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Supporting Irregular Distributions in FORTRAN 90D/HPFCompilers �Ravi Ponnusamyyz Yuan-Shin Hwangy Raja DasyJoel Saltzy Alok Choudharyz Geo�rey FoxzyUMIACS and Computer Science Department zNortheast Parallel Architectures CenterUniversity of Maryland Syracuse UniversityCollege Park, MD 20742 Syracuse, NY 13244AbstractThis paper presents methods that make it possible to e�ciently support irregular problems using dataparallel languages. The approach involves the use of a portable, compiler-independent, runtime supportlibrary called CHAOS. The CHAOS runtime support library contains procedures that� support static and dynamic distributed array partitioning,� partition loop iterations and indirection arrays,� remap arrays from one distribution to another, and� carry out index translation, bu�er allocation and communication schedule generation.The CHAOS runtime procedures are used by a prototype Fortran 90D compiler as runtime sup-port for irregular problems. This paper also presents performance results of compiler-generated andhand-parallelized versions of two stripped down applications codes. The �rst code is derived froman unstructured mesh computational uid dynamics ow solver and the second is derived from themolecular dynamics code CHARMM.A method is described that makes it possible to emulate irregular distributions in HPF by reorder-ing elements of data arrays and renumbering indirection arrays. The results suggest that an HPFcompiler could use reordering and renumbering extrinsic functions to obtain performance comparableto that achieved by a compiler for a language (such as Fortran 90D) that directly supports irregulardistributions.�This work was sponsored in part by ARPA (NAG-1-1485), NSF (ASC 9213821), and ONR (SC292-1-22913).



1 IntroductionOn distributed memory machines, large data arrays need to be partitioned between local processormemories. These partitioned data arrays are called distributed arrays. Many applications can bee�ciently implemented by using simple schemes for mapping distributed arrays. One example of sucha scheme is to divide an array into contiguous, equal sized subarrays and to assign each subarray to adi�erent processor. Another example is to assign consecutively indexed array elements to processorsin a round-robin fashion. These two standard data distribution schemes are often called BLOCKand CYCLIC data distributions [10], respectively. Languages such as High Performance Fortran(HPF) [10], Fortran D [6] and Vienna Fortran [4] allow users to control how array elements areassigned to processor memories.Many scienti�c applications make extensive use of indirectly accessed arrays. Examples of suchproblems include computational uid dynamics codes [11], molecular dynamics codes (CHARMM,AMBER, GROMOS, etc.) [3], diagonal or polynomial preconditioned iterative linear solvers, and timedependent ame modeling codes. These problems are called irregular problems. Figure 1 illustratescode with an irregular loop. This example shows the code that sweeps over nedge mesh edges. Arraysx and y are data arrays. Loop iteration i carries out a computation involving the edge that connectsvertices edge1(i) and edge2(i). Arrays such as edge1 and edge2 which are used to index data arraysare called indirection arrays.C Outer Loop L1do n = 1, n step...C Inner Loop L2do i = 1, nedgey(edge1(i)) = y(edge1(i)) + f(x(edge1(i)), x(edge2(i)))y(edge2(i)) = y(edge2(i)) + g(x(edge1(i)), x(edge2(i)))end do...end do Figure 1: An Example Code with an Irregular LoopIt has been widely observed (e.g. [5], [13]) that performance on distributed memory systems canbe enhanced by distributing data using a non-standard format. Researchers have developed a varietyof methods to obtain data mappings that are designed to optimize irregular problem communicationrequirements [1, 16, 18]. The distribution produced by these methods needs to be represented by atable that associates a processor assignment with each array element. This kind of distribution isoften called an irregular distribution.Figure 2 depicts three di�erent distributions of data arrays over two processors. Figure 2(a) showsthe graph of 6 nodes and 7 edges. Arrays x and y are data arrays. The edges are represented by two1



indirection arrays edge1 and edge2, which will be partitioned in blocks. The code listed in Figure 1can be used to sweep this graph. Figure 2(b) presents the result of BLOCK distribution; nodes 1,2, and 3 are assigned to processor P0, and nodes 4, 5, and 6 to processor P1. The dashed circles inindirection arrays edge1 and edge2 indicate that the indexed elements are not local. The CYCLICdistribution of the graph is displayed in Figure 2(c). Nodes are assigned to processors in round robinfashion. In this distribution, there are 5 non-local data elements. The irregular distribution shownFigure 2(d) represents the best mapping of the graph since only one remote reference is required.
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1 1 2 2 3 4 3(d) Irregular DistributionFigure 2: Data DistributionsIn addition to standard distributions such as BLOCK and CYCLIC, Fortran D and Vienna Fortranalso support irregular data distributions. Fortran D allows a user to explicitly specify an irregular dis-tribution using an array, to specify a mapping of array elements to processors. Vienna Fortran allowsuser-de�ned functions to describe irregular distributions. The current version of HPF does not directlysupport irregular distributions. Language extensions have been proposed by Hanxeleden et al [8] andPonnusamy et al [12] to support irregular distributions in languages like Fortran D. A method is de-scribed in this paper that makes it possible to emulate irregular distributions in HPF by reorderingelements of data arrays and renumbering indirection arrays. This paper presents results that suggestthat an HPF compiler could use reordering and renumbering extrinsic functions to obtain performancecomparable to that achieved by a compiler for a language (such as Fortran 90D) that directly sup-ports irregular distributions. Researchers have proposed compile-time techniques to partition dataautomatically by compilers. But their approaches are only applied to regular programs [14].This paper considers two additional language features not found in HPF; variants of these languageextensions are found in Fortran D and Vienna Fortran. The �rst feature is the ON clause; the ONclause allows users to specify which processor is to execute each iteration of a loop. The second featureis an intrinsic function that can be used to carry out reduction in a parallel (forall) loop.2



