. Similarly, the FCPs having the left most bit as 1 serve as

primary FCPs for those nodes which have also left most bit as 1 and serve as secondary FCPs

for the rest of the nodes.

It can be noticed that the above assignment is symmetric in the sense that each node is

assigned the same number of primary and secondary FCPs and each FCP manages the same

number of nodes in terms of providing backup for fault-tolerance and load re-distribution in

the sphere.

3.1.2 FCPs for the Binomial Network and Node Assipment

Depending upon the value of n, the set C for this network can be selected as follows.

Case a: n even. For this case, the set Cis selected by truncating, both row and column of

all O's of (2n-1) x (2n-1} M and taking also its complement (see Figure 1 for n =4}.

Case b: n odd. For this case, the set Cis generated by taking a (2n-2) x (2n-2) matrix M

(with only all O's row truncated), appending an all 1 's column with it and taking its comple­

ment as well.

The FCP Assignment Rule: The rule of assignment is exactly the same as Qn, that is the

FCPs having the left most bit 0 serve as primary FCPs for those nodes which have also left

most bit as 0 and serve as secondary FCPs for the rest of the nodes in the network. Similarly,

the FCPs having the left most bit as 1 serve as primary FCPs for those nodes which have also

left most bit as 1 and serve as secondary FCPs for the rest of the nodes.

It can be noticed that the above assignment is symmetric.

3.1.3 FCPs for the Bisectional Network and Node Assipment

-13-

For Bn, depending on n which is always odd, the following are the two cases, for selecting

the set C.
Case a; n mod 4 = 3. For this case, we consider the set C obtained from Hadamard

matrices M of size n (Figure 1), and just truncate the left most column of all Os. Also, we

translate this truncated matrix within Bn by complementing any n-2 columns. Figure 2, shows

M and one possible translation. Note, the newly translated matrix also produce a set of FCPs

which have same graphical distances among themselves as the original matrix M.

0 0 0 0 0 0 0

0 0 1 0 1 1 1
0 1 0 1 1 1 0

1 0 1 1 1 0 0
M= 0111001

1 1 1 0 0 1 0

1 1 0 0 1 0 1

1 0 0 1 0 1 1

Translated M =

1 1 1 1 1 1 0

1 1 0 1 0 0 1
1 0 1 0 0 0 0

0 1 0 0 0 1 0

1 0 0 0 1 1 1
0 0 0 1 1 0 0
0 0 1 1 0 1 1

0 1 1 0 1 0 1

Figure 2. A Hadamard matrix and its translated matrix.

Case b: n mod 4 = 1. For this case, the set Cis generated by modifying the set of case (a),

by appending two columns of all O's toM at any fixed position, say at extreme left, and then

translating it as well, as described in case (a).

The uniqueness of M and its translation is established by the following lemma.

Lemma 1: The FCPs in M and its translation are unique.

Proof: Since, the translation is done by complementing n-2 columns, and for Bn,

Lxy = Min(Hxy , H~) where H~ = n- Hxy , the FCPs in the translated matrix are in

the immediate neighbors of the original FCPs of truncated M. Since, FCPs in the original M

cannot be immediate neighbors of each other (distance is equal to the diameter, this is shown

in Lemma 2 in section 3.3), the translated FCPs cannot be in the original matrix M.

The FCP Assignment Rule: The assignment rule is exactly the same as for Qn.

By noticing, that the left most bit of half of the nodes in Bn is 0, the above assignment is

also symmetric.

The Binacy Odd Network On [17]

Depending upon the value of n, the set C for this network can be selected as follows.

-14-

Case a: n eyen. For this case, the set Cis selected by truncating, both row and column of

all O's of (2n-1)x(2n-1) M and as well as taking its truncated (both row and column with all O's)

supplement matrix (see Figure 1 for n =4).
Case b: n odd. For this case, the set Cis generated by taking a (2n-2)x(2n-2) matrix M

and its supplement (for both only all O's row is truncated), and appending an all 1 's column

with them.

The FCP Assignment Rule: In a On network, the number of nodes, N, is always even (ex­

cept for n = 4) [5]. The rule of assignment is based on lexographical ordering of positions in

the codewords associated with the nodes in On. In this ordering the first half codewords

(nodes) are assigned toM (acting as primary FCPs) with its supplement acting as secondary

FCPs. For the rest of the codewords (nodes) the assignment is reversed. For even N, this re­

sults in a symmetric assignment.

3.2. Sphere Identification for Load Re-Distribution

As mentioned earlier, FCPs maintain backups and load status and re-distribute load

within certain regions in the network, known as spheres. The sphere of an FCP consists of all

the nodes which are within a distance r from FCP, where r is the covering radius of C. The

number of nodes in, the sphere, S,(J) is the total number of nodes lying at graphical distances

0 through r, from node x. Since the number of nodes at the graphical distance i is given by
T

valency vf, the total size of the sphere is given as I S,{x) I = i ; 0vJ.

We recall that the determination of this covering radius is a non-trivial problem .. Howev­

er, in Appendix we have provided an upper bound on the covering radius for DT graphs (see

Lemma 3). We need to determine this radius at the time the distributed systems is designed

and its topology is identified and mapped on to a suitable DT graph. Then through an exhaus­

tive search the covering radius can be found. For that search, Lemma 3 can of great help.

In case the number of nodes in the network is not divisible by the number of FCPs (as is

the case for B 11), the difference in sphere sizes does not exceed by 1. Figure 3 shows one of the

16 spheres in Qs, for the FCP with the binary codeword of 00000000. The covering radius r in

this case is equal to 2 and the valencies ~.vi and 11, Vx, have values 1, 8 and 28 respectively,

corresponding to total volume of the sphere ISj(x)lequal to 37.

It can be noticed, that the nodes in one sphere can also be shared by other spheres, de­

pending upon the covering radius r and the graphical distance among FCPs.

3.3. Some Properties and Examples of Set C

-15-

10001000

00110000

01010000

10010000

01100000

10100000

00100001

00100010

11000000

01000001

01001000

01000010

01000100

00101000

10000001

00011000

10000100

10000010

00001100

00010010

00001010

00000110

00010001

00001001

Figure 3. A sphere in Qs network with scheduler 00000000.

Following are the main reasons for choosing Hadamard code for the set C (we might as

well select other codes such as Hamming code or BCH codes, but these codes have certain

limitations as described below).

1. The range of values of n for which a Hadamard code exists, considerably exceeds the

range of n for which other codes, such as the Hamming code, exist. As described earlier, it is

conjectured that a Hadamard matrix exists for all values on n which are less than 428 and are

multiple of 4 [21]. On the other hand an extended Hamming code only exists if n is a power

of 2. Similarly, a BCH code exists only for limited values of n.
2. The covering radius of Cis known for all values of n [23], which are even powers of

two.

3. The following theorem shows that the set C, provides the maximal k/2 (radius)-uni­

form set for Qn and r n·

Theorem3: Letx,y E C. ThenforQnandrn.Lxy = k/2,andCisthemaximalpossi­

ble k/2-uniform set.

-16-

Proof We first consider Qm for which k = n. The Hamming distance between any two

rows of a Hadamard matrix is n/2, that is for Qm Lxy = Hxy . In order to prove that the

cardinality of the set is the maximum possible, assume the contrary is true, and suppose there

exists some codeword z, such that Hzx = n/2, for all x E C. A simple counting argument

reveals that there must be at least n(n-1)14 1 's at those n/2 columns where z has O's. If these

1 's are distributed among all rows of M, then there are at least (n-1)-n(n- 2)1[4(n-1)] rows

which can not be filled to obtain this Hamming distance. Therefore the node z is at a graphical

distance less than n/2 from these row. The proof for r n can be provided on the same line.

Q.E.D.

Lemma 2: A truncated matrixM with and without all O's row provides ak-uniform set for

On and Bn networks, respectively. Proof is obvious from Theorem 3.

A truncated Hadamard matrix (the one without all 1's column) using Symmetric Bal­

anced Incomplete Block Design (SBIDD) [21] can be easily generated, since most of the avail­

able SBIDD's are cyclic by construction. For this purpose, all the blocks (which corresponds

to all the elements of the set C, besides codewords with all O's and all1 's) can be generated by

taking n-1 cyclic shifts of a single generator codeword. Such generators, for different values

of n-1 can be found using the so called difference set approach [21]. Thble 1 illustrates the

generator codewords for various values of n-1. Similarly, for the supplementary matrix, we

can have supplementary generators, as elaborated in the proof of Theorem 2 in Appendix.

