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Abstract

High Performance Distributed Computing (HPDC) applications require low-latency and
high-throughput communication services and HPDC applications have different Quality of
Service (QOS) requirements (e.g., bandwidth requirement, flow/error control algorithms,
etc.). The communication services provided by traditional message-passing systems are
fized and thus can not be changed to meet the requirements of different HPDC applications.

NYNET (ATM wide area network testbed in New York state) Communication System
(NCS) is a multithreaded message-passing system developed at Syracuse University that
provides high-performance and flexible communication services. In this paper, we overview
the general architecture of NCS and present how NCS communication services are imple-
mented. NCS point-to-point communication is flexible in that users can configure efficient
point-to-point primitives by selecting suitable flow control, errror control algorithms, and
communication interfaces on a per-connection basis. Furthermore, NCS architecture sep-
arates the data transfer and control transfer functions that allows the control information
to be transmitted over the control connections and thus improves the perforamnce of the
poinit-to-point communication primitives.

We analyze the overhead incurred by using multithreading and compare the performance
of NCS point-to-point communication with those of other message-passing systems such as
p4, PVM, and MPI. Benchmarking results indicate that NCS shows comparable performance
with other systems in transmitting small messages but outperforms other systems for large

messages.



1 Introduction

Current advances in processor technology and the rapid development of high-speed net-
working technology (e.g., Asynchronous Transfer Mode (ATM) [1], Myrinet [2], and Fast
Ethernet [3], High Performance Parallel Interface (HIPPI) [4]) have made network-based
computing, whether it spans a local or a wide area, an attractive and cost-effective environ-
ment for large-scale High Performance Distributed Computing (HPDC) applications. The
development of HPDC applications over such an environment is not a non-trivial task that
requires a thorough understanding of the applications with widely differing performance
characteristics. HPDC applications require low-latency and high-throughput communica-
tion services. HPDC applications have different Quality of Service (QOS) requirements
and even one single application has multiple QOS requirements during the course of its
execution (e.g., interactive multimedia applications).

There have been several inter-process communication libraries such as p4 [9], Parallel
Virtual Machine (PVM) [10], Message Passing Interface (MPI) [11], Express [12], PAR-
MACS [13], Linda [14], Isis [15], Horus [16], and Remote Procedure Call (RPC) [17] that
simplify process management, inter-process communication, and program debugging in a
parallel and distributed computing environment. However, the communication services pro-
vided by traditional communication systems are fixed and thus can not be changed to meet
the requirements of different HPDC applications. In order to support HPDC applications
efficiently, future communication systems should provide high performance and dynamic
communication services to meet the requirements of a wide variety of HPDC applications.

NYNET (ATM wide area network testbed in New York state) Communication System
(NCS [7] [8]) is a multithreaded message-passing system for an ATM-based HPDC En-
vironment that provides low-latency and high-throughput communication services. NCS
uses multithreading to provide efficient techniques to overlap computations and commu-
nications. By separating control and data activities, NCS eliminates unnecessary control
transfers. This optimizes the data path and improves the performance. NCS supports
several different communication schemes (multicasting algorithms, flow control algorithms,
and error control algorithms) and allows the programmers to select at runtime the suitable
communication schemes per-connection basis. NCS provides three application communi-
cation interfaces such as Socket Communication Interface (SCI), ATM Communication
Interface (ACI), and High Performance Interface (HPI) to support various classes of ap-
plications with the appropriate communication services. The SCI is provided mainly for
applications that must be portable to many different computing platforms. The ACI pro-
vides the services that are compatible with ATM connection-oriented services where each

connection can be configured to meet the QOS requirements of that connection. This al-



lows the programmers to fully utilize the benefit of ATM networks. The HPI supports
applications that demand low-latency and high-throughput communication services.

In this paper, we overview the general architecture of NCS and present how NCS com-
munication services are implemented. NCS point-to-point communication is flexible in that
users can configure efficient point-to-point primitives by selecting suitable flow control, error
control algorithms, and communication interfaces on a per-connection basis. Furthermore,
NCS architecture separates the data transfer and control transfer functions that allows the
control information to be transmitted over the control connections and thus improves the
performance of the point-to-point communication primitives.

