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ABSTRACT

This thesis focuses on a quantification of reputation and presents models which com-

pute reputation within networked environments. Reputation manifests past behaviors of

users and helps others to predict behaviors of users and therefore reduce risks in future

interactions. There are two approaches in computing reputation on networks- namely, the

macro-level approach and the micro-level approach. A macro-level assumes that there ex-

ists a computing entity outside of a given network who can observe the entire network

including degree distributions and relationships among nodes. In a micro-level approach,

the entity is one of the nodes in a network and therefore can only observe the informa-

tion local to itself, such as its own neighbors behaviors. In particular, we study reputation

computation algorithms in online distributed environments such as social networks and

develop reputation computation algorithms to address limitations of existing models. We

analyze and discuss some properties of reputation values of a large number of agents includ-

ing power-law distribution and their diffusion property. Computing reputation of another

within a network requires knowledge of degrees of its neighbors. We develop an algorithm

for estimating degrees of each neighbor. The algorithm considers observations associated

with neighbors as a Bernoulli trial and repeatedly estimate degrees of neighbors as a new

observation occurs. We experimentally show that the algorithm can compute the degrees

of neighbors more accurately than a simple counting of observations. Finally, we design

a bayesian reputation game where reputation is used as payoffs. The game theoretic view

of reputation computation reflects another level of reality in which all agents are rational

in sharing reputation information of others. An interesting behavior of agents within such

a game theoretic environment is that cooperation- i.e., sharing true reputation information-

emerges without an explicit punishment mechanism nor a direct reward mechanisms.
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1

CHAPTER 1

INTRODUCTION

Reputation management plays an important role in online communities that include e-

commerce web sites, such as e-bay and amazon.com, peer-to-peer computing environ-

ments [1], and online social networks [2]. Existing reputation management schemes often

require users to explicitly rate each other to compute reputations. For example, the simplest

way of computing reputation is to average all the ratings a user receives from other users

as in amazon.com’s 5-star rating system. However, in general, these rating systems have

the following weaknesses: (1) systems cannot force users to rate each other, and (2) con-

sequently, not all user interactions contribute to ratings, resulting inaccurate calculation of

reputation. In this thesis, we show that it is possible to compute reputations of users by an-

alyzing their reference behaviors in a social network that is built by extracting key contents

of documents. Our method can extract reputation based on users’ interactions manifested

in the constructed social network.

Reputation management can also be useful in rating documents in their importance. In

processing a large amount of unstructured data such as web documents and emails, iden-

tifying author’s reputation can help in extracting important information. For example, an

automatic document summarization technique can extract key phrases and return a short-

ened vesion of the original text. Before automatically summarizing documents, one could
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filter out less important documents with the additional aid of author reputation. Visualiza-

tion is another example of presenting textual data in a schematically abstracted graphical

form [3]. When visualizing a network of relationships among texts in a graphical form, one

could associate quantitative measures of reputation with nodes and edges of the graph.

Accurate reputation information about nodes in social networks improves services pro-

vided by the networks. For example, reputations can be calculated and updated for web

sites and servers to identify malicious nodes and connections. The ability to observe and

analyze propagations of reputations within a large social network structures is also impor-

tant.

All our presented algorithms in this thesis take a micro-level approach and we use the

terms distributed approach and node-centric approach interchangeably.

In Chapter 2, we present some of the existing reputation computation models of our

interest.

In Chapter 3, we develop two automatic reputation computation schemes using knowl-

edge extraction from unstructured emails through constructing a social network of authors.

The first algorithm computes reputation only considering direct reference behaviors of au-

thors. The second algorithm goes one step further and incorporates indirect references in

the computation. The social network based algorithms are also tested on classification of

emails.

In Chapter 4, we present a new reputation management model that is suitable to repre-

sent the emergence and propagation of reputations within social network structures. The

algorithm considers frequencies and velocities of interactions online. Also, through the ex-

periments, we show that how reputations emerge and propagate in random social networks

and how the model captures the idea of dynamic reputation propagations from one part of

the network to another. We also show experiments on real Autonomous Systems Networks

(ASN) of the Internet for identifying malicious ASN nodes through our model. We com-

pare our results with an existing reputation values computed by another well accepted ASN
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reputation management system. The results show that our algorithm computes similar rep-

utation values as the values provided by the existing algorithm. However, we show that our

algorithm is better suited to find many malicious ASN nodes while the compared method

is good for finding the worst malicious node only.

In Chapter 5, we develop a distributed algorithm that estimates degrees of neighbors as

degrees of nodes in social networks are important information when computing reputations

of users. Since the degree information of nodes is not public in most cases, we present the

degree estimation algorithm based on Beta distributions.

In Chapter 6, we formulate a bayesian game where reputation is part of payoffs and the

types of players are decided by their reputation and degree values. Through this game, we

can predict the outcomes of interactions among players when reputation and degree values

are applied. We show that cooperation among players emerges as the game is repeated.

1.1 Contributions

We present main contributions of this thesis.

• We develop algorithms to automatically compute author reputation from unstructured

data.

• We develop a distributed reputation computation model, ReMSA.

• We design a node-centric algorithm to estimate degrees of neighboring nodes.

• We design a bayesian reputation game that models cooperative behaviors of selfish

players.
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CHAPTER 2

REPUTATION COMPUTATION MODELS

Online communities, such as social networks, electronic markets and distributed peer-to-

peer systems, bring together people who may not know each other in the physical world.

Since they have limited information about each other, there is a need for quantifications of

trustworthiness. To overcome this uncertainty, reputation mechanisms are widely adopted

for trust management in online environments. Reputation management systems are em-

ployed in many different applications to help predict the future behaviors of online entities

based on their past activities.

The most general structure for computing reputation is combining the direct experi-

ences with a subject and information received from others. Often the direct experiences

are weighted by a time decaying factor and the third-party information is weighted by the

credibility of the source. Evaluating the direct experiences is the essential and application

specific part of reputation computations. Different reputation systems have various ways of

evaluating interactions between agents and combining all the components to produce rep-

utation values. In this Chapter, we study how some of popular reputation systems compute

reputations.

In computing reputations, there are centralized, also referred to as macro-level, and

distributed, also referred to as micro-level, approaches. Centralized reputation computa-
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(a) (b)

Fig. 2.1: Classification of reputation computation models.

tion models are often used in commercial applications, such as eBay and Amazon, where

centralized authorities are explicit, but such approaches fail in environments that lack a

central authority. In networks such as the Internet, social networks and other multi-agent

environments, a distributed reputation algorithm is naturally more suitable. Previously,

several distributed reputation algorithms including AFRAS [4] and HISTOS [5] have been

presented. However, these two algorithms do not consider frequencies and velocity of in-

teractions. Velocity of interactions measures the second order information of frequency,

i.e., the rate of changes in frequency. These algorithms also lack the consideration of topo-

logical information of the networks and the subjectivity of reputations. (i.e., two different

nodes may perceive the reputation of a node differently.)

2.1 SPORAS and HISTOS

SPORAS is a reputation mechanism for loosely connected communities and HISTOS is

a reputation mechanism for highly connected communities, introduced by Zacharia [5].

SPORAS computes a global reputation values for each user in the community based on

ratings from users. Unlike SPORAS, HISTOS computes reputations of users based on who

makes the query, and how the person rated other users. Therefore, a path has to exist from

the person who requested reputation value and the other person whose reputation value is
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in question. If there doesn’t exist a path, it falls back to SPORAS. Each user starts with

a minimum reputation in SPORAS and therefore the reputation value of a user never falls

below the reputation of a new user. In our algorithm, introduced in Chapter 4, reputation

values of new users start from the neutral value, zero, where reputation values range from

-1 to 1. This initial setting of starting from the minimum reputation value could influence

new users behaviors as it gives an incentive to create ill intentions.

HISTOS computes personalized reputation values depending on who makes the query

and how the person rated neighbors. For example, if a person A wants to know B’s reputa-

tion value, first, A finds all directed paths connecting A to B. Then A recursively aggregates

the reputation value of the person multiplied by the rating he gave to the target. This pro-

cess can only be done when A knows all the ratings of the users connecting to B in the

path. Since HISTOS is designed to be applied to electronic commerce systems, it assumes

the ratings and reputation values of users are visible to everyone. It also assumes that the

network structure is known to public since one has to find the shortest paths to compute

the reputation value of the target. Our algorithm aims to compute completely distributed

reputation values and does not make any of the assumptions made in SPORAS and HISTOS.

2.2 AFRAS

AFRAS is a multi agent system devoted to manage reputation using fuzzy logic [4]. The

fuzzy value consists of four squares that define a trapezium. Each square represent human-

like attributes which are susceptibility, sociability, shyness and remembrance. The remem-

brance value is updated after each interaction according to the success of the last prediction

of reputation. In our case, remembrance is represented with a time decaying factor which

balances the weights of the previous reputation value and the current feedbacks. We also

consider, in our algorithm, the rate of interactions to emphasize frequently occurring inter-

actions.
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2.3 FR TRUST

FR TRUST is a fuzzy reputation computation model for semantic P2P Grids [6]. The model

is specifically targeted for semantic P2P environments where nodes are clustered based on

their semantic similarities. On a P2P grid system, there are virtual organizations to which

nodes belong and each virtual organization is represented by a special node called group

coordinator. After nodes in a virtual organization have some interactions with a peer in

question, they report their own evaluations about the peer to the group coordinator which

decides if the peer is malicious based on a threshold. The model is centralized in a way that

there is some authorities who collect reputation scores, but it is also distributed in a sense

that each node act as judges for the peer and report individual scores to the super node.

There is also a special agent called trust agent who is responsible for storing reputation

scores and computing global reputation value for nodes. However, this model can only

be utilized in a confined architecture where group coordinators and trust agents exist. Our

approach aims more general environments with no explicit topological restrictions.

2.4 TAUCA

TAUCA is an anomaly detection scheme for feedback-based reputation systems [7]. TAUCA

is not a reputation computation model itself but it helps reputation systems to identify ma-

licious users who try to manipulate the systems by submitting false reviews and recover

reputation scores. TAUCA first uses a change detector to detect suspicious time intervals in

which attack may be present. Then, the suspicious group of users are identified by calcu-

lating Euclidean distance of ratings given by each pair of users. Finally, TAUCA removes

ratings from malicious users from the system. We assumed ratings given by users in the

system are truthful in Chapter 4, but we relax the assumption and discuss the behaviors of

users when there are dishonest users in Chapter 6. We show that truthful cooperations are

sustained without explicit detection schemes if all users are rational and future concerned.
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2.5 Terminologies: ratings, evaluation, and opinions

In Chapter 3 and 4, we introduce a macro-level and a micro-level reputation computation

models and their applications, respectively. Usually, in macro-level approaches, ratings

are the values given explicitly to each other or to systems which are used to compute repu-

tations of users. However, in micro-level approaches, there is no explicit ratings given to

assess the quality of interactions. Instead, we use a term evaluation since the assessment

value is not shared or given to other users. To supplement subjective, therefore biased,

nature of evaluation, we introduce a recursive voting mechanism in Chapter 4 to collect

opinions of other users when reputation values are computed. Opinions are the computed

reputation values from other users that are explicitly given to a user per request. In sum-

mary, in macro-level models, ratings are aggregated to compute reputation of a user,

while in micro-level models users compute reputation as a weighted sum of evaluation

and opinions from other users. Therefore, reputation becomes a global knowledge in

macro-level approaches whereas reputation values are private values of users who com-

puted them in micro-level approaches.
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CHAPTER 3

AUTOMATIC REPUTATION

COMPUTATION THROUGH DOCUMENT

ANALYSIS

In this Chapter, we introduce two social network based algorithms and automatically com-

pute author reputation from a collection of textual documents. To compute reputations of

authors without explicit ratings from each other, we extract keyword reference behaviors of

the authors to construct a social network, which represents relationships among the authors

in terms of information reference behavior. With this network, we apply the two algo-

rithms: the first computes each author’s reputation value considering only direct reference

and the second utilizes indirect reference recursively. We compare the reputation values

computed by the two algorithms and reputation ratings given by a human domain expert.

We further evaluate the algorithms in email categorization tasks by comparing them with

machine learning techniques. Finally, we analyze the social network through a commu-

nity detection algorithm and other analysis techniques. We observed several interesting

phenomena including the network being scale-free and having a negative assortativity [8].
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3.1 Document classification

Separator!

MIME Reader!
(remove headers)!

UIMA!
(tag entities)!

Algorithms!
(Compute reputation)!

Gephi!
(Community detection)!

Email 

Individual emails 

Pure emails (without headers) 

Tagged emails 

Social network 

Fig. 3.1: Original data is one long text file containing many emails. We separate emails
using a separator program to individual files. We remove unwanted information from in-
dividual emails using simple MIME Reader to get Non-MIME formatted emails. These
emails are further processed by UIMA to get tagged emails for the social network algo-
rithms. We build a social network of authors based on their reference behavior and use
Gephi to visualize the network information.

We utilize a collection of emails to construct social network and compute reputation.

The emails are from three mailing lists which specialize in security issues and collected

for over a month period with a total of 2, 415 individual emails. In order to construct a

network to compute reputation of authors, we preprocess the emails. Figure 3.1 shows

the main steps of preprocessing. First, we start with a very long text file containing a

series of raw emails. Then we separate the file into individual emails, one file per email,

using our separator program, written in Java. These individual emails are one of the two

inputs to the reputation computation algorithm. Next, we remove the header and signature

information from emails using a MIME (Multipurpose Internet Mail Extensions) reader to
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Fig. 3.2: An example of a tagged email using UIMA; this figure shows two DOMAIN tags
and an IP tag.

eliminate noise. We then use UIMA (Unstructured Information Management Architecture)

to tag entities such as IP, URL and DOMAIN in the emails. Figure 3.2 shows one of the

tagged email by UIMA. 1 UIMA is an open source architecture that analyses unstructured

documents, video and audio. We wrote a UIMA descriptor that identifies IP, URL and

DOMAIN as well as email addresses of authors. We then convert the UIMA annotated

outputs into tagged emails. We construct a social network of authors using both individual

tagged emails and emails with headers. The purpose of emails with headers is to extract

dates and time of the emails to extract reference behaviors among authors.

3.2 Constructing Social Networks and Computing Rep-

utations

We introduce how we build a social network of authors from the email data. We also

discuss two reputation computation algorithms.
1Details of the email are deleted for confidentiality.
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3.2.1 Building a network

An author reputation social network is a weighted digraph where vertices represent authors

and weighted edges represent reference behaviors. The weighted edges are computed as

described in Section 3.2.2 and 3.2.3. Such a network is built from a time-stamped collection

of documents. Next, in order to present the network building algorithms we define several

convenient functions. Following these definitions we give an example of applying the

functions to a set of documents (emails).

In the application at hand, where we build a network from a collection of email text

files, a document is an email, where we assume for each document d that a single author,

denoted by author(d), and a single time stamp, which we represent by a real number and

denote by time(d), is extractible from each email. Define a function authors that maps sets

of documents to sets of authors by

authors(D) =

[

d2D

{author(d)}.

Also, where D is a set of documents, let

times(D) =

[

d2D

{time(d)}.

Assume that each document contains one or more entities, the nature of which may be left

as a parameter to be instantiated later. We also assume that the set of entities, entity(d)

contained in a document d is extractable from d. Again, where D is a set of documents, let

entities(D) =

[

d2D

entity(d).