In irregular problems, data access patterns and workload are usually known only at runtime,hence decisions regarding data and work distributions are made at runtime. These on-the-y decisionsrequire special runtime support. A set of procedures have been developed, called CHAOS, that canbe used by an HPF style compiler. CHAOS is a successor of PARTI [15] and provides support formanaging user-de�ned distributions, partitioning loop iterations, remapping data and index arrays,and generating optimized communication schedules.The methods proposed in this paper are implemented in the Syracuse Fortran 90D prototypecompiler. Templates from real application codes are employed to study performance. The compilergenerates parallel codes for irregular problems by embedding CHAOS runtime procedures.Examples of targeted applications are introduced in Section 2. Section 3 presents the functionalityof the runtime support and an overview of the existing data parallel languages. Section 4 describes thelanguage support for irregular distributions. Performance results of the runtime system for templatesfrom real-applications are presented in Section 5. The templates are derived from the applicationcodes which will be described in Section app-codes. The performance of the compiler-generated codesis compared to that of hand-written codes. Section 6 presents conclusions.2 Application CodesIt is useful to describe application codes to introduce the motivation behind irregular distributions.The loop structures of two application codes (an unstructured Euler solver and a molecular dynamicscode) are described in this section. They consist of a sequence of loops with indirectly accessed arraysand are similar to those depicted in Figure 1.The �rst application code is an unstructured Euler solver used to study the ow of air over anairfoil [11]. Complex aerodynamic shapes require high resolution meshes and, consequently, largenumbers of mesh points. Physical values (e.g. velocity, pressure) are associated with each meshvertex. These values are called ow variables and are stored in arrays. These arrays are called dataarrays. Calculations are carried out using loops over the list of edges that de�ne the connectivity ofthe vertices.To parallelize an unstructured Euler solver, mesh vertices must be partitioned (i.e. arrays thatstore ow variables). Since meshes are typically associated with physical objects, a spatial locationcan often be associated with each mesh point. The spatial locations of the mesh points and theconnectivity of the vertices is determined by the mesh generation strategy [11]. Figure 3 depicts amesh generated by such a process. This is an unstructured mesh representation of a three dimensionalaircraft wing.The way in which the vertices of such irregular computational meshes are numbered frequentlydoes not have a useful correspondence to the connectivity pattern (edges) of the mesh. During meshgeneration, vertices are added progressively to re�ne the mesh. While new vertices are added, newedges are created or older ones are moved around to ful�ll certain mesh generation criteria. This3
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Figure 3: An Unstructured Meshcauses the apparent lack of correspondence between the vertex numbering and edge numbering. Oneway to solve this problem is to renumber the mesh completely after the mesh has been generated.Mesh points are partitioned to minimize communication. Recently, promising heuristics have beendeveloped that can use one or several of the following types of information: 1) spatial locations ofmesh vertices, 2) connectivity of the vertices, and 3) estimate of the computational load associatedwith each mesh point. For instance, a user might choose a partitioner that is based on coordinates [1].A coordinate bisection partitioner decomposes data using the spatial locations of vertices in the mesh.If the user chooses a graph-based partitioner, the connectivity of the mesh could be used to decomposethe mesh.The next step in parallelizing this application involves assigning equal amounts of work to pro-cessors. A Euler solver consists of a sequence of loops that sweep over a mesh. Computational workassociated with each loop must be partitioned among processors to balance load. Consider a loop thatsweeps over mesh edges, closely resembling the loop depicted in Figure 1. Mesh edges are partitionedso that 1) load balance is maintained, and 2) computations mostly employ locally stored data.Other unstructured problems have similar indirectly accessed arrays. For instance, consider thenon-bonded force calculation in the molecular dynamics code, CHARMM [3], shown in Figure 4.Force components associated with each atom are stored as Fortran arrays. The loop L1 sweeps overall atoms. In this discussion, it is assumed that L1 is a parallel loop while L2 is a sequential one. The4



L1: do i = 1, NATOML2: do index = 1, INB(i)j = Partners(i, index)Calculate dF (x, y and z components).Subtract dF from Fj .Add dF to Fiend doend do Figure 4: Non-bonded Force Calculation Loop from CHARMMloop iterations of L1 are distributed over processors. All computation pertaining to iteration i of L1is carried out on a single processor, so loop L2 need not be parallelized.It is assumed that all atoms within a given cuto� radius interact with each other. The arrayPartners(i, *) lists all the atoms that interact with atom i. The inner loop calculates the three forcecomponents (x, y, z) between atom i and atom j (van der Waal's and electrostatic forces). They arethen added to the forces associated with atom i and subtracted from the forces associated with theatom j.The force array elements are partitioned in a way as to reduce interprocessor communication inthe non-bonded force calculation loop (Figure 4). Figure 5 depicts two possible distributions of atomsof a Myoglobin and 3830 water molecules onto eight processors. Shading is used to represent theassignment of atoms to processors. Data sets associated with the sequential version of CHARMMassign each atom an index number which does not reect locality. Figure 5(a) depicts a distributionthat assigns consecutively numbered sets of atoms to each processor, i.e. a BLOCK distribution. Sincenearby atoms interact, the choice of a BLOCK distribution is likely to result in a large volume of commu-nication. Consider, instead, a distribution based on the spatial locations of atoms. Figure 5(b) depictsa distribution of atoms to processors carried out using an inertial bisection partitioner. CompareFigure 5(a) and 5(b), the later �gure has a much smaller amount of surface area between portions ofthe molecules associated with each processor.3 Runtime SupportThis section is an overview of the principles and functionality of the CHAOS runtime support library,a superset of the PARTI library [15]. 5