The rest of the paper is organized as follows. Section 2 presents the general architecture
of NCS. Section 3 discusses an approach to implement NCS point-to-point communication
services over an ATM network. Section 4 analyzes and compares the performance of NCS
point-to-point communication with those of several other message-passing systems such as

p4, PVM, and MPI. Section 5 contains the summary and conclusion.

2 Overview of NCS Architecture

NCS is a multithreaded message-passing system that provides application programmers
with multithreading (e.g., thread synchronization, thread management) and communication
services (e.g., point-to-point communication, group communication, synchronization). NCS
is architecturally compatible with the ATM technology where both control (e.g., signaling
or management) and data transfers are separated and each connection can be configured
to meet the QOS requirements of that connection. Consequently, the NCS architecture is
designed to support various classes of applications by providing the following architectural

supports (see Figure 1):

Thread-Based Programming Paradigm

NCS uses multiple threads to implement the computations of HPDC applications (we call
them Compute_Threads). These threads use the NCS primitives to communicate and syn-
chronize with other Compute_Threads. The advantage of using the thread-based program-
ming paradigm is that it reduces the cost of context switching, provides efficient support for
fine-grained applications, and allows the overlapping of computation and communication.
Overlapping computation and communication is an important feature in network-based
computing. In Wide Area Network (WAN)-based distributed computing, the propagation
delay (limited by the speed of light) is several orders of magnitude greater than the time

it takes to actually transmit the data [6]. For example, to transmit a 1-Kbyte file across
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Figure 1: NCS General Architecture

the U.S at 1 Gbps takes only 8 microseconds. However, the time it takes for the first bit
to arrive at its destination (propagation delay) is 15 milliseconds. Consequently, the trans-
mission time of this file is insignificant when compared to the propagation delay. To reduce
the impact of the propagation delay requires that we modify the structure of computations

such that they overlap communications.

Separation of Control and Data Functions

In high-speed networks, very little time is available to decode, process, and store incoming
packets at gigabit rate. Also, the bandwidth provided by the high-speed networks is gener-
ally enough to be allocated to multiple connections. Therefore, the software architectures
of communication systems for high-speed networks should be designed to fully exploit these
requirements. The separation of control and data functions enables NCS to work efficiently
in high-speed networks.

NCS separates control and data functions by providing two planes: control plane and
data plane. The control plane consists of several threads that implement important con-
trol functions (e.g., connection management, flow control, error control, and configura-
tion management) in an independent manner. These threads include Master_Thread,
Flow_Control_Thread, Frror_Control_Thread, Multicast_Thread, Control_Send_Thread and
Control_Receive_Thread (we call them control threads). The data transfer threads in the



data plane (Send_Thread and Receive_Thread) are spawned based on a per-connection basis
by the Master_Thread to perform only the data transfers associated with a specific con-
nection. By having separate data transfer threads per connection, the overhead associated
with demultiplexing incoming packets is eliminated and each connection can provide dif-
ferent QOS requirements for its application. The separation of control and data functions
increases flexibility by reducing control and data dependencies. This modular architecture
allows easier modification and enhancement of NCS services by simply adding an NCS
control thread for each new function or service.

In NCS, the control and data information from the two planes are transmitted on sep-
arate connections. All control information (e.g., flow control, error control, configuration
information) is transferred over the control connections, while the data connections are
used only for the data transfer functions. The separation of control and data connections
eliminates the process of demultiplexing control and data packets within a single connection
and allows the concurrent processing of control and data functions. This allows applica-
tions to utilize all available bandwidth for the data transfer functions and thus improves

the performance.

Dynamic Support for Multiple Communication Algorithms

Each HPDC application requires different schemes for flow control, error control, and mul-
ticasting algorithms. One of the main goals of NCS is to provide a modular approach to
support these requirements efficiently.