Note that in the above definitions, author(d) and time(d) are not sets, whereas entity(d) is a

set.

While a document d uniquely determines a time t and an author a, the converse deter-
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mination, a time/author pair (t,a) uniquely determines a document, is also true, assuming

an author can generate only one document at a time (although the time stamps associated

with any particular author may be in rapid succession.) Therefore, a document is a partial

function of a time/author pair. (The function is partial because an author a may not have

generated a document at a particular time t). We will, in the sequel, regard time/author

pairs (t, a) as documents. Think of (t, a) as the undefined document, if there is no document

in the set D of documents input to our algorithms with both time stamp t and author a.

Figure 3.3 shows three email headers extracted from the real separated email docu-

ments:

Fig. 3.3: Extracted email headers.

From the previous email headers, we can extract:

authors(D) = {owner@xxx.net}
[

{owner@yyy.net}
[

{owner@xxx.net}

= {owner@yyy.net, owner@xxx.net}
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times(D) = {"Wed Mar 09 18:20:18 GMT 2011", }

"Tue Mar 08 20:34:22 GMT 2011",

"Fri Mar 04 23:14:00 GMT 2011"}

Therefore, we get six pairs of (t, a), three (in italic) of which correspond to undefined

documents:

(Wed Mar 09 18:20:18 GMT 2011, owner@xxx.net),

(Fri Mar 04 23:14:00 GMT 2011, owner@xxx.net),

(Tue Mar 08 20:34:22 GMT 2011, owner@yyy.net),

(Tue Mar 08 20:34:22 GMT 2011, owner@xxx.net),

(Wed Mar 09 18:20:18 GMT 2011, owner@yyy.net),

(Fri Mar 04 23:14:00 GMT 2011, owner@yyy.net).

A document uniquely determines an author and time but the reverse doesn’t hold. We

consider authors as nodes when constructing the network later on, so the reverse need not

hold (we don’t need to know which documents entities come from as long as they belong

to the same author).

Algorithm 1 takes as input a finite sequence of 4-tuples, each of which is a well-formed

Information entity. An Information entity is a 4-tuple (e, t, a, b), where e is an entity, t is

a time, a is an author and b is a boolean. (e, t, a, b) is well-formed iff (t, a) is a defined

document, e 2 entity(d) and b = initial(t, a) where

initial(t, a) =

8
><

>:

false, if (t, a) is a reply/forward

true, otherwise

Pseudo code for the network building algorithm is given in Algorithm 1. Again, the

input to the algorithm is a finite sequence of information entities, I, and the output is the

social network (Once entities are extracted, we need not know which documents they are
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coming from since information entities have all the information we need.).

Algorithm 1 Build Social Network(I)
for each element (ei, ti, ai, bi) in I do
a the first author who mentioned ei
if a = ai then

{self–referencing, next element in I}
break

end if
if bi =FALSE then

{ei is in a reply or forward document}
make a connection from ai to a with weight 1

end if
if bi =TRUE then

{ei is in an original document}
make a bidirectional connection between ai and a with weight 2

end if
end for

An example of an instance of a sequence of three Information entities is given below.

The example extracts entities from the email shown in Figure 3.2. The email has 3 entities;

mypremierfutbol.com, todaysfutbol.com and XXX.YY.ZZZ.220. The timestamps, author and

boolean value for all three are the same since they belong to the same email.

(mypremierfutbol.com, 22 Jul 2010 13:52:08, s@X.com, FALSE)

(todaysfutbol.com, 22 Jul 2010 13:52:08, s@X.com, FALSE)

(XXX.YY.ZZZ.220, 22 Jul 2010 13:52:08, s@X.com, FALSE)

When multiple authors have a common entity in any of their emails, a directed edge

exists to the source author, whose email precedes others in terms of the time sent, from a

destination author whose email has the same entity with the source email. More specifi-

cally, as shown in Figure 3.4, when more than one author has a common entity, e1, and if

it is the case where author a1 mentioned the entity e1 and author a2 also mentioned e1 as

a reply or forward, a1 gets an incoming edge from a2 with weight 1. Otherwise, if e1 was

mentioned by another author a3 not as a reply or forward, a1 will get another incoming edge

from a3 with weight 2 and a3 will also get an incoming edge from a1 with weight 2. Au-
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thors mentioning common entities supports the fact that those entities are hot issues and the

author who brought the issue first gets the credit. We only give a positive weight to directed

edges because regardless of the context, either positive or negative, authors mentioning a

common entity increases the popularity of the entity. The rationale for independent refer-

ence getting twice the weight is that since all the authors involved in independent reference

are originals, their importance is identified as originators, unlike the authors of replies and

forwarded messages. These weights are the basis for computing reputations of authors in

algorithms described in 3.2.2 and 3.2.3.

Fig. 3.4: A social network of three authors; a1, a2, and a3. All three of the authors mention
the same entity, e1. a2 references a1 as a reply or forward while a1 and a3 reference each
other independently.

We have developed two algorithms to calculate the reputation of each author; one uses

only direct references and the other uses indirect references as well. Both algorithms run

on the network built from the previous algorithm.

3.2.2 A Sporas-based algorithm (Direct reference)

The first algorithm we propose is based on Sporas, a reputation mechanism for loosely

connected online communities [5]. Sporas updates user’s reputation (R) upon each rating

given by another user. Ratings given by users with high reputation are weighted more.

Since our application does not assume a centralized environment where the system can ask

users to rate each other whenever they have interactions, we adopted reference behaviors
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as a way of giving ratings to other users. Therefore, from the social network we built, a

node, which represents an author, has a reputation based on incoming edges it gets.

The reputation value for each author is computed as follows:

Rt+1 =
1

✓

tX

i=1

�(Ri)⇥Rother
i+1 ⇥

Wi+1

2

�(R) = 1� 1

1 + e
�(R�D)

�

where,

t is the number of references the author has received so far,

✓ is a constant integer greater than 1,

W i represents the rating given by the user at time i,

Rother is reputation of the author who is referencing R,

D is the range of the reputation values,

� is the acceleration factor of the damping function �.

The smaller the value of �, the steeper the damping factor �(R).

For experiments, we used ✓ = 3 and � = 0.5. The maximum value for the reputation is

5 and the default value is 1. The damping function �(R), ensures that the reputations of

trustworthy persons are more robust against temporary malicious attacks. The value of ✓

determines how fast the reputation value of the user changes after each rating. The larger

the value of ✓, the longer the memory of the system. For detailed information on Sporas

algorithm, refer to [5].

3.2.3 The Indirect Referencing algorithm

The second algorithm is based on the TrustMail rating system [9]. TrustMail calculates the

reputations of incoming emails based on human ratings. Since the original algorithm was

not designed for distributed settings, authors do not have representative reputation values.

In the TrustMail system, reputation is computed only when a user asks for another’s reputa-
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tion value. The reputation values depend on the relationship between all of the requester’s

neighbors and the destination node (i.e., the node being evaluated). Consequently, repu-

tations are relative. Since we want authors to have objective reputation values–so that we

can have results to compare with the first algorithm–we evaluate all the relative reputation

values for each author. In other words, we run the indirect algorithm for each author node

as if each node is asking for everyone else’s reputation values. Algorithm 2 describes how

reputation can be inferred when the source is asking for sink’s reputation value. We then

average out the reputation values since we accumulate all the reputation values from all the

neighbors a node has.

Algorithm 2 getRating(source, sink)
mark source as seen
if source has no rating for sink then
denom = 0, num = 0
for each j in neighbors(source) do

if j has not been seen then
denom++
j2sink = min(rating(source, j), getRating(j, sink))
num += rating(source, j) * j2sink
mark j unseen

end if
rating(source, sink) = num/demon

end for
return rating(source, sink)

end if

The main idea that given source i and sink node s, if i has direct edge to s then no

inference is necessary. If there is no direct edge between i and s, i forwards the query to all

the neighbors, namely j. The algorithm calculates tis, the relative reputation of the sink for

the source i. The condition in this formula ensures that the source will never trust the sink

more than any intermediate node.

tis =
1

n

nX

j=0

8
><

>:

(tjs ⇥ tij), if tij� tjs

t2ij, if tij < tjs
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3.2.4 Applying time decaying function to the algorithms

There could be cases where multiple authors independently discuss the same entity. As

discussed in Section 3.2.1, the dependency relationship, the direction of an edge, is de-

termined by the timestamp. Whoever has mentioned the entity earliest gets credit for the

originality, whereas in the independency relationship, all the involved authors get credit re-

gardless of time in independency relationship. Consider the case in Figure 3.5. In addition

to a1 and a3, a4 mentions the same entity, e1, say, a week later. According to the Sporas-

based algorithm, both a4 and a1 should get incoming edges with weight 2. However, if the

latter independent reference, which is a4 mentioning e1, happens after a sufficient amount

of time, it is reasonable to consider the latter reference as a new topic rather than relating it

to the previous reference.

Fig. 3.5: Independency relationship; a1, a3 and a4 get bidirectional edges from each other
since they all contain e1, independently.

To accommodate this issue, we incorporated a time decaying function shown in Fig-

ure 3.6. When a new entity is introduced by a source author and shortly referenced by

others, there is a high chance that the references are related, but the relevance decreases

over time. Therefore, after a sufficient amount of time has passed, we consider the entity

to be independent from previous references. We use the cosine function to capture this

idea. According to our time decaying function, when a new entity, e2, is mentioned by the

first author and independently referenced by another author immediately, they will both get
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incoming edges with weight 2 (technically, the latter author will get an edge with weight

slightly less than 2 by the function). As time passes, authors who independently references

e2 will have incoming edges with weight less than 2 according to the time decaying func-

tion, at worst case with weight 1, when the topic has completely died out. Now, the edge

weight of an independent reference is calculated as follows.

weight = 0.5⇥ cos(period⇥ (t2 � t1)) + 1.5

where, t1 is the time when original author introduce an entity, e, t2 is the time when a

new author independently references e, period is 604800000
2 ⇥ ⇡.

604800000 is a week in milliseconds and period is set so that the period of the cosine

function be a week.

Fig. 3.6: Time decaying function: cos(period⇥ t)

3.3 Experiments: Email Author Network

From 2415 emails, we have extracted 426 authors. In Figure 3.7, we show the reputation

values of all the authors, sorted in descending order from the perspective of the second

algorithm. For both algorithms, the reputation of authors in the top and bottom tiers tend

to agree more than the middle ones.

The comparison between the two algorithms with the time decaying function is shown in

Figure 3.8. Also Figure 3.9 shows differences in reputation values using the time decaying
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Fig. 3.7: Reputation of authors before applying the time decaying function.

Fig. 3.8: Reputation of authors after applying the time decaying function.

function or not using. We only picked 15 authors here, since visualizing all 426 authors

would be messy. We picked five authors with high reputation, five authors with middle

reputation, and five authors with low reputation. Some differences from authors with high

reputation were zero and that’s why some values are not shown. For authors with high

and low reputations, the effect of time decaying function was minimal. Authors with the

mid-reputation range show that the difference between two algorithms is smaller in most

cases after the time decaying function is applied.

We also compared human assigned reputations and reputations computed by the algo-

rithms. Eleven authors were picked and assigned reputations by a human domain expert.

Figure 3.10 shows how the reputations given by the domain expert compared to the rep-

utations computed by the algorithms before applying the time decaying function. Figure
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Fig. 3.9: Effect of using time decaying function. We show differences of the reputations
given by the two algorithms before and after applying the time decaying function. We pick
15 authors to compare; first 5 entries represent authors with high reputations, next 5 entries
represent authors with middle reputations, and the last 5 entries represent authors with low
reputations.

3.11 shows the result with the time decaying function. It is hard to conclude whether one

is superior to the other since only eleven authors’ reputation values are available from the

domain expert. This difficulty motivated us to test our algorithms further; we compare

the two algorithms with a decision-tree based machine learning algorithm in categorizing

emails in Section 3.3.1.

In Figure 3.12, we ordered 10 authors in increasing order of the ratings given by the

domain expert. As seen in Figure 3.12(a) and 3.12(b), reputation values of authors are more

comparable with the ratings after applying the time decaying function.

In summary, we have shown that the two algorithms produce agreeing reputation val-

ues; but the reputations assigned by the domain expert shows small divergence from the

reputations given by the algorithms. Possible explanations include the human expert may

have assigned higher reputation values to recognized authors or authors given high reputa-

tion by the domain expert were not active in writing important emails during the time the

data were collected (one month). For future research, we plan to gather email data rang-

ing over a year and study how experiment results change. It would be interesting if we
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Fig. 3.10: Human assigned reputations compared with the algorithm based reputations
without the time decaying function.

divide the period into three so that each has four months of email data and compare how

reputations of authors change over time.

A word of clarification may be needed about the tail ends of Figure 3.7 and 3.8. In

Figure 3.7 and 3.8, the tail with equal values represents authors with the default value. The

difference only exists because author reputation given by the two algorithms were in dif-

ferent ranges before normalization. Since reputations given by the second algorithm go up

to 255, even if an author has the same default reputation value from both algorithms, which

is 1, when normalized, reputation given by the second algorithm appears to be smaller.

The same explanation applies to Figure 3.10 and 3.11 as well as other comparisons. For

example, in Figure 3.9, the rightmost short bars from authors with low reputation actually

represent no difference between the two algorithms.

3.3.1 Email Categorization Experiments

Generally, reputation results are very hard to evaluate since there is no concrete values to

compare with and the values are often subjective. We have used human expert’s ratings

to compare with outputs from our algorithms but the available number of ratings was not
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Fig. 3.11: Human assigned reputations compared with the algorithm based reputations
with the time decaying function.

enough. To further evaluate the efficacy of our algorithms, we test the algorithms in email

categorization task and compare the results with machine learning algorithms.

We categorize emails into three groups: useful, helpful, and useless. We used 16 at-

tributes to categorize emails. The details of each attribute is explained in Table 1. We use

RapidMiner [10], which is the most widely used open source data mining tool, to train

the model. First, we manually categorize 100 samples of emails into the three groups by

reading the contents of the emails, without relying on the attributes so that our manual cat-

egorization be independent from the machine learning of RapidMiner. Then we train the

model with the training set. Figure 3.16 shows the decision-tree model trained.

To build a social network of emails, for each email, we counted the number of entities

referenced by other emails. Analogous to the reference behaviors among authors, our in-

tuition is that, if an email has higher reputation than others, (i.e., it has been referenced

highly) then it is categorized as useful. The reputation of emails ranges from 0 to 10.

Among 709 emails, the decision tree model categorized 537 as useless, 67 as helpful

and 105 as useful. As shown is Figure 3.17, most of the emails categorized as useless has

low supported score, i.e., less than 1, and only a few have supported score higher than 3.

The emails categorized as helpful have consistent supported score between 2.5 and 3.5.
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(a) (b)

Fig. 3.12: Comparison of the order of reputation values computed before and after the
time decaying function is applied. 10 authors are ordered by the ratings give by the domain
expert.

The useful category, as expected, has the highest supported score on average, most of these

emails having supported score of more than 3.5.

3.4 Social Network Analysis

In this section, we analyze the social network constructed in Section 3.2.1. For the purpose

of analysis, we used Gephi [11], an interactive visualization and exploration platform for

networks and complex systems.