(a) BLOCK Distribution (b) Irregular DistributionFigure 5: Distribution of Atoms on 8 Processors3.1 Overview of CHAOSThe CHAOS runtime library has been developed to e�ciently handle problems that consist of asequence of clearly demarcated concurrent computational phases. Solving such concurrent irregularproblems on distributed memory machines using CHAOS runtime support involves six major steps(Figure 6). The �rst four steps concern mapping data and computations onto processors. The nexttwo steps concern analyzing data access patterns in a loop and generating optimized communicationcalls. A brief description of these phases follows.Initially, arrays are decomposed into either regular or irregular distributions.A. Data Distribution : Phase A calculates how data arrays are to be partitioned by makinguse of partitioners provided by CHAOS or by the user. CHAOS supports a number of parallelpartitioners that use heuristics based on spatial positions, computational load, connectivity, etc.The partitioners return an irregular assignment of array elements to processors; this is storedas a CHAOS construct called the translation table. A translation table is a globally accessibledata structure which lists the home processor and o�set address of each data array element.The translation table may be replicated, distributed regularly, or stored in a paged fashion,depending on storage requirements.B. Data Remapping : Phase B remaps data arrays from the current distribution to the newlycalculated irregular distribution. A CHAOS procedure remap is used to generate an optimized6



Phase A : Data Partitioning Assign elements of data arrays to processorsPhase B : Data Remapping Redistribute data array elementsPhase C : Iteration Partitioning Allocate iterations to processorsPhase D : Iteration Remapping Redistribute indirection array elementsPhase E : Inspector Translate indices; Generate schedulesPhase F : Executor Use schedules for data transportation;Perform computationFigure 6: Solving Irregular Problemscommunication schedule for moving data array elements from their original distribution to thenew distribution.C. Loop Iteration Partitioning : Phase C determines how loop iterations should be partitionedacross processors. There are a large number of possible schemes for assigning loop iterationsto processors based on optimizing load balance and communication volume. CHAOS uses thealmost-owner-computes rule to assign loop iterations to processors. Each iteration is assignedto the processor which owns a majority of data array elements accessed in that iteration. Thisheuristic is biased towards reducing communication costs.D. Remapping Loop Iterations : Phase D is similar to phase B. Indirection array elements areremapped to conform with the loop iteration partitioning. For example, in Figure 1, once loopL2 is partitioned, indirection array elements edge1(i) and edge2(i) used in iteration i are movedto the processor which executes that iteration.E. Inspector : Phase E carries out the preprocessing needed for communication optimizations andindex translation.F. Executor : Phase F uses information from the earlier phases to carry out computation andcommunication. Communication is carried out by CHAOS data transportation primitives whichuse communication schedules constructed in Phase E.Phase F is typically executed many times in real application codes, however, phases A through Eare executed only once if the data access patterns do not change. When programs change data accesspatterns but maintain good load balance, phases E and F are repeated. If programs require remappingof data arrays from the current distribution to a new distribution, all phases are executed again.7



A brief presentation of some important CHAOS features that are useful to parallelize irregularprograms is given in the following sections.3.2 Data Access Descriptors { Translation TablesWhen an array is irregularly distributed, a mechanism is needed to retrieve required elements of thatarray. CHAOS supports a translation mechanism using a data structure called the translation table.A translation table lists the home processor and the local address in the home processor's memory foreach element of the irregularly distributed array. In order to access an element A(m) of distributedarray A, a translation table lookup is necessary to �nd out the location of A(m).The data structure translation table has the following �elds:1. global size N,2. distribution type T,3. block size B,4. local size L,5. processor list ~p, and6. o�set list ~l.The �rst four �elds are used to represent regular distributions such as BLOCK and CYCLIC. These�elds are not enough to represent irregular distributions. Two additional �elds, processor list ando�set list, are used in this case. The processor list ~p gives the home processor of each array element;o�set list ~l gives the local addresses of the elements. A translation table lookup, which is aimed atcomputing the home processor and the o�set associated with a global distributed array index, is knownas a dereference request. Any preprocessing aimed at communication optimizations needs to performdereferencing, since it is required to determine where elements reside.Several considerations arise during the design of data structures for a translation table. Dependingon the speci�c parameters of the problem, there is usually a trade-o� involving storage requirements,table lookup latency and table update costs. Of these, table lookup costs are of primary considerationin adaptive problems, since preprocessing must be repeated frequently, and must be e�cient.The fastest table lookup is achieved by replicating the translation table in each processor's localmemory. This type of translation table is a replicated translation table. Clearly, the storage cost forthis type of translation table is O(NP ), where P is the number of processors and N is the arraysize. However, the dereference cost in each processor is constant and independent of the number ofprocessors involved in the computation. Note that, for the replicated translation table, the translationtable in each processor is identical. 8