NCS supports multiple flow control (e.g., window-based, credit-based, or rate-based),
error control (e.g., go-back N or selective repeat), and multicasting algorithms (e.g., repet-
itive send/receive or a multicast spanning tree) within the control plane to meet the QOS
requirements of a wide range of HPDC applications. FEach algorithm is implemented as a
thread and programmers activate the appropriate thread when establishing a connection to
meet the requirements of a given connection. This allows programmers to select for a given
HPDC application the appropriate flow control, error control, and multicasting algorithms
per-connection basis at runtime. For example, interactive multimedia applications (see Fig-
ure 2) use audio, video, and data media streams which have different QOS requirements.
Voice and video streams need low latency and jitter but can tolerate moderate error rate,
while data stream has no real-time constraint but requires error-free transfer. By using
NCS, programmers can select no flow or error control for the audio and video connections,
while they select the appropriate flow control or error control algorithms to achieve a reli-
able connection for data transfer. Consequently, the performance of these applications can

be maximized by removing the overheads associated with flow control and error control



procedures in connections that do not need these capabilities.
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Figure 2: A Multimedia Application using NCS

Multiple Communication Interfaces

Some HPDC applications demand low-latency and high-throughput communication ser-
vices to meet their QOS requirements, while others need portability across many comput-
ing platforms. Most of the message-passing systems cannot dynamically support a wide
range of QOS requirements, because their protocol architectures and communication inter-
faces are fixed. NCS is designed to support these classes of applications by offering three
application communication interfaces: 1) Socket Communication Interface (SCI), 2) ATM
Communication Interface (ACI), and 3) High Performance Interface (HPI).

The SCIT is provided mainly for achieving high portability over a network of computers
(e.g., workstations, PCs, parallel computers). One of the disadvantages of using this inter-
face is that we have to use the inherent flow control, error control algorithms in TCP/IP
protocol and thus cannot fully exploit the features of NCS. However, some applications
that require mainly the dynamic group communications and fault tolerance capability can
exploit the NCS architectural feature from this interface due to the separation of control
and data path. Moreover, considering that the Socket interface is supported on almost all
UNIX-based workstations (even on the PCs with Winsock [20] [21]) and a number of ATM
networks are running with TCP/IP protocol, supporting Socket interface is viable when
implementing future communication systems.

The ACI is the application communication interface that provides applications with



more flexibility to fully utilize the benefits of NCS architecture when applied to ATM
networks. Since ATM Application Programming Interface (API) does not define the flow
control and error control schemes, programmers can select the appropriate communication
services according to the QOS requirements of HPDC applications. The direct access to
the ATM Adaptation Layer (AAL) allows us to use the inherent features of an ATM API
(e.g., one-to-many connection). However, due to the lack of a standard ATM API and
its poor performance, this interface has not been widely used. Recently, some research
activities are underway to standardize the ATM API [21] and to develop high-performance
ATM APIs [18] [19].

The HPI allows applications to achieve high-throughput and low-latency inter-process
communications. This interface is usually built by modifying system software such as device
driver or firmware code of the adapter card. Due to its dependencies on specific comput-
ing platforms (e.g., hardware, operating system), this interface is targeted at developing
high-performance communication interfaces for the tightly-coupled cluster of homogeneous

workstations.

Homogeneous Cluster 1

P1-Pn: Processors

— — — - Control Communication I nterface = Socket

Data

Socket

Connections Homogeneous Cluster 3

Communication Interface=Trap Communication Interface = Native ATM

Figure 3: An Example Using Multiple Communication Interfaces in NCS

NCS architecture is flexible and can be used to build a large heterogeneous distributed
computing environment that consists of several homogeneous clusters (see Figure 3). In

the environment shown in Figure 3, each homogeneous cluster can be configured to use the



appropriate NCS application communication interface that is supported by the underlying
computing platform and each cluster can be interconnected by using the SCI. This improves
the performance of each cluster and thus improves the overall performance of applications
running over this environment.

In what follows, we show how NCS architecture can be applied to provide point-to-point
communication services. Similar approach is used to provide other NCS communication

services. Additional details about NCS communication services can be found in [7] [8].

3 Point-to-Point Communications in NCS

In NCS point-to-point communication, it is assumed that both the sending Compute_Thread
and the receiving Compute_Thread agree to communicate with each other and that the
receiving Compute_Thread has explicitly invoked a NCS_recv() primitive to receive the
message.

The NCS point-to-point communication is flexible. Users can configure efficient point-to-
point communication primitives by selecting suitable flow control, error control algorithms,
and communication interfaces on a per-connection basis. Those primitives may be reliable
or unreliable, configured for achieving portability or for special requirements (e.g., low-
latency for small messages). By transmitting control information over separate control
connections, the performance of these primitives can be maximized. After a connection is
established with appropriate QOS requirements (e.g., flow control algorithm, error control
algorithm, communication interface), the underlying operations are transparent to users
and they just need to invoke the same high-level abstractions (NCS primitives) to perform
point-to-point communication independent of the selected configurations.