Examples

As the first example we consider the set of FCPs for Q7. The generator codeword for Q7

is 0010111. The additional 6 codewords are generated by taking 6 left cyclic shifts of this

generator.

The complete set C consists of rows with all O's and all 1 's plus the seven codewords and

their complements. Therefore, C= {0000000, 0010111, 0101110, 1011100, 0111001,

Table 1. Generator codes for different lengths

Length=n- Generator Codewords Suppl. Generator Codewords

7 0010111 1101001

11 10111000101 01000111011

15 111101011001000 100010100110111

19 1001111010100001101 0110000101011110011

-17-

1110010, 1100101, 1001011, 1101000, 1010001, 0100011, 1000110, 0001101, 0011010,

0110100, 1111111}. For Q8, the set C can be produced by choosing the untruncated matrices,

which is the same as shown earlier in Figure 1 where each row of the matrix represents the

binary address of the 16 schedulers.

The set consisting of codewords as given in Figure 1, can also be used to generate the set

C for the Q9 network by appending an all O's and all1 's column (say at extreme left position),

of matrix M and~. respectively, as described for case (a). Also, the same set can be used to

generate the set C for Qm, as described in the procedure of case (b). The set C for other Qn's

can be generated by the methods described above.

As a second example we consider 06> for which the generator codeword is 10111000101.

The additional10 codewords generated by taking 10 left cyclic shifts of this generator, consti­

tute the set C for 06.

The third example is of 04, which is shown in Figure 4. Its set C consisting ofmatricesM

and Ms is also identified.

1010011 1101100 0110011
1011100.

0110110

1011001 •• 1011011

01011110. 1100101 •

1010101 0111010 ••

0101011 1001101

1110100 .. 1110010.

0011011
0101101

1100110

1010110
0011101 ••

1101001 ••

1100011

M= *
Ms = **

0111001.

Figure 4. Odd Graph 0 4 with its set C

-18-

Th.ble n
The characteristics of various partitioned DT networks

Network N n d ICI r vi vi vJ IS,(x)l

Q1 128 7 4 14 1 8 - - 9

Qs 256 8 4 16 2 8 28 - 37
Hypercube

Qg 512 9 5 16 2 9 36 - 46

010 1024 10 5 16 3 10 45 120 176

B1 64 7 3 8 1 7 - - 8

Bisectional B9 256 9 4 8 2 9 36 - 46

Bu 1024 11 5 12 3 11 55 165 232

04 35 4 3 7 1 4 - - 5
Odd

06 462 6 5 11 3 6 30 75 112

r4 70 4 4 14 1 4 - - 5
Binomial

fs 252 5 5 14 2 5 20 - 26

The topological characteristics and partitioned structures for Q7, Qs, Q9, Qm, B1, B9,

B u, 04, 06, r 4 and r s networks are summarized in Thble II which shows the number of nodes

N, the degree n of each node, the minimum distance d between FCPs, the cardinality of the

set C, the covering radius r, valencies vj and the size of sphere I S;(x) I, for each network.

As mentioned earlier, the nodes in one sphere can also be shared by other spheres, de­

pending upon the range of load redistribution and the graphical distance among nodes and the

set C. The distribution of shared nodes at various distances with varying range of load redis­

tribution (f) within the sphere is given in Thble Ill, for Qs. For example, with the range of load

re-distribution equal to 2, which is also the covering radius of C in this case, nodes at distance

1 from a PCP are present in only one sphere whereas nodes at distance 2 are shared by exactly

4 spheres. On the other hand, if the range is set to 8, the system is equivalent to the centralized

model with 16 nodes trying to re-schedule failed nodes tasks to all the rest of the nodes in the

network. Increasing the range of load re-distribution beyond the covering radius causes more

sharing of nodes among spheres for which greater number of messages need to be generated

to keep the load information consistent for all FCPs. Therefore, the optimal range of a load

-19-

re-distribution, the one which provides maximum coverage with minimum radius in all the

cases is set to the covering radius of the corresponding Hadamard Code.

Table ill
Distribution of nodes shared by different spheres in a 8-cube

as a function of the covering radius

f •
2 3 4 56 7 8

Distance of 0
a node from C

0 0 14 14 14 14 15

!
1

2

1 8 8 15 15 16 16

4 4 12 12 16 16 16

4. The Proposed Fault-Tolerance System

In this section, we present the proposed semi-distributed scheme. For this purpose, we

describe the system model, the load balancing and load re-distribution algorithms and the

associated information collection and backup mechanisms.

4.1. Assumptions and Characteristics of the System

The system consists of N nodes which are connected by a communication topology with a

constant degree, n, per node. Each node is subject to arrival of tasks and is equipped with a

task scheduler. Th.sk scheduling and load balancing, therefore, assumed to be completely de­

centralized. The tasks arrive at a node with rate A tasks/time-unit which is identical for all the

nodes. The execution time of a task is assumed to be known. In addition, associated with

each task is a deadline. Hence, the completion time of a task must be less than its deadline.

When a task arrives at a node, the scheduler of that node tries to guarantee that the task

meets it deadline. If this deadline can be met locally, the task is scheduled into the local ex­

ecution queue which is served on the FCFS principle. If a task cannot meet its deadline local­

ly, it is transferred to another node. The selection of a remote node can be done in various

possible ways [31], [33], [34]. However, in this study, we assume that the local scheduler inter­

acts with its immediate neighbors only and gathers their load status. The load status in this

case consists of the accumulative execution time of the unfinished work load which is the sum

of the execution times of the tasks waiting in the node's execution queue plus the remaining

-20-

execution time of the task which is currently being executed. This load index has been sug­

gested in many studies [33], [34] since the simple queue length can not be a good load index

for real-time systems. If a task is to be transferred to another node, such transfer takes certain

amount of time. This time is the sum of initial channel setup time and the actual transmission

time of the task. If a task is currently being transferred on the same channel, then this task has

to wait in the communication queue until the prior task completes its migration. Since the

communication time also counts towards the task's waiting time, the local node, while making

the scheduling decision, also takes into account the communication penalty. The effective

load of a neighbor is, therefore, the computation load plus task's communication time. Since,

the determination of the exact communication time of a task is difficult. , the scheduler only

assumes an average value of communication time. The deadline of a task , therefore, consists

of its execution time plus the average communication plus some marginal value (D) which

depends on the application and is supplied by the user.

A task is said to have missed its deadline if does not complete its execution anywhere in

the system within that deadline. If a node cannot guarantee a task to meet its deadline and

fails to find a suitable node as well, it still transfers the task to a neighboring node with the

minimum load. This results in two possible advantages. First, by the time the task completes

its migration to the neighboring node, the loading conditions of that task may change in fa­

vour of the task which can result in that task meeting its deadline. If this is not the case, the

neighboring re-migrate the task to one of its own neighb01s.

4.2. Task Replication and Backups at FCPs

In order to provide two level fault-tolerance, the replicated copies of every task are kept

as backups on primary and secondary FCPs. Since the major goal of the proposed strategy is

to quickly re-distribute backup load, the backup queues themselves are distributed in a

round-robin fashion, first to all the primary FCPs and then again to all the secondary FCPs.

Specifically, whenever a task is scheduled at a node, its copy is sent to the one of the FCPs as

well as to the associated secondary FCP. The copy of the next task is sent to the next primary

FCP present in the round-robin list as well as to the associated secondary FCP. In this man­

ner, the execution queue of a node is always equally divided among its primary FCPs with

further duplications at secondary FCPs. An FCP, therefore, needs to keep backup queues for

those N/2 nodes for which it acts as primary FCP. It also maintains backup queues for the rest

of the N/2 nodes for which it serves as their secondary FCP. It is worth mentioning that in

order to provide two level redundancy, there have to be 2N redundant copies in the whole

system. It is also possible that, any given time, an FCP(s) may be faulty. In that case, the copy

of the task is sent to to next available FCP in the round-robin list. In summary, the following

-21-

task duplication algorithm is executed at each node:
Next FCP = (Next FCP + 1) mod (Number ofFCPs)

While (Next FCP is faulty)

Do
Next FCP = (Next FCP + 1) mod (Number ofFCPs)

End Do
Send copy of the task to Next FCP
If (the secondary FCP for the Next FCP is not faulty)

Send the copy of the task to the secondary FCP

When a task is completed at a node, a message is sent to both the primary and secondary FCPs

to delete that task from their backup queues which also works on FCFS basis. Figure 5 shows

two nodes 00000000 and 11111111 with sixteen FCPs in Qs . In this case, eight FCPs corre­

sponding to the binary codewords of matrix M, represent the primary FCPs for the node

00000000 and the binary codes of Me represent secondary FCPs for that node. On the other

hand, for node 11111111, the role of M and Me is reversed. The round-robin order is also

indicated in this figure.