Due to memory considerations, it is not always feasible to place a copy of the translation tableon each processor. The approach taken in these cases is to distribute the translation table betweenprocessors. This type of translation table is a distributed translation table. Earlier versions of PARTIsupported a translation table that was distributed between processors in a blocked fashion. This isaccomplished by distributing the translation table by blocks, i.e., putting the �rst N=P elements onthe �rst processor, the second N=P elements on the second processor, etc. When an element A(m) ofthe distributed array A is accessed, the home processor and local o�set are found in the portion of thedistributed translation table stored in processor b((m�1)=N)�Pc+1. Distributed translation tableshave the highest utilization of available distributed memory for a �xed-size irregularly-distributedarray. The dereference requests on the other hand, now may require a communication step, sincesome portions of the translation table may not be residing in the local memory. Similarly, table re-organization also requires interprocessor communication since each processor is authorized to modifyonly a limited portion of the translation table.Besides supporting replicated and distributed translation tables, CHAOS also supports an inter-mediate degree of replication with paged translation tables. In this scheme, the translation table isdivided into pages, and pages are distributed across processors. Processors that refer to a page fre-quently receive a copy of the page, making subsequent references local. A more detailed descriptionof this scheme is presented in Das et al. [5].Figure 7 depicts the three translation table structures of a graph partitioned over 2 processors.Only the processor list ~p and o�set list ~l are displayed. The numbers above arrays are the indexnumbers of nodes. Figure 7(a) shows an irregular distributed. Nodes 1, 2, and 5 are assigned toprocessor P0, and nodes 3, 4, and 6 to processor P1. The distributed translation table shown inFigure 7(b) assigns �rst three elements of the lists ~p and ~l on P0 and the last three to P1. Bycontrast, the replicated translation table replicates all the 6 elements of ~p and ~l on both processors,as shown in Figure 7c. Figure 7d illustrate the structure of a paged translation table with the pagesize of 2. Each processor owns two pages. The dashed page on P0 is copied from P1 as the result ofremote references of node 5 from P0 to P1.3.3 Data RedistributionFor e�ciency reasons, in scienti�c programs, distribution of data arrays may have to be changedbetween computational domains or phases. For instance, as computation progresses in an adaptiveproblem, the work load and distributed array access patterns may change based on the nature ofproblem. This change might result in a poor load balance among processors. Hence, data must beredistributed periodically to maintain balance.To obtain an irregular data distribution for an irregular concurrent problem, data arrays aredistributed in a known distribution, �A. Then, a heuristic method is applied to obtain an irregulardistribution �B . Once the new data distribution is obtained, all data arrays associated with distribution9
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l (d) PagedFigure 7: Translation Table�A must be transformed to distribution �B. Similarly, the loop iterations and the indirection arraysassociated with the loop must be remapped.To redistribute data and loop iterations, a runtime procedure called remap has been developed.This procedure takes as input the original and the new distribution in the form of translation tablesand returns a communication schedule. This schedule can be used to move data between initial andsubsequent distributions.3.4 Loop Iteration PartitioningOnce data arrays are partitioned, loop iterations must also be partitioned. Loop partitioning refers todetermining which processor will evaluate which expressions of the loop body. Loop partitioning canbe performed at several levels of granularity. At the �nest level, each operation may be individuallyassigned to a processor. At the coarsest level, a block of iterations may be assigned to a processor,without considering the data distribution and access patterns. Both approaches are expensive. In the�rst case, the amount of preprocessing overhead can be very high, and in the second case, commu-nication cost can be very high. The approach used by CHAOS represents a compromise. Each loopiteration is individually considered prior to processor assignment.10



To partition loop iterations, a set of runtime procedures has been developed. These procedurescompute, with the current known distribution of loop iterations, a list containing the home processorsof the distinct data references for each local iteration. Currently, the heuristic used for iterationpartitioning is the \almost owner computes" rule, in which an iteration is assigned to the processorwhich owns the majority of the elements participating in that particular iteration.Following the loop iteration distribution, the data references in each iteration must be remappedto conform with the new loop iteration distribution. An inspector phase is carried out to remap datareferences. A communication schedule is built in the inspector phase and it is used to gather the newdata references.3.5 Communication SchedulesAs described in Section 3.1, a communication schedule is used to fetch o�-processor elements into alocal bu�er and to scatter these elements back to their home processors after the computational phaseis over. Communication schedules determine the number of communication startups and the volumeof communication, so it is important to optimize them.The schedule for processor p stores the following information:1. send list { a list of arrays that speci�es the local elements of a processor p required by allprocessors,2. permutation list { an array that speci�es the data placement order of o�-processor elements inthe local bu�er of processor p,3. send size { an array that speci�es sizes of out-going messages of processor p to all processors,and4. fetch size { an array that speci�es sizes of in-coming messages of processor p from all processors.3.6 Data TransportationWhile communication schedules store data send/receive patterns, the CHAOS data transportationprocedures actually move data using these schedules. The procedure gather can be used to fetch acopy of o�-processor elements. The procedure scatter can be used to send o�-processor elements.4 Language SupportA wide range of languages, such as Vienna Fortran [4], pC++ [7], Fortran D [6] and HPF [10], providea rich set of directives that allow users to specify desired data decompositions. With these directives,compilers can partition loop iterations and generate the communication required to parallelize thecode. This research is presented in the Fortran D context. However, the same could be extended for11



S1 REAL A(N, N)S2 C$ DECOMPOSITION D(N, N)S3 C$ ALIGN A(I, J) with D(I, J)S4 C$ DISTRIBUTE D(*, BLOCK)Figure 8: Fortran D Data Distribution Speci�cationsother languages. The following discussion involves existing Fortran D language support and compilerperformance for irregular problems.Fortran D provides users with explicit control over data partitioning using DECOMPOSITION,ALIGN and DISTRIBUTE directives. In Fortran D a template, called a distribution, is declaredand used to characterize the signi�cant attributes of a distributed array. The distribution �xes thesize, dimension, and way in which the array is to be partitioned between processors. A distributionis produced using two declarations. The �rst declaration is DECOMPOSITION. Decomposition�xes the name, dimensionality and size of the distributed array template. The second declarationis DISTRIBUTE. DISTRIBUTE is an executable statement and speci�es how a template is to bemapped onto the processors. Fortran D provides the user with a choice of several regular distributions.In addition, a user can explicitly specify how a distribution is to be mapped onto the processors. Aspeci�c array is associated with a distribution using the Fortran D statement ALIGN.In the example shown in Figure 8, D is declared to be a two-dimensional decomposition of size N�N . Array A is then aligned with the decomposition D. Distributing decomposition D by (*,BLOCK)results in a column partition of arrays aligned with D. A detailed description of the language can befound in Fox, et al. [6]. The data distribution speci�cations are then treated as comment statementsin a sequential machine Fortran compiler. Hence, a program written with distribution speci�cationscan be compiled and executed on a sequential machine.4.1 Support for Irregular DistributionsFortran D supports irregular data distributions and dynamic data decomposition, i.e. changing thealignment or distribution of a decomposition at any point in the program. In Fortran D an irregularpartition of distributed array elements can be explicitly speci�ed. Figure 9 depicts an example of sucha Fortran D declaration. In statement S3 of Figure 9, two 1D decompositions, each of size N, arede�ned. In statement S4, decomposition reg is partitioned into equal sized blocks, with one blockassigned to each processor. In statement S5, array map is aligned with distribution reg. Array map willbe used to specify (in statement S7) how distribution irreg is to be partitioned between processors.An irregular distribution is speci�ed using an integer array; when map(i) is set equal to p, element i ofthe distribution irreg is assigned to processor p. A data partitioner can be invoked to set the valuesof the permutation array. Support for irregular distributions has been provided by Vienna Fortranalso [4]. 12