In what follows, we describe the communication flow when NCS_send() and NCS_recv()
primitives are invoked at both ends. Next, we present algorithms to implement error
control and flow control. Since NCS supports several different flow control and error control
algorithms, the descriptions for these algorithms are focused on one specific implementation
(e.g., default algorithms). Since each algorithm will be implemented as a thread, we can
easily incorporate other advanced algorithms into the NCS architecture by activating the

appropriate algorithms at runtime.

3.1 Communication Flow

NCS point-to-point communication can be described in terms of ten steps, as shown in Fig-
ure 4. In this example, we assume that each connection is configured with the appropriate

error control algorithm, flow control algorithm, and communication interface.
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Figure 4: Point-to-Point Communication in the NCS Environment

. When NCS_send() is invoked at the source Compute_Thread, it activates the corre-
sponding Frror_Control_Thread associated with the sending connection. Since each
connection is bound to its own Flow_Control_Thread and Error_Control_Thread, the
Compute_Thread should provide exact connection parameters (e.g., destination pro-

cess id, destination thread id, session id) when calling the NCS_send() primitive.

. The Error_Control_Thread in turn activates the corresponding Flow_Control_Thread
after segmenting the user message into packets based on the Service Data Unit (SDU)

size and attaching a header to each packet.

. The Flow_Control_Thread then activates the corresponding Send_Thread based on the

flow control information it is maintaining.

. The Send_Thread transmits the requested packets over the data connection using the

communication interface configured for this connection.

. On the receiving side, the Compute_Thread invokes the NCS_recv() primitive and
it activates the corresponding FError_Control_Thread associated with the receiving

connection.

. The Error_Control_Thread activates the corresponding Receive_Thread to receive the

whole segmented packets.



7. The Receive_Thread receives a packet over the data connection using the communi-

cation interface configured for this connection.

8. The Receive_Thread activates the corresponding Flow_Control_Thread to check the

flow control status.

9. The Flow_Control_Thread updates the flow control information and sends the infor-
mation to the source Flow_Conitrol_Thread over the control connection. On the other

hand, it activates the corresponding FError_Control_Thread.

10. After receiving all segmented packets, the Error_Control_Thread reassembles the pack-
ets and puts them into the user buffer. The Error_Control_Thread also sends the error

control information to the source Flow_Control_Thread over the control connection.

For environments where flow control and error control are not required (e.g., Socket
Interface), the NCS_send() and NCS_recv() primitives bypass the Flow_Control_Thread and
Error_Control_Thread by activating the corresponding Send_Thread and Receive_Thread
directly.

3.2 Error Control

The error control procedures in NCS are designed to support reliable point-to-point data
transfer by detecting errors and recovering from errors once they occur. Although the
checksumming is done by the AAL5 layer to detect errors within the AAL5 frames, ac-
knowledgment and retransmission procedures are required to guarantee the reliable delivery
of user messages.

NCS supports several different error control algorithms, and users can select the ap-
propriate error control algorithm according to the requirements of the applications. In
applications that do not require error control procedure, users can deactivate it in NCS to
reduce the overhead incurred by using an error control scheme.

The default error control algorithm in NCS is based on selective repeat strategy [22], as

shown in Figure 5. This algorithm can be outlined in the following five steps:

1. Segmentation: The user message is segmented into packets based on the SDU size,
which is defined by the user.

2. Header Generation: Each SDU has a sequence number and a control bit in the
header that designates whether the SDU is the last SDU to be segmented. If the

bit is set to 1, it activates the Error Control Thread at the receiver side to send

10
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Figure 5: Selective Repeat Error Control Scheme in the NCS Environment

an Acknowledgment packet to the Error Control Thread at the sender side over the

control connection.

. Data Transmission: Each segmented SDU is delivered to the Flow_Control_Thread
to be transmitted over the data connection by the Send_Thread.