3.4.1 Community Detection

Community detection can reveal interesting facts about social networks. For example, the

community structure of a social network can serve as a summary of the entire network,

producing an easy to understand visualization of the network. Figure 3.18 is a visualiza-

tion of our social network. Nodes and edges represent authors and reference behaviors,

respectively, in the emails. Colors represent communities. The network has 36 communi-

ties and the modularity is between 0.46. A network with modularity of 0.4 or greater has

meaningful community structures.
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Fig. 3.13: Distribution of the reputations of authors by the direct reference algorithm
follows power law distribution

3.4.2 Average Path Length

The network has the average path length of 4.1, which is shorter than the “e-mail net-

work”of Ebel et al. [12]. Since email communication doesn’t require senders and receivers

to closely share certain chracteristics, unlike other networks, such as co-authorship net-

works, email networks are believed to have lower value of average path length. This means

that nodes in the network in general are more closely connected.

3.4.3 Scale-free Behavior

A scale-free network is a network with its degree distribution following power law, at least

asymptotically. As shown in Figure 3.13 and 3.14, the distribution of reputation in the

overall network follows a power-law distribution. Interestingly, each community in the

network also follows a power-law distribution as in Figure 3.15. Within each community,

there is a “super” author that the members of the community follows. This implies that the

network has negative assortativity which will be discussed in the next Section.
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Fig. 3.14: Distribution of the reputations of authors by the indirect reference algorithm
follows power law distribution

Testing Power-law Hypothesis.

We use a method described in [13] to test the goodness of fitting the computed reputations

of authors to the power-law distribution.

3.4.4 Assortativity

Assortativity is a preference for nodes in a network to attach to others that are similar or

different in a metric. We calculated the assortativity coefficient, r, of the network found.

The assortativity coefficient is essentially the Pearson correlation coefficient of degree be-

tween pairs of linked nodes [14]. The value of r is approximately -0.2 in the network. This

is interesting because, unlike many social networks, which have positive assortativity [8],

each community in our social network follows a power law distribution. This means that

in each community, there is small number of authors with high reputations followed by a

greater number of authors with lower reputations as shown in Figure 3.15. This character-

istic is shared with citation networks [15]. Another fact is that the network has two obvious

clusters as shown in Figure 3.18. The clusters have almost equal number of authors and the

degree distributions of nodes for the two clusters are quite similar. The nodes connecting
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(a) (b)

(c)

Fig. 3.15: Each community follows power law distribution.

the two cluster may play special roles. We plan to investigate the roles in our future work.

3.5 Chapter Summary

Document processing and social network reputation computation have been around for

some years, but combining them to automatically compute reputations of authors and to

categorize emails has rarely been done. We developed a method to extract references from

contents of documents and to build author reputation network automatically. We also have

developed two algorithms for calculating reputations of authors by traversing the network

using direct references and indirect references. Our methods can be applied not only to

emails but also to other unstructured data such as RSS and proxy logs, which will be our
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Fig. 3.16: Trained tree model for categorization by Rapidminer.

next step. We analyzed the reputation network generated using community detection. Some

interesting properties are identified–such as power-law distribution of author reputations

within each community as well as in the global network . In future research, we plan

to evaluate importance of documents using automatically extracted author reputation and

construct visualization tools that highlight the importance.
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Attribute Name Usage
ConcreteSecurityTerm Concrete security terms in the email,

such as root kit, Zeus
GenericSecurityTerm Generic security terms in the email,

such as threat, Malware
SpecialWords Special interesting words,

such as Russia, Iran
SecurityVerb Security related verbs in the email,

such as attack, hide
Length Length of each email
RegistrantInfo True, if the email contains system-

generated registrant information
Request True, if the email is requesting specific information
ReplyToRequest True, if the email is a reply to any request
Attachment True, if the emails contains attachment
List True, if the email contains non-

Natural Language formats such as a list
IP IPs in the email
DOMAIN DOMAINs in the email
URL URLs in the email
EMAIL EMAIL addresses in the email
WinRegistry True,

if the emails contains window registry information
Total Sum of the number of attributes values

(except the attributes that return boolean values)

Table 3.1: Sixteen attributes used for training
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(a) (b)

(c)

Fig. 3.17: Comparing categorization result from the machine learning algorithm versus
supported score of emails
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Fig. 3.18: Social network of the authors; nodes are weighted with degrees, colors are
partitioned by modularity classes.
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CHAPTER 4

A MODEL FOR RECURSIVE

PROPAGATIONS OF REPUTATIONS

In online social networks, reputations of users (nodes) are emerged and propagated through

interactions among the users. These interactions include intrinsic and extrinsic consensus

(voting) among neighboring users influenced by the network topology. We introduce an

algorithm that considers the degree information of nodes (users) to model how reputa-

tions spread within the network. In our algorithm, each node updates reputations about its

neighbors by considering the history of interactions and the frequency of the interactions

in recent history. The algorithm also captures the phenomena of accuracy of reputations

deteriorating over time if interactions have not occurred recently. We present the following

two contributions through experiments: (1) We show that an agent’s reputation value is

influenced by the position of the node in the network and the neighboring topology; and

(2) We also show that our algorithm can compute more accurate reputations than exist-

ing algorithms especially when the topological information matters. The experiments are

conducted in random social networks and Autonomous Systems Network of the Internet.

In addition, we show the efficacies of each component in our algorithm and present their

effects on the algorithm.
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4.1 Reputation Computation on Social Networks

Accurate reputation information about nodes in social networks improves services provided

by the networks. For example, reputations can be calculated and updated for web sites and

servers to identify malicious nodes and connections. The ability to observe and analyze

propagations of reputations within a large social network structures is also important.

Several distributed reputation algorithms including AFRAS [4], REGRET [16] and HIS-

TOS [5] exist. However, these algorithms do not consider frequencies and velocity of in-

teractions; frequency of interactions is an important measure of reputation of the users

involved. Velocity of interactions measures the second order information of frequency, i.e.,

the rate of changes in frequency. Existing algorithms also lack the consideration of topo-

logical information of the networks and the subjectivity of reputations (i.e., two different

nodes may perceive the reputation of a node differently).

We presents a new reputation management model that addresses the above issues. Our

algorithm considers frequencies and velocity of interactions online. Because our algorithm

is developed by modeling the behavior of social networks, we show the algorithm can be

used as an analytical tool for studying social network behaviors as well as a query tool for

retrieving reputation values for specific nodes at a given time. Through experiments, we

show that how reputations emerge and propagate in random social networks and how the

model captures the idea of dynamic reputation propagations from one part of the network

to another. We also show experiments on real Autonomous Systems Networks (ASN) of

the Internet for identifying malicious ASN nodes through our model. We compare our re-

sults with an existing reputation values computed by another well accepted ASN reputation

management system. The results show that our algorithm computes similar reputation val-

ues as the values provided by the existing algorithm. However, we show that our algorithm

is better suited to find many malicious ASN nodes while the compared method is good

for finding the worst malicious node only. Finally, we extend the previous work presented

in [17] to test the effectiveness of each components in computing reputation values.
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4.2 ReMSA: Reputation Management for Social Agents.

In this Section, we present the proposed algorithm – ReMSA: Reputation Management

for Social Agents [17]. A reputation value is computed when an interaction between two

agents occurs. In an interaction, an agent can be an observer, observee, or both. After an

interaction, the observer evaluates the interaction to compute the reputation of the observee.

If both are observers, they will compute reputations of each other. The more interactions

occur between two agents, the more accurate the reputations are computed for the agents.

As interactions occur within the network over time, reputations of agents in one part of the

network will propagate to another part of the network, much similar to what is happening

in real-world social networks. At any given time, any agent can query about reputation

of an arbitrary agent. Note that the returned value to the agent may be different from the

result of the query initiated by another agent. When there’s enough interactions among

overall agents in the network, reputations will propagate to the entire network, and more

homogeneous views of reputations of agent will emerge.

Figure 4.1 shows the flowchart of reputation computation for an observer node when

an event occurs. Following subsections explain each process in Figure 4.1.

4.2.1 Events

We define an event as an interaction between two agents with time information. There are

two types of events in terms of who owns the event. When an interaction happens between

two agents, if both agents can observe each other’s behavior, then both own the event. If

only one of the agents can observe the other’s behavior, only the observer is the owner of

the event. All the following computations are based on the observer agent’s point of view.

• The set of agents and events are defined as follows.

A = {a1, a2, ..., an}
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Ei = {e1, e2, ..., em}

ej = (tj, aj)

where, ai is an observer agent, Ei is a set of events that ai as an observer, and ej is

an event which consists of its time, tj , and the observee agent, aj .

• Given a network, we define ↵ and � where nodes are agents and edges are relation-

ships.

↵i =
di

maxm2A{dm}

�il =
dlP

k2N
i

dk

where, Ni is a set of i’s neighboring agents, and da is the degree of agent a. ↵i is

a ratio of i’s degree and the maximum degree in the network. ↵i is used to weight

i’s opinion (i.e., the observer’s) since ↵i represents i’s position in the network. It

Fig. 4.1: The sequence of processes agents take to update reputation values.
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implies that we can infer an agent’s confidence from its relative degree information.

Given i and it’s neighbor l, �il is a ratio of l’s degree and the sum of i’s neighbors’

degrees. �il represents l’s relative credibility from i’s perspective. i will use �il to

collect opinions from its neighbors. The neighbors of each l will recursively compute

�l⇤ in turn until one of the three terminating conditions is met as explained in Section

4.2.2. In the voting algorithm shown in 1, i evaluates voting weights for each of it’s

neighbor l.

4.2.2 Compute Feedback

Feedback process consists of two subprocesses, Evaluation and Voting. Feedback is a part

of reputation updating function in Section 4.2.6.

Compute Evaluation.

After each interaction, agents that were involved in the interaction evaluate the interaction

according to their own evaluation methods. Therefore, Evaluation of interactions is sub-

jective and can be implemented depending on applications. Evaluation of an event e is

represented as a function, Eval(e).

Compute Voting.

While the evaluation function is computed by each agent, agents collect opinions from

other agents before updating the reputation of the target agent through a voting process to

combine diverse opinions. If ai had an interaction with al, ai can take a vote about al to its

neighbors to obtain more objective views. The neighbors of ai can either return a vote to

ai with their own evaluations (if they don’t have neighbors other than ai or al) or they can

spread the vote to their neighbors. V e
a
i

a
l

is the weighted sum of voting results and we define

it as follows.
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V e
il =

X

k2N
i

�ik ⇥ F e
kl (1)

�ik represents i’s delegation trust towards k and is multiplied by F e
kl which is a weighted

sum of i’s evaluation of l on the event e and collected feedbacks from k’s neighbors about

l. Feedback process is represented with the function F e
il which recursively calls the voting

function, V e
il .

F e
il = ↵i ⇥ Evali(e) + (1� ↵i)⇥ V e

il (2)

↵i implies self-confidence of i and it is multiplied by Evali(e), the self evaluation on event

e.

As shown in formula (1) and (2), Feedback and Voting processes are defined recursively.

Stoping Criteria.

To avoid infinite loops or circular voting processes, we need to specify a few restrictions.

First, when an agent takes a vote to its neighbors, it excludes itself. Since the agent’s

opinion about the target agent is already included in the evaluation function, it only needs to

hear from its neighbors. Second, for the voters to avoid casting duplicate votes, each agent

keeps history of votes which it has already participated. This is beneficial to the voters

so that they don’t waste their own resources on duplicate votes. Third, the base condition

of the recursive voting is: (1) when an agent has only one neighbor which originated the

voting process, (2) when an agent has two neighbors one being the originator and the other

being the target agent and (3) when an agent has already participated in the current vote.

In the first two cases, (1) and (2), the voter agent returns its reputation value of the target

agent.
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4.2.3 Compute Velocity and Acceleration

We also consider the frequency of events to compute reputation since an event with a dor-

mant period should be treated differently from frequent ones. We define the velocity for

each event to compute the acceleration of events. Then the acceleration of an event influ-

ences Feedback value of the event through the Impact function.

Velocity of an event is defined as follows.

V el(e) =
1

te � te0
(4)

where te0 is the time of the last event.

It is obvious that there needs to be two events to compute velocity, otherwise the veloc-

ity is zero. Also, since we consider time with increasing positive integers, te � te0 > 0 and

V el(e) 2 [0, 1].

Now, we can compute the acceleration of event e to identify if its velocity is increasing

or decreasing through Acc(e). Since we define the distance between two events are always

1, regardless of the time difference, the acceleration between two consecutive events, e and

e0, is defined as the change of velocity [18].

Acc(e) = V el(e)� V el(e0) (5)

4.2.4 Compute Impact

We introduce Impact function to calculate the influence of Acc(e), defined in (5), on the

feedback, F e.

I(Acc(e), F e
) = |Acc(e)|⇥ F e3

�Acc(e)
|Acc(e)|

+ (1� |Acc(e)|)⇥ F e (6)

The magnitude of Acc(e) determines the curve of the function which decides how much
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to increase or decrease from F e. When Acc(e) > 0, I increases the original feedback

value, I(Acc(e), F e
) > F e, and when Acc(e) < 0, I decreases the original feedback value,

I(Acc(e), F e
) < F e. If Acc(e) = 0 then I(Acc(e), F e

) = F e which means that when there

is no change in the velocity, no impact is made to the feedback value, F e.

4.2.5 Time Decaying Function

Time decaying function is an essential part of the reputation computation since it captures

the temporal nature of information; old reputation value may not be as accurate as a new

one. Intuitively, an interaction shortly after the previous one can make more use of the

built-up reputation (current reputation) while an interaction after a long inactive period

should rely more on the current feedback values since the built-up reputation is not up to

date. As discussed in [19], time decaying function should to be designed carefully, based

on the context (e.g. a periodic function) so that it can adjust time sensitivity weights when

computing reputations.

We use an exponential decay function to capture the idea. Our time decaying function

relies on the elapsed time since the last interaction.

D(x) = e�x

where x is te � te0 .

4.2.6 Update Reputation

Finally, we are now ready to explain the reputation update function that utilizes the func-

tions discussed so far. A new reputation value is computed when a new event occurs. The

new reputation is a weighted sum of the current reputation and the feedbacks. The current

reputation is weighted by the time decaying function and Impact function is applied to the

feedbacks. Finally, we formally define the reputation update function as follows.
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Reputation update function:

Rt
e

il = d⇥R
t
e

0
il + (1� d)⇥ I(Acc(e), F e

il)

where d = D(te � te0).

4.2.7 Ask Function

In our algorithm, each agent keeps a list of reputation values of the neighbors. However,

in some occasions, an agent might wonder about another agent’s reputation other than the

neighbors. Therefore, we implement Ask function to query a target agent’s reputation who

is not a neighbor. Ask function is the same as Feedback function except the agent does

not have its own evaluation of the target agent. Ask function, then, goes through the same

processes as in Voting function as in (1).

Askt
il =

8
>><

>>:

Rt
kl l 2 Nk

P
k2N

i

�ik ⇥ Askt
kl otherwise

4.3 Experiments

In this section, we present two sets of experiments. First, we compute reputations of Au-

tonomous Systems (AS) in the Internet using our algorithm. And we compare our results

with AS-CRED [20], which is a well-known reputation service for AS network. We use

subsets of the real AS networks obtained from RouteViews [21]. Second, we study the

emergence and propagation of reputations within random social networks generated by

Graph-Generator [22]. Graph-Generator is a small Java program to create random graphs

in which the number of nodes, edges and the maximum degree are specified.
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4.3.1 Experiment 1: Computing Reputations of Autonomous Sys-

tems

We apply ReMSA algorithm to compute reputation values of Autonomous Systems. An

Autonomous System is a collection of connected Internet Protocol (IP) routing prefixes

under the control of one or more network operators. Since behaviors of each AS represent

human interests, we consider AS network as social network. We analyze Border Gateway

Protocol (BGP) updates data, which is the standard communication protocol for intercon-

necting ASes, to evaluate validity of activities among ASes in the network and compute

reputation values based on the evaluations. The reputations of ASes could be incorporated

for the routes deciding algorithm for each AS since reputations of ASes directly represent

the behaviors of ASes.