S1 REAL*8 x(N),y(N)S2 INTEGER map(N)S3 C$ DECOMPOSITION reg(N),irreg(N)S4 C$ DISTRIBUTE reg(block)S5 C$ ALIGN map with regS6 ... set values of map array using some mapping method ..S7 C$ DISTRIBUTE irreg(map)S8 C$ ALIGN x,y with irregFigure 9: Fortran D Irregular DistributionC Sweep over edges: Loop L2FORALL (i = 1: nedge)S1 REDUCE (SUM, y(edge1(i)), f(x(edge1(i)), x(edge2(i))))S2 REDUCE (SUM, y(edge2(i)), g(x(edge1(i)), x(edge2(i))))END FORALL Figure 10: Example Irregular Loop in Fortran D4.2 Computational Loop StructuresFigure 10 shows an irregular Fortran 90D FORALL loop that is equivalent to the sequential loopL2 in Figure 1. Loop L2 represents a sweep over the edges of an unstructured mesh. Since the meshis unstructured, an indirection array must be used to access the vertices during a loop over the edges.In loop L2, a sweep is carried out over the edges of the mesh and the reference pattern is speci�edby integer arrays edge1 and edge2. Loop L2 carries out reduction operations which are the onlytypes of dependency between di�erent iterations of the loop in which they may produce a value to beaccumulated (using an associative and commutative operation) in the same array element. Figure 3shows an example of an unstructured mesh over which such computations will be executed. Forexample, loop L2 represents a sweep over the edges of a mesh in which each mesh vertex is updatedusing the corresponding values of its neighbors (directly connected through edges). Each vertex of themesh is updated as many times as the number of neighboring vertices.The implementation of the FORALL construct in Fortran D follows copy-in-copy-out semantics;loop carried dependencies are not de�ned. In the present implementation, loop carried dependen-cies that arise due to reduction operations are allowed. The reduction operations are speci�ed in aFORALL construct using the Fortran D REDUCE construct. Reduction inside a FORALL constructis important for representing computations such as those found in sparse and unstructured problems.This representation also preserves explicit parallelism available in the underlying computations.13



4.3 Loop Iteration DistributionOnce data arrays are partitioned, computational work must also be partitioned. One convention is tocompute a program assignment statement S in the processor that owns the distributed array elementon S's left hand side. This convention is normally referred to as the owner computes rule. If the lefthand side of S references a replicated variable then the work is carried out in all processors. Onedrawback to the owner computes rule in sparse codes is that communication might be required withinloops, even in the absence of loop-carried dependencies. For example, consider the following loop:FORALL i = 1, NS1 x(ib(i)) = ......S2 y(ia(i)) = x(ib(i))END FORALLThis loop has a loop independent dependence between S1 and S2, but no loop carried dependencies. Ifwork is assigned using the owner computes rule, for iteration i, statement S1 would be computed on theowner of x(ib(i)), OWNER(x(ib(i))), while statement S2 would be computed on the owner of y(ia(i)),OWNER(y(ia(i))). The value of y(ib(i)) would have to be communicated whenever OWNER(x(ib(i)))6= OWNER(y(ia(i))).In Fortran D and Vienna Fortran, a user can specify on which processor to carry out a loop iterationusing the ON clause. For example, in Fortran D, a loop could be written asFORALL i = 1,N on HOME(x(i))S1 x(ib(i)) = ......S2 y(ia(i)) = x(ib(i))END FORALLThis means that iteration i must be computed on the processor on which x(i) resides, where thesizes of arrays ia and ib are equal to the number of iterations. A similar HPF directive EXECUTE-ON-HOME, proposed in the journal of development [9], provides such a capability.A method proposed by Ponnusamy et al. [13] employs a scheme that executes a loop iteration onthe processor that is the home of the largest number of distributed array references in that iteration.This is referred to as the almost owner computes rule.C$ EXECUTE (i) ON HOME(map(i))FORALL i = 1,NS1 x(ib(i)) = ...... 14