4.3. Failure and Repair Model

As mentioned earlier in real life systems, failure of components are generally random.

Also the failed components, once diagnosed and repaired off-line, can be integrated back

into the system. Typically, a node remains alive most of the time and when it fails, it can be

repaired quickly and can become operational. For our study, we assume only the failure of

nodes in the system. Accordingly, we consider the well known failure/repair model of multi­

processor systems where the availability time as well as the repair time of the processor are

assumed to be independent exponential random variables with rates 'Y and 1-lR, respectively.

Generally, the ratio of Y I /JR is assumed to be very small. Since the number of nodes (N) in the

system are fixed and it has finite population, therefore, the accumulative failure and repair

rates become state dependent [13]. Accordingly, the Markov model showing the failure and

repair processes is depicted in Figure 6. The state of the model represents the number of

nodes (P) currently operational. At a give time, every operational node is equally probable to

fail. Obviously, there can be more than one node in the faulty list. The state dependent rate of

the failure and repair processes are also shown in Figure 6.

-22-

Figure 5. Thsk replication at FCPs assigned to node 00000000 and 111111.

4.4. Load Re-distribution under Failures

When a node fails, each primary FCPs re-schedule the backup queue (if they have any) of

that node within its sphere. Due to.real-time constraints, each FCP tries to make sure that the

backup tasks still meet their deadlines. This is accomplished by scheduling each of the back­

up tasks to the most lightly loaded nodes of the sphere. The notion of sphere provides an FCP

-23-

P-y (P-1)-y

(N- (P- 1)) /1-R (N - (P- 1)) /1-R

Figure 6. Markov model for failure and repair processes.

with a broader view of the state of the system and it enables to re-distribute the backup load

by selecting the most suitable nodes. As a result, the backup tasks can still possibly meet their

deadlines despite the failure of their original nodes. Since the backup queue of the failed

node is itself distributed among multiple FCPs, each FCP needs to schedule a portion of the

tasks of the failed node. This semi-distributed load management strategy has the following

four advantages:

(1) Many FCPs are able to select best candidate nodes within their respective spheres.

(2) All the backup tasks can be concurrently re-scheduled in multiple sphere.

(3) Due to the round-robin distribution of tasks in backup queues, the danger of instability

due to bulk arrival in a particular sphere is greatly reduced.

(4) The backup load is smoothly spread across the whole system since the graphical distances

among FCPs is either equal to the diameter k or radius k/2.

The migration of a task from an FCP to a node within its sphere incurs some communica­

tion delay. After re-distributing the load of the faulty node, all backup queue are deleted. At

the same time, the primary FCP informs the corresponding secondary FCP to delete its back­

up queues for the failed node. Hone of the primary FCPs is also faulty, the backup queue of

the faulty node is re-scheduled by the secondary FCP in a similar fashion. The node receiving

the re-scheduled task treats the backup tasks as a newly arrived task. The node also sends the

backup copy of the re-scheduled task to the FCP, which is next in its round-robin list. Howev­

er, the re-scheduled asks are not allowed to make any further migrations.

In spite of two level redundancy, a task can still be lost if:

(1) Both primary and secondary FCPs of the failed node have also been failed.

(2) The failed node is also an FCP and no task backup at the secondary level could be made

-24-

because the secondary FCP was also faulty at the time the task was scheduled.

(3) The failed node is also an FCP and its secondary FCP has also failed.

However, the likelihood of these events is very small and the probability of lost tasks as a

result of these events is presented in section 5.3. The most important advantage of the pro­

posed scheme is that only a small percentage of the tasks can definitely get lost provided the

node and one of its primary/secondary FCP pair also fail, an event of very low possibility. It

can be noticed that this percentage is of the order of 8(1 In).

5. Evaluation of the Proposed Fault-Tolerant Strategy

In this section, simulation results for the proposed strategy are presented. We have con­

sidered all four above mentioned networks for which extensive simulation experiments have

been conducted. The performance measures selected include the deadline missing probabili­

ty, the mean response time of a task and the percentage of re-scheduled tasks which still meet

their deadlines despite node failures. Also, an estimate for the average number of control

messages generated per task is provided. The sensitivity of the performance with respect to

varying deadlines, fault rate, network communication rate and system load is also analyzed.

5.1. The Simulator

Our simulator models the node architecture described above with task scheduler and ex­

ecution and communication queues. The simulator also takes into account the network to­

pology with any size, the rate of communication links, different scheduling algorithms, num­

ber of FCPs and their assignments, task arrival rate, execution rate, failures and repairs pro­

cesses and network partitioning for semi-distributed task re-scheduling. The simulator al­

lows to tune various parameters such as arrival rate, execution rate, communication rate, fail­

ure rate, repair rate and average task deadline. Length of simulation with respect to time or

number of tasks can also be varied. In discrete event simulation, it is very important to elimi­

nate the initial transients for steady state system behavior. For validity of results a simulation

run should be long enough and multiple runs of the same simulation, by using different set of

seeds for random number generators, need to be carried out, to compute the confidence in­

terval. Our simulator explicitly takes into account these considerations. It is written in 'C' and

runs on an Encore Multimax.

The task arrival process for this study been modeled as a Poisson process with average

arrival rate of A tasks/unit-time which is identical for all nodes. The execution and communi-

cation times of tasks have been assumed to be exponentially distributed with a mean of 1/ JlE

time-units/task and 1/ Jlc time-units/task, respectively. The task deadline has been com­

puted by generating a random number from a uniform distribution with an average of D time-

-25-

units. Node failures and repairs rates are also assumed to be exponentially distributed with a

mean of 1/y time-units/node and 1/PR time-units/node, respectively. In each simulation

run, 100,000 tasks were generated. All results are presented with 95 percent confidence inter­

val, with the size of the interval varying up to plus or minus 5 percent of the sample mean.

5.2. Deadline Missing Probability and Average Task Response Time

The two major performance measures are deadline missing probability and the average

task response time. For soft real-time systems, the important performance measure is the

missing probability but since the proposed strategy is also intended for non-real-time sys­

tems, we have also considered its performance in terms of average task response time. The

average task response time also provides a perspective of how a task's system sojourn time is

affected under node failures. The deadline missing probability is defined as the probability

that a task does not finish its execution within its specified deadline [33]. The task response
time (or sojourn time) is defined as the finish time of the task minus its arrival time. In our

study, the impact of four important system parameters on these performance measures is eva­

luated. These parameters include the frequency of node failures ('Y), the deadline (D), system

load (A/ PE) and the task communication rate (Pc) over the links. Simulation results are

presented for all four classes of DT networks. The next section discusses the impact of fre­

quency of failures.

5.2.1. Impact of Frequency of Failures

The frequency of failures affects the amount of load which is injected back into the sys­

tem. Recall that in the proposed strategy, the load submitted to the faulty nodes, while they

are under repair, is not rejected. Rather, the new arrival of tasks for the faulty node is as­

signed randomly to primary FCPs. Therefore, in addition to load re-distribution, FCPs are

also subjected to some additional load.

Failure and repair rates are be independent with respect to the rest of the system parame­

ters. We define a parameter which captures the effect of failure and repair rate. That parame­

ter is the percentage of all the tasks. in a given simulation run, which are re-scheduled. The

failure rate per node is varied from 0.002 to 0.2 which implies that the average interval be­

tween failure of every node has a value of 110.002 to 1/0.2 time-units. The repair rate has

been chosen to be 0.5 which implies that the average repair time of a node is 2 time-units.

This repair rate is kept fixed in the rest of this paper whereas the failure rate has been varied.