Network Sampling Algorithm.

As shown in Table 4.1, the number of nodes in the original AS network is very large because

it represents all ASes in the Internet. However, only less than 10% of ASes appear in each

day’s BGP update data we use. Therefore, for the tractability of the experiments, we extract

two representative, scaled down, sub-networks from the original AS network. If we sample

sub-networks from the original AS network using existing algorithms, most of the ASes

in sampled sub-networks don’t appear in the BGP data. Instead of using the algorithms

discussed in [23], we designed a context-based network extraction algorithm in order to

sample meaningful sub-networks which contain most of the autonomous systems appearing

in BGP update data. Therefore, we extract ASes that appeared in the BGP data so that we

can compute reputations of the ASes. For each randomly chosen ASPATH in BGP update

data on January 1, 2010, we add ASes which appear in the ASPATH to the sub-network and

repeat the process until the desired number of nodes for the sub-network is reached (in this

case, 5000).

In order to measure whether the sub-networks represent the original AS network rea-
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sonably, we evaluate the sub-networks by the metrics defined in [23].

Original sub-network1 sub-network2
# Nodes 33508 5000 5000
# Edges 75001 19953 22379

Table 4.1: Nodes and edges information of networks.

in-deg hops sng-val sng-vec clust AVG
sub-network1 0.2743 0.3500 0.1883 0.1180 0.2346 0.2399
sub-network2 0.0703 0.3500 0.1234 0.0357 0.1944 0.1547

Table 4.2: Sampling criteria for sub-networks.

Table 4.1 shows the number of nodes and edges of the original network and two sam-

pled sub-networks. The number of nodes of sub-networks (5000) is approximately 15%

of the real network (33508) which is enough to match the properties shown in Table

4.2 [23]. Table 4.2 shows five different distributions of two sample networks measured

using Kolmogorov-Smirnov D-statistics. D-statistic measures the agreement between the

true and the sample network property [23]. In the last column, we show the average of the

results. Lower average values means more agreement between original network and the

sub-network. Some good average values discussed in [23] were 0.202 and 0.205. There-

fore, both of the sub-networks qualify for scaled-down sub-networks well representing the

original.

Evaluation of BGP.

We use BGP (Border Gateway Protocol) update data from RouteViews [21] dated from Jan-

uary, 2010. Also, we use the same analysis of AS-behavior discussed in [20] and [24] to

compute feedbacks of BGP activities in order to compare our reputation computation re-

sults with AS-CRED. In order to use our algorithm, we need to define events and associated

observer and observee in the problem domain of AS reputation computation. In BGP up-

date data, for each update message sent from say, AS0 to AS1, AS1 analyzes the message
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as an observer and evaluates AS0’s behavior. Such a message is an event as we defined

in Section 4.2.1. And an event can be a non-empty subset of the set {AS-Prefix behavior,

AS-Path behavior, AS-Link behavior}, which represents the observee’s behaviors. Each be-

havior can be evaluated to be positive or negative and then the result of the evaluation is

accumulated for that message. In other words, each message will have an associated score

representing the behavior of the observee. We describe how each behavior is evaluated

below.

• AS-Prefix behavior: For the observee AS and its prefix p, we compute two temporal

metrics, persistence and prevalence. These two metrics can represent positive or

negative behavior of the observee AS. We will not discuss the details of the metrics

because they are beyond the scope of this paper. The value of the persistence and

prevalence are compared against a set of thresholds mentioned in [24] and feedback

is provided. For good behaviors, evaluation of 1 is provided and otherwise -1.

• AS-Path behavior: We use AS relationship data from [25] to evaluate the valley free

property of AS paths. None of the ASes in the AS path should form a valley. The

observee AS provides an AS-Path. If a valley is found in the provided AS-Path and

the first AS forming the valley is the observee, it gets evaluated by its observer with

-1.

• AS-Link behavior: For each link in the AS-Path provided by the observee, we com-

pute persistence and prevalence values, then these are compared with the threshold

discussed in [24]. If the classification of the behavior is good, an evaluation of 1 is

provided, otherwise the link is unstable, therefore, the evaluation is -1.

Results.

We compute reputations for each AS appeared in BGP update data for each day between

January 1, 2010 and January 31, 2010. We average the reputations computed by ReMSA
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with two different sub-networks. We exclude ASes with good behaviors (positive repu-

tation values) to compare the result with AS-CRED which accumulates reputation values

when bad behavior occurs (zero is considered the best reputation in AS-CRED).

In Figure 4.2, we show the distribution of reputation values of ASes computed by AS-

CRED for January 1, 2010. In Figure 4.3, we show the distribution of reputation values of

ASes compute by ReMSA for the same day. The ranges of reputation values shown in the

figures are different as they represent the raw reputation values computed by AS-CRED and

ReMSA. Since AS-CRED computes centralized reputation values, we averaged reputation

values computed for each AS by ReMSA. The purpose of each algorithm is implied by the

distribution of reputation values shown in the figures. AS-CRED computes reputation val-

ues of ASes to detect globally malicious ASes while ReMSA computes distributed reputa-

tion values for each AS to measure the trustworthiness of relationships between neighbors.

Therefore, ReMSA allows each AS to have its private perception of its neighbors based on

the history of interactions and the witness information rather than to rely on global com-

puted values.
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Fig. 4.2: Reputations computed by AS-CRED.

Figure 4.4 shows average reputation values of ASes computed by AS-CRED and ReMSA
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over one month. The non-zero reputation values of ASes are added and averaged from our

sub-networks. Similarly, the reputation values of respective nodes from AS-CRED were

averaged. We normalized values computed from AS-CRED since zero is the best reputation

value and the higher values represent the worse reputation in their algorithm.

The two lines from AS-CRED differs in that the one below doesn’t include AS209,

which has an extremely bad reputation with the raw value 2755.52. We investigated the

differences shown in Figure 4.4 and found out that whenever there are big gaps, e.g., on

the 14th day, there was an AS with extremely bad reputation (i.e. AS209) in AS-CRED.

Therefore, when we normalized the reputation values, since the worst reputation value in

AS-CRED becomes -1, it makes other reputation values negligibly small. Consequently, the

normalized average for AS-CRED is smaller than our algorithm’s average. For example, on

the 14th day, AS209 received an extremely bad reputation (the raw value 2755.52) when

most of other ASes received less than 10. Such a huge difference among reputation values

makes other reputation values negligible which enables moderately malicious ASes to get

hidden under an extremely malicious AS.

Now let’s observe AS209 more closely. Figure 4.5 shows the reputation value of AS209
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Fig. 4.3: Reputations computed by ReMSA.
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computed by AS-CRED and our algorithm. In the figure, we normalized reputation val-

ues from AS-CRED with the largest value AS209 had, which was on January 14th, 2010.

AS209 had bad behaviors before the 14th, but because of the huge variances among the

reputation values over time in AS-CRED, the reputation values of AS209 on other days ex-

cept the 14th became almost zero after normalization. AS-CRED may be useful to identify

the most malicious AS, but it may lose other important information such as how reputation

value changes over time.

We also compare the reputation ranking sequences of ASes by AS-CRED and ReMSA.

For each day in January, 2010, we order ASes by their reputation values computed by AS-

CRED and ReMSA respectively. Then, we compare the two sequences of the orderings

by calculating standard deviations of the sequences. Figure 4.6 shows average standard

deviations for each day. Average standard deviations vary each day slightly, but the value

keeps low compared to the maximum value which is 2500.

In Figure 4.7, we show sample reputation rankings computed from AS-CRED and

ReMSA. We randomly picked 100 ASes to compare average rankings computed throughout

a month, January, 2010. The rankings computed by ReMSA is ordered in increasing order
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and rankings by AS-CRED is presented accordingly. Again, we can observe that the overall

ranking trend agrees with minor exceptions.
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Fig. 4.5: Reputation values computed by AS-CRED and ReMSA for AS209.
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4.3.2 Experiment 2: Propagation of Reputation on Random Net-

works

In addition to the performance evaluations on a real social network (ASN) presented in

Section 4.3.1, we test the propagation of reputation values in random networks. We study

a sparse and adense network in order to show how topology of the networks (degrees

of nodes) influence propagation of information (reputation values). Table 4.3 shows the

statistics of the two random networks.

Sparse network Dense network
# Nodes 5000 5000
# Edges 10000 50000

Average Degree 4 20
Density 0.001 0.004

Diameter 11 4
Average Path Length 6.624 3.129

Table 4.3: Statistics of two random networks.

For each network, we pick an observee node, a0, and observe how reputation computed

by its neighbors change over time. We also pick two observers distant from a0, say A and B,
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in order to show a0’s reputation values obtained by each observer. Note that each observer

will obtain a subjective reputation value about a0. We generated random events that are

associated with time information, an observee node and the evaluation of event. Each node

has behavioral probability (positive or negative) and the observer evaluates behaviors of

observee nodes.

The straight line in Figure 4.8 shows the true behavior of a0 based on its behavioral

probability, pa0 . We define pa0 as the probability that a0’s behavior is evaluated to 1. In this

case, the probability was 0.1 and therefore the true reputation (true reputation = 2⇤pa0�1)

is -0.8 since the reputation value is between -1 (when pa0= 0) and 1(when pa0 = 1). The

neighbors have interactions with a0 and update reputations based on the probabilistic ran-

dom behaviors of a0. The average reputation values of a0 computed by the neighbors lie

right above the true reputation value in Figure 4.8. The two other lines on top represent

the reputations values seen by A and B. For each time the neighbors’ reputation values of

a0 are computed, A and B query reputation of a0 using Ask function presented in Section

4.2.7. As we can see in Figure 4.8, it is not hard to believe that direct interactions with

a0 help compute more accurate reputation values of a0 compared to the reputation values

received only by collecting opinions from other nodes. Also we can see that the changes in

reputation values become more stable as nodes learn a0’s true behaviors and share subjec-

tive reputation values of a0 through voting processes. Since A is 4-hop-away from a0 and

B is 6-hop-away form a0, we can see that A has closer values to the true value than B.

We repeat the process on the dense network and the results are shown in Figure 4.9.

We set the behavioral probability of the observee, say a1, the same. A and B both were

3-hop-away from a1. The average reputation values computed by a1’s neighbors converge

closer to the true value. On the dense network, reputation values seen by the two observers

fluctuate because, as shown in Table 4.3, the network is so dense and the reputation of the

target agent is influenced by many different agents through Ask Function.

In Figure 4.10, we show how velocity of events influence reputation values. As dis-
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cussed in Section 4.2.4, the Impact function adjusts the computed feedback values based

on the acceleration of the event. On a random network, we pick a node with behavioral

probability 0.8 and observe reputation values from a neighbor changing over time when

the velocity of interactions is constant and when the velocity of interactions increases. As

we can see in Figure 4.10, the reputation computed without acceleration becomes stable

as it reaches close to the node’s true reputation, 0.6, while the reputation computed with
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Fig. 4.8: Propagation of reputation in a sparse network.
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Fig. 4.9: Propagation of reputation in a dense network.
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nonzero accelerations fluctuates more. Since the Impact function emphasizes the influ-

ence of accelerations of events, the reputation values become more sensitive to the current

feedbacks when the rate of events is more frequent.
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Fig. 4.10: Reputations computed with constant and increasing velocity.

4.3.3 Effects of Voting, Time Decaying Function and Impact Func-

tion

In this Section, we show the effect of each mechanism in the reputation update formula, in-

troduced in Section 4.2.6. We create a scale-free network using Barabási-Albert algorithm

with 5000 nodes and 50000 edges. This network was used in the following experiments.

We discuss the results of experiments using a sample agent picked randomly which repre-

sents the typical behavior of agents in general. The reputation values are computed from

the neighbors of the sample agent.

Effects of Voting.

Voting process is introduced in Section 4.2.2. Through the voting, one can aggregate oth-

ers’ opinion so that the computed reputation values are objective. The balance between
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direct experiences (self opinion) and indirect experiences (others’ opinions) is automati-

cally controlled by the degree of each agent as discussed in Section 4.2.2.
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Fig. 4.11: Effects of Voting

Node 1453 4999 3387 4102
Degree 10 11 33 57

With voting 0.247 0.187 0.156 0.142
Without voting 0.311 0.291 0.234 0.175

Table 4.4: Average distance from the true reputation.

Figure 4.11 shows the reputation computed with and without the voting process which

means that the feedback function is replaced by Evaluation (self opinion) only. The straight

line is the true reputation of an agent. The reputation values computed with voting, which

considers others’ opinions, are closer to the true reputation value compared to the reputa-

tion values computed without voting. Table 4.4 shows the average distance from the true

reputation value over the iterations for four sample nodes. The average distance from the

true reputation is lower when the reputation values are computed with voting. We also

observe that as the degrees of node increases, the average distance from the true reputation

decreases since having more neighbors lead to getting more opinions.



54 4.3. EXPERIMENTS

Effects of Time Decaying Function.

The time decaying function, discussed in Section 4.2.5, utilizes the frequencies of inter-

actions to balance the current reputation and the feedbacks. In some applications, the

steady-state reputation is more valuable , while in other cases, reputation values need to

be adaptive so that they reflect the up-to-date information. In ReMSA, this is automatically

controlled by the time decaying function.
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Fig. 4.12: Effects of Time decaying function.

Figure 4.12 shows four different reputation values. The straight line shows the true rep-

utation value of the agent under observation. The line shows reputation values computed

using standard ReMSA. We also show steady-state reputation values as well as adaptive rep-

utation values, plotted with square points and star points respectively. As discussed before,

new reputation is computed as a weighted sum of current reputation and new feedback.

Steady-state reputation has more weight on current reputation while adaptive reputation

has more weight on new feedback. For the comparison, we weight current reputation with

0.9 and new feedback with 0.1 for steady-state reputation and vice versa for adaptive rep-

utation. Intuitively, if the current reputation is weighted more than the new feedback, the

reputation value is stable meaning it does not fluctuate much. On the other hand, if the new

feedback is weighted more than the current reputation, the reputation value is more adap-

tive since the updated reputation value reflects more of the current behavior of an agent
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than the history of the past behaviors. As shown in the Figure 4.12, adaptive reputation

values are distributed near 1, 0, or -1, which are the raw feedback values. Steady-state

reputation values are distributed near reputation values computed by standard ReMSA; this

is because the interactions are randomly generated and the frequencies of interactions do

not vary much.

Effects of Impact Function.