C Initially arrays are distributed in blocksC$ DECOMPOSITION reg(14026)C$ DISTRIBUTE reg(BLOCK)C$ ALIGN x, y, dx, dy WITH reg...S1 Obtain new distribution format (map) from the extrinsic partitionerC$ DISTRIBUTE reg (map)...C Calculate DX and DYC$ EXECUTE (i,*) ON HOME(reg(i))FORALL (i = 1: natom)FORALL (j = inblo(i): inblo(i+1) � 1)REDUCE (SUM, dx(jnb(j)), x(jnb(j)) � x(i))REDUCE (SUM, dy(jnb(j)), y(jnb(j)) � y(i))REDUCE (SUM, dx(i), x(i) � x(jnb(j)))REDUCE (SUM, dy(i), y(i) � y(jnb(j)))END FORALLEND FORALLFigure 11: Non-bonded Force Calculation Loop of CHARMMS2 y(ia(i)) = x(ib(i))END FORALLIn the above example, the proposed HPF directive EXECUTE-ON-HOME has been used to sup-port the almost owner computes rule. In this example, an iteration i is assigned to the processormap(i). A user-de�ned function determines the values of array map. This function assigns an iterationto the processor which owns the majority of the distributed array elements referenced in that iteration.Figure 11 depicts an irregular loop from CHARMM in Fortran 90D with the HPF EXECUTE-ON-HOME directive for partitioning loop iterations. The inner loop iterations are executed on processorswhich own reg(i), where reg is the decomposition to which arrays x, y, dx, and dy are aligned. Thearray inblo is replicated on all processors.4.4 Applications to HPFThus far, the runtime support for irregular problems has been presented in the context of theFortran D system, these methods can be used in HPF compilers as well.The current version of HPF does not support non-standard distributions. However, HPF canindirectly support such distributions by reordering array elements in ways that lead to reduced com-munication requirements. Applications scientists have frequently employed variants of this approachwhen porting irregular codes to parallel architectures [17]. A partitioner is �rst used to obtain a15
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P1(d) E�ect of Irregular Distributionvia RenumberingFigure 12: An Example of Renumbering Techniquemapping of array elements to processors. Array elements are then reordered so that elements mappedto a given processor are assigned to consecutive locations. When the same number of elements aremapped to each processor, and the number of processors evenly divides the array size, the bene�tsof an irregular distribution can immediately be obtained using a BLOCK distributed reordered array.The necessary preprocessing can be carried out in HPF by calling extrinsic procedures that invoke par-titioners to obtain array mappings along with extrinsic procedures that reorder data and indirectionarrays. The following example illustrates the reordering technique.Figure 12 depicts a simple graph, an irregular grid with 6 nodes and 7 edges, partitioned betweentwo processors. The graph can be described based on the simple Fortran D program shown in Figure 10.The graph is used to describe the ow of data between elements of arrays x and y; an edge betweennodes n1 and n2 means the value of x(n1) is accumulated to y(n2) and the value of x(n2) is accumulatedto y(n1).In the example shown in Figure 12, it is clear partitioning should occur to (1) allocate the samenumber of nodes to processors, and (2) minimize the number of cross-edges existing between proces-sors, i.e., minimize the number of edges for which both end-nodes do not lie on the same processor.Figure 12(a) shows the original graph. In Figure 12(b) the graph is partitioned in BLOCK formatbased on node numbers. Nodes 1, 2, and 3 are assigned to processor 0 and the rest to processor 1.The cross-edges in this distribution are (1, 5), (2, 5), (3, 6), and (3, 4). Figure 12(c) shows a better16



S1 INTERFACES2 EXTRINSIC(HPF LOCAL) SUBROUTINE binary dissection 2D(reorder, x, y, n)S3 REAL*8, DIMENSION(:), INTENT(IN) :: x, yS3 INTEGER INTENT(IN) :: nS4 INTEGER, DIMENSION(:), INTENT(OUT) :: reorderS7 END SUBROUTINE binary dissection 2DS8 END INTERFACEFigure 13: Interfacing an Extrinsic Partitioner Procedure!HPF$ TEMPLATE reg(N), reg1(M)!HPF$ DISTRIBUTE(BLOCK) ONTO P :: reg, reg1!HPF$ ALIGN WITH reg :: x, y, reorder!HPF$ ALIGN WITH reg1 :: edge1, edge2, temp...C use an extrinsic partitioner procedure to obtain reorder arrayCALL binary dissection 2D(reorder, x, y, n local)C use an extrinsic procedure to reorder data arraysCALL renumber data array(reorder, x, n local)CALL renumber data array(reorder, y, n local)C use an extrinsic procedure to renumber indirection arraysCALL renumber indirection array(reorder, edge1, n localedge)CALL renumber indirection array(reorder, edge2, n localedge)...C Sweep over edges: Loop L2FORALL(i=1:nedge) temp(i) = f(x(edge1(i)),x(edge2(i)))y = SUM SCATTER(temp, y, edge1)FORALL(i=1:nedge) temp(i) = g(x(edge1(i)),x(edge2(i)))y = SUM SCATTER(temp, y, edge2)Figure 14: Irregular Distribution and Loops in HPFdistribution of the same graph, with a smaller number of cross-edges. In this distribution, nodes 1, 2,and 5 are assigned to processor 0 and the rest to processor 1; there is only one cross-edge, edge (2, 3).This distribution results in an arbitrary assignment of nodes to processors, or irregular distribution ofnodes. The e�ect of this distribution can be obtained by assigning new indices to the nodes so thatcontiguously numbered nodes are assigned to each processor. When this renumbering is carried out,the graph depicted in Figure 12(c) is transformed to the graph shown in Figure 12(d). Figure 12(c)and 12(d) depict identical graph partitions; the two �gures label nodes (and consequently edges) withdi�erent numbers. Thus, in Figure 12(d), the cross-edge is edge (2, 4). Note that Figure 12(c) corre-sponds to an irregular distribution in a data parallel language, whereas Figure 12(d) corresponds to aBLOCK distribution.A non-HPF procedure can be interfaced with HPF programs using the EXTRINSIC directive, as17