For the results shown in this section, the arrival rate per node ('y) is 0.8, Dis 0.5, and communi­

cation rate (Pc) is set to be 10 tasks/time-unit. Figure 7 shows this percentage with various

failure rates, for Qg, B9, 06 and rs. We notice that the percentage of re-scheduled tasks

-26--

3~--~--~---r---r---r---r---r---r--~----- 06

Percentage of
re-scheduled 2.5-+---+--+--+--+---+--+--t--7'-----11------7
tasks :: ~- - - Os

0·~--~~~~+-~~~~-+-r-r~~~

0.002 0.()04 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Fault rate per node ('Y)

~~

Figure 7. Percentage of re-scheduled tasks at various fault rates for all
four networks at A = 0.8 and D = 0.5.

increases with 'Y· This value is large for 0 6 network, due to its bigger size, while for Q8, B9 and

r 5 , this value is almost the same.

For the same set of parameters, the impact of failure rate on the deadline missing proba­

bility of a task is shown in Figure 8. The missing probability at failure rate equal to 0 is the

missing probability under normal system operation without any failure. As the failure rate ('Y)

increases, the missing probability also increases because not only the tasks (if any) waiting in

the execution queues of the failed nodes have to be re-scheduled but also the tasks being

executed at the time of failure have to be aborted and re-scheduled. It is important to notice

that in contrast to Figure 7 where the percentages of re-scheduled tasks increases sharply with

the increase in -y, the missing probability does not increase rapidly. This show that the pro­

posed strategy is able to sustain high failure rates.

5.2.2. Impact of Deadline

Simulation results presented in this section examine the impact of deadline on the miss­

ing probability and the average response time. Clearly, a task's missing probability is depen­

dent on the specified deadline. Recall that the deadline of a task in simulation is computed by

adding a task's execution time to its associated value of D and 11 P.c • For simulation, the aver­

age value of parameter Dis varied from 0.25 to 2.5 time-units, A is 0.8 and P.c is 10. Since Dis

-27-

Missing
probability 0.10

0.08

0.06

0.04

0.02

0

,__...~

~ ~ .-1 r-
~ ~ If-:; - ~

~
I'

_....:

~ ~~

_-I

r---' ~ 1.------'
- L.----1-

L---.....
~

.......:;
...:I f-

lf"_....l ~
f- ___..., __.,

~ _...,

----- Qs

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
Fault rate per node (-y)

Figure 8. Deadline missing probability at various fault rates for all
four networks at 'A = 0.8 and D = 0.5.

a uniformly distributed random variable, the minimum value of D is 0 while the maximum

value ranges from 0.5 to 5.0. Four different values are selected for -y, which are 0.005, 0.01,

0.015 and 0.02. Plots showing the percentage of re-scheduled tasks, the missing probability

and the average response time are presented for each of the four networks. In addition, re­

sults for the missing probability and the average response time for the no failure case are also

included.

For Qs network, these results are shown in Figure 9 to 11. The percentage of re-sche­

duled tasks, as shown in Figure 9, exhibits a constant increase when 'Y is varied from 0.005 to

0.02. It also indicates an increasing trend when Dis varied from 0.25 to 2.5. This is because

the local execution queue lengths increase if Dis increased which in turn is due to the fact that

schedulers at all nodes are frequently able to guarantee tasks locally. As a result, lesser num­

ber of tasks are transferred to neighbors. Hence, the execution queues get longer thus caus­

ing backup queues to become larger as well. Therefore, when a node fails, an FCP needs to

re-schedule relatively greater number of tasks.

The deadline missing probability (Figure 10) shows a sharp decrease when Dis varied

from 0.25 to 1 after which it shows a saturation behavior. With constant increment in -y, the

missing probability is also shown to increase with constant increments, irrespective of the val­

ue of D. Hence, the amount of degradation in performance due to failure remains the same

-28-

5
Percentage of
re-scheduled
tasks

4

3

2

1

0

~ ~
~

~ ~
~ ~ ~

~

-~ ~

I'

0.25 0.50 0. 75 1

----~ - -
_,

_,

1.25 1.50 1. 75 2 2.25 2.50
D

'Y = 0.02

'Y = 0.105

'Y = 0.01

'Y = 0.005

Figure 9. Percentage of re-scheduled tasks with variable deadline for Qs
network at A. = 0.8 and various 'Y's.

for any value of D. This indicates that the proposed strategy is able to tolerate failures under

both strict (D = 0.25) and relaxed (D = 2.5) conditions for deadline. Also the degradation in

performance is dependent on 'Y·
The response time, as shown Figure 11, is also affected if deadline is increased. This is

also because schedulers tend to schedule more tasks in local queues. A relaxed deadline with

higher value of D can result in more tasks meeting their deadlines but at the expense of an

increase in the average task response time. However, the increase in response time, as ex­

pected, also shows its light dependence on 'Y·

Simulation results for the B9 , 0 6 and r 5 networks, providing information regarding the

percentage of re-schedule tasks, the missing probability and the average response time, have

also been obtained. The trends of these parameters for these networks are identical to the

results for Qs as shown in Figures 9 through 11. We have only included results pertaining to

the real-time performance of the system which are the percentage of re-scheduled tasks and

the missing probabilities for these networks. Figures 12 to 17 show these results. We have not

included the results for the average response time due to the space limitations of the paper,

however, they exhibit the same behavior. The curve for the missing probability for B9 al­

though show the same pattern as for the case of Q8 , a careful look at these curves reveals that

the performance of B9 is better than Q8 , although both networks have the same number of

-29-

Missing 0.16
probability

0.14

0.12

0.10

0.08

0.06

l
~
\~

'~
\ ~
~~ ~ t:::---. • 'Y = 0.02

0.04 ~ ~ ~--- """1 t::----.
.·:. 'Y = 0.105

~-~ -!i-- .;. • 'Y = 0.01 --0.02 ·- ~- -; IF --~-...:1 - : - - 'Y = 0.005

0
• • • 'Y = 0.0

0.25 0.50 0. 75 1 1.25 1.50 1. 75 2 2.25 2.50

D
Figure 10. Deadline missing probability versus averageD for
various -y's at A. = 0.8 for Q8 .

• 'Y = 0.02

Average . ·: · 'Y = 0.105
response ;:· · 'Y = 0.01

time 1.7'--+----+---+---1--+--+--l-----1~---::.1:~~---- 'Y = 0.005
• • • • 'Y = 0.0

1.1-+-~4-~-l-..,..._.t--~~~---+--.--+-~-4--~

0.25 0.50 0. 75 1 1.25 1.50 1. 75 2 2.25 2.50
D

Figure 11. Average task response time versus average D for
various -y's at 'A = 0.8 for Q8 •

-30-

Percentage of 5
re-scheduled
tasks

4

3

2

1

0

...... -____.... ~ 'Y = 0.02

~ ~
~ ~ l.----

~ """- -
~ --1----

'Y = 0.105

..... -k-- j..--
'Y = 0.01

'Y = 0.005

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
D

Figure 12. Percentage of re-scheduled tasks versus average D for network B9
at A = 0.8 and various -y's.

Missing 0.16
probability

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

~
\~

\~ ~
~ ~
~ ~ ~ ~

... _
• -.....l

~--j 1- •lt--4 It- -~

• 'Y = 0.02

.·:. 'Y = 0.105

:·~· ~- 'Y = 0.01
: : - - 'Y = 0.005

--- 'Y = 0.0

0.25 0.50 0. 75 1 1.25 1.50 1. 75 2 2.25 2.50
D

Figure 13. Deadline missing probability versus average D for
various -y's at A = 0.8 for Bg .

-31-

Percentage of
re-scheduled
tasks

5

4

3

2

1

0

___..... ~ "Y = 0.02

~ v
~ ~

~ ~ --- ,... - ---- "Y = 0.105

~
~ f.--

~

-~ ~ ...- - - - - "Y = 0.01 -
"" - - - - "Y = 0.005

0.25 0.50 0. 75 1 1.25 1.50 1. 75 2 2.25 2.50

D

Figure 14. Percentage of re-scheduled tasks at various deadlines for 0 6
network at A. = 0.8 and various 'Y's .

M . . 0.16
1ssmg

probability 0_14

0.12

0.10

0.08

0.06

0.04

0.02

0

~
~
'~

\~
~

~~
... ,~

'"j ~ ~
............ r--.~

--~ •

..... , "Y = 0.02

~ t:-~
...._ .._

~ - ,_ -- .,
-~--., ·~

, , , ', "Y = 0.105
',~: 'Y = 0.01 --
: ,- - - - 'Y = 0.005
''' "Y = 0.0

0.25 0.50 0.75 1 1.25 1.50 1.75 2 2.25 2.50

D

Figure 15. Deadline missing probability versus averageD for
various 'Y's at A. = 0.8 for 06 .

