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Abstract

Many of the standard equilibrium statistical mechanics techniques do

not readily apply to nonequilibrium phase transitions such as the fluid-to-

disordered solid transition found in repulsive particulate systems. Exam-

ples of repulsive particulate systems are sand grains and colloids. The first

part of this thesis contributes to methods beyond equilibrium statistical

mechanics to ultimately understand the nature of the fluid-to-disordered

solid transition, or jamming, from a microscopic basis.

In Chapter 2 we revisit the concept of minimal rigidity as applied

to frictionless, repulsive soft sphere packings in two dimensions with the

introduction of the jamming graph. Minimal rigidity is a purely com-

binatorial property encoded via Laman’s theorem in two dimensions. It

constrains the global, average coordination number of the graph, for in-

stance. Minimal rigidity, however, does not address the geometry of lo-

cal mechanical stability. The jamming graph contains both properties of

global mechanical stability at the onset of jamming and local mechani-

cal stability. We demonstrate how jamming graphs can be constructed

using local rules via the Henneberg construction such that these graphs

are of the constraint percolation type, where percolation is the study of

connected structures in disordered networks. We then probe how jam-

ming graphs destabilize, or become fluid-like, by deleting an edge/contact

in the graph and computing the resulting rigid cluster distribution. We

also uncover a new potentially diverging lengthscale associated with the

random deletion of contacts.



In Chapter 3 we study several constraint percolation models, such as

k-core percolation and counter-balance percolation, on hyperbolic lattices

to better understand the role of loops in such models. The constraints in

these percolation models incorporate aspects of local mechanical rigidity

found in jammed systems. The expectation is that since these models are

indeed easier to analyze than the more complicated problem of jamming,

we will gain insight into which constraints affect the nature of the jamming

transition and which do not. We find that k = 3-core percolation on the

hyperbolic lattice remains a continuous phase transition despite the fact

that the loop structure of hyperbolic lattices is different from Euclidean

lattices. We also contribute towards numerical techniques for analyzing

percolation on hyperbolic lattices.

In Chapters 4 and 5 we turn to living matter, which is also nonequi-

librium in a very local way in that each constituent has its own internal

energy supply. In Chapter 4 we study the fluidity of a cell moving through

a confluent tissue, i.e. a group of cells with no gaps between them, via

T1 transitions. A T1 transition allows for an edge swap so that a cell can

come into contact with new neighbors. Cell migration is then generated

by a sequence of such swaps. In a simple four cell system we compute

the energy barriers associated with this transition. We then find that

the energy barriers in a larger system are rather similar to the four cell

case. The many cell case, however, more easily allows for the collection

of statistics of these energy barriers given the disordered packings of cell

observed in experiments. We find that the energy barriers are exponen-

tially distributed. Such a finding implies that glassy dynamics is possible

in a confluent tissue.



Finally, in chapter 5 we turn to single cell migration in the extracellular

matrix, another native environment of a cell. Experiments suggest that

the migration of some cells in the three-dimensional extra cellular matrix

bears strong resemblance to one-dimensional cell migration. Motivated

by this observation, we construct and study a minimal one-dimensional

model cell made of two beads and an active spring moving along a rigid

track. The active spring models the stress fibers with their myosin-driven

contractility and alpha-actinin-driven extendability, while the friction co-

efficients of the two beads describe the catch/slip bond behavior of the

integrins in focal adhesions. Net motion arises from an interplay between

active contractility (and passive extendability) of the stress fibers and

an asymmetry between the front and back of the cell due to catch bond

behavior of integrins at the front of the cell and slip bond behavior of in-

tegrins at the back. We obtain reasonable cell speeds with independently

estimated parameters. Our model highlights the role of alpha-actinin in

three-dimensional cell motility and does not require Arp2/3 actin filament

nucleation for net motion.
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Chapter 1

Introduction

It is the job of a condensed matter physicist to identify and classify the various

phases of matter that are more dense than gases (hence “condensed”) and the as-

sociated transitions between them. The prominent theoretical machinery used to

accomplish this mission has been equilibrium statistical mechanics, which provides a

probabilistic framework to interpolate between the microscopic description of interac-

tions between particles and the average macroscopic behavior of a large collection of

such particles [1]. In more recent years, the condensed matter physicist’s mission has

extended beyond equilibrium systems to include non-equilibrium systems, where the

machinery of equilibrium statistical mechanics does not readily apply. An example

of such a system is a disordered granular solid—yes, an amorphous packing of sand

that resists compression when compressed. (Amorphous here means the lack of any

orientational order that one finds in a crystalline solid.) Given the energy scales in the

system, the temperature is effectively zero so that thermal averaging over all possible

states of the system, as is done in equilibrium statistical mechanics, is not possible.

In even more recent years, the definition of condensed matter has widened yet again

to include matter in which energy is inputted at the level of individual particles, or

active matter, to drive the system out of equilibrium. The expectation is that active

matter describes living systems, such as a collection of cells each with its own internal
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energy, or a collection of motors within a cells each with their own internal energy.