The purpose of Impact function is to reflect accelerations of repeated interactions to the

feedback. In real social networks, repeated interactions in a short period of time may im-

ply greater closeness of two entities involved. Therefore, we emphasize sudden increases

of interactions rate using Impact function. In Figure 4.13(a), reputation values of interac-

tion with increasing accelerations are shown and in (b), reputation values of interactions

with decreasing accelerations are shown. Since the time information of the interactions are

randomly generated integers, the acceleration values are small. For example, if three inter-

actions with time 10, 20, 25 occurs, the velocity of the second and third interactions are 0.1

and 0.2 and the acceleration of the third interaction is 0.1. Therefore, even the acceleration

of the third interaction is positive and emphasized by Impact function, the difference is not

big. With positive accelerations, positive feedback values are rewarded and negative feed-

back values are punished according to the acceleration. In Figure 4.13(a), reputation values

below the red line show that reputation values computed with Impact function are lower

than the ones computed without Impact function. Since the acceleration is positive, nega-

tive feedbacks were punished (decreased) by Impact function. On the other hand, in Figure

4.13(b), reputation values of interactions with negative accelerations are shown. Reputa-

tion values below the red line shows that reputation values computed with Impact function

are higher than the ones computed without Impact function since negative feedbacks with

decreasing accelerations are rewarded (increased) according to the acceleration values.
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Fig. 4.13: Effects of Impact function.

4.4 Chapter Summary

A natural way of measuring an agent’s reputation is to accumulate interaction history in

some form of weighted sum. We started with this idea and incorporated frequency and

velocity of interactions as well as the topological information of the network. Generally,

reputation computation takes an approach that combines the previous reputation and new

experience.

Our algorithm assumes that each agent is aware of its neighbors and its position in the

network and makes use of the information. Therefore if the topology of network changes,

an agent perceives its new sociological information and its reputation updating function

changes accordingly. This is explained by human behavior; people tend to act with more

responsibly when there are more observers (i.e., a higher degree). Instead of using neigh-

bor’s reputation value as a weight (as in HISTOS), we take advantage of neighbor’s relative

degree as a weight which is more objective. Also, in our algorithm, when an agent takes a

vote of its neighbors, the neighbors can recursively take votes of their neighbors.

Through the experiments, we show that our algorithm can compute quality reputation

values by comparing the results with an existing reputation computation algorithm (AS-

CRED). The algorithm can also successfully model propagation of reputations within the



57 4.4. CHAPTER SUMMARY

network. We show that in a dense network, reputations travel much quicker and diffuse

wider given the same number of interactions. In addition, we show how frequencies of

interactions can influence the reputation values. Since a higher rate of interactions implies

greater significance, we believe that the velocity of interactions is an important parameter

in our algorithm.

Since ReMSA is designed for distributed environments, the algorithm is employed

within each agent. Therefore the time complexity of ReMSA for each agent is depen-

dent on the number of events and the number of neighbors each agent has. Then the time

complexity of the algorithm is O(di ⇤ |Ei|) for each agent i.
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CHAPTER 5

DISTRIBUTED SECOND DEGREE

ESTIMATION IN SOCIAL NETWORKS

In this Chapter, we propose an agent centric algorithm that each agent (i.e., node) in a

social network can use to estimate each of its neighbor’s degree. The knowledge about

the degrees of neighboring nodes is useful for many existing algorithms in social networks

studies. For example, algorithms to estimate the diffusion rate of information spread need

such information. In many studies, either such degree information is assumed to be avail-

able or an overall probabilistic distribution of degrees of nodes is presumed. Furthermore,

most of these existing algorithms facilitate a macro-level analysis assuming the entire net-

work is available to the researcher although sampling may be required due to the size of

the network. In this paper, we consider the case that the network topology is unknown

to individual nodes and therefore each node must estimate the degrees of its neighbors.

In estimating the degrees, the algorithm correlates observable activities of neighbors to

Bernoulli trials and utilize a power-law distribution to infer unobservable activities. Our

algorithm was able to estimate the neighbors’ degrees in 92% accuracy for the 60867 num-

ber of nodes. We evaluate the mean squared error of accuracy for the proposed algorithm

on a real and a synthetic networks.
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5.1 Motivations

As online social networks gained significant popularity, understanding the characteristics of

social networks became an essential task for many application areas. Many existing studies

in social networks uses a macro-level approach to a variety of problems including diffusion

of influence, malicious node detection, and efficiency of communication networks [26].

Recent research interest has been shifting to a micro-level or a node-level reasoning. These

studies focus on designing algorithms for an individual node within a social network to

reason about the characteristics of the social network it belongs. Due to privacy protection

in social networks and their dynamic characteristics and extremely large sizes, such node-

level reasoning is extremely challenging.

Among many properties of social networks, researchers accept the degree distribution

of a network as the most essential property in understanding the structure of the network.

The degree distribution P (k) of a network is the fraction of nodes in the network with de-

gree k. Therefore, many have realized the importance of reasoning about degree distribu-

tions in social networks and studied it in-depth [27]. However, as alluded by the definition,

the knowledge of degree distribution does not provide information on the degree of any

arbitrarily chosen node; it merely gives a probability value for each possible degree. The

degree of a node represents the importance, or influential power, of the node because a

higher-level of connections implies a higher level of diffusion may the node facilitate. If a

node knows the degree of a neighbor, it may infer to the popularity of the neighbor [28].

Attempts to estimate degree distributions of networks have been made by, but not limited

to, [26], [29], and [30].

However, most researchers have employed a macro-level approach, such as graph sam-

pling, to estimate degrees of nodes in social networks. In a distributed reputation man-

agement knowledge of the second degrees–i.e., the sum of degrees of neighbors–is impor-

tant [17]. Figure 5.1 presents the difference between macro and micro-level approaches.

In a macro-level approach, shown in Figure 5.1 (a), also referred to as a global method,
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(a)$Macro)level$approach$ (b)$Micro)level$approach$

Fig. 5.1: The difference between macro and micro level approaches to social network
analysis. In general, a macro-level analysis is conducted offline using a collected data set,
while a micro-level is an online analysis that can continuously update the belief about the
world.

there is an entity outside of a given network that can observe everything about the network

such as the number of users, degrees, etc. Therefore, the goals of a macro-level approach

is often to analyze structure of the network and learn interesting properties of the network,

from an objective view with offline data sets collected. On the other hand, in a micro-level

approach, shown in Figure 5.1 (b), also referred to as a distributed method, the observing

entity is a member of the network and therefore it can only access private information, such

as its own degree.

Usually, a micro-level approach can be used for an online algorithm capable of updating

its knowledge over time. For example, on a sensor network, where each node itself is a

tiny computer, it is infeasible for each node to have global view of the entire system at

any time [31]. Therefore, in distributed systems like sensor networks, tasks are solved

completely locally by each node running distributed (node-centric) algorithms. One the

other hand, a macro-level approach generally requires an offline data set that is sampled for

a given period of time.
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In addition, as social media marketing proved itself to be powerful, marketers are in-

creasingly investing in blogging and social media. They are interested in finding the most

influential users in social media so that they can achieve the maximum efficacy. Since the

influential power of a user is generally represented by the number of connections (degrees)

of the user [32], and the marketers usually do not have information about topology of social

media, estimating degrees of users in micro-level is recommended.

In this Chapter, we introduce a node-centric, i.e., micro-level, algorithm to estimate

degrees of neighboring nodes.

5.2 Previous Works on Degree Estimations

Estimating the degree distribution is the first step toward understanding the nature of net-

works according to [26]. The authors describe why the degree distribution of a social

network may not be public knowledge and proposes an algorithm to estimate it from a

database while keeping the privacy of the information. Their algorithm is a macro-level al-

gorithm to approximate an overall probabilistic degree distribution of a network as defined

above. Also an important assumption of their approach is that databases are available to

query. Our algorithm does not assume the availability of a database containing information

about the network. Furthermore, instead of estimating an overall distribution of the degrees

in a network, our algorithm is to be used by a node within a network to reason about de-

grees of its neighbors. Using the preferential attachment model [33] and our algorithm, a

node within a social network can reason about the entire network it belongs. This paper fo-

cuses on estimating neighbors’ degrees. We make a reasonable assumption that each node

knows the degree of itself, i.e., the number of neighbors. For example, in the Facebook

network, each user knows exactly how many friends (neighbors) he or she has but the user

does not always know how many friends his/her friends have. In an online social network,

each node is interested in knowing the degrees of its neighbors for various reasons such
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as to find the most influential neighbor to spread information in the network and to select

a neighbor who is most likely to share quality information. Another practical example is

on sensor networks. A node in a sensor network can choose a neighbor that may have the

highest degree among its neighbors to transfer/spread information it gathered to the entire

network as fast as it can. From the best of our knowledge, no attempt has been made to

estimate degrees of neighboring nodes in a distributed manner.

In [30], authors attempt to estimate the degree distributions of a network using different

sampling algorithms including random walks; this is again a macro-level approach. [34]

introduces three estimators, namely, maximum likelihood estimator, mark and recapture,

and random walker, to estimate the size of a social network. The second degree of a node

is the sum of all degrees of the node’s neighbors as defined in [28]. They also suggest

that the distribution of second degrees is of interest since it is a good approximation of

PageRank [35]. They prove that the distribution of second degrees follow a power law in

Buckley-Osthus model which is a generalization of the Barabási-Albert model.

Most of the existing researches focus on the topology of given networks and studies the

degree (or second degree) distributions based only on the topological information. How-

ever, to be able to deal with real world networks, in which nodes and edges are dynam-

ically changing, one cannot assume that the topology of networks are known in advance

and, therefore, the presented methods above are not suitable for distributed and dynamic

environment.

5.3 An Algorithm for Estimating Each Neighbor’s De-

gree

In this section, we discuss our algorithm and explain how each node within a social net-

work can use the algorithm to estimate the degrees of its neighbors. We first present an

overview of the algorithm then present several important definitions to help the readers
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to understand the algorithm in detail. Then we present an important proposition with a

proof to show that our algorithm indeed can compute accurate degree values if the numbers

of observations about its neighbors follow a certain proportionality condition (Definition

5.3.10). We also show that straightforwardly counting the number of observations does not

yield good estimations because there are unobservable activities. We use a beta distribu-

tion and a power-law distribution models to extrapolate the observed activities to estimating

the degrees of neighbors. This idea turned out to be quite effective in discovering hidden

neighbors of neighboring nodes as we show in the experiments section.

5.3.1 An Overview of the Algorithm

We assume that the observer node can perceive some activities of its neighbors and we call

the observed activities as observations (Definition 5.3.5). In reality, a user cannot collect

every observation of their neighbors. Furthermore, there are nodes that are connected to a

node that do not make any observable activities. For example, users of a Facebook wall (a

node) may be just reading the posting. In this case, the reading activities are not observable;

nevertheless these nodes are still connected to the node and important from the information

diffusion or the connectivity concerns. We also assume that, without loss of generality,

the differences among the numbers of observations made on neighbors are relative to the

degrees of neighbors. If a user can see its neighbor interacting a lot with others, the user

can infer the neighbor has a lot of friends (neighbors) compared to another neighbor that

has less interactions.

The overall idea of our algorithm is the following. Each node estimates neighbors’ de-

grees based on observations made about each neighbor that are proportionally bounded by

the current estimation of the total activities – captured by Nv below – between its neighbors

and the second neighbors. We consider each observation as Bernoulli trial, the number of

seen observations so far as the number of successes and the number of unseen (expected)

observations as the number of failures. As a new observation is introduced, the success
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probability is updated by the beta distribution. The numbers of observations made about

each neighbor are statistically proportional to each other. Therefore, estimating the neigh-

bors’ degrees directly from the number of observations without applying to the Bernoulli

trials will not capture the statistical properties of the degree distribution of the neighbors.

Then, each node adjusts the distribution of second degrees according to a power-law dis-

tribution, because previous studies including [36] have shown that degree distributions of

social networks follow Power-law distribution. Finally, we apply the principle of maximum

likelihood to estimate the degree of each neighbor.

5.3.2 Useful Definitions

We define some useful terms in this Section. Figure 5.2 shows a node v’s second neighbors

where one of its neighbors is i. We assume that the degree information of a node is only

known to itself.

Definition 5.3.1 Let deg(i) be the true degree of a node i. Then, use degv(i) as v’s estima-

tion of i’s degree. See Figure 5.2.

Definition 5.3.2 Let Nv be v’s estimated second degree. Then, Nv =
P

i2Ne
v

degv(i). See

Figure 5.2.

Fig. 5.2: The second neighborhood of a node v and one of its neighbors, i.
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Definition 5.3.3 Consider a network G =< V,E > where V is a set of nodes and E is a

set of connections. For a given node, v 2 V , we denote the neighbors of v as Nev.

Definition 5.3.4 Given a node v and a neighbor i, let pv(i) be v’s estimated probability

that i is connected to a node in each trial according to a binomial distribution.

We employ Erdős-Rényi model [37] to define distribution of degrees of v’s neighbors. Un-

der the model, the probability that the degree of i is k given pv(i) follows a binomial

distribution.

According to Erdős-Rényi model [37], v’s estimated probability that i’s degree is k

given pv(i) is defined as follows.

Prv(deg(i) = k|pv(i), Nv) =
�
N

v

�2
k�1

�
· pv(i)k�1 · (1� pv(i))

n�k�1 (5.1)

However, pv(i) and Nv are not known to v and we explain a method to estimate pv(i) and Nv

using Beta distribution in Definition 5.3.7. Once pv(i) and Nv are estimated, pv(i) for each

neighbor i is adjusted according to a power-law distribution. Finally, v estimates degv(i)

using the maximum likelihood principle. A step by step procedure is given in Algorithm 4.

5.3.3 Defining Observations

Generally, in a social network, a node in the network can observe interactions between its

neighbors and others. For example, on Facebook, a user can observe its friends’ interac-

tions with others through wall postings and likes. Intuitively, the degree of a neighbor is

correlated to the number of observed and unobserved interactions. We define observed ac-

tivities as observations. An example of an unobserved interaction on Facebook includes

reading a posting without making any comments.

Definition 5.3.5 (Observation) Given a node v, an observed interaction between v’s neigh-

bor i and i’s neighbors is defined as an observation, ov(i, t), where t is the time of the
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interaction. Also, a time-ordered list of v’s observations on i is defined as Ov(i) and Ov is

a time-ordered list of
S

i2Ne
v

Ov(i).

We use the beta-binomial distribution to update pv(i) when an observation occurs.

Since the belief about neighbors’ degrees follows a binomial distribution according to [38],

we can compute the probability of a neighbor i having a degree k using Equation (5.1).

Also, as the beta distribution captures the prior and posterior beliefs of a binomial distri-

bution, each node can update the belief about the degree of each neighbor with the beta

distribution considering each observation as a binomial trial.

Now we are ready to discuss a method to compute pv(i) which is needed in Equation

5.1. If the posterior distributions are in the same family as the prior probability distribution,

the prior and posterior are then called conjugate distributions, and the prior is called a

conjugate prior for the likelihood [39]. In Definition 5.3.6, conjugate prior and posterior

distribution are defined when the likelihood function is binomial.

Definition 5.3.6 (Conjugate distributions) If a prior distribution of pv(i), v’s estimation

of the probability that i is connected to an additional node, follows Beta(a, b) and if the

likelihood has a binomial distribution, i.e., f(x|pv(i)) =

�
n
x

�
(pv(i))

x
(1 � pv(i))

n�x, the

posterior distribution of pv(i) given x is Beta(a+ x, n+ b� x).

Next, we extend the idea from Definition 5.3.6 to compute pv(i) in Definition 5.3.4,

given a node v and its neighbor i.

Definition 5.3.7 Given a node v, pv(i) follows Beta(deg(v), deg(v) + 1). Then the esti-

mated posterior distribution of pv(i) is Beta(deg(v)+ |Ov(i)|, Nv +deg(v)+1� |Ov(i)|).