-32-

Percentage of 5
re-scheduled
tasks

4

3

2

1

0

~ ~
~ ~ __......

-~ ~ t""

~

"

~ ~
r---'

~

'Y = 0.02

~
,..

-
~ ~

~-
~

'Y = 0.105

'Y = 0.01

- - - - 'Y = 0.005

0.25 0.50 0.75 1 1.25 1.50 1.75 2 2.25 2.50

D

Figure 16. Percentage of re-scheduled tasks versus averageD for network r 5
at 'A = 0.8 and various -y'a.

Missing 0.16
probability

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

~
:\l
\~t

\~
\ ~
'~ ~

' ~ • ~ ~ ...
~-~ ~ ~ ~

--~ --~ -- -·It"--

• 'Y = 0.02
••••• 'Y = 0.105 . . .

: ·:- - 'Y = 0.01
: - - - - 'Y = 0.005

• • • • 'Y = 0.0

0.25 0.50 0. 75 1 1.25 1.50 1. 75 2 2.25 2.50

D

Figure 17. Deadline missing probability versus averageD for
various -y's at X. = 0.8 for fs .

-33-

nodes. However, B9 is isomorphic to the folded Q8 and thus has a degree more than one of

that of Q8 • This results in better load sharing since the increased connectivity of communica­

tion links provides a better load view to the scheduler of a node. The increased connectivity is

also useful for the semi-distributed based load re-distribution scheme. This is due the fact

that, although the number of FCPs is also the same for both the networks, the sphere size for

B9 is 46 as compared to 37 for Q8 • The percentage of re-scheduled tasks is marginally less

than that of Q8 , as expected, since the underlying decentralized algorithms performs better in

B9 resulting in slightly reduced execution and backup queues.

The percentage of re-scheduled tasks in 0 6 is greater than the rest of the networks as is

clear from Figure 14. This is because the size of 0 6 is bigger which results in a greater accu­

mulative node failure rate. The percentage of re-scheduled tasks for r s , as shown in Figure

16, is comparable with B9 and Q8 • However, the missing probability ofrs, for the no failure

case, is worse than all the other three networks. The reason is this network has a smaller de­

gree than Q8 and B9 , although they have almost the same number of nodes. The effect of

degree of 0 6 on the missing probability places this network between Q8 and rs .

Another reason for including these results is to show that the proposed fault-tolerant

strategy is equally useful for the four different classes of network discussed in this paper. In

summary the performance degradation due to failures is independent of network topology

although the performance of underlying decentralized scheduling algorithm , to certain ex­

tent, may depend on the network topology. This can be noticed from the curves for missing

probabilities for all of the four networks, which show different performance under no failures

but the same performance degradation patterns. Although the response time curves for B9 ,

0 6 and r 5 are not shown here but the topology effect was observed.

5.2.3. Sensitivity to System Load and Network Communication Rate

Another important factor that can have a significant effect on normal load distribution as

well as load re-distribution is the system load. The results presented in this section examine

this factor by considering low, medium and high loading conditions. The missing probability

and average task response time are obtained by varying A. from 0.6 to 0.9, for all networks.

Both failure and no failure conditions are considered. Recall that throughout of this study J-lE

is kept as 1 and therefore the system load (p = A./JJ.) corresponds to A.. For failures, 'Y is kept as

0.01. D and P.c have been selected to be 0.5 and 10, respectively.

The curves for missing probability and average task response time are plotted in Figure

18 and 19. Both performance parameters, obviously, depend on the system load, under failure

or no failure conditions. The important thing to notice from these curves is that under any

load conditions the performance degradation (the missing probability and the average re-

-34-

sponse time) is slightly dependent on system load. We also notice that B9 performs the best

followed by Q8 , 0 6 and r 5 • The same performance ranking for these networks is retained with

system under failure. The first reason is the effect of degree. The second reason is that the

sphere size for load re-distribution for B9 is large than that of Qs or r 5 which again helps in

better load re-distribution. For 0 6, although the sphere size is the biggest among these four

graphs, its degree is lesser than B9 •

Finally, the effect of task transfer delays on the performance of the proposed strategy is

also evaluated. It has been observed that for most of the systems, the task transfer delays can

greatly contribute to the system response time and if these delays are significantly high, the

performance with load sharing can be worse than no load sharing at all (28]. As mentioned

earlier, in the proposed load re-distribution strategy, the task transfer delays from an FCP to

one of its nodes in the system are also taken into account. The task transfer delay from an

FCP to one of its nodes in the sphere depends on the distance of that node from the FCP. For

re-scheduling algorithm, an FCP, however, first check its own load and then all the nodes at

distance one followed by nodes at distance two and so on. If an FCP decides to re-schedule

the task in its own local queue, no task transfer delay is incurred.

For A. equal to 0.6, missing probability and average response time are shown in Figure 20

and Figure 21, respectively. Again, both no-failure and failure conditions are considered for

all four networks.

The average task communication rate is varied from 6 to 20 tasks/time-unit. Both the

missing probability and average task response time, under no failure, severely reduced if the

communication rate is below 10. The most important observation is that the proposed fault­

tolerant strategy is not affected by low communication rate.

-35-

0.01--+------+--------~--"""T"""--+--"""T"""-~

0.5 0.6 0.7 0.8 0.9
A

Figure 18. Missing probability versus A for all four networks
under failure and no failure conditions.

Average 1.35
Response , , , , , r 5

Time l.30I-+---+-------1f-----+----+-----t1', , , , r 5
-"', .- .

, , , , 06
::,.--- Qs

125~------~----~-----4------+-~~~:=:----~ . . ''
...... '.. 06

, ' ' ... Qs

1.05-+-..,...--+--r---1-~-+--.,...-+--.,.-~

0.4 0.5 0.6 0.7 0.8 0.9

Figure 19. The average task response time versus A for all four networks
under failure and no failure conditions.

-36-

Failure
No-failure

Failure
No-failure

Missing
Probability

o.u.--~-r--.....,----,----r----r---,----,

Failure
No-failure

--- rs ---0.06-1----+--'~~~~~___;::~r.::----t---t--____;;;~ -- - - - - - rs --
-y-o-~

------- 06

---- Qs
0.04--t----+---t---=~--..._-=-~=----...±__:;::::=..tl ::: - - - - ~

------- 06
--- Qs

6 8 10 12 14 16 18 20
JJc

Figure 20. Missing probability versus JJc for all four networks
under failure and no failure conditions at A = 0.8.

Average
Response 1.301---fS.:----+---+--~--+----11----+-----1

Time

1.1--+---r-l--..,...--+-....,...~----,r--+--r--+--..,..--l~.,..........,

6 8 10 12 14 16 18 20
JJc

Failure

No-failure

-------0
-- 6 ----- --- Qs

-~

Figure 21. The average task response time versus JJcfor all four networks
under failure and no failure conditions at A = 0.8 ..

-37-

5.3 Measure of Goodness

So far the results presented have shown that the proposed strategy is insensitive to anum­

ber of system parameters such as D, A. and pc and the assignment of FCPs. This degradation

in the overall missing probability and average response time performance is due to achieving

our main objective of saving those tasks which would have been lost if there were no fault-tol­

erance and load re-distribution. The obvious question is how good is the strategy in achieving

this objective. The usefulness of such a fault-tolerant strategy, therefore, should be judged by

observing its ability to save the lost tasks. For this purpose, we define a measure of goodness

for any fault-tolerant strategies for real-time systems, which is the percentage of tasks which

met their deadline after being re-scheduled. Another measure of goodness is the amount of

overhead involved for managing the fault-tolerant strategy.