. Reassembly: At the receiver side, each segmented SDU is reassembled by the Error
Control Thread if the SDU is received without errors. The FError Control Thread
also updates bitmap information that represents the status of the received SDUs.
Each bit in the bitmap corresponds to one SDU. If the SDU is received in error, the

corresponding bit in the bitmap is set to 1.

. Acknowledgment: If the control bit in the header of a received SDU is set to 1, the
receiving Error Control Thread sends an Acknowledgment packet containing a bitmap
that was updated in step 4 over the control connection. The FError_Control_Thread
at the sender side retransmits the corresponding SDU if the bitmap in the Acknowl-
edgment packet indicates that the SDU is received in error (e.g., if the corresponding
bit in the bitmap is set to 1). If the Error_Control_Thread at the sender side does not
receive an Acknowledgment packet within an appropriate interval (e.g., timeout), it

retransmits the whole packets.

11



The pseudo code for this algorithm is presented in Figure 6. The SDU size is the unit of
error control and retransmission in NCS. The SDU size is from 4 Kbytes to 64 Kbytes and
corresponds to the single AAL5 frame (Default SDU size is 4 Kbytes). The reason for this is
that some ATM API such as Fore Systems” ATM API restricts the size of the user message to
less than 4 Kbytes and the single AAL5 frame is at most 64 Kbytes long. In general, a large
SDU size generates high throughput, but results in high overhead by retransmission when
the SDUs are lost. By keeping the size small, efficiency can be maximized but segmentation
overheads (e.g., header and trailer) are introduced. Therefore, this size should be chosen for
each environment to trade off per-fragment overhead, the connection’s error characteristics,

and the available timer resolution [5].

3.3 Flow Control

The flow control scheme is used to control the transmission rate to avoid receiver overrun
or the network becoming congested. Several flow control algorithms have been proposed for
high-speed networks such as rate-based, credit-based, and window-based algorithms. One
of the drawbacks in existing protocols is that the flow control algorithm is fixed and cannot
optimally control a wide range of HPDC applications with different QOS requirements.
This occurs because an algorithm that is optimal in one environment may not necessarily
be optimal in another environment. For example, the applications that control audio or
video streams require minimum flow control for those streams, because the audio and video
streams are usually error-resilient. However, data applications need a flow control scheme
to guarantee reliable delivery of the data. Moreover, if both audio/video and data streams
coexist in one application as in realtime interactive multimedia applications, we cannot
optimally control these applications using the existing protocol architecture.

NCS supports several flow control algorithms and allows programmers to select the
appropriate algorithm per-connection basis at runtime according to the needs of the appli-
cation. The default flow control algorithm in NCS is the eredit-based window flow control
algorithm. Figure 7 shows the main steps of the NCS flow control algorithm and can be

explained as follows:

1. When the Flow_Control_Thread is activated by the FError_Control_Thread, it first
checks the credit buffer for the given connection and determines the appropriate
number of packets to transmit. Each process maintains a separate queue and credit

buffer for each connection.

2. The Flow_Control_Thread puts the packets into the message queue maintained by
the Send_Thread based on the number of credits (e.g., in Figure 7, the credit is k).

12



Thread Error-Control-Sender
Get the user message from the NCS_send() routine
Determine SDUsize (4K-64K)
remsize ¢ messagesize, seqno < 0
while remsize > SDUsize do
Segment the message into the packet with SDU size
Attach a seqno, Endbit < 0
Activate Flow Control Thread to transmit this packet
remsize = remsize — SDUsize, seqno = seqno + 1
endwhile
Create last packet
Attach a seqno, Endbit < 1
Activate Flow Control Thread to transmit this last packet
Start Timer
Wait for an Acknowledgment Packet from the Error-Control-Receiver
if timeout then
Go to Line 4 for retransmission
else
Stop Timer
Check the received Bitmap
if Bitmap > 0 then
Selective Retransmission according to the Bitmap
endif
endif

Thread Error-Control-Receiver
Get the request from the NCS_recv() routine
Endbit + 0, Bitmap + —1
while Endbit == 0 do
Activate Receive Thread to receive a packet
Extract seqgno and Endbit from the packet
Clear seqno position in the Bitmap
endwhile
Send an Acknowledgment Packet with Bitmap to the Sender
if Bitmap > 0 then
Endbit + 0
Go to line 4 for receiving retransmitted packet
endif

Reassemble the segmented packets into the user buffer

Figure 6: Pseudo Code for Selective Repeat Error Control Algorithm in NCS

13
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Figure 7: Credit-based Flow Control Scheme in the NCS Environment
This credit is an indication of how many packets can be transmitted without any
acknowledgment from the receiver.