Definition 5.3.7 proposes a method to estimate pv(i). This process is repeated for each

observation, ov(i, t) as described in Algorithm 4. The two parameters for the beta distribu-

tion represent the estimated degree of i and the estimated second degree of v, respectively.
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Since v is only aware of its own neighbors before any observation has been made, v’s initial

estimation of the second degree is deg(v) + 1 (the number of v’s neighbors plus itself), as

in line 6 of Algorithm 4. Also without any information about neighbors’ degrees, initially

v assumes for all the neighbors have the same degrees with itself [38], as in line 5 of Al-

gorithm 4. Then, upon each observation, v updates pv(i) with the expected value of the

posterior beta distribution and update degv(i) with k that gives the maximum likelihood,

Prv(·) as defined in Equation (5.1), as in line 8-16 in Algorithm 4.

Algorithm 3 An Algorithm for Estimating Neighbors’ Degrees
1: Input: Ov = {ov(i, t)|i 2 Nev}
2: Output: {pv(i), degv(i)|i 2 Nev}, Nv

3: for all i 2 Nev do
4: pv(i) deg(v)

2⇤deg(v)+1

5: degv(i) deg(v)
6: Nv  deg(v) + 1

7: end for
8: for each ov(i, t) 2 Ov do
9: vel(ov(i, t)) 1

t�t0

10: if
R t

0 vel(ov(i, t))dt � 0 then
11: pv(i) deg(v)+|O

v

(i)|
2⇤deg(v)+N

v

+1

12: pv(i) p
v

(i)P
l2Ne

v

p
v

(l)

13: Nv  
P

j2Ne
v

degv(j)
14: degv(i) argmaxk{Prv(deg(i) = k|pv(i), Nv)}
15: end if
16: end for

Definition 5.3.7 is implemented in Algorithm 4 to estimate the degree of each neighbor

and the second degree of a node. Each node executes Algorithm 4 locally to estimate

degrees of its neighbors without help of global knowledge about the network. From line

4-6 in Algorithm 4, the node initializes the variables as explained in Definition 5.3.7. From

line 11-14, v updates estimations of degv(i) upon each observation. In line 14, in particular,

the binomial distribution from Equation (5.1) is used to find the degree which gives the

maximum probability of Prv(deg(i) = k|pv(i), Nv), where k is tested from 1 to Nv. In

line 12, Barabási-Albert algorithm [33] is applied after each estimation to redistribute pv(i)
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since many social networks are known to follow a power-law degree distribution [40].

5.3.4 Stopping criterion for the algorithm

Observations can be unlimited for real social networks. Therefore, without using a stopping

criterion, a node could run Algorithm 4 forever. We use the velocity of observations as a

soft stopping criterion. Notice that our algorithm is an online algorithm that can stop and

restart depending on the velocity value defined in Definition 5.3.8. It is a soft stopping

criterion because the value of velocity changes positively or negatively over time.

Definition 5.3.8 (Velocity) Consider a node v and its Ov(i). Given any two consecutive

observations from Ov(i), say ov(i, t0) and ov(i, t) where t0 < t, the velocity associated with

ov(i, t) at time t, i.e., vel(ov(i, t)), is 1
t�t0 . If the observation ov(i, t) is the first observation

in Ov(i) then vel(ov(i, t)) is zero. Notice that time of occurrence, say t, is relative time.

Upon each observation, an observer node (in our algorithm, node v) not only updates its

belief about the degree of the observee node (in our algorithm, node i), but also compute

the velocity associated with each observation.

Definition 9 explains how velocities of observations are used to stop and resume the

degree estimation process.

Definition 5.3.9 (Stopping criterion) Given a node v and a neighbor i, for each observa-

tion ov(i, t), v can compute the sum of the velocities from 0 to t using
R t

0 vel(ov(i, t))dt.

Algorithm 4 stops the degree estimation of i if
R t

0 vel(ov(i, t))dt < 0 and begins the esti-

mation process again when the integral becomes positive,
R t

0 vel(ov(i, t))dt � 0.

Notice that the stopping criteria only applies to the neighbors of v that satisfy the con-

ditions described. At any given time, a node v can refer to the current estimated degrees of

neighbors.
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5.3.5 Proportionality

Proportionality is a ratio of observations to the degree of each neighbor. We formally

define proportionality constant in Definition 5.3.10. The proportionality constant is used

only for analysis purposes since true degrees of neighbors are not known to each node.

Definition 5.3.10 (Proportionality constant) We define the proportionality constant, cv(i),

as |O
v

(i)|
deg(i) for all i 2 Nev.

Note that cv(i) equals 1 only when the number of v’s observed interactions of i, |Ov(i)|,

is the same as i’s degree, deg(i). Since it is impractical that v observes the exact same

number of interactions of i as i’s degree, i.e., cv(i) = 1 for all i 2 Nev, merely counting

the number of observations to estimate neighbors’ degrees is not enough.

5.4 Experiments

We present two experiments to evaluate our algorithm. First, we apply the algorithm on a

scale-free network created by Barabási-Albert Model [33]. Then we apply the algorithm

to a real world social network data from Facebook.

5.4.1 Degree Estimations on Neighboring Nodes in Barabási-Albert

Network

We generated a scale-free network based on Barabási-Albert model using Cytoscape [41].

We consider each edge as an interaction between the two nodes connected; this is the same

as the base case when the edge belonging to these two nodes represents the only interaction

made by the two nodes. Recall that an observation is defined as ov(i, t) where v is the ob-

serving node, i is the observed node, and t is the time of the interaction. Then, we generate

the time stamps t using random assignments. For example, consider a node v that has two

neighbors, i and j, with degrees 1 and 3 respectively. Then, v’s observation set includes
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4 observations, i.e., Ov = {ov(i, t1), ov(j, t2), ov(j, t3), ov(j, t4)} where {t1, t2, t3, t4} is a

randomly generated ordered time sequence.
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Fig. 5.3: Estimated neighbors’ degrees over each observation.

The generated scale-free network has 300 nodes and 2561 edges. To study an average

behavior, we conducted multiple experiments with different time sequences. The error is

measured as the estimated degree divided by the true degree for each neighbor subtracted

from 1, i.e., (1� deg
v

(i)
deg(i) ) for all i 2 Nev for a node v, where the perfect accuracy is 1. Then

we compute the mean squared errors of the accuracies for each node. We define the mean

squared error (MSE) for each node, v, as 1
deg(v)

P
i2Ne

v

(1� deg
v

(i)
deg(i) )

2.

Figure 5.3 shows changes of estimated degrees over each observation. We picked a

node with a typical behavior, which has 21 neighbors and we show the second degree
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Noise probability 0 0.2 0.4 0.6 0.8
MSE 0.6111 0.6132 0.6921 0.6831 0.7092

MSE (deg > 5) 0.2037 0.2151 0.2265 0.2297 0.2394

Table 5.1: Mean squared errors with increasing noise.

estimations on four of the neighbors. The straight lines in each subfigure represent the

true degrees of the observed nodes (5, 20, 17 and 26 respectively). The initial estimation of

neighbors’ degrees is the degree of the observer node, which is 21 in this case. x-axis shows

the number of observations so far and y-axis shows the estimated degrees of the observed

nodes over the observations made so far. For example, in Figure 5.3a, the observer node

had 5 observations on the observee node and the estimated the degree of the observee is 9

at the end of observations. In Figure 5.3b and 5.3c, the estimations are reasonably accurate

(20 to 21 and 17 to 19 respectively). On the other hand, in Figure 5.3a the estimation is 9

but the true degree is 5. This is because the true degree value is quite small. Our algorithm

seems to have a lower bound for the true degree values for a reasonable performance. We

show this result in Table 5.1 by comparing mean squared errors for the nodes with degrees

above 5.

We show MSEs with different noise probabilities in Table 5.1. We also show the results

of nodes with degree values above 5 only. When the noise probability is 0, we use degrees

of nodes as number of observations, i.e., cv(i) = 1 for all v 2 V and i 2 Nev. Then, we

add or remove an observation from each node with the probability of 0.2, 0.4, 0.6 and 0.8,

respectively for each experiment. As the table shows MSE values do not increase much

over increased noise probabilities.

We also computed MSEs for nodes that have degrees greater than 5 only since nodes

with very small degrees have relatively high value of MSE. Since each observer node’s ini-

tial estimations for neighbors’ degrees are the degree of itself, it takes a number of observa-

tions to converge to true degrees of neighbors. However, when the number of observations

is too small, i.e., small degrees, in this case, the resulting estimation is likely to produce
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Proportionality
constant (c) 1 2 3 4 5

MSE 0.6111 0.8104 0.8120 0.8047 0.8096
MSE (deg > 5) 0.2037 0.2128 0.2001 0.2205 0.2097

Table 5.2: Mean squared errors with different proportionality constants.

more errors. For example, if a node with degree 1 was estimated to have degree 3, than the

MSE is 4 which hurts the average MSE. We observe that the algorithm is resilient to noises

since MSE values do not increase much as more noise is added.

We test the performance of the algorithm with different proportionality costants, i.e.,
|O

v

(i)|
deg(i) = c for all v 2 V and i 2 Nev, where c = 1, 2, 3, 4, 5 (Note that we only mul-

tiply the number of observations since degrees of nodes are fixed). This is to test if the

algorithm can tolerate numerous number of observations as it often happens in real world

applications. Table 5.2 shows MSEs with different proportionality constants defined in

Definition 5.3.10. We use the proportionality constants as estimators to compute the MSEs

in each experiment. We observe that both MSE and MSE(deg > 5) stays about the same

as c increases, which implies that the algorithm can estimate degrees of neighbors with

accurate proportionality.

5.4.2 Degree Estimations on Neighboring Nodes in Facebook User

Network

In real applications of social networks, the number of observations rarely agrees with (if

not at all) the degrees of observed nodes (observees). In Facebook user network, some

Facebook users may not have any activities at all even when they have many friends and

other users may have more activities than the number of friends. Such “activities” include

postings on the walls (observable) and reading the postings from the walls (not observable).

If the observee’s page is actively engaged with other users, the observer can observe more

observations of the observee than its number of friends. Also, if the observee is not en-
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Statistics Value
] Nodes 60867
] Edges 1048576

Average degree 17.22
Network diameter 15

Average Path Length 4.39
Modularity 0.602

] Communities 219

Table 5.3: Statistics of the Facebook user network data.

gaged, the observer may not encounter any observation on the observee. We examine our

algorithm with real Facebook user network data to evaluate how the algorithm performs

when not all interactions are observed.

Facebook is one of the most popular and widely used online social network all around

the world. By the end of March 2014, Facebook had 1.28 billion monthly active users

worldwide and 802 million users log on to Facebook daily, according to Facebook news-

room. We used data sets from [42] which contains links between users and communications

(collected from September 14, 2004 to January 22, 2009) among users via wall feature. The

resulting network from user links consisted of 60, 867 nodes and 1, 048, 576 edges. Some

statistics of the network are given in Table 5.3.

The smallest degree in the network is 1 and the largest degree is 1, 903 where the av-

erage degree is approximately 17, which tells us there are only a few users with very large

degrees. Also, the maximum distance between two users (network diameter) is 15 and the

average distance between any two users is 4.39 which are comparable with other social

networks presented in [43]. Finally, the modularity of 0.602 is considered relatively high

as [44] presented that the value usually falls between 0.3 and 0.7.

One of the important and innovative assumptions that our algorithm makes is that the

degree distribution of the social network follows a power-law distribution. In Figure 5.4

(a), we show that the degree distribution of Facebook users from the data obeys power-law.

In Figure 5.4 (b), we show the cumulative distribution function of x, P (x), where x is a
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MSE MSE(>50) Observed Estimation Ratio
Average 1.3906 0.7345 26.90% 0.9214

Table 5.4: Statistics of estimation results on Facebook user network.

degree of a node. We highlighted the graph presented in Figure 5.4 (b) to clearly see the

power-law distribution (x ranges from 1 to 200). To verify if the degrees of Facebook users

truly follow a power-law distribution, we use a goodness-of-fit test via a bootstrapping

procedure, suggested by [13]. The hypothesis, that the data set actually follows a power-

law, is tested by estimating the model parameters and then calculating the goodness-of-fit

between the data and the power-law. We used poweRlaw package by [45] to perform the

test. According to [13], the hypothesis, that the given data points follow a power-law, is

valid if the resulting value is greater than 0.1. Facebook user data set produced a value of

0.98 which proves that the degree distribution of Facebook users follows a power-law.
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Fig. 5.4: Degree distribution of Facebook users follows power-law.

The Facebook wall communication data shows the source (the user who writes to a

wall), the target (the user whose wall has received a message from the source), and the time

of the interaction (when the message was written to the wall). Notice that reading activities

are not included in the data. Any user in Facebook can run our algorithm to find out how

many friends each of its friend has.
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To test the performance of our algorithm, we run this algorithm for each user, for each

observation (wall communication) from its neighbors. Table 5.4 shows the results of how

the algorithm performs given Facebook wall activities. We compute the deviations from the

perfect proportionality (Estimation ratio) assuming the proportionality constant is 1, i.e.,

1 � |O
v

(i)|
deg(i) . In the table, Observed column shows the average percentage of observations

each user could make. For example, if the degree of a user a is 10 and its neighbor b could

observe 10 wall communications of a, than it is 100% observed. In this dataset, only 26.9%

is observed which is challenging for the algorithm. It is comparable with the case when the

proportionality constant (c) is 4 in Table 5.2 (since 25% observed is approximately when

c =

1
4 ). As MSE and MSE(>50) columns in Table 5.4 shows, the results are not as good,

compared with the synthetic scale-free network used in Section 5.4.1. However, MSE(>50)

of the estimation is 0.7345 which is close to the results from the generated network. Also,

the average Estimation Ratio (estimated degree divided by true degree) is 0.9214 (1 being

the perfect estimation) which is high.

If we purely count the number of observations to estimate degrees of neighbors, the

Estimation ratio would be only 0.2690 compared to 0.9214. By applying our algorithm to

estimate degree of neighbors, we achieved 0.9214 accuracy ratio which is more than three

times better result.

5.5 Chapter Summary

Traditional research focused on estimating degree distributions using macro-level algo-

rithms. Because the size of network is huge, usually sampling is made to estimate degree

distributions [38]. Our focus is to compute a precise degree of each neighboring node

from an observer node within the network (therefore, micro-level approach). Our algo-

rithm accommodates dynamic natures of online social networks, introducing the notion

of observations which are obtained from interactions (or communications) among nodes
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(users). However, if we merely count the number of observations for the estimated de-

gree of a neighbor, only active neighbors are discovered. In other words, in Facebook wall

communications, if we simply count the number of observations to be estimated degrees

of observed nodes, only the users who explicitly write on observee’s walls are counted. In

reality, there are more readers (who silently read communications of others) than writers

(who writes on walls). Although readers are currently inactive, they are potential writers

and they should be also considered when estimating degrees of neighbors. The proposed

algorithm combines the concept of Bernoulli trials and a power-law distribution to reason

about hidden neighbors’ of neighbors (readers).

In our experiments, we tested the algorithm on a synthetic scale-free network and Face-

book user network. For the scale-free network experiment, we presented the mean squared

errors of the accuracies. We added noise observations to show that the algorithm can esti-

mate degrees of neighbors with incomplete information. In Facebook user network exper-

iments, we tested the algorithm with wall communications among users as observations.