For the first measure of goodness , we have observed the percentage of re-scheduled

tasks which still meet their deadlines, after being re-scheduled. Three sets of these results are

Thble N Percentage of task which still meet their deadline after re-scheduling
'Y = 0.005

Network ~ 0.5 0.7 0.9

0.5 39.34 34.66 27.43

1.0 64.09 63.26 61.20
Qg

1.5 72.54 71.53 71.21

2.0 78.86 77.51 75.38

0.5 39.01 35.80 30.34

B9 1.0 69.74 65.81 64.88
1.5 75.15 74.12 73.34

2.0 80.57 79.25 78.41
0.5 42.74 36.23 28.19

06 1.0 70.64 69.56 64.02

1.5 76.58 75.36 74.12
2.0 80.85 80.73 79.94

0.5 42.74 36.23 29.19

rs 1.0 62.72 60.07 58.49

1.5 66.63 65.44 64.44

2.0 77.33 75.92 72.81

-38-

presented in Thbles IY, V and VI, for fault rates 0.005, 0.01 and 0.02, respectively. Since the

normal system performance under no-failure has shown its dependence on deadline and sys­

tem load, we have considered four different values of D, which are 0.5, 0.1, 1.5 and 2.0, with

three different values, 0.5, 0.7 and 0.9, for A.

This measure greatly depends on the value of D. In addition, we notice that A has a little

effect and even for A equal to 0.9, the percentage of tasks still meeting their deadlines is only

slightly lower than for the case when I is equal to 0.5. This is due to the remarkable semi-dis­

tributed load re-distribution mechanism which allows an FCP to find a lightly loaded node in

its sphere, quickly. A more closer look at all three tables reveals that fault rate has some

impact. Even for large failure rate such as 0.02, more than 70% of the tasks still meet their

deadlines.
An important phenomena that is intuitively true and has also been observed is that as the

sphere size for an FCP increases, the number of re-scheduled tasks, which meet their dead­

line, improves. For example B9 , Qs and rs are networks with almost equal size and with

Thble V Percentage of task which still meet their deadline after re-scheduling
'Y = 0.015

Network ~ 0.5 0.7 0.9

0.5 37.17 34.51 30.55

Qs
1.0 63.54 62.92 62.56

1.5 71.32 70.90 68.43

2.0 78.00 77.11 75.03

0.5 38.42 34.02 30.53

B9 1.0 66.37 63.87 63.17

1.5 74.86 73.25 67.60

2.0 80.69 79.72 78.10

0.5 35.14 32.58 28.46

06 1.0 65.62 63.17 63.60
1.5 74.11 73.68 69.70

2.0 80.01 78.43 76.13

0.5 40.57 36.77 29.65

rs 1.0 62.01 61.75 56.67

1.5 70.20 68.80 62.26

2.0 78.92 74.74 73.16

-39-

Th.ble VI Percentage of tasks which still meet their deadline after re-scheduling
'Y = 0.02

Network ~ 0.5 0.7 0.9

0.5 36.04 31.92 30.03

Qs
1.0 62.24 62.56 59.58

1.5 68.31 68.15 67.77

2.0 77.95 76.55 72.56

0.5 38.23 32.46 31.98

B9 1.0 65.26 62.68 62.31

1.5 72.66 71.22 69.34

2.0 79.51 78.48 74.30

0.5 36.24 33.66 29.89

06 1.0 59.48 56.15 53.85

1.5 71.88 70.37 65.33

2.0 75.44 75.76 71.54

0.5 32.76 29.30 28.49

fs
1.0 58.52 58.37 55.38

1.5 69.58 69.23 64.77

2.0 74.32 73.22 67.26

Th.ble VII Percentage of tasks which are lost due to the failure both FCPs
(D = 0.5)

Network ~ 0.005 0.01 0.02

Qs
0.6 0.00 3.75 x to-3 7.5 x to-3

0.8 0.00 6.25 x 10-3 16.5 x to-3

B9 0.6 0.00 8.75 x to-3 10.0 x 10-3

0.8 0.00 15.0 x 10-3 17.5 X 10-3

06 0.6 0.00 5.0 x 10-3 10.0 x 10-3

0.8 0.00 6.25 x 10-3 22.5 x 10-3

rs 0.6 0.00 8.75 x 10-3 10.0 x 10-3

0.8 0.00 11.25 x 1o-3 13.75 x 1o-J

-40-

almost same number ofFCPs. However, the size of a sphere in B9, Qs and rs is 46, 37 and 26

respectively. According to the results, we note that the percentage of tasks meeting their

deadlines after re-scheduling is the maximum for B9 followed by Q8 whereas for rs , this per­

centage is the lowest. Hence, based on these observation, it is our believe that given two

networks of the same size and same number of FCPs, the one with larger sphere will perform

better than the other, for our proposed strategy.

Also if the network size increases and the number of FCP do not increase proportionally,

the sphere size per FCP also increases, thereby increasing the performance. This is the case of

o6• As can be noticed from the proposed partitioning scheme (section 3), the number of

FCPs are always of 8(/og N). Therefore, as the network size increases, the sphere size per

FCP increases. Accordingly, the scheme proposed in this paper is expected to perform better

for large systems.

Thble VII provides information about the percentage of tasks which could not be ex­

ecuted at all due to the failure of the node and both the primary and the secondary FCPs. In

other words, the entries in the table provide the probability of task being lost altogether.

Generally, this probability depends on two factors. First, the level of redundancy which is two

in this case and the number of FCPs among which the tasks are distributed in a round-robin

fashion. The values shown in Thble VII are negligible.

5.4. Analysis of Message Overhead for Fault Management

For the second measure of goodness, we analyzed the proposed fault-tolerant strategy in

terms of the average overhead incurred. This overhead provides an estimate for the number

of messages needed for communication between a node and the set C per task. This overhead

directly depends upon the average distance of a node in the network to all its primary and

secondary FCPs. Let a be the such average graphical distance of a node y from the set C. That

IS:

1
a = -ICI L Lxy

xEC

(1)

We show that a is independent of the choice of node y. This is an important consideration,

in the sense that the proposed use of Hadamard matrix to select C provides a uniform and

homogeneous access to all the nodes in the network. However, it is obvious that from a node

to all the members of the set C, there are variations in distances. We, therefore, are also inter­

ested in the standard deviation a of these distances, since it provides a measure of variations

in the overhead.

-41-

The values of 0! and a can be calculated by generalizing the concept of q-covering [6) for

DT -networks. The q-covering is defined as follows. We consider a mapping q of the non-ne­

gative integers into themselves with the property that q(x) = 0 implies q(y) = 0 for ally > x. A

set C in a graph A is a q-covering if the average of q(Lsx) for an arbitrary x in the vertex set of

A over all s E Cis independent ofx. The basic idea in [6] is thatt-resijs in the usual sense
0 q-l

are q-coverings in the Johnson Association Scheme, with q(z) = t being a polyno-

mial of degree at most t. The following theorem gives the values for and . The proof of this

theorem is given in the appendix.

Theorem 4: For antipodal networks 0! = k/2, and for podal networks 0! ::5 k/2. For DT

networks,

Proof: See Appendix

4lt>-6k + 1
4(2k-1) (2)

It is interesting to note that the average distance, and hence the average overhead for the

proposed scheme in DT networks is always equal to or less than the radius of the network.

Also, we can notice that the variations in the distances, and hence the overhead is 8(/ii),

which is considerably small as compared to the average value of 0! for large networks.

6. Conclusions

In this paper, we have proposed a new fault-tolerant approach for large-scale multicom­

puter systems. The proposed strategy is applicable to any decentralized load balancing algo­

rithms used in soft real-time distributed systems. The study was centered around a class of

interconnection structures which are distance-transitive. The use of Hadamard matrix results

in an efficient strategy for identifying central points and for partitioning these systems for

load re-distribution. The central points, called fault-control points, provide a two-level task

redundancy and efficiently re-distribute the load of failed nodes within their spheres. The

partitioning strategy results in a small number of spheres which remain of 8(log N).

For failure and repair processes, we have assumed a realistic failure-repair system envi­

ronment. In addition, we have not ignored the load submitted to nodes while they are under

repair, due to real-time constraints. Through an extensive simulation, the performance of the

proposed strategy has been evaluated for both failure and no-failure cases. The degradation

in the overall performance is due to achieving the objective of saving those tasks which would

have been lost if there were no fault -tolerance and load re-distribution. To evaluate the pro-

-42-

posed strategy under this objective, we have define a measure of goodness namely the per­

centage of tasks which met their deadline despite the failure of their original nodes. It is

shown that using the proposed strategy, up to 80 % of the tasks can still meet their deadlines.

The second measure of goodness is the amount of overhead involved for managing the fault­

tolerant strategy. We have also analyzed the sensitivity of this strategy with respect to various

system parameters and have shown that the performance degradation due to failures does not

greatly depend on these parameter. The probability of a task being lost altogether due to

multiple failures has also been shown to be negligible.