shown in Figure 13. In statement S2, the interface from HPF to a partitioner binary dissection 2Dis speci�ed. The directive HPF LOCAL indicates that the procedure binary dissection 2D has beenwritten in local HPF style. This particular procedure uses information provided in arrays x and y andwrites the result of the partitioning to the permutation array reorder. The statements S3 and S4specify the input (x and y) and output (reorder) parameters.Figure 14 illustrates the reordering technique expressed in HPF. To begin, arrays x, y, and reorderare distributed by BLOCK. Next, an extrinsic partitioner procedure is called to determine the valuesof array reorder. An extrinsic procedure, renumber data array, is invoked to reorder data arrays xand y based on the values of array reorder. After the reordering is completed, the ith element of xarray is moved to the position reorder(i) and another extrinsic function renumber indirection arrayis called to update arrays edge1 and edge2 so that values of these arrays reect the new positions ofarray elements of x and y, i.e., the value of edge1(i) is modi�ed to reorder(edge1(i)).The current version of HPF does not support the REDUCE construct that is provided by Fortran D.However, the functionality of the type of irregular loop shown in Figure 1 can be expressed in HPF withthe help of intrinsic procedures. Figure 14 depicts a method of expressing the irregular loop L2 in HPF.Here, the HPF intrinsic function SUM SCATTER is used to express an array combining operation.A statement in a sequential irregular loop, which has indirectly accessed arrays on both right and lefthand sides of the statement, can be written in HPF as two separate phases: (1) a FORALL loop tocarry out the computation in the right hand side and store the values to a temporary array temp, and(2) an intrinsic function SUM SCATTER to scatter and combine the elements of array temp to arrayy. Although Figure 14 shows that the irregular loop in Figure 1 can be expressed in HPF, additionalpreprocessing operations must be performed. The reordering technique has to be used because HPFdoes not support irregular distribution. The temporary array temp has to be introduced for FORALLstatements because HPF does not provide the REDUCE construct. Both features, irregular distribu-tions and REDUCE constructs supported by Fortran D, provide users with proper facilities to specifyappropriate distributions for applications and to express the reduction operations for irregular loops.The preceeding discussion assumes that (1) the number of array elements can be evenly dividedby the number of processors and (2) the same number of elements are assigned to each processor.In many cases it may be advantageous to assign di�erent numbers of data elements to processors inorder to balance the workload. To accomplish this, �rst the user declares the original array as anoversized array (in BLOCK distribution); next, a partitioner is called to reassign the array elementsto processors such that no more than a given number of elements are assigned to any processor.Assume that a one-dimensional array A has N�P elements, where N is the number of elements oneach processor and P is the number of processors. The user decides that no more than M (M > N)array elements may be assigned to any processor.1. The user declares A as a M � P BLOCK distributed array. Originally, only the �rst N � Pelements of A will be initialized with meaningful values, and the last (M �N)� P elements of18
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21 3 4 5 6 7 8 9 10(c) Reordered Array(reorder=(6 1 7 8 2)(9 10 3))Figure 15: An Example of Array Padding and ReorderingA are unused storage.2. The user then employs a partitioner that is constrained to assign no more than M elements toeach processor, where M > N . The partitioner returns a reordering array reorder which mapsA(i) to A(reorder(i)), 1 � i � N�P . In order to assign a A(i) to processor p, where 0 � p < P ,the partitioner de�nes reorder(i) as M � (p� 1) < reorder(i) �M � p.The reordering array reorder can then be used to reorder the elements of A. Once the reordering iscomplete, the reordered array A will still have (M �N)�P elements that will not contain meaningfulvalues; these ghost elements will now be scattered throughout the array.Figure 15 presents an example of array reordering. An array with 8 meaningful elements, Fig-ure 15(a), is declared as a 10 element BLOCK array, as shown in Figure 15(b). Figure 15(c) depictsthe result of carrying out a reordering based on the reorder array returned by a partitioner. The ithelement of A is moved to position reorder(i), e.g., when reorder(1) = 6, A(1) in Figure 15(b) is movedto A(6) in Figure 15(c). Notice that there are two ghost elements (in dashed lines) at the middle ofthe reordered array.5 Compiler Support and Experimental ResultsThis section presents the compiler transformations used to handle irregular templates that appear inthe molecular dynamics code, CHARMM [3], and uid dynamics code, EUL3D [11]. Runtime supporthas been incorporated in the Fortran 90D compiler being developed at Syracuse University [2]. The19



Table 1: E�ect of Data Distribution { Hand-Coded { 32 Processors(Time Coordinate Bisection Block Partitionin Secs) 53K Mesh 14K Atoms 53K Mesh 14K AtomsPartitioner 2.4 0.7 0.0 0.0Remap 2.6 2.5 1.6 0.0Inspector 0.9 0.7 0.5 1.4Executor 14.1 93.5 34.6 187.9Total 20.0 97.4 36.7 189.3Table 2: Performance for Block Distribution { EUL3D LoopHand CompilerTasks 10K Mesh 53k Mesh 10K Mesh 53k Mesh(Time in Procs Procs Procs ProcsSecs) 8 16 32 64 8 16 32 64Partitioner 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0Remap 0.9 0.4 1.6 1.0 0.9 0.5 1.6 1.0Inspector 0.2 0.2 0.5 0.3 0.2 0.2 0.5 0.3Executor 14.8 10.2 34.6 26.9 15.4 10.5 36.0 27.5Total 15.9 10.8 36.7 28.2 16.5 11.2 38.1 28.8Fortran 90D compiler transforms programs and embeds CHAOS procedures in the translated codes.Performance of the compiler generated codes is compared with that of hand parallelized codes, inwhich appropriate CHAOS procedures are inserted by hand. All measurements were done on the InteliPSC/860 machine. Initially, data arrays are in BLOCK distribution.5.1 E�ect of Irregular DistributionA geometry based partitioner, recursive coordinate bisection (RCB) [1], was used to obtain anirregular data distribution. Performance results obtained using other kinds of partitioners are reportedelsewhere [13].The e�ect of irregular distribution is shown in Table 1. The table shows the performance of handparallelized versions of the EUL3D template and the CHARMM template with irregular distributionand BLOCK distribution. Partitioner in the table represents the time needed to partition the arrays.Executor depicts the time needed to carry out the actual computation and communication for 100iterations (time steps), and Inspector shows the time taken to build the communication schedule;Remap depicts the time taken to partition loop iterations and redistribute data. From the table, itcan be seen that irregular distribution of arrays performs signi�cantly better than the existing BLOCKdistribution supported by HPF. 20