Due to incomplete observations, average proportionality constant is as low as 0.2690, the

results are not better than that of the scale-free network experiment.

The proposed algorithm is based on the assumption that the number of activities of

nodes is positively related to the degrees of nodes. In real life, the assumption is reasonable

because people who have more connections have more social activities compared to people

who do not.

However, there are certain relationships that are unique to online social networks. For

example, many celebrities are neighbors with fans on online social networks. In this case,

it becomes difficult to estimate the degrees of the celebrities from their neighbors point

of view because they only interact with very few of their online neighbors. Note that,

if degrees are estimated based only on the number of interactions (observations), hidden

neighbors (connected but never interact with) may not be discovered. Our algorithm can

capture hidden but potentially active neighbors because it can infer about unseen activities
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through the mechanisms of Bernoulli trials and power-law distributions.

Our algorithm can be further improved by utilizing additional information. In some

applications, types of activities matter and certain types of observations are more valuable

in estimating degrees of neighbors. By selectively using observations instead of all the

observations, we can improve quality of the estimations. For example, on Twitter network,

activities such as follow should be weighted more compared to the activities such as tweet

and retweet. We can also extend our work by applying our algorithm recursively to enable

users to capture the global view of the network, e.g. degree distributions of the entire

network it belongs.
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CHAPTER 6

CONVERGENCE OF TRUE

COOPERATIONS IN BAYESIAN

REPUTATION GAME

In this Chapter, we introduce Bayesian games where players have asymmetric information

about each other. In Bayesian games, players have initial beliefs about the type of other

players and updates the beliefs according to Bayes’ Rule. We consider repeated games

since the reputation values are used as part of the payoffs, which is often ignored in one-

shot games. By introducing reputation in the game, we show how reputation values can

influence behaviors (decision making) of agents (players).

6.1 Bayesian Reputation Game

Reputation management is used in many distributed environments to aid decisions of in-

dividual entities on who to interact with for their maximal gain. There are two general

approaches to reputation management: centralized and distributed. A centralized method

require a shared information server that provides a single view of reputations on the enti-
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ties. In other words, a reputation of an entity is implicitly agreed upon everyone else in

the system. In a distributed management, similar approaches exist. We, however, consider

systems in which each entity keeps private reputation values for other entities based on past

interactions. For example, in a distributed social network, when a user encounters a new

user, it can ask its neighbors (e.g., friends) about the new user’s reputation. The user can

ask multiple neighbors and average the responses or among its neighbors, the user selects

a neighbor who are most likely to answer truthfully based on the neighbor’s reputation and

the degree. We propose a bayesian reputation game that captures the motivation of users to

accept the request and answering truthfully. Our model is unique in that unlike traditional

game theory models, there is no immediate reward structure for actions of players. It is

however possible to analyze the strategic interactions using game theoretical analysis as

discussed later.

In Section 4.2.7, we introduced ask function which agents can use to inquire about other

agents reputation values. When an agent wants to know reputation of other agents, it asks

to all of its neighbors and aggregates the answers proportionally weighted by degrees of

neighbors. However, there exist some disadvantages for asking to all of the neighbors at

the same time compared to selecting a neighbor to ask. First, asking to everyone around

(all the neighbors) is computationally more expensive than asking to a selected neighbor

(or a few of selected neighbors). For example, if an agent with 100 neighbors sends request

to all of its neighbors, it needs to compute weights for all the neighbors to aggregate all the

answers and also it has to wait for all the neighbors to respond. Second, neighbors are more

likely to respond quickly, if at all, if they are asked for a favor individually. In other words,

individuals feel more responsibility when they take charge of an entire task. Third, it is

hard to detect deceptions when neighbors intentionally submit incorrect answers and the

agent is better off by selecting a neighbor who is the most likely to give a truthful answer.

Therefore, agents are encouraged to be selective about whom they ask. In the following

sections, we describe how agents can select suitable neighbors to ask and the resulting
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consequences in game theoretic formulation.

6.2 Previous Studies on Reputation Computation

6.2.1 Trust and reputation management

The concept of trust and reputation is employed by many disciplines including Internet/mobile

security, E-commerce, multi-agent systems and social networks. Many methods have been

proposed in the literature [17, 19, 46–49] for reputation management.

Reputation captures behavioral history of the counterpart while trust is used to predict

expected future behaviors. Therefore, being able to derive trust from reputation is impor-

tant for decision makings under uncertainties. For example, in online commerce systems,

buyers rely on reputation of sellers to select whom they want to interact with and, there-

for, sellers want to increase their reputation values to attract more buyers. Our proposed

game suggests that we can achieve convergence of true cooperation by using reputation as

expected return in interactions.

Reputation contains two types of information. One comes from direct interactions with

immediate neighbors of a node and the other comes from aggregating information from in-

direct neighbors. Since the evaluation of direct interactions is application dependent, many

studies focus on designing algorithms for aggregating reputation. [17] and [47] discuss rep-

utation aggregation mechanism when a node receives information from its neighbors. [17]

introduces a distributed voting mechanism where the weights of votes are proportional

to the degrees of voters. [47] introduces a differential gossip algorithm where the gossip

weights depend on trust values of nodes. Our algorithm is also motivated by the process

of aggregating reputation. In our game, although there is no direct reward for voting or

replying when asked about reputation of others, players are encouraged to cooperate by the

expected increase in their reputation held by the requesters.
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6.2.2 Bayesian games for online reputation

Online portals or communities employ reputation mechanisms to discourage non-cooperative

behaviors or free ridings. When the mechanism is properly designed, the users are encour-

aged to cooperate by punishing the misbehaving ones with an implicit threat of lowering

reputation values. To be able to utilize reputation as incentives, the users should be inter-

ested in future interactions. In game theoretic terms, we consider repeated games since

reputation is simply ignored in one time games for it has no effect to future outcomes.

Many studies have been presented to explain real world scenarios. [50] introduces a

game-theoretic model for reputation in online auctions, especially for eBay auction site.

They define reputation games where each stage game is bayesian game with asymmetric

information, i.e., the buyer does not know whether the seller is honest or not. [51] assumes

that uniform punishment strategies are available and proposes that the Nash Equilibria,

under incomplete information, of infinitely repeated game are equivalent to payoffs of the

equilibria where players reveal complete information. [52] presents a collective reputation

model and studies under what environments the reputation is persistent. They state that

the reputation of a group can persist if the environment evolves stochastically as actions of

group members are strategic complements.

Unlike other games where payoffs are physical (or monetary) gains, we utilize private

reputation values as expected payoffs. In our game, although the actions taken by both

players are disclosed after the game, the payoff for each player is not shared. Therefore,

the game models incentives of players to be cooperative when there is no exchange of

goods.

6.3 Bayesian Games

In this section, we introduce Bayesian reputation game. A Bayesian reputation game is a

non-zero sum game where players can compute payoffs for each action based on reputation
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and estimated degrees of the opponents. Figure 6.1 shows two neighboring agents, i and

j, having reputation and estimated degree values for each other. We consider nodes in a

network are players and each node can inquire about reputation of another node.

Fig. 6.1: Players i and j on a network.

6.3.1 Definitions of Bayesian reputation game

A Bayesian reputation game is a tuple (N , A, ⇥, p, u) where:

• N is a set of agents;

• Arow= {Ask, Not Ask}, Acolumn = {CTrue, CFalse, D}, where Arow is the set of actions

available to the row players and Acolumn is the set of actions available to the column

players;

• ⇥

column = Honest ⇥ Dishonest where ⇥j is the type of player j;

• pij 7! [0, 1] is player i’s estimated probability of player j being type Honest; and

• Utilities ui: Arow⇥ Acolumn ⇥⇥! R

A player who initiates the game is the row player and the column player follows. Row

players and column players have different sets of actions available, i.e., Arow and Acolumn.
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Column players can be either type Honest or Dishonest. The type of a column player is

only known to itself and the row player guesses the type the column player based on the

degree and the reputation of the column player.

Figure 6.2 explains the scenario of the game sequentially. The row player i decides

whether to take Not Ask (NA) or Ask (A). If i chooses NA the game is over and both players

i and j gets payoffs of zero. The game gets more interesting when i takes A. If j is of type

Honest, j can cooperate to i by giving truthful information (CT) or defect by denying to

answer (D). If j is Honest and it has no information on what was inquired by i, j should

defect (D). On the other hand, if j is of type Dishonest, either j tries to deceive i by

intentionally providing false answer (CF) or it can decide not to answer (D). The payoffs

for both players are given at the end of the tree. We represent the same game in normal

form in Table 6.3.

j 

i 

j 

0, 0 
1 � pijpij

fij � cij , fji � cji

�fij � cij , �fji

�fij � cij , fji

�fij � cij , �fji

NA A

CT
D

CF D

Fig. 6.2: Single stage reputation game.

Before we discuss the payoffs in Table 6.3, we define fij as follows.

fij =
(rij + 1)

2

⇥ dij
maxd

i

(6.1)
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CTrue D
Ask j fij � caskij , fji � canswer

ji �fij � caskij ,�fji
Not Ask 0, 0 0, 0

Table 6.1: Type Honest
CFalse D

Ask j �fij � caskij , fji �fij � caskij ,�fji
Not Ask 0, 0 0, 0

Table 6.2: Type Dishonest

Table 6.3: Bayesian reputation game in normal form.

fij represents i’s expected gain based on j’s reputation and the degree. Therefore, when

i takes Ask as its action and j takes CTrue from Table 6.1, i’s payoff is fij � caskij where caskij

is i’s cost of taking Ask. Likewise, j’s payoff is fji � canswer
ji where canswer

ji is j’s cost

of computation (i.e., the cost of computing the answer). In Table 6.2, where j is of type

Dishonest, the payoff for i when j takes CFalse is �fij � caskij because, despite i’s cost to

ask, j deceives i by giving a non-truthful answer. However, j’s payoff is fji since there is

no occurred cost for j and j thinks that i does not know the answer is false and appreciates

it. When i decides not to ask (Not Ask), the payoffs for both player is 0.

Here we define the cost function of asking which is a logarithmic function dependent

on the reputation and the degree of the opponent.

caskij =

dij
maxd

i

⇥ log10(
rij + 1

2

+ 1) (6.2)

The cost function for asking, cask, is similar to the reward function, defined in equation

(6.1), in that it considers the reputation and the degree of the opponent. When i wants to

inquire j about some information, if j is reputable (high reputation) and influential (high

degree), i’s expected satisfaction (fij) is high if j cooperates and i’s disappointment is

high (�fij) if j defects. The occurred cost (caskij ) reflects approachability as it is harder to

approach an individual if he is reputable and influential.
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Fig. 6.3: Cost functions for ask and answer.

Likewise, we define the cost function for answering which is a logarithmic function

dependent on its own degree.

canswer
ji = log(

dj
maxd

j

+ 1) (6.3)

The cost of answering is only dependent on its degree since when j is asked, j gathers

information from its neighbors. It is worth noting that both functions are bounded by 0 and

1 (0  f, c  1).

Figure 6.3 shows the cost functions (6.2) and (6.3). As seen in Figure 6.3a, the value of

caskij increases as reputation and degree increases while the value of canswer
ji only depends

on degree as shown in Figure 6.3b.

In Figure 6.4, we show how a row player i estimates the type of the column player j,

pij , based on estimated reputation and the degree of j. Player i assumes that j is more

likely to be of type Honest as j’s reputation values and j’s relative degree (compared to

other neighbors of i) is higher. More specifically, if a point (rij,
d
ij

max
d

i

) is on the line

ri +2

d
i

max
d

i

� 1 = 0, pij is 0.5. If (rij,
d
ij

max
d

i

) is above the line, pij is 0.5 plus the point-line

distance and vice versa.
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Fig. 6.4: Type estimation based on reputation and degrees

CTrueCFalse CTrueD DCFalse DD

Ask j
(2pij � 1) · fij � caskij ,
fji � pij · canswer

ji

(2pij � 1) · fij � caskij ,
(2pij � 1) · fji � pij · canswer

ji

�fij � caskij ,
(1� 2pij) · fji

�fij � caskij ,
�fji

Not Ask 0, 0 0, 0 0, 0 0, 0

Table 6.4: Extended form of Bayesian reputation game.

We formally define pij in (6.4). As referenced from ReMSA [17], we assume �1 
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(6.4)

6.3.2 Computing Bayesian Nash Equilibrium (BNE)

Pure Strategy BNE

We collapse incomplete information problem as a static extended game with all possible

strategies, assuming the probability of a column player being the type Honest (Table 6.1)

is pij . The new extended game is shown in Table 6.4.

For a row player, from Table 6.4, there is no dominant strategy since the payoff of Ask
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y (1� y)
CTrue D

x Ask j fij � caskij , fji � canswer
ji �fij � caskij ,�fji

(1� x) Not Ask 0, 0 0, 0

z (1� z)
CFalse D

x Ask j �fij � caskij , fji �fij � caskij ,�fji
(1� x) Not Ask 0, 0 0, 0

Table 6.5: Mixed strategy

j could be positive or negative depending on fij and caskij values.

For a column player,

• when 2⇥ fji = canswer
ji , then the payoffs for the strategies CTrueCFalse and DCFalse are

equal and CTrueD and DD are also equal. However, CTrueCFalse and DCFalse always

dominates CTrueD and DD;

• when 2⇥ fji > canswer
ji , then CTrueCFalse is the dominant strategy;

• when 2⇥ fji < canswer
ji , then DCFalse is the dominant strategy.

Mixed Strategy BNE

In order to obtain mixed strategies, assume the probabilities of playing each action are as

follows. A row player plays Ask j with the probability of x, the column player of type

Honest plays CTrue with the probability y and the column player of type Dishonest plays

CFalse with the probability of z. The assignment of the probabilities are shown in Table 6.5.

The players best responses are as follows.

• The row player would play Ask j instead of Not Ask if

p[y(fij�caskij )+(1�y)(�fij�caskij )]+(1�p)[z(�fij�caskij )+(1�z)(�fij�caskij )] >

p[y0 + (1� y)0] + (1� p)[z0 + (1� z)0].

(i) 2ypfij � fij � caskij > 0) x = 1.
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• The column player’s best response with type Honest (Table 6.1): the column player

would play CTrue instead of D if x(fji � canswer
ji ) + (1� x)0 > x(�fji) + (1� x)0.

(ii) x > 0, 2fij > canswer
ji ) y = 1.

• The column player’s best response with type Dishonest (Table 6.2): the column

player would play CFalse instead of D if xfji + (1� x)0 > x(�fji) + (1� x)0.

(iii) x > 0) z = 1.

(iv) x = 0 ) z 2 [0, 1]. Since we consider the game to be sequential, if x = 0, the

game ends.

6.3.3 Extensions to repeated games

In the previous section, we have introduced Bayesian reputation game and discussed BNE

concepts based on a single stage game. We extend the game to be repeated in order to

observe behavioral changes of players. In repeated games, players consider not only the

payoffs of the current game, but they also consider expected future returns, i.e., how the

current action influences future outcomes.

Updating Rewards into Reputation

Each time the game is played, both the row and column players get payoffs described

in Table 6.3. The payoffs represent perceived gain of reputation and appreciation. Row

players (requesters) update the private reputation values of the opponents after each game

played according to given payoffs.

