
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

A Multithreaded Message-Passing System for High Performance A Multithreaded Message-Passing System for High Performance

Distributed Computing Applications Distributed Computing Applications

Sung-Yong Park
Syracuse University

Joohan Lee
Syracuse University

Salim Hariri
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Park, Sung-Yong; Lee, Joohan; and Hariri, Salim, "A Multithreaded Message-Passing System for High
Performance Distributed Computing Applications" (1998). Electrical Engineering and Computer Science.
60.
https://surface.syr.edu/eecs/60

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/60?utm_source=surface.syr.edu%2Feecs%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Multithreaded Message-Passing Systemfor High Performance DistributedComputing ApplicationsSung-Yong Park, Joohan Lee, and Salim HaririHigh Performance Distributed Computing (HPDC) LaboratoryDepartment of Electrical Engineering and Computer ScienceSyracuse UniversitySyracuse, NY 13244fsypark, jlee, haririg@cat.syr.eduAbstractHigh Performance Distributed Computing (HPDC) applications require low-latency andhigh-throughput communication services and HPDC applications have di�erent Quality ofService (QOS) requirements (e.g., bandwidth requirement, ow/error control algorithms,etc.). The communication services provided by traditional message-passing systems are�xed and thus can not be changed to meet the requirements of di�erent HPDC applications.NYNET (ATM wide area network testbed in New York state) Communication System(NCS) is a multithreaded message-passing system developed at Syracuse University thatprovides high-performance and exible communication services. In this paper, we overviewthe general architecture of NCS and present how NCS communication services are imple-mented. NCS point-to-point communication is exible in that users can con�gure e�cientpoint-to-point primitives by selecting suitable ow control, errror control algorithms, andcommunication interfaces on a per-connection basis. Furthermore, NCS architecture sep-arates the data transfer and control transfer functions that allows the control informationto be transmitted over the control connections and thus improves the perforamnce of thepoint-to-point communication primitives.We analyze the overhead incurred by using multithreading and compare the performanceof NCS point-to-point communication with those of other message-passing systems such asp4, PVM, and MPI. Benchmarking results indicate that NCS shows comparable performancewith other systems in transmitting small messages but outperforms other systems for largemessages.

1 IntroductionCurrent advances in processor technology and the rapid development of high-speed net-working technology (e.g., Asynchronous Transfer Mode (ATM) [1], Myrinet [2], and FastEthernet [3], High Performance Parallel Interface (HIPPI) [4]) have made network-basedcomputing, whether it spans a local or a wide area, an attractive and cost-e�ective environ-ment for large-scale High Performance Distributed Computing (HPDC) applications. Thedevelopment of HPDC applications over such an environment is not a non-trivial task thatrequires a thorough understanding of the applications with widely di�ering performancecharacteristics. HPDC applications require low-latency and high-throughput communica-tion services. HPDC applications have di�erent Quality of Service (QOS) requirementsand even one single application has multiple QOS requirements during the course of itsexecution (e.g., interactive multimedia applications).There have been several inter-process communication libraries such as p4 [9], ParallelVirtual Machine (PVM) [10], Message Passing Interface (MPI) [11], Express [12], PAR-MACS [13], Linda [14], Isis [15], Horus [16], and Remote Procedure Call (RPC) [17] thatsimplify process management, inter-process communication, and program debugging in aparallel and distributed computing environment. However, the communication services pro-vided by traditional communication systems are �xed and thus can not be changed to meetthe requirements of di�erent HPDC applications. In order to support HPDC applicationse�ciently, future communication systems should provide high performance and dynamiccommunication services to meet the requirements of a wide variety of HPDC applications.NYNET (ATM wide area network testbed in New York state) Communication System(NCS [7] [8]) is a multithreaded message-passing system for an ATM-based HPDC En-vironment that provides low-latency and high-throughput communication services. NCSuses multithreading to provide e�cient techniques to overlap computations and commu-nications. By separating control and data activities, NCS eliminates unnecessary controltransfers. This optimizes the data path and improves the performance. NCS supportsseveral di�erent communication schemes (multicasting algorithms, ow control algorithms,and error control algorithms) and allows the programmers to select at runtime the suitablecommunication schemes per-connection basis. NCS provides three application communi-cation interfaces such as Socket Communication Interface (SCI), ATM CommunicationInterface (ACI), and High Performance Interface (HPI) to support various classes of ap-plications with the appropriate communication services. The SCI is provided mainly forapplications that must be portable to many di�erent computing platforms. The ACI pro-vides the services that are compatible with ATM connection-oriented services where eachconnection can be con�gured to meet the QOS requirements of that connection. This al-2