. The Flow_Control_Thread activates the corresponding Send_Thread to transmit the

packets over the data connection.

. When the Receive_Thread receives a packet, it activates the Flow_Control_Thread

associated with the given data connection.
. The Flow_Control_Thread sends a credit to the sender over the control connection.

. The Flow_Control_Thread activates the corresponding Error_Control_Thread to up-

date the error control information and reassemble the original message.

. After the Flow_Control_Thread at the sender side receives the credit, the credit infor-

mation associated with that connection is updated.

The pseudo code for this algorithm is presented in Figure 8. From the implementation

perspective, one credit corresponds to a free buffer allocated for receiving a packet. Since

buffers are shared resources with other threads, it is not an efficient way to allocate fixed

credits for every connection. In NCS, the credit for each connection is maintained dynami-

cally. Only small credits are assigned to each connection initially. The Flow_Control_Thread

checks the data rate of each connection and adjusts accordingly the credit given to each

14



connection. As a result, active connections get more credits, while inactive connections get

only a fraction of the credits.

Thread Flow-Control-Sender
if credit information received from Flow-Control-Receiver then
Update the credit buffer for a specific connection
endif
Get the request to send packets from the Error Control Thread
Read credit buffer and determine the maz_num_packets
k +— max_num_packets
Put &k transmit requests to Send Thread
Activate Send Thread to transmit these k& packets

Thread Flow-Control-Recetver
if a packet received from Receive Thread then
Update credit value
Transmit credit information to Flow-Control-Sender
Activate Error Control Thread to reassemble the packets
endif

Figure 8: Pseudo Code for Credit-based Flow Control Algorithm in NCS

4 Benchmarking Results

This section analyzes the performance and overhead associated with multithreading to im-
plement NCS point-to-point communication services. First, we quantify the effect of the
thread package architecture (e.g., user-level thread or kernel-level thread) to implement a
multithreaded message-passing system. Next, we measure the overhead incurred by using
thread-based point-to-point communication instead of the point-to-point communication
primitives provided by the underlying communication interface. Finally, we compare the
performance of NCS point-to-point communication primitives with those of other message-
passing systems such as p4, PVM, and MPI using the two homogeneous workstations (e.g.,
two SUN-4s running SunOS 5.5 or two IBM/RS6000s running AIX 4.1) or two heteroge-
neous workstations (e.g., SUN-4 and IBM/RS6000).

4.1 Thread Package Architecture

A user-level thread package is implemented as a user-level linkable library that includes all

of the thread functions such as thread management and thread synchronization. Since the

15



entire functions are running completely within an application program’s address space, the
operating system is not aware of multiple threads. Therefore, the functions (e.g., creating
threads, context switching between threads, synchronization between threads) of a user-
level thread package is very fast and efficient. However, if one thread makes a blocking
system call, the kernel blocks the whole process and thus eliminates the benefits of using
multiple threads. In NCS implementation of user-level thread packages, all blocking prim-
itives are implemented using non-blocking system calls to prevent the whole process from
blocking. For example, when the Receive_Thread does not detect any incoming messages, it
yields its control using the NCS_thread_yield() primitive, and thus other Compute_Threads
that are ready to run can continue their execution. This overlapping of communication and
computation improves the performance of NCS_recv() operations. Due to its fast context
switching and synchronization time between threads, the NCS implementations using user-
level thread packages are suitable for applications where relatively small-size messages are
exchanged frequently and a great many synchronization operations (e.g., mutex, semaphore
etc.) are involved by the Compute_Threads.