Appendix

Proof of Theorem 1: (a) For the proof, see [37].

(b) Finding the minimum sphere size, ISf...x) IVx E C, requires us to determine the minimum

value off, which is equal to the covering radius of the set C. Since all the above topologies are

represented using binary codes, the problem of determining the set Cis equivalent to finding

a sub-code with the desired covering radius in a code, say F. For Qn, F is the complete binary

code. For a bisectional network, Bn, F represents all the codewords of length n with even

weights whereas for an odd graph, On, F represents a constant weight code of weight n with

length n -1. However finding the covering radius of a sub code, say C, in a code F is an NP­

hard problem [26]. Since finding the minimum sphere size requires determining the covering

radius, the complexity of the whole problem will not be less than NP-hard. Q.E.D.

Proof of Theorem 2: A SBIBD is called 2-design, which is a collection of distinct m-sub­

sets (called blocks) of v-set (that is a set of v-elements), with the property that any 2-subset of

v-set is contained in exactly e blocks. This collection is denoted as 2-(v,m,S). Most of the Ha­

damard matrices are incidence matrix of a 2-design, where an incidence matrix defines the

relation between blocks an element. For example, the truncated M of Figure 1 is the inci­

dence matrix of a 2-(7 ,4,2) design. A SBIBD is generated using the so called finite difference

set approach [21]. A (v,m,S) difference set To = (qo, q1 , ... qm-1) is a collection of m residues

modulo v, such that for any residue a, (a > 0 mod v), the congruence

qi-qj =a mod v (3)

has exactly 8 solution pairs (qi, qj). To serves as one of the blocks. Rest of the blocks of SBIBD

are generated by adding a constant (mod v) to the elements of To. Given a SBIBD with param­

eters v = 2i-1, m = i, 8 = i/2, for a given i, by taking the complement of its blocks, we generate

another SBIBD which has the following parameters [21]:

* 2· 1 * · 1 e* 2 e i- 2 v =v= z- , m =v-m=z- , =v- m+ =--z

-43-

Let the complement of To be Tri. Clearly ifO E To, then 0 ft. T6. Next, let us include 0 in

Tri. Such an inclusion does satisfy the congruence in equation (3), and in fact the number of

(qi. qi) pairs increases to 6* + 1. We can now include cyclically incremented values of 0 (i.e.

1,2,) in the rest of the complemented blocks. Note, that the resulting parameters of this

augmented complemented SBffiD are:

* 2. 1 * (' 1) + 1 . 6* i- 2 + 1 i v = z- , m = z- =z, =z =2 ,

which are the same as the original SBffiD. We call this newly generated SBffiD as "aug­

mented" SBIBD (ASBIBD). Note, that there exist pair of blocks in To and Triwhich have only

one element in common. Therefore, each block of SBffiD has exactly one block in ASBffiD,

with which it has only one element in common. The proof is clear by noting that the matrices

M and M:s are the incidence matrices of SBffiD and ASBffiD, respectively. Q.E.D.

Proof of Theorem 4: For antipodal networks the value of~ is obvious, since C consists

of both matrix M and its complement and is a self-complementary 2-design. We know that a

bisectional graph is isomorphic to a folded Hypercube. If we just take the set C in Qn, a little

thought can reveal that the complementary matrix in Q,. can serve as the translated matrix in

Bn. Therefore, the the average distance of Qnis indeed the upper bound for the average dis­

tance in Bn. It can be noticed that On can be embedded in Bn. Also, we can prove that the

shortest graphical distances between any two nodes in Onremain within 0,. even when in it is

embedded in Bn. Therefore, we can use the value for Bn as an upper bound for On

For the standard deviation we first consider r n network. Let ~ be the second moment of

Hamming distances in r n • Note that ~ is also the second moment for the graphical distances

in fn, since Lxy = Hxy for this network. Since,

fJ - 1 "" 2 - -ICI L Lxy (4)
xEC

fJ= 1~1 L [Hi,+(2n-1-Hxy)2] (5)
xEM

and IMI - I Cj/2, we must have:

fJ - 2 I H2 2(2n - 1) I H + (2k- 1)2 (6}
-~cr xEM xy- ICI xEM xy 2

In order to solve this expression, we start with the Johnson graph [5], with length of the

codeword v =2n-1 and weight n. For this graph it is known that:

-44-

2Lxy = Hxy = lxl + IYI-2Ixnyl.

where lx I represents the weight of codeword x and lx n Y I represents the number of bits

which are common between codewordsx andy. Since, weight of all the codewords is n, we get

the following, if we select the matrix M.

I lxnyl = I (n-Lxy)
xEM xEM

(7)

Using the concept of q-covering [6), this leads to the following expression:

I lxnyl = n(~) = mz = IMI(n-e) (B)
xEM

where 7T represents the number of times a 2-set appears as a subset of blocks in M [21], and p

is the average distance in Johnson graph. Using the incidence relation of a 2-design [21) (

I Min = V7T), forv =2n-1 and replacingn by n-1, we get p = n (1- n/v). Similarly, we can find

the second moment (<1>) in Johnson graph with respect toM. Again, starting with the q-cover­

ing of 2-design M, we get the following expression:

I (lx 2nyl) = n(n2) = I(n-Lxy)(n-1-Lxy)
xEM L,., 2 (tO)

Using the value of p, and the incidence relationship of a 2-design we get:

(j> = n2(n -1)
2(2n-1)

(11)

Coming back torn network, we can now notice from equation (6) that the second mo­

ment in rn can be given as f3 = 4<1> + 112. This leads to the desired expression for cr.
The above results can now be extended to other graphs. First consider the binary Hyper­

cube network, Qn. Since, rn , is a sub-graph of a Hypercube, and the relation between the

graphical distances and the Hamming distance is same for both, the equation (7) if holds for

rn, will also hold for the Hypercube. This equation is the basis for the whole analysis. So the

results for rn is equally applicable to the Hypercube, in which it is embedded.

Since a bisectional network is isomorphic to a folded Hypercube, the folding does not

increase distances or their variations, rather it may decrease these parameters. Therefore, the

above results serve as upper bounds for bisectional networks.

By looking at the code structure of an odd graph, it can be noticed that On can be em­

bedded in B2n-1, with matrices inC present at common nodes in both the graphs (except all Os

of B2n-1). Therefore, the bounds continue to hold for odd graphs. Q.E.D.

Lemma 3: The covering radius r in DT graphs is bounded as follows:

-45-

r <a-a

Proof: Proof can be obtained by using a probabilistic argument similar to the second

Norse bound [22).

References

[1) I. Ahmad and A Ghafoor, "A Semi-Distributed Distributed task Allocation Strategy for
large Hypercube Supercomputers" Proc. of Supercomputing '90, New York, Nov. 1990,

pp 898-907.

[2) W. C. Athas and C. L. Seitz, "Multicomputers: Message-Passing Concurrent Computers,"
IEEE Computer, August 1988, pp. 9-24.

[3) B.W. Arden and H. Lee, ·~alysis of Chordal Ring Network", IEEE Trans. on Computers

Vol. C-30(4), April 1981. pp. 291-295.

[4) J.R. Armstrong and F.G. Gray, "Fault diagnosis in a Boolean n-cube array of micropro­
cessors," IEEE Trans. on Computers, Vol. C-30 (8), August 198, pp. 581-590.

[5) E. Bannai and T. Ito, Algebraic Combinatorics and association schemes. Benjamin-Cum­
mings 1984.

[6) N.L. Biggs, "Designs, Factors and Codes in Graphs", Quart.l of Math. Oxford (2), 26,
1975, pp. 113-119.

[7] R. M. Bryant and R. A. Finkel, "A Stable Distributed Scheduling Algorithm," in Proc. of

2nd Int'l. Conf on Distributed Computing Systems, 1981, pp. 314-323.

[8) Y. Chang and K. G. Shin, "Load Sharing in Hypercube Multicomputers in the Presence of
Node Failures," in Proc. of Fifth Distributed Memory Computing Conference, Vol. II, April
1990,pp.pp. 1465-1474.

[9] T. C. K. Chou and J. A. Abraham, "Load ReDistribution Under Failure in Distributed
Systems", IEEE Trans. on Computers, vol. C-32, no. 9, Sept. 1983, pp. 799-808.