lows the programmers to fully utilize the bene�t of ATM networks. The HPI supportsapplications that demand low-latency and high-throughput communication services.In this paper, we overview the general architecture of NCS and present how NCS com-munication services are implemented. NCS point-to-point communication is exible in thatusers can con�gure e�cient point-to-point primitives by selecting suitable ow control, errorcontrol algorithms, and communication interfaces on a per-connection basis. Furthermore,NCS architecture separates the data transfer and control transfer functions that allows thecontrol information to be transmitted over the control connections and thus improves theperformance of the point-to-point communication primitives.The rest of the paper is organized as follows. Section 2 presents the general architectureof NCS. Section 3 discusses an approach to implement NCS point-to-point communicationservices over an ATM network. Section 4 analyzes and compares the performance of NCSpoint-to-point communication with those of several other message-passing systems such asp4, PVM, and MPI. Section 5 contains the summary and conclusion.2 Overview of NCS ArchitectureNCS is a multithreaded message-passing system that provides application programmerswith multithreading (e.g., thread synchronization, thread management) and communicationservices (e.g., point-to-point communication, group communication, synchronization). NCSis architecturally compatible with the ATM technology where both control (e.g., signalingor management) and data transfers are separated and each connection can be con�guredto meet the QOS requirements of that connection. Consequently, the NCS architecture isdesigned to support various classes of applications by providing the following architecturalsupports (see Figure 1):Thread-Based Programming ParadigmNCS uses multiple threads to implement the computations of HPDC applications (we callthem Compute Threads). These threads use the NCS primitives to communicate and syn-chronize with other Compute Threads. The advantage of using the thread-based program-ming paradigm is that it reduces the cost of context switching, provides e�cient support for�ne-grained applications, and allows the overlapping of computation and communication.Overlapping computation and communication is an important feature in network-basedcomputing. In Wide Area Network (WAN)-based distributed computing, the propagationdelay (limited by the speed of light) is several orders of magnitude greater than the timeit takes to actually transmit the data [6]. For example, to transmit a 1-Kbyte �le across3

S R

MCFC

S

S

R

R

FC MCEC EC

C C

C

C C

C

Data

Network InterfaceNetwork Interface

Data Connection

Control Connection

Data

Data

Control

(Socket, ATM API, Trap)

Control
Information

Control
Information

User Application

S R

NYNET Communication System

Control Threads Data Transfer
Threads

CRCS

User Application

NYNET Communication System

Data Transfer
Threads

Control Threads

CRCS

MT MT

C - Compute Thread, MT - Master Thread, FC - Flow Control Thread, EC - Error Control Thread, MC - Multicast Thread

Interface

CS - Control Send Thread, CR - Control Receive Thread, S - Send Thread, R - Receive Thread

Communication

Figure 1: NCS General Architecturethe U.S at 1 Gbps takes only 8 microseconds. However, the time it takes for the �rst bitto arrive at its destination (propagation delay) is 15 milliseconds. Consequently, the trans-mission time of this �le is insigni�cant when compared to the propagation delay. To reducethe impact of the propagation delay requires that we modify the structure of computationssuch that they overlap communications.Separation of Control and Data FunctionsIn high-speed networks, very little time is available to decode, process, and store incomingpackets at gigabit rate. Also, the bandwidth provided by the high-speed networks is gener-ally enough to be allocated to multiple connections. Therefore, the software architecturesof communication systems for high-speed networks should be designed to fully exploit theserequirements. The separation of control and data functions enables NCS to work e�cientlyin high-speed networks.NCS separates control and data functions by providing two planes: control plane anddata plane. The control plane consists of several threads that implement important con-trol functions (e.g., connection management, ow control, error control, and con�gura-tion management) in an independent manner. These threads include Master Thread,Flow Control Thread, Error Control Thread, Multicast Thread, Control Send Thread andControl Receive Thread (we call them control threads). The data transfer threads in the4

data plane (Send Thread and Receive Thread) are spawned based on a per-connection basisby the Master Thread to perform only the data transfers associated with a speci�c con-nection. By having separate data transfer threads per connection, the overhead associatedwith demultiplexing incoming packets is eliminated and each connection can provide dif-ferent QOS requirements for its application. The separation of control and data functionsincreases exibility by reducing control and data dependencies. This modular architectureallows easier modi�cation and enhancement of NCS services by simply adding an NCScontrol thread for each new function or service.In NCS, the control and data information from the two planes are transmitted on sep-arate connections. All control information (e.g., ow control, error control, con�gurationinformation) is transferred over the control connections, while the data connections areused only for the data transfer functions. The separation of control and data connectionseliminates the process of demultiplexing control and data packets within a single connectionand allows the concurrent processing of control and data functions. This allows applica-tions to utilize all available bandwidth for the data transfer functions and thus improvesthe performance.Dynamic Support for Multiple Communication AlgorithmsEach HPDC application requires di�erent schemes for ow control, error control, and mul-ticasting algorithms. One of the main goals of NCS is to provide a modular approach tosupport these requirements e�ciently.NCS supports multiple ow control (e.g., window-based, credit-based, or rate-based),error control (e.g., go-back N or selective repeat), and multicasting algorithms (e.g., repet-itive send/receive or a multicast spanning tree) within the control plane to meet the QOSrequirements of a wide range of HPDC applications. Each algorithm is implemented as athread and programmers activate the appropriate thread when establishing a connection tomeet the requirements of a given connection. This allows programmers to select for a givenHPDC application the appropriate ow control, error control, and multicasting algorithmsper-connection basis at runtime. For example, interactive multimedia applications (see Fig-ure 2) use audio, video, and data media streams which have di�erent QOS requirements.Voice and video streams need low latency and jitter but can tolerate moderate error rate,while data stream has no real-time constraint but requires error-free transfer. By usingNCS, programmers can select no ow or error control for the audio and video connections,while they select the appropriate ow control or error control algorithms to achieve a reli-able connection for data transfer. Consequently, the performance of these applications canbe maximized by removing the overheads associated with ow control and error control5

procedures in connections that do not need these capabilities.
Video Audio Text

Video Audio Text

Connection
with Flow/Error Control

without Flow/Error Control

Video Audio Text

Participant 3

Control Information (e.g., Membership information)