On the other hand, in a kernel-level thread package, an operating system directly man-
ages threads and synchronization between threads. Therefore, it is slower to execute thread
functions (e.g., creating threads, context switching and synchronization between threads)
than in a user-level thread package. However, the kernel allows applications to use blocking
system calls without blocking the entire process. In this case, the NCS_recv() primitive can
be implemented using a blocking receive call to reduce the overhead of unnecessary context
switching. Moreover, the kernel allows programmers to overlap computation and commu-
nication when a thread is blocked to wait for unavailable system resources. For example,
if the data transmissions using BSD sockets exceed the buffering available in the socket
send buffer maintained in the kernel, the kernel puts this thread to sleep and switches to
another thread so that other available threads can continue their execution. To check the
effect of overlapping in a kernel-level thread package, we measured the time required to
send messages of various sizes (from 1 byte to 64 Kbytes) using the test program described
in Figure 9. The socket buffer size was set to 32 Kbytes and some amount of computation
was added after the NCS_send() operation in order to model the general behavior of the
application programs. The time was averaged over 100 iterations.

Figure 10 shows the experimental results using two thread packages of different architec-
ture (e.g., Pthread over Solaris, Quickthreads over Solaris). As we can see from Figure 10,
the performance of a user-level thread package (Quickthreads) is better than that of a
kernel-level thread package (Pthread) up to the 4-Kbyte message size. This indicates that

the thread synchronization overhead in a kernel-level thread package is larger than that of
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Thread Thread-Architecture-Comparison

start ¢ current_time

msgsize — test_size

for 1 to 100 do
NCS_send(msgsize) /* Activate Send_Thread */
Computation (100 ms)

endfor

end < current_time

avgtime « (end — start)/100

Figure 9: Test Code to Check the Overlapping Effect in the Kernel-Level Thread
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Figure 10: Comparison Between User-Level Thread and Kernel-Level Thread
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a user-level thread package, and this dominates the total time used to send messages. How-
ever, for message sizes larger than 4 Kbytes, the sending time using a kernel-level thread
package (Pthread) starts decreasing. This can be explained by the following observations.
Since we have 32 Kbytes of socket buffer size and we repeatedly transmit large messages
(e.g., larger than 4 Kbytes), the kernel finally runs out of the socket buffer and blocks the
Send_Thread that has invoked write() system calls for this socket. In the user-level thread
package, this results in blocking the whole process, while in the kernel-level thread pack-
age, the control is transfered to the original thread and this thread starts the computation
while the blocked Send_Thread is waiting for the buffer to be released by the previous send
operations. This overlapping of computation and communication makes NCS implementa-
tions of kernel-level thread packages suitable for applications that require exchanging large

amount of data.

4.2 Thread Overhead

To evaluate the overhead incurred by using separate threads for transmitting and receiving
operations, we measured the overhead involved in transmitting a 1-byte message using
BSD Socket Interface. Since the main objective of this evaluation is to measure the thread
overhead in terms of NCS_send() operations, we do not include the time for setting up the

connection and assume that the connection is already set up before transmitting a message.

Table I: Cost of Sending 1-Byte Message via Send_Thread - QuickThreads Version

Activity Time (usec) | % of Total
Session Overhead

NCS_send() Function Entry/Exit 10

Attaching a Message Header 4

Queuing a Message Request 15

Context Switch from NCS_send() to Send_Thread 27

Dequeuing a Message Request 17

Free a Message Request Buffer 10

Context Switch from Send_Thread to NCS_send() 25
Session Overhead Total 108 28 %

Data Transfer Overhead

Transmitting a 1-Byte Message 274 2%
Total 383 100 %

Table I shows the timing data with all overhead functions at the transmit side. The major
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components of the overhead are: 1) Function call overhead (Entry/Exit) for NCS_send()
primitive; 2) the overhead incurred by attaching a header for a request message; 3) queuing
overhead for this request message; 4) context switching time from NCS_send() primitive
to Send_Thread; 5) the overhead for dequeuing the request message in the Send_Thread,
6) message transmission time; 7) the time used for freeing the message structure; and 8)
context switching time from Send_Thread to NCS_send() primitive. These overheads are
largely divided into two categories: session overhead (1, 2, 3,4, 5, 7, 8) and data transfer
overhead (6).

The session overhead is the time spent for activities other than actual data transfer (in
our case, the overhead incurred by using threads). The data transfer overhead is the time
spent to transmit a message using the primitives provided by the underlying communication
interface. The session overhead is constant, regardless of the message size, while the data
transfer overhead is dependent upon the message size. This overhead involves a per-byte
overhead such as data checksumming and data copying.