Table 3: Performance for Coordinate Bisection { EUL3D LoopHand CompilerTasks 10K Mesh 53k Mesh 10K Mesh 53k Mesh(Time in Procs Procs Procs ProcsSecs) 8 16 32 64 8 16 32 64Partitioner 0.3 0.4 2.4 2.0 0.3 0.4 2.5 2.0Remap 1.1 0.6 2.6 1.6 1.2 0.8 2.6 1.7Inspector 0.4 0.2 0.9 0.5 0.4 0.2 0.9 0.5Executor 6.3 4.6 14.1 10.3 6.7 4.7 15.6 11.4Total 8.1 5.8 20.0 14.4 8.6 6.1 21.6 15.65.2 Compiler PerformancePerformance results that compare the costs incurred by the compiler-generated mapper coupler pro-cedures with the costs of a hand embedded partitioner are presented.Tables 2 and 3 present performance results of the Euler loop for both hand-coded and compiler-parallelized versions for various input mesh sizes. Table 2 presents performance for using BLOCKdistribution, while Table 3 presents performance for using an irregular distribution obtained usingthe RCB partitioner. In the BLOCK version, each contiguous block of array elements is assignedto processors. Two important observations can be made from Tables 2 and 3. First, the compiler-generated code performs almost as well as the hand written code. In fact, the compiler generatedcode is within 15% of the hand coded version. The hand coded version performs better because thecompiler generated code has to perform bookkeeping for the possibility of communication schedulereuse. Secondly, the use of a coordinate bisection partitioner leads to an improvement in the executortime by a factor of two compared to the use of block partitioning. The performance of the code withthe irregular distribution is signi�cantly better than the performance of the block partitioned codeeven when the cost of executing the partitioner is included.5.3 Irregular Distribution via ReorderingThis subsection presents performance results for the Euler solver template in Figure 14, in which thee�ect of irregular distributions are achieved by reordering array elements (Section 4.4). Recall thatdata arrays in the Euler solver code are accessed via integer indirection arrays. Initially, data arraysare BLOCK distributed. A coordinate partitioner is called and the result of partitioning is used toreorder data array elements. A procedure is then called to reorder indirection array values to matchnew data array element numbers. Note that this process does not involve redistributing data arrays.Table 4 depicts performance results for the hand-parallelized version of the Euler solver template.The template is parallelized using CHAOS primitives and extrinsic HPF reordering library functions,binary dissection 2D, renumber data array and renumber indirection array. All HPF extrinsic func-21



tions call CHAOS runtime support procedures to perform partitioning and reordering operations anda CHAOS primitive scatter add is used to execute the intrinsic function SUM SCATTER. The pro-gram shown in Figure 14 could be transformed by an HPF compiler by embedding calls to CHAOSprimitives and extrinsic HPF reordering library functions. Since both the compiler-transformed codeand the hand-parallelized version of the Euler solver template use the same set of CHAOS primitivesand extrinsic HPF reordering library functions, the performance of the hand-parallelized code canprovide a rough estimate of the performance that could be obtained by the code generated using anHPF compiler.As shown in Figure 14, irregular loops are expressed as two-phase computations in HPF whenindirectly accessed arrays appear on both left and right hand sides of statements. The two-phasecomputations result in two communication phases. Hence, two sets of communication schedules aregenerated. However, it seems plausible that the loop fusion [19] technique and sophisticated dataow analysis could be used by an HPF compiler to generate e�cient code by combining the twocomputation phases as well as the two communication phases.Table 4: Performance of Renumbering - Mesh Template - 53K MeshNaive Optimized(Time in processors processorsSecs) 32 64 32 64Partitioner 2.6 2.1 2.6 2.1Renumber 0.7 0.5 0.7 0.5Inspector 0.6 0.3 0.3 0.1Remap 1.4 0.9 1.5 0.9Executor 16.9 12.5 14.1 10.3Total 22.2 16.3 19.2 14.0In Table 4, Partitioner depicts the time required 1) to partition data arrays using a coordinatebisection partitioner and 2) to remap data based on the result of partitioning; Renumber depicts thetime taken to renumber indirection arrays; Remap depicts time taken to partition loop iterationsand redistribute indirection arrays; Inspector shows the time to compute communication schedules;Executor is the time taken to carry out the actual computation and communication. In the optimizedversion of the code, both computation and communication phases are executed in a single phase. Incomparing the results for the optimized case presented in Table 4 with those of the hand-coded versionfor the coordinate bisection partitioner presented in Table 3, note that while the executor costs are thesame, the pre-processing cost is slightly lower for the reordering technique. This di�erence is due tothe face that the deference overhead of the optimized version is smaller since the deference operationis carried out with the new (BLOCK) data distributions.22



6 ConclusionsThis paper has presented methods that make it possible to e�ciently support an important subclassof irregular problems using data parallel languages. The approach involved the use of a portable,compiler-independent, runtime support library called CHAOS. The CHAOS runtime support librarycontains procedures that� support static and dynamic distributed array partitioning,� partition loop iterations and indirection arrays,� remap arrays from one distribution to another, and� carry out index translation, bu�er allocation and communication schedule generation.The CHAOS runtime procedures are used by a Fortran 90D compiler to handle irregular distri-butions. Performance results of compiler-generated and hand-parallelized versions of an unstructuredmesh computational uid dynamics template and a molecular dynamics template were presented. Theperformance of the compiler-generated code is within 15% of that of the hand coded version.A reordering method was described that makes it possible to support irregular distributions in HPF.Irregular distributions can be emulated in HPF by reordering elements of data arrays and renumberingindirection arrays. An irregular computational kernel was parallelized using CHAOS routines alongwith reordering and renumbering procedures. The results suggest that an HPF compiler could usereordering and renumbering extrinsic functions to obtain performance comparable to that achieved bya compiler for a language (such as Fortran 90D) that directly supports irregular distributions. Thisexample kernel also served to illustrate that reordering is no panacea. In order to use the reorderingmethod, users are forced to make numerous calls to extrinsic library functions.AcknowledgementsThe authors thank Charles Koelbel for providing many insights into the applicability of HPF intrinsicsand extrinsics for irregular problems; also Ken Kennedy, Seema Hiranandani and Sanjay Ranka formany useful discussions about integrating Fortran D runtime support for irregular problems.The authors gratefully acknowledge Zeki Bozkus and Tom Haupt for the time they spent explainingthe internals of the Fortran 90D compiler. The authors thank Robert Martino and DCRT for thegeneral support and the use of NIH iPSC/860.The authors thank Jim Humphries for his wonderful �gures and Donna Meisel for proofreadingthis manuscript.References[1] M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors. IEEETrans. on Computers, C-36(5):570{580, May 1987.23
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