Control Information Control Information

Participant 1

Participant 2

ATM

NETWORK

Connections

Figure 2: A Multimedia Application using NCSMultiple Communication InterfacesSome HPDC applications demand low-latency and high-throughput communication ser-vices to meet their QOS requirements, while others need portability across many comput-ing platforms. Most of the message-passing systems cannot dynamically support a widerange of QOS requirements, because their protocol architectures and communication inter-faces are �xed. NCS is designed to support these classes of applications by o�ering threeapplication communication interfaces: 1) Socket Communication Interface (SCI), 2) ATMCommunication Interface (ACI), and 3) High Performance Interface (HPI).The SCI is provided mainly for achieving high portability over a network of computers(e.g., workstations, PCs, parallel computers). One of the disadvantages of using this inter-face is that we have to use the inherent ow control, error control algorithms in TCP/IPprotocol and thus cannot fully exploit the features of NCS. However, some applicationsthat require mainly the dynamic group communications and fault tolerance capability canexploit the NCS architectural feature from this interface due to the separation of controland data path. Moreover, considering that the Socket interface is supported on almost allUNIX-based workstations (even on the PCs with Winsock [20] [21]) and a number of ATMnetworks are running with TCP/IP protocol, supporting Socket interface is viable whenimplementing future communication systems.The ACI is the application communication interface that provides applications with6

more exibility to fully utilize the bene�ts of NCS architecture when applied to ATMnetworks. Since ATM Application Programming Interface (API) does not de�ne the owcontrol and error control schemes, programmers can select the appropriate communicationservices according to the QOS requirements of HPDC applications. The direct access tothe ATM Adaptation Layer (AAL) allows us to use the inherent features of an ATM API(e.g., one-to-many connection). However, due to the lack of a standard ATM API andits poor performance, this interface has not been widely used. Recently, some researchactivities are underway to standardize the ATM API [21] and to develop high-performanceATM APIs [18] [19].The HPI allows applications to achieve high-throughput and low-latency inter-processcommunications. This interface is usually built by modifying system software such as devicedriver or �rmware code of the adapter card. Due to its dependencies on speci�c comput-ing platforms (e.g., hardware, operating system), this interface is targeted at developinghigh-performance communication interfaces for the tightly-coupled cluster of homogeneousworkstations.
P1 - Pn : Processors

Control

Data

P1

P2 P3

P4

P1
P2

P3P4

P5

P1

P2 P3

Communication Interface = Native ATM

Connections
Socket

Homogeneous Cluster 3

Communication Interface = Trap

Homogeneous Cluster 2

Homogeneous Cluster 1

Communication Interface = Socket

Figure 3: An Example Using Multiple Communication Interfaces in NCSNCS architecture is exible and can be used to build a large heterogeneous distributedcomputing environment that consists of several homogeneous clusters (see Figure 3). Inthe environment shown in Figure 3, each homogeneous cluster can be con�gured to use the7

appropriate NCS application communication interface that is supported by the underlyingcomputing platform and each cluster can be interconnected by using the SCI. This improvesthe performance of each cluster and thus improves the overall performance of applicationsrunning over this environment.In what follows, we show how NCS architecture can be applied to provide point-to-pointcommunication services. Similar approach is used to provide other NCS communicationservices. Additional details about NCS communication services can be found in [7] [8].3 Point-to-Point Communications in NCSIn NCS point-to-point communication, it is assumed that both the sending Compute Threadand the receiving Compute Thread agree to communicate with each other and that thereceiving Compute Thread has explicitly invoked a NCS recv() primitive to receive themessage.The NCS point-to-point communication is exible. Users can con�gure e�cient point-to-point communication primitives by selecting suitable ow control, error control algorithms,and communication interfaces on a per-connection basis. Those primitives may be reliableor unreliable, con�gured for achieving portability or for special requirements (e.g., low-latency for small messages). By transmitting control information over separate controlconnections, the performance of these primitives can be maximized. After a connection isestablished with appropriate QOS requirements (e.g., ow control algorithm, error controlalgorithm, communication interface), the underlying operations are transparent to usersand they just need to invoke the same high-level abstractions (NCS primitives) to performpoint-to-point communication independent of the selected con�gurations.In what follows, we describe the communication ow when NCS send() and NCS recv()primitives are invoked at both ends. Next, we present algorithms to implement errorcontrol and ow control. Since NCS supports several di�erent ow control and error controlalgorithms, the descriptions for these algorithms are focused on one speci�c implementation(e.g., default algorithms). Since each algorithm will be implemented as a thread, we caneasily incorporate other advanced algorithms into the NCS architecture by activating theappropriate algorithms at runtime.3.1 Communication FlowNCS point-to-point communication can be described in terms of ten steps, as shown in Fig-ure 4. In this example, we assume that each connection is con�gured with the appropriateerror control algorithm, ow control algorithm, and communication interface.8