[10) Y.-Chien Chow and Walter H. Kohler,"Models for Dynamic Load balancing in Homo­
geneous Multiple Processor Systems," IEEE Trans. on Computers, vol. c-36, no. 6, May,
1982, pp. 667-679.

[11] E. Clement, D. Logan and V. Sonnad, 'Solution of Large Scale Engineering Problems
using Loosely Coupled Array of Processors ", Numerical Methods for Modem Parallel

Computer Architectures, The IMA Volumes in Mathematics and its Applications, vol. 13,
Springer-Verlag, 1988, pp. 11-27.

[12] G. Cohen, M.G. Karpovsky, H.F. Mattson, J. R. Schatz, "Covering Radius-Survey and
Recent Results", IEEE Trans. on Information Theory, IT -31 (3), May 1985, pp.328-343.

-46-

[13] C. R. Das, J. T. Kreulen and M. J. Thazhuthaveetil, "Dependability Modeling for Multi­
processors", IEEE Computer, Oct. 1990, pp. 7-19.

[14] D. L. Eager, E. D. Lazowska and J. Zahorjan," Adaptive Load Sharing in Homogeneous
Distributed Systems," IEEE Trans. on Software Eng. , vol. SE-12, May 1986, pp. 662-675.

[15] K. Efe and B. Groselj, "Minimizing Control Overhead in Adaptive Load Sharing," in
Proc. of 9-th Inti. Conf on Distributed Computing Systems, 1989, pp. 307-315

[16] D. Ferguson, Y. Yemini and C. Nickolaou "Microeconomic Algorithms for Load Balanc­
ing in Distributed Computer Systems, " in Proc. of 8-th Int'l. Conf on Distributed Com­

puting Systems, 1988, pp. 491-499

[17] A. Ghafoor and T. R. Bashkow, "A Study of Odd Graphs as Fault-Tolerant Interconnec­
tion Networks," IEEE Trans. on Computers, vol. 40, no. 2, February 1991, pp. 225-232.

[18] A Ghafoor, T. R. Bashkow and lmran Ghafoor, "Bisectional Fault-Tolerant Communi­
cation Architecture for Supercomputer Systems," IEEE Trans. on Computers, vol. 38,
no. 10, October 1989, pp. 1425-1446.

[19] A Ghafoor and P. Bruce Berra, " An Efficient Communication Structure for Distributed
Commit Protocols," IEEE Jour. on Selected Areas of Communications, vol. 7, no. 3, April.
1989,pp.375-389.

[20] A. Ghafoor, S.A Sheikh, and P. Sole, '~Bipartite Distance-RegularTopologyfor Fault­
Tolerant Multiprocessor Systems", Proc. of lEE (Part E), May 1990.

[21] M. Hall Jr., Combinatorial Theory, 2nd Ed., John Wiley and Sons, New York, 1986.1

[22] T. Helleseth, T. Klove, J. Mykkelveit, "On the covering radius of binary codes", IEEE

Trans. on Information Theory, Vol. IT-24 (5), September 1978, pp. 627-628.

[23] M. Livny and M. Melman, "Load Balancing in Homogeneous Broadcast Distributed Sys­
tems," in Proc. of ACM Computer Network Performance Symposium, April 1982, pp.
47-55.

[24] J. F. Kurose and R. Chipalkatti, "Load Sharing in Soft Real-Time Distributed Computer
Systems," IEEE Trans. on Computers, vol. C-36, no. 8, August 1987, pp. 993-1000.

[25] D. W. Leinbaugh and M. Yamini, "Guaranteed Response Times in a Distributed Hard­
Real-Time Environment," IEEE Trans. on Software Eng., vol. SE-12, Dec. 1986, pp.
1139-1144.

[26] A M. McLoughlin, "The Complexity of Computing the Covering Radius of a Code,"
IEEE Trans. on Inform. Theory, col IT-30, Nov., 1984, pp. 800-804.

[27] F. J. MacWilliams and N.J. A Sloane, The Theory of Error-Correcting Codes, vols. I and
II, New York: North Holland, 1977.

[28] R. Mirchandancy, D. Towsly and J. A Stankovic, "Analysis of Effect of Delays on Load
Sharing," IEEE Trans. on Computers, vol. 38. no. 11, Nov. 1989, pp. 1513-1525.

-47-

[29] J. K. Muppala, S. P. Woolet and K. S. Trivedi, "Real-Time-Systems Performance in the
Presence of Failures," IEEE Computer, May 1991, pp. 37-47.

[30] L. M. Ni, C. Xu and T.B. Gendreau," A distributed Drafting Algorithm for Load Balanc­
ing," IEEE Trans. on Software Eng., vol. SE-11, no. 10, October 1985, pp. pp.

1153-1161.

[31] K. Ramamritham, J. A Stankovic and W. Zhao, "Distributed Scheduling of Thsks with
Deadlines and Resource Requirements," IEEE Trans. on Computers, vol. 38, no. 8, Aug.
1989,pp. 1110-1123.

[32] K. G. Shin, "Introduction to the Special Issue on Real-Time Systems," IEEE Trans. on
Computers, vol. 36, no. 8, Aug. 1987, pp. 901-902.

[33] K. G. Shin andY. -C. Chang, "Load Sharing in Distributed Real-Time Systems with
State-Change Broadcasts," IEEE Trans. on Computers, vol. 38, no. 8, Aug. 1989, pp.
1124-1142.

[34] N. G. Shivrati and M. Singhal, "A Transfer Policy for Global Scheduling Algorithms to
Schedule tasks with Deadlines, " in Proc. of 11-th Int'l. Conf. on Distributed Computing
Systems, May 1991, pp. 248-255.

[35] J. A Stankovic, "Decentralized Decision Making for Thsk Allocation in a Hard Real­
Time System," IEEE Trans. on Computers, vol. 38, no. 3, March 1989, pp. 341-355.

[36] J. A Stankovic and I. S. Sidhu, "An Adaptive Bidding Algorithm for Processes, Clusters
and Distributed Groups, "in Proc. of 4-th Int'l. Conf. on Distributed Computing Systems,
1984, pp. 49-59.

[37] L. J. Stochmeyer and V. V. Vazirani, "NP-Completeness of some Generalization of the
Maximum Matching problems," Information Proc. Letters, vol. 15, 1982, pp 14-19.

[38] Y-T Wang and R.J.T. Morris, "Load Sharing in Distributed Systems," IEEE Trans. on
Computers, vol. C-34, March 1985, pp. 204-217.

-48-

	Fault-Tolerant Load Management for Real-Time Distributed Computer Systems
	Recommended Citation

	SU-CIS-91-24_001c
	SU-CIS-91-24_002c
	SU-CIS-91-24_003c
	SU-CIS-91-24_004c
	SU-CIS-91-24_005c
	SU-CIS-91-24_006c
	SU-CIS-91-24_007c
	SU-CIS-91-24_008c
	SU-CIS-91-24_009c
	SU-CIS-91-24_010c
	SU-CIS-91-24_011c
	SU-CIS-91-24_012c
	SU-CIS-91-24_013c
	SU-CIS-91-24_014c
	SU-CIS-91-24_015c
	SU-CIS-91-24_016c
	SU-CIS-91-24_017c
	SU-CIS-91-24_018c
	SU-CIS-91-24_019c
	SU-CIS-91-24_020c
	SU-CIS-91-24_021c
	SU-CIS-91-24_022c
	SU-CIS-91-24_023c
	SU-CIS-91-24_024c
	SU-CIS-91-24_025c
	SU-CIS-91-24_026c
	SU-CIS-91-24_027c
	SU-CIS-91-24_028c
	SU-CIS-91-24_029c
	SU-CIS-91-24_030c
	SU-CIS-91-24_031c
	SU-CIS-91-24_032c
	SU-CIS-91-24_033c
	SU-CIS-91-24_034c
	SU-CIS-91-24_035c
	SU-CIS-91-24_036c
	SU-CIS-91-24_037c
	SU-CIS-91-24_038c
	SU-CIS-91-24_039c
	SU-CIS-91-24_040c
	SU-CIS-91-24_041c
	SU-CIS-91-24_042c
	SU-CIS-91-24_043c
	SU-CIS-91-24_044c
	SU-CIS-91-24_045c
	SU-CIS-91-24_046c
	SU-CIS-91-24_047c
	SU-CIS-91-24_048c
	SU-CIS-91-24_049c