We expect that if the game is played repeatedly, the game promotes CTrue and the aver-

age reputation values for all the players increase.
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Selecting a column player

We extend the game in Table 6.3 to a multi-player game. The row player i can select a

column player based on utilities of the game. For example, if i has 5 neighbors as in Figure

6.1, i computes expected return from each of its neighbor based on the payoffs given in

Table 6.3. Then i plays the game with the selected neighbor, j. This is exactly same as i

having di + 1 possible actions, where di is degree of i, which are {Ask 1, Ask 2, ..., Ask j,

..., Ask di, Not Ask}, since i will plays an action which gives the highest expected return, in

this case Ask j. This process is done by the function pickCP layer() in Algorithm 4.

Repeated Games with Discounting

In this section, we introduce a repeated reputation game, where games in the future are

discounted by a discount factor, � 2 [0, 1). If players care enough about future returns,

then any equilibrium that gives payoffs higher than the stage game NE can be sustained by

the threat of playing the stage game NE. We discuss the minimum � value to sustain CTrue

over CFalse.

The repeated game �(n, �) is a game where the stage game � is repeated n times, and

the payoffs are given as below.

u(�(n, �)) = ⌃

n
t=1ut(�)�

t (6.5)

We want to compare the payoffs of a repeated game for a column player when it plays

CTrue and CFalse. If the column player plays CTrue in the first stage game, the row player will

keep choosing Ask j since the column player was selected by the row player which implies

that the row player’s perception of the column player, i.e., fij , was high. Hence, the column

player can either play CTrue infinitely or play CFalse n times and not asked by the row player

again, which gives payoffs of 0 from then on.

• If the column player plays CTrue infinitely, the discounted payoff is
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uj(�(1, �), C1
True) =

fji � canswer
ji

1� �
.

• If the column player plays CFalse infinitely, the discounted payoff is

uj(�(1, �), C1
False) =

fji(1� �n)

1� �
+ 0,

where after playing CFalse n times, the row player decides not to ask again.

• If the column player plays Defect infinitely, the discounted payoff is

uj(�(1, �), Defect) =
� fji(1� �n)

1� �
+ 0,

where after playing Defect n times, the row player decides not to ask again.

Therefore, the column player will sustain CTrue when the game is infinitely repeated, if

fji � canswer
ji

1� �
>
� fji(1� �n)

1� �
when type is fixed, or

fji � canswer
ji

1� �
>

fji(1� �n)

1� �
when

type is dynamic.

6.4 Simulation of the Reputation Game

In this section, we design a simulation to observe behaviors of the players when the game is

played repeatedly. We assume that the players care about the future returns (i.e., they know

that the game is repeated) and players are aware of the evaluating nature (i.e., their actions

are evaluated by the opponent although they are not informed of the result of evaluation).

6.4.1 The algorithm

We describe how we implemented the bayesian reputation game in Algorithm 4. We use

a randomly generated scale-free network which has 500 nodes and 5000 edges. Nodes

are players and each player can play games with its neighbors. Any player can be a row

player or a column player. Each player initializes the reputation values of neighbors to

0, i.e., neutral, and the types for players are assigned (0 ⇠ 249 players are Honest and
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250 ⇠ 499 players are Dishonest). Then each player selects from its neighbors who to Ask

(pickCPlayer()) based on expected payoffs. Then the row player computes which action to

take (computeRACtion()) and the column player also computes its own action considering

its type and discounted expected utility (computeCAction()). If the row player played Ask

(i.e. there was an interaction), the row player updates its private reputation value about the

column player based on which action the column player played.

Algorithm 4 Simulation of infinitely repeated bayesian reputation game
1: Input: P =< pi >
2: Output: A =< ai >
3: for all pi 2 P do
4: for all pj 2 Nei do
5: rp

i

p
j

 0

6: end for
7: end for
8: for all pi 2 P do
9: rP layer  pi

10: cP layer  pi.pickCP layer()
11: rAction rP layer.computeRAction(cP layer)
12: cAction cP layer.computeCAction(rP layer)
13: if rAction = Ask then
14: rP lyer.updateReputation(cP lyer, cAction)
15: end if
16: end for

6.4.2 Results

In this section, we show empirical results of the proposed reputation game played according

to Algorithm 4. We use the scale-free network for the following experiments as most peer

to peer and social networks follow the power law distribution [53]. The network has 500

nodes (players) and 5000 edges (relations).

Convergence of actions

Figure 6.5 shows proportions of each action taken by a column player when a row player

takes Ask. We omit the action DFalse since it is dominated by CFalse and never played. Figure
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Fig. 6.5: Proportions of actions with different � values and proportion of the number of
Honest players.

6.5a shows that the true cooperation (CTrue) is sustained after the game is repeated 15 times.

Figure 6.5b shows that DTrue dies out after around 20 iterations. Figure 6.5c shows that

CFalse decreases as the game is repeated and converges to 0.1 (played at 10% of the time).

Figure 6.5d shows the proportion of the Honest players (when the row players decide to

Ask) over time. The proportion of the Honest players quickly converges to a very high

rate, near 0.9. Since, in this experiment, players cannot change their types, the increase in

the proportion of Honest players implies that the Dishonest players are less asked by row

players.

Convergence of reputation

In the previous section, we showed that the choice of action converges to true cooperation.

Since row players will choose Not Ask when expected payoffs from all the neighbors are
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negative (the payoff for Not Ask is zero), the rate of taking Ask decrease over iterations.

However, in some applications such as auctions, sometimes, it is required to take the best

offer (or bid). Therefore, we show how reputation values of players change in both cases,

where row players are allowed to take Not Ask and where row players are required to take

Ask to the best available neighbor. The value n is set to 2 unless mentioned otherwise.

Figure 6.6 shows the convergence of overall reputation values of the players in each

scenario. Although Algorithm 4 is distributed and reputation values are private, for the

purpose of discussion, we summed up perceived reputation values for each player and

divided by the number of neighbors. For example, in Figure 6.1, the sum of i’s perceived

reputation is rji + rki + rli + rmi + rni =
P

j2Ne
i

rji, where Nei is a set of i’s neighbors.

Then the representative reputation value of i is
P

j2Ne

i

r
ji

|Ne
i

| . Therefore, the representative

reputation value of a player is the average reputation value from its neighbors. Note that

we compute this value only for the purpose of analysis. The players are not aware of

reputation values of themselves because the values are kept privately by its neighbors.
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Fig. 6.6: Convergence of the sum of reputation values of players.

As shown in Figure 6.6, the sum of representative reputation values of all players con-

verge after a few iterations, around 10. The plotted lines from all scenarios show very

similar behaviors. The global sum starts from zero because the reputation values of all

players are initialized to zero, it goes down for a while and then it starts to increase and

converges.
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The convergence value is higher when row players are required to take Ask (must ask)

because row players take chances by taking Ask to a neighbor with the highest expected

return. By exploring more neighbors (although not voluntary), row players have more

opportunities to find the best neighbor.

The initial downfalls that are observed in all cases in Figure 6.6 is the periods when row

players are exploring their neighbors. In other words, since the initial (private) reputation

values of all players are zero, the deviation of expected returns from neighbors is small

and therefore row players can explore neighbors for a few initial rounds because the best

neighbor (whose expected return is the highest) keeps changing. After a few interactions

(iterations), the deviation becomes big enough (there exist a neighbor who achieved high

reputation) and the row players exploits the best neighbor from then on.

Dynamic types and convergence behaviors

In the previous experiments, we showed that the actions taken by column players converge

to the true cooperation and the sum of overall reputation values of the players increase and

converge after a few iterations. However, the types of players were fixed throughout the

entire iterations, and therefore, the convergence of actions implies that the row players are

more likely to choose the honest column players to get true cooperation reactions. The

dishonest players still exist (because the type is fixed) but they fell behind and are excluded

from interactions.

To encourage true cooperation even from dishonest players, we design a new exper-

iment where players are allowed to change their types if by doing so they have higher

expected payoffs. Every time a column player is picked by a row player, the column player

can decide its type based on payoffs from both matrices in Table 6.3.

The results presented in Figure 6.7 shows that dishonest players will eventually change

to honest types under appropriate � and n. The common behaviors observed in all subfig-

ures in Figure 6.7 are: 1) the number of row players who take Ask starts from 500 and then
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Fig. 6.7: Number of players with different � and n values.
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decreases until it converges. The convergence point meets with the number of players who

are type honest, 2) the number of column players with type dishonest (same as the number

of players who take CFalse as the action Defect is dominated in dishonest type) decreases

over time and dies out, 3) the number of honest type players increases and all the column

players who are asked play CTrue.

Higher � and lower n values lead to higher convergence point for the number of honest

type players (or the number of players who play CTrue) because higher � value implies more

incentives to player to play honestly for larger future return as well as lower n value. Also,

we found out that the similar convergence behaviors are observed for � value approximately

higher than 4.9. As shown in Figure 6.7c and 6.7d, for the same n value, the convergence

point is higher for the number of honest type players if � is higher. Defect is not played in

this experimental setting because players can now change their types to be dishonest and

play CFalse rather than stay honest and play Defect which is dominated by CFalse.

According to the analysis of the repeated bayesian reputation game from Section 6.3.3,

when we allow dynamic type changes, the true cooperation is sustained if
fji � canswer

ji

1� �
>

fji(1� �n)

1� �
. Since 1� � > 0, the inequality is the same as [fji � canswer

ji > fji(1� �n)] =

[canswer
ji < f�n]. Theoretically, the minimum � value for player j is canswer

ji

f
ji

but since we

used the same � value for all the players, the private � value is not achieved. We found out

that when � > 0.48, the true cooperation could emerge, similar to the behaviors depicted in

Figure 6.7. The maximum n is not bounded which implies that, with high enough � value

(� ! 1), players can tolerate bad behaviors (CFalse and Defect) longer and still reach the

convergence of true cooperations.
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6.5 Chapter Summary

We introduced a bayesian reputation game where private reputation values are used as part

of payoffs. We assume that all the players want to increase their reputation values because

higher reputation gives more opportunities for interactions where players get paid off. Each

player becomes a row player and a column player. A row player can make a request (Ask) to

a column player who is most likely to perform the requested task properly. The process of

deciding who to request is based on the discounted expected utility analysis with estimation

of types. To test the algorithm, we designed three sets of experiments. First, we follow the

proposed algorithm and show the convergence point of each action and the proportion of

the action CTrue is sustained. Second, we enforce row players to request each iteration (i.e.,

they are not allowed to take Not Ask) and compare the global average reputation values

of players with the original scenario. Although both scenarios show similar behaviors

where the overall reputation values increase and converge, by enforcing the row players

to play Ask we achieve higher convergence values. Third, to see if players choose to be

honest when changing type is allowed, we designed a dynamic type assignment whenever

a column player is requested by a row player. The results show that with high enough �

values, the dishonest type dies out and the players converges to the honest type.

We made three assumptions in this paper. One is that all the players are interested

in increasing their reputation values held by neighbors so that they have more interaction

opportunities. This assumption is reasonable as in game theory the players are assumed

to be rational. Second is that all the players care about the future returns. Again, the

assumption is reasonable because if players are rational they should care bout the future to

maximize their overall utilities. Lastly, we assume that the players are aware of the fact that

their actions are evaluated by opponents. This does not imply that the players know how

they are evaluated or the result of the evaluation about their actions. The assumption holds

in a real world since people know they are responsible for their actions when interacting

with others unless they are absolutely sure that the others will forget about what they did.
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Under these reasonable assumptions, the proposed game promotes honest cooperations

even when players can choose dishonest cooperations which cost less.

Since our algorithm is distributed and does not assume any external conditions, we ar-

gue that, if the assumptions are met, our algorithm models the real world scenarios. In other

words, in any distributed multi-agent systems, the true cooperation among agents eventu-

ally emerges without help of outside constraints. For example, consider a case where a well

functioning distributed system exists and some intruders come and try to take advantage of

the cooperative nature of the agents in the system. The intruders may get chances to take

advantages at first, but soon enough the intruders get excluded from interactions because

even if they do not care about their reputation or future returns, the reputation values held

by other agents about them punish them eventually. Also our algorithm is applicable to

large size distributed systems without overheads since the algorithm is only run privately

by each agent, which also implies that we do not need to assume that other agents in the

system are using the same algorithm.
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CHAPTER 7

CONCLUSIONS AND FUTURE

RESEARCH

In this thesis, we have introduced two algorithms to automatically compute authors’ rep-

utation from documents, a model to recursively compute reputations of nodes on social

networks, called ReMSA, a degree estimation algorithm, and a bayesian game that mod-

els behaviors of users when there exist dishonest interactions. We have shown that our

reputation computation algorithms achieve accurate results by comparing them with repu-

tation values computed by existing methods. To relax the assumption and generalize the

introduced model, ReMSA, we developed a degree estimation algorithm, since the degree

information was assumed to be given in ReMSA. To be able to observe behaviors of users

based on reputation values, we designed a bayesian reputation game where there are two

types of users exist, namely, honest and dishonest. We show that honest users survive when

the game is repeated and users value future returns.
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7.1 Summary of Contributions

So far, we have discussed how to compute reputation values of users in social networks.

We summarize some of the important contributions we have made.

• In Chapter 3, we introduce two existing macro-level reputation computation algo-

rithms and apply them to compute reputation values of domain specific email authors.

Then, we develop a customized time decaying function for computing reputations of

email authors. Since the domain of the emails is computer security, we consider a

topic is of importance for a week and is completely decayed after a week. If the same

name of topic is discussed again after a week, it is considered as a new topic.

• In Chapter 4, we introduce a micro-level reputation computation algorithm called

ReMSA. One of the distinguishing feature of ReMSA is that positional information

of the nodes in a network is used to compute reputation values. The degree of a

computing node is used to weight between its evaluation from direct experience and

opinions from other users. Also, the degrees of neighbors are used to weight each

neighbor’s opinion.

• In ReMSA, we use a recursive voting mechanism to aggregate neighbors’ opinions

when updating reputation values. The voting process is recursive and eventually

reaches to every node in the network.

• In ReMSA, we also consider frequencies of interactions between users to compute

reputations. Some interactions occur with high frequencies and we value those inter-

actions more than interactions with constant or decreasing speed. Using accelerations

of interactions, we manipulate the opinion values to emphasize the significance of

each opinion.

• In Chapter 5, we develop a distributed degree estimation algorithm that can accu-

rately estimate neighbors’ degrees. The algorithm is based on Beta distribution which
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is prior and posterior of Binomial distribution. The number of observed interactions

is used as the number of success in a binomial distribution.

• In Chapter 6, we study behaviors of users when dishonest users exist. We formulate

a bayesian game where payoffs are private reputation values and show that coopera-

tions among users are sustained, i.e., users act honestly, if all users are rational and

value future returns.

7.2 Future Research

For the game theoretic approach, we used same future discount value for all players which

implies that all the players are equally concerned about future returns. To accommodate

distributed level of future expectations, we will use different discount factors to each indi-

vidual to observe any behavioral change.

Also, we plan to apply our degree estimation algorithm recursively similar to the dis-

tributed voting mechanism in ReMSA which will make the results more comparable with

global information.

We mainly focused on micro-level approaches in this thesis where there is no coordina-

tor who manages a system and each user runs algorithms to compute information it needs,

such as reputation. We want to extend our distributed algorithms where some realistic cen-

tralized environments exist. It is very hard to estimate true information without any global

knowledge, if possible at all. Although, we have shown that our algorithms, such as ReMSA

and degree estimation, can achieve relatively good performances in distributed manners, it

would be interesting to apply our work to networks where some architectural restrictions

exist, i.e, high level topology of a network is globally known.
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