C C

C

C C

C

CRCS

S R

RS

S R

S R

RS

S R

EC1 FC1

ECn FCn

FC1 EC1

FCn ECn

CRCS

Network InterfaceNetwork Interface

Data Connection

Control Connection

User Application

NCS_Send NCS_Recv

(Socket, ATM API, Trap)
Interface

Data Data

Communication

Buffer

C - Compute Thread, FC - Flow Control Thread, EC - Error Control Thread

CS - Control Send Thread, CR - Control Receive Thread, S - Send Thread, R - Receive Thread

Flow/Error

Control
Information

Flow/Error

Control
Information

(1)

(2)

(3)

(4)

(6)

(5)

(7)

(8)

(9)

(10)

User Application

Socket InterfaceSocket Interface

Figure 4: Point-to-Point Communication in the NCS Environment1. When NCS send() is invoked at the source Compute Thread, it activates the corre-sponding Error Control Thread associated with the sending connection. Since eachconnection is bound to its own Flow Control Thread and Error Control Thread, theCompute Thread should provide exact connection parameters (e.g., destination pro-cess id, destination thread id, session id) when calling the NCS send() primitive.2. The Error Control Thread in turn activates the corresponding Flow Control Threadafter segmenting the user message into packets based on the Service Data Unit (SDU)size and attaching a header to each packet.3. The Flow Control Thread then activates the corresponding Send Thread based on theow control information it is maintaining.4. The Send Thread transmits the requested packets over the data connection using thecommunication interface con�gured for this connection.5. On the receiving side, the Compute Thread invokes the NCS recv() primitive andit activates the corresponding Error Control Thread associated with the receivingconnection.6. The Error Control Thread activates the corresponding Receive Thread to receive thewhole segmented packets. 9

7. The Receive Thread receives a packet over the data connection using the communi-cation interface con�gured for this connection.8. The Receive Thread activates the corresponding Flow Control Thread to check theow control status.9. The Flow Control Thread updates the ow control information and sends the infor-mation to the source Flow Control Thread over the control connection. On the otherhand, it activates the corresponding Error Control Thread.10. After receiving all segmented packets, the Error Control Thread reassembles the pack-ets and puts them into the user bu�er. The Error Control Thread also sends the errorcontrol information to the source Flow Control Thread over the control connection.For environments where ow control and error control are not required (e.g., SocketInterface), the NCS send() and NCS recv() primitives bypass the Flow Control Thread andError Control Thread by activating the corresponding Send Thread and Receive Threaddirectly.3.2 Error ControlThe error control procedures in NCS are designed to support reliable point-to-point datatransfer by detecting errors and recovering from errors once they occur. Although thechecksumming is done by the AAL5 layer to detect errors within the AAL5 frames, ac-knowledgment and retransmission procedures are required to guarantee the reliable deliveryof user messages.NCS supports several di�erent error control algorithms, and users can select the ap-propriate error control algorithm according to the requirements of the applications. Inapplications that do not require error control procedure, users can deactivate it in NCS toreduce the overhead incurred by using an error control scheme.The default error control algorithm in NCS is based on selective repeat strategy [22], asshown in Figure 5. This algorithm can be outlined in the following �ve steps:1. Segmentation: The user message is segmented into packets based on the SDU size,which is de�ned by the user.2. Header Generation: Each SDU has a sequence number and a control bit in theheader that designates whether the SDU is the last SDU to be segmented. If thebit is set to 1, it activates the Error Control Thread at the receiver side to send10

ReassemblySegmentation

Error Control
Thread

(Sender)

Error Control

Thread

(Receiver)

Data Network

2 1 2 3 nn31

1 0 2 0 1ndata data data

User Message

Service Data Unit (SDU) size

(0 = Intermediate Packet

Control bit

Sequence #

 1 = End of segmented packet)

ACK Bit Map

0 00 1

2 3 41

0

nPacket #

Result
0 = Receive OK
1 = Error

Control Network

(1) (2)

(3)

(4)

(5)

Trigger RetransmissionFigure 5: Selective Repeat Error Control Scheme in the NCS Environmentan Acknowledgment packet to the Error Control Thread at the sender side over thecontrol connection.3. Data Transmission: Each segmented SDU is delivered to the Flow Control Threadto be transmitted over the data connection by the Send Thread.4. Reassembly: At the receiver side, each segmented SDU is reassembled by the ErrorControl Thread if the SDU is received without errors. The Error Control Threadalso updates bitmap information that represents the status of the received SDUs.Each bit in the bitmap corresponds to one SDU. If the SDU is received in error, thecorresponding bit in the bitmap is set to 1.5. Acknowledgment: If the control bit in the header of a received SDU is set to 1, thereceiving Error Control Thread sends an Acknowledgment packet containing a bitmapthat was updated in step 4 over the control connection. The Error Control Threadat the sender side retransmits the corresponding SDU if the bitmap in the Acknowl-edgment packet indicates that the SDU is received in error (e.g., if the correspondingbit in the bitmap is set to 1). If the Error Control Thread at the sender side does notreceive an Acknowledgment packet within an appropriate interval (e.g., timeout), itretransmits the whole packets. 11