As we can see from Table I, the session overhead is 108 microseconds, which is 28% of the
total time to transmit a 1-byte message. Although the session overhead will be amortized
as the message size increases, it dominates the overhead for small messages. For example,
Figure 11 depicts the overhead of NCS implementation relative to the native socket. It is
clear from Figure 11 that the overhead relative to the native socket is decreasing and finally
becomes negligible as the message size increases. This concludes that the session overhead
is not the major overhead factor in transmitting large messages, but that it dominates the

overhead in transmitting small messages.

Thread Overhead by Ratio
3 T T T

281 vl

Qthread over Solaris <—

26 | x»/,,,« Pthread over Solaris —+- |
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Figure 11: Overhead Ratio to Native Socket

From the experience described above, we decided to provide another version of NCS_send()
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and NCS_recv() primitives, which bypasses all NCS threads (e.g., control threads and data
transfer threads) and transmits or receives directly, using the primitives provided by the
underlying communication interface. In this case, all threads can be replaced by proce-
dures. These procedures include flow control, error control, multicasting algorithms, and

low-level communication primitives.

4.3 Primitive Performance

In order to compare the performance of point-to-point communication primitives, the
roundtrip performance is measured using an echo program. In this echo program, the
client transmits a message of proper size which is transmitted back once it is received
at the receiver side. The timer starts in the client code before transmitting a message
and stops after receiving back the message. The difference in time is used to calculate
the roundtrip time of the corresponding message size. The time was averaged over 100
iterations after discarding the best and worst timings.

Point-to-Point Communication Performance over ATM (SUN 4/SunOS 5.5) Point-to-Point Communication Performance over ATM (RS6000/AIX 4.1)
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Figure 12: Point-to-Point Communication Performance Over ATM Using Same Platform

Figure 12 shows the performance of send/receive primitives of four message-passing
systems for different message sizes up to 64 Kbytes when they are measured using the
same computing platform (e.g., SUN-4 to SUN-4 or IBM/RS6000 to IBM/RS6000). As we
can see from Figure 12, NCS has the best performance on the SUN-4 platform while p4
has the best performance on the IBM/RS6000 platform. For message sizes smaller than 1
Kbytes, the performance of all four message-passing systems is almost the same but the
performance of MPI and p4 on the SUN-4 platform and the performance of PVM on the
IBM/RS6000 get worse as the message size gets bigger.

Figure 13 shows the performance of corresponding primitives using the different comput-

ing platform (e.g., SUN-4 to IBM/RS6000). In this case, NCS outperforms other message-
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Figure 13: Point-to-Point Communication Performance Over ATM Using Heterogeneous
Platform

passing systems. It is worthy to note that the MPI implementation performs very badly as
the message size gets bigger and the p4 implementation does not perform well compared
to PVM and NCS.

Consequently, it should be noted that the performance of send/receive primitives of
each message-passing system varies according to the computing platforms (e.g., hardware
or kernel architecture of the operating system) on which the message-passing systems are
implemented. NCS shows good performance either on the same computing platform or
on the different platform. PVM shows worst performance on the IBM/RS6000 platform
but shows comparable performance to NCS both on the SUN-4 platform and on the het-
erogeneous platform. p4 and MPI show better performance on the IBM/RS6000 platform
running AIX 4.1 than they are running both on the SUN-4 platform running SunOS 5.5 and
on the heterogeneous platform. This implies that the performance of applications written
by using these two message-passing systems over the SUN-4 platform and the heterogeneous

environment will be worse than those of other message-passing systems.

5 Conclusion

In this paper, we have outlined the architecture of a high-performance and flexible multi-
threaded message-passing system that can meet the QOS requirements of a wide range of
HPDC applications. Our approach capitalizes on thread-based programming model to over-
lap computation and communication, and develop a dynamic message-passing environment
with separate data and control paths. This leads to a flexible, adaptive message-passing

environment that can support multiple flow control, error control, and multicasting al-
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gorithms. We also provided the implementation details of how NCS architecture can be
applied to provide efficient and flexible point-to-point communication services.

We have evaluated the performance of NCS point-to-point communication primitives
and compared that with those of other message-passing systems. The benchmarking results

showed that NCS outperforms other message-passing systems.
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