The pseudo code for this algorithm is presented in Figure 6. The SDU size is the unit oferror control and retransmission in NCS. The SDU size is from 4 Kbytes to 64 Kbytes andcorresponds to the single AAL5 frame (Default SDU size is 4 Kbytes). The reason for this isthat some ATMAPI such as Fore Systems' ATMAPI restricts the size of the user message toless than 4 Kbytes and the single AAL5 frame is at most 64 Kbytes long. In general, a largeSDU size generates high throughput, but results in high overhead by retransmission whenthe SDUs are lost. By keeping the size small, e�ciency can be maximized but segmentationoverheads (e.g., header and trailer) are introduced. Therefore, this size should be chosen foreach environment to trade o� per-fragment overhead, the connection's error characteristics,and the available timer resolution [5].3.3 Flow ControlThe ow control scheme is used to control the transmission rate to avoid receiver overrunor the network becoming congested. Several ow control algorithms have been proposed forhigh-speed networks such as rate-based, credit-based, and window-based algorithms. Oneof the drawbacks in existing protocols is that the ow control algorithm is �xed and cannotoptimally control a wide range of HPDC applications with di�erent QOS requirements.This occurs because an algorithm that is optimal in one environment may not necessarilybe optimal in another environment. For example, the applications that control audio orvideo streams require minimumow control for those streams, because the audio and videostreams are usually error-resilient. However, data applications need a ow control schemeto guarantee reliable delivery of the data. Moreover, if both audio/video and data streamscoexist in one application as in realtime interactive multimedia applications, we cannotoptimally control these applications using the existing protocol architecture.NCS supports several ow control algorithms and allows programmers to select theappropriate algorithm per-connection basis at runtime according to the needs of the appli-cation. The default ow control algorithm in NCS is the credit-based window ow controlalgorithm. Figure 7 shows the main steps of the NCS ow control algorithm and can beexplained as follows:1. When the Flow Control Thread is activated by the Error Control Thread, it �rstchecks the credit bu�er for the given connection and determines the appropriatenumber of packets to transmit. Each process maintains a separate queue and creditbu�er for each connection.2. The Flow Control Thread puts the packets into the message queue maintained bythe Send Thread based on the number of credits (e.g., in Figure 7, the credit is k).12

Thread Error-Control-SenderGet the user message from the NCS send() routineDetermine SDUsize (4K-64K)remsize messagesize, seqno 0while remsize > SDUsize doSegment the message into the packet with SDUsizeAttach a seqno, Endbit 0Activate Flow Control Thread to transmit this packetremsize = remsize � SDUsize, seqno = seqno + 1endwhileCreate last packetAttach a seqno, Endbit 1Activate Flow Control Thread to transmit this last packetStart TimerWait for an Acknowledgment Packet from the Error-Control-Receiverif timeout thenGo to Line 4 for retransmissionelseStop TimerCheck the received Bitmapif Bitmap > 0 thenSelective Retransmission according to the BitmapendifendifThread Error-Control-ReceiverGet the request from the NCS recv() routineEndbit 0, Bitmap �1while Endbit == 0 doActivate Receive Thread to receive a packetExtract seqno and Endbit from the packetClear seqno position in the BitmapendwhileSend an Acknowledgment Packet with Bitmap to the Senderif Bitmap > 0 thenEndbit 0Go to line 4 for receiving retransmitted packetendifReassemble the segmented packets into the user bu�erFigure 6: Pseudo Code for Selective Repeat Error Control Algorithm in NCS13

Data Network

Control Network

1 datan

credit credit credit

k credits k1

1 0 2 0data data 1 datak

1 0 2 0data data 1 datak

k packets (credit = k)

n packets in a queue

FC

EC

S

Send Queue

FC

EC

R

Sender Receiver

EC - Error Control Thread, FC - Flow Control Thread, S - Send Thread, R - Receive Thread

(1)

(2)

(3) (4)

(5)

(6)(7)

Figure 7: Credit-based Flow Control Scheme in the NCS EnvironmentThis credit is an indication of how many packets can be transmitted without anyacknowledgment from the receiver.3. The Flow Control Thread activates the corresponding Send Thread to transmit thepackets over the data connection.4. When the Receive Thread receives a packet, it activates the Flow Control Threadassociated with the given data connection.5. The Flow Control Thread sends a credit to the sender over the control connection.6. The Flow Control Thread activates the corresponding Error Control Thread to up-date the error control information and reassemble the original message.7. After the Flow Control Thread at the sender side receives the credit, the credit infor-mation associated with that connection is updated.The pseudo code for this algorithm is presented in Figure 8. From the implementationperspective, one credit corresponds to a free bu�er allocated for receiving a packet. Sincebu�ers are shared resources with other threads, it is not an e�cient way to allocate �xedcredits for every connection. In NCS, the credit for each connection is maintained dynami-cally. Only small credits are assigned to each connection initially. The Flow Control Threadchecks the data rate of each connection and adjusts accordingly the credit given to each14

connection. As a result, active connections get more credits, while inactive connections getonly a fraction of the credits.Thread Flow-Control-Senderif credit information received from Flow-Control-Receiver thenUpdate the credit bu�er for a speci�c connectionendifGet the request to send packets from the Error Control ThreadRead credit bu�er and determine the max num packetsk max num packetsPut k transmit requests to Send ThreadActivate Send Thread to transmit these k packetsThread Flow-Control-Receiverif a packet received from Receive Thread thenUpdate credit valueTransmit credit information to Flow-Control-SenderActivate Error Control Thread to reassemble the packetsendifFigure 8: Pseudo Code for Credit-based Flow Control Algorithm in NCS4 Benchmarking ResultsThis section analyzes the performance and overhead associated with multithreading to im-plement NCS point-to-point communication services. First, we quantify the e�ect of thethread package architecture (e.g., user-level thread or kernel-level thread) to implement amultithreaded message-passing system. Next, we measure the overhead incurred by usingthread-based point-to-point communication instead of the point-to-point communicationprimitives provided by the underlying communication interface. Finally, we compare theperformance of NCS point-to-point communication primitives with those of other message-passing systems such as p4, PVM, and MPI using the two homogeneous workstations (e.g.,two SUN-4s running SunOS 5.5 or two IBM/RS6000s running AIX 4.1) or two heteroge-neous workstations (e.g., SUN-4 and IBM/RS6000).4.1 Thread Package ArchitectureA user-level thread package is implemented as a user-level linkable library that includes allof the thread functions such as thread management and thread synchronization. Since the15

entire functions are running completely within an application program's address space, theoperating system is not aware of multiple threads. Therefore, the functions (e.g., creatingthreads, context switching between threads, synchronization between threads) of a user-level thread package is very fast and e�cient. However, if one thread makes a blockingsystem call, the kernel blocks the whole process and thus eliminates the bene�ts of usingmultiple threads. In NCS implementation of user-level thread packages, all blocking prim-itives are implemented using non-blocking system calls to prevent the whole process fromblocking. For example, when the Receive Thread does not detect any incoming messages, ityields its control using the NCS thread yield() primitive, and thus other Compute Threadsthat are ready to run can continue their execution. This overlapping of communication andcomputation improves the performance of NCS recv() operations. Due to its fast contextswitching and synchronization time between threads, the NCS implementations using user-level thread packages are suitable for applications where relatively small-size messages areexchanged frequently and a great many synchronization operations (e.g., mutex, semaphoreetc.) are involved by the Compute Threads.On the other hand, in a kernel-level thread package, an operating system directly man-ages threads and synchronization between threads. Therefore, it is slower to execute threadfunctions (e.g., creating threads, context switching and synchronization between threads)than in a user-level thread package. However, the kernel allows applications to use blockingsystem calls without blocking the entire process. In this case, the NCS recv() primitive canbe implemented using a blocking receive call to reduce the overhead of unnecessary contextswitching. Moreover, the kernel allows programmers to overlap computation and commu-nication when a thread is blocked to wait for unavailable system resources. For example,if the data transmissions using BSD sockets exceed the bu�ering available in the socketsend bu�er maintained in the kernel, the kernel puts this thread to sleep and switches toanother thread so that other available threads can continue their execution. To check thee�ect of overlapping in a kernel-level thread package, we measured the time required tosend messages of various sizes (from 1 byte to 64 Kbytes) using the test program describedin Figure 9. The socket bu�er size was set to 32 Kbytes and some amount of computationwas added after the NCS send() operation in order to model the general behavior of theapplication programs. The time was averaged over 100 iterations.Figure 10 shows the experimental results using two thread packages of di�erent architec-ture (e.g., Pthread over Solaris, Quickthreads over Solaris). As we can see from Figure 10,the performance of a user-level thread package (Quickthreads) is better than that of akernel-level thread package (Pthread) up to the 4-Kbyte message size. This indicates thatthe thread synchronization overhead in a kernel-level thread package is larger than that of16

1 Thread Thread-Architecture-Comparison2 start current time3 msgsize test size4 for 1 to 100 do5 NCS send(msgsize) /* Activate Send Thread */6 Computation (100 ms)7 endfor8 end current time9 avgtime (end � start)=100Figure 9: Test Code to Check the Overlapping E�ect in the Kernel-Level Thread

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 128 256 512 1K 2K 4K 8K 16K 32K 64K

T
im

e
(m

s)

Message Size (bytes)

Comparison between User-level and Kernel-level threads

NCS(Qthread) with Load = 100 ms
NCS(Pthread) with Load = 100 ms

Figure 10: Comparison Between User-Level Thread and Kernel-Level Thread17

a user-level thread package, and this dominates the total time used to send messages. How-ever, for message sizes larger than 4 Kbytes, the sending time using a kernel-level threadpackage (Pthread) starts decreasing. This can be explained by the following observations.Since we have 32 Kbytes of socket bu�er size and we repeatedly transmit large messages(e.g., larger than 4 Kbytes), the kernel �nally runs out of the socket bu�er and blocks theSend Thread that has invoked write() system calls for this socket. In the user-level threadpackage, this results in blocking the whole process, while in the kernel-level thread pack-age, the control is transfered to the original thread and this thread starts the computationwhile the blocked Send Thread is waiting for the bu�er to be released by the previous sendoperations. This overlapping of computation and communication makes NCS implementa-tions of kernel-level thread packages suitable for applications that require exchanging largeamount of data.4.2 Thread OverheadTo evaluate the overhead incurred by using separate threads for transmitting and receivingoperations, we measured the overhead involved in transmitting a 1-byte message usingBSD Socket Interface. Since the main objective of this evaluation is to measure the threadoverhead in terms of NCS send() operations, we do not include the time for setting up theconnection and assume that the connection is already set up before transmitting a message.Table I: Cost of Sending 1-Byte Message via Send Thread - QuickThreads VersionActivity Time (usec) % of TotalSession OverheadNCS send() Function Entry/Exit 10Attaching a Message Header 4Queuing a Message Request 15Context Switch from NCS send() to Send Thread 27Dequeuing a Message Request 17Free a Message Request Bu�er 10Context Switch from Send Thread to NCS send() 25Session Overhead Total 108 28 %Data Transfer OverheadTransmitting a 1-Byte Message 274 72 %Total 383 100 %Table I shows the timing data with all overhead functions at the transmit side. The major18

components of the overhead are: 1) Function call overhead (Entry/Exit) for NCS send()primitive; 2) the overhead incurred by attaching a header for a request message; 3) queuingoverhead for this request message; 4) context switching time from NCS send() primitiveto Send Thread; 5) the overhead for dequeuing the request message in the Send Thread;6) message transmission time; 7) the time used for freeing the message structure; and 8)context switching time from Send Thread to NCS send() primitive. These overheads arelargely divided into two categories: session overhead (1, 2, 3, 4, 5, 7, 8) and data transferoverhead (6).The session overhead is the time spent for activities other than actual data transfer (inour case, the overhead incurred by using threads). The data transfer overhead is the timespent to transmit a message using the primitives provided by the underlying communicationinterface. The session overhead is constant, regardless of the message size, while the datatransfer overhead is dependent upon the message size. This overhead involves a per-byteoverhead such as data checksumming and data copying.As we can see from Table I, the session overhead is 108 microseconds, which is 28% of thetotal time to transmit a 1-byte message. Although the session overhead will be amortizedas the message size increases, it dominates the overhead for small messages. For example,Figure 11 depicts the overhead of NCS implementation relative to the native socket. It isclear from Figure 11 that the overhead relative to the native socket is decreasing and �nallybecomes negligible as the message size increases. This concludes that the session overheadis not the major overhead factor in transmitting large messages, but that it dominates theoverhead in transmitting small messages.
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 128 256 512 1K 2K 4K 8K 16K 32K 64K

R
at

io
 to

 N
at

iv
e

S
oc

ke
t

Message Size (bytes)

Thread Overhead by Ratio

Qthread over Solaris
Pthread over Solaris

Figure 11: Overhead Ratio to Native SocketFrom the experience described above, we decided to provide another version of NCS send()19

and NCS recv() primitives, which bypasses all NCS threads (e.g., control threads and datatransfer threads) and transmits or receives directly, using the primitives provided by theunderlying communication interface. In this case, all threads can be replaced by proce-dures. These procedures include ow control, error control, multicasting algorithms, andlow-level communication primitives.4.3 Primitive PerformanceIn order to compare the performance of point-to-point communication primitives, theroundtrip performance is measured using an echo program. In this echo program, theclient transmits a message of proper size which is transmitted back once it is receivedat the receiver side. The timer starts in the client code before transmitting a messageand stops after receiving back the message. The di�erence in time is used to calculatethe roundtrip time of the corresponding message size. The time was averaged over 100iterations after discarding the best and worst timings.
0

10

20

30

40

50

60

70

1 1K 4K 8K 16K 32K 64K

T
im

e
(m

s)

Message Size (Bytes)

Point-to-Point Communication Performance over ATM (SUN 4/SunOS 5.5)

NCS
P4
MPI

PVM

0

10

20

30

40

50

60

70

1 1K 4K 8K 16K 32K 64K

T
im

e
(m

s)

Message Size (Bytes)

Point-to-Point Communication Performance over ATM (SUN 4/SunOS 5.5)

NCS
P4
MPI

PVM

0

5

10

15

20

25

1 1K 4K 8K 16K 32K 64K

T
im

e
(m

s)

Message Size (Bytes)

Point-to-Point Communication Performance over ATM (RS6000/AIX 4.1)

NCS
P4
MPI

PVM

Figure 12: Point-to-Point Communication Performance Over ATM Using Same PlatformFigure 12 shows the performance of send/receive primitives of four message-passingsystems for di�erent message sizes up to 64 Kbytes when they are measured using thesame computing platform (e.g., SUN-4 to SUN-4 or IBM/RS6000 to IBM/RS6000). As wecan see from Figure 12, NCS has the best performance on the SUN-4 platform while p4has the best performance on the IBM/RS6000 platform. For message sizes smaller than 1Kbytes, the performance of all four message-passing systems is almost the same but theperformance of MPI and p4 on the SUN-4 platform and the performance of PVM on theIBM/RS6000 get worse as the message size gets bigger.Figure 13 shows the performance of corresponding primitives using the di�erent comput-ing platform (e.g., SUN-4 to IBM/RS6000). In this case, NCS outperforms other message-20

0

50

100

150

200

250

300

350

400

450

1 1K 4K 8K 16K 32K 64K

T
im

e
(m

s)

Message Size (Bytes)

Point-to-Point Communication Performance over ATM (SUN/RS6000)

NCS
P4
MPI

PVM

Figure 13: Point-to-Point Communication Performance Over ATM Using HeterogeneousPlatformpassing systems. It is worthy to note that the MPI implementation performs very badly asthe message size gets bigger and the p4 implementation does not perform well comparedto PVM and NCS.Consequently, it should be noted that the performance of send/receive primitives ofeach message-passing system varies according to the computing platforms (e.g., hardwareor kernel architecture of the operating system) on which the message-passing systems areimplemented. NCS shows good performance either on the same computing platform oron the di�erent platform. PVM shows worst performance on the IBM/RS6000 platformbut shows comparable performance to NCS both on the SUN-4 platform and on the het-erogeneous platform. p4 and MPI show better performance on the IBM/RS6000 platformrunning AIX 4.1 than they are running both on the SUN-4 platform running SunOS 5.5 andon the heterogeneous platform. This implies that the performance of applications writtenby using these two message-passing systems over the SUN-4 platform and the heterogeneousenvironment will be worse than those of other message-passing systems.5 ConclusionIn this paper, we have outlined the architecture of a high-performance and exible multi-threaded message-passing system that can meet the QOS requirements of a wide range ofHPDC applications. Our approach capitalizes on thread-based programmingmodel to over-lap computation and communication, and develop a dynamic message-passing environmentwith separate data and control paths. This leads to a exible, adaptive message-passingenvironment that can support multiple ow control, error control, and multicasting al-21

gorithms. We also provided the implementation details of how NCS architecture can beapplied to provide e�cient and exible point-to-point communication services.We have evaluated the performance of NCS point-to-point communication primitivesand compared that with those of other message-passing systems. The benchmarking resultsshowed that NCS outperforms other message-passing systems.

22

References[1] J. Y. Le Boudec, \The Asynchronous Transfer Mode: a tutorial", Computer Networks andISDN Systems, Vol. 24, No. 4, pp. 279{309, 1992.[2] N. J. Moden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W.Su, \Myrinet: A Gigabit-per-second Local Area Network", IEEE Micro, Vol. 15, No. 1, pp.29{36, February 1995.[3] IEEE Std 802.3u, \Local and Metropolitan Area Networks: Media Access Control (MAC)Parameters, Physical Layer, Medium Attachment Units, and Repeater for 100 Mb/s Opera-tion, Type 100BASE-T", 1995.[4] D. Tolmie, and J. Renwick, \HIPPI: Simplicity Yields Success", IEEE Network, pp. 28{32,January 1993.[5] R. Ahuja, S. Keshav, and H. Saran, \Design, Implementation, and Performance Measurementof a Native-Mode ATM Transport Layer (Extended Version)", IEEE/ACM Transactions onNetworking, Vol. 4, No. 4, pp. 502{515, August 1996.[6] L. Kleinrock, \The latency/bandwidth tradeo� in gigabit networks", IEEE CommunicationMagazine, Vol. 30, No. 4, pp. 36{40, April 1992.[7] S. Y. Park, S. Hariri, Y. H. Kim, J. S. Harris and R. Yadav, \NYNET CommunicationSystem (NCS): A Multithreaded Message Passing Tool over ATM Network", Proc. of the 5thInternational Symposium on High Performance Distributed Computing, pp. 460{469, August1996.[8] S. Y. Park and S. Hariri, \A High Performance Message Passing System for Network ofWorkstations", The Journal of Supercomputing, Vol. 11, No. 2, 1997.[9] R. Butler and E. Lusk, \Monitors, message, and clusters: The p4 parallel programmingsystem", Parallel Computing, Vol. 20, pp. 547{564, April 1994.[10] V. S. Sunderam, \PVM: A Framework for Parallel Distributed Computing", Concurrency:Practice and Experience, Vol. 2, No. 4, pp. 315{340, December 1990.[11] MPI Forum, \MPI: A Message Passing Interface", Proc. of Supercomputing '93, pp. 878{883,November 1993.[12] J. Flower, and A. Kolawa, \Express is not just a message passing system. Current and futuredirections in Express", Journal of Parallel Computing, Vol. 20, No. 4, pp. 597{614, April1994.[13] S. Gillich, and B. Ries, \Flexible, portable performance analysis for PARMACS and MPI",Proc. of High Performance Computing and Networking: International Conference and Exhi-bition, May, 1995.[14] L. Dorrmann, and M. Herdieckerho�, \Parallel Processing Performance in a Linda System",International Conference on Parallel Processing, pp. 151{158, 1989.23

[15] K. P. Birman, R. Cooper, T. A. Joseph, K. P. Kane, F. Schmuck, and M. Wood, \Isis -A Distributed Programming Environment", User's Guide and Reference Manual, CornellUniversity, June 1990.[16] R. Renesse, T. Hickey, and K. Birman, \Design and performance of Horus: A lightweightgroup communications system", Technical Report TR94-1442, Cornell University, 1994.[17] B. J. Nelson, \Remote Procedure Call", Ph.D thesis, Carnegie-Mellon University, CMU-CS-81-119, 1981.[18] Werner Almesberger, \Linux ATM API Draft, Version 0.4", EPFL, LRC Technical Docu-ment, July, 1996.[19] W. J. Hymas, H. Stuttgen, D. Chang, S. Sharma, and S. Wise, \ATM Extensions to theSocket Programming Interface in AIX 4.2",http://www.rs6000.ibm.com/resource/technology/atmsocks/atmnew.html.[20] M. Hall, M. Tow�q, G. Arnold, D. Treadwell, and H. Sanders, \Windows Sockets Version1.1 Speci�cation", 20 January, 1993.[21] \Windows Sockets 2 Speci�cation", 22 January, 1996.[22] A. S. Tanenbaum, Computer Networks, Third Edition. Prentice Hall, 1996.

24

	A Multithreaded Message-Passing System for High Performance Distributed Computing Applications
	Recommended Citation

	tmp.1286291883.pdf.rsxq5