So the “to-do” list of a condensed matter physicist has certainly grown in recent

years from equilibrium systems to nonequilibrium systems to systems driven out of

equilibrium at the local level, or active systems to describe living matter amongst

other things. And while the list of systems in question has grown, the machinery

used to analyze such systems has not grown as readily. This thesis documents several

new theoretical approaches to characterize the phase transssition between a fluid and

a mechanically rigid amorphous state (or solid), otherwise known as a jammmed state

at zero temperature. This zero-temperature jamming transition is a hallmark example

of a non-equilibrium transition since, again, the system lacks the thermal averaging

which is at the heart of equilibrium statistical mechanics, but is certainly in need of

averaging due to the many possible disordered arrangements of packings. In Chapter

2, I introduce the notion of a jamming graph—a graph that captures the connectivity

of a disordered granular packing at the boundary of this transition. In Chapter 3, I

develop techniques to analyze phase transitions in constraint percolation in hyperbolic

geometries, which will turn out to be minimal models of jamming. Discussion of these

approaches in Chapters 2 and 3 constitute the nonliving matter aspect of this thesis.

In Chapters 3 and 4, I turn to analysis of rigidity and fluidity in living matter. If one

considers a monolayer of foam that is confluent -i.e. no gaps between the bubbles-, the

bubbles cannot move (unless enough external force is supplied). In a living system,

however, such as a monolayer of epithelial cells, the cells can shape change due to

internal processing. One can then look for potential fluidity of an individual cell in

a dense medium of surrounding cells, which is a native environment for a crawling

cell. In Chapter 4, I introduce a new model for a single cell moving in another native

environment, namely the extracellular matrix. The collectivity in this model is at the

level of molecular motors, namely myosin, that act to bring about an active rigidity,

which coupled with an asymmetry, can lead to motion of a cell along a fiber of the

extra-cellular matrix.
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Given the range of topics presented in this thesis, I will use the introduction to

discuss the necessary background and terminology for each subsequent chapter. This

should help the reader appreciate the consequences of my results. Do not hesitate

to return to the introduction when going through the meat of the thesis to remind

yourself of various concepts.

1.1 Jamming

Let us begin with sand. Sand is a notoriously difficult material to understand. Even

though the grains are of milliter size, visible to the naked eye, it is not immediately

obvious as to whether sand will behave like a solid and resist compression or behave

like liquid and flow as a result of some perturbation. In both the rigid and the fluid

phases, the sand grains are arranged in a disordered (amorphous) arrangement, unlike

a crystalline solid, where there are symmetry transformation from one grain (atom)

to another. Figure 1.1 depicts an amorphous packing of deformable disks (model

sand grains) [2]. To determine whether or not the sand is a solid or a liquid, one can

perturb it. Take for example sand on an inclining plane. As you tilt the incline of

the plane (the perturbation), sand will eventually begin to flow, but it will only be

some fraction of the sand furthest away from the plane (the “top” layers). So there

is still no clear cut answer in this experiment as to the phase of sand.

Perhaps a more clear cut answer emerges when considering the following parame-

ter, the density, or packing fraction, of sand. When sand is loosely packed, it behaves

as a liquid, flowing in response to applied shear. When sand is more densely packed, it

behaves as a solid with some non-zero shear modulus even in the long time limit. One

might say that there is a phase transition from a fluid to a solid as the packing fraction

of sand (to air) increases. Since this granular system is effectively zero-temperature,

how does one construct an ensemble of various possible states given the many pos-

sible amorphous arrangements? Well, there exist ideas about extending statistical
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Figure 1.1: Photoelastic image of a disordered disk packing. The intensity of the light indicates

the strength of the forces between the disks. Image from Ref. 2.

mechanics to collections of sand grains and colloids and other granular-like materials

via an effective temperature [3]. We will not address these here as debate still rages

on about them.

One can instead take a more straightforward approach and develop a simulation to

study this fluid to amorphous solid transition, which is called the jamming transition.

With such a simulation, one can study properties of the transition and perhaps be

inspired to develop a theoretical model that captures the properties of the transition.

To give you a concrete example of such a simulation, over the past twenty years or so,

scientists have been simulating sand grains and foams and colloids as purely repulsive

soft spheres [4, 5, 6]. The purely repulsive potential is of the form

V (rij) =
ε

α
(1 − rij/σij)

α for rij ≤ σij; V (rij) = 0 for rij > σij, (1.1)

where ε is the characteristic energy scale of the interaction, rij is the distance between

centers of the particles i and j, and σij is the sum of the radii of i and j particles. The

α parameter determines the type of potential used. The most common values studied

are the repulsive harmonic potential for α = 2, the nonlinear spring for α = 3/2
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which is harder than harmonic potential, and the repulsive Hertzian potential for

α = 5/2. The Hertzian potential captures the interaction between sand grains [7].

Also the spring potential has been reported for the interaction between bubbles [8].

It is important to note that when particles do not overlap (rij ≥ σij) the potential is

zero for all the cases.

If you randomly place N such particles in a box with periodic boundary conditions

and locate the nearest energy minimum via your favorite minimization routine, there

is indeed a packing fraction below which the infinite-time shear modulus vanishes and

above which it does not, i.e. a jamming transition [9, 10, 11]. When viewed from the

context of phase transitions in equilibrium systems, the transition is a bit strange in

that it possesses aspects of continuous phase transitions and aspects of discontinuous

phase transitions. In equilibrium phase transitions, the system is either one or the

other. What are continuous phase transitions and discontinuous phase transitions?

Both types of transitions are indicated by an order parameter—a measure that is zero

in one phase and non-zero in the other—that goes from zero to non-zero continuously

or discontinuously as some tuning parameter is changed.

As for differences, it turns out that continuous phase transitions are characterized

by a set of critical exponents, i.e. a universality class. Near the transition, several

physical quantities, such as the order parameter, the free energy, specific heat, a

correlation length, and others depending on the system; are described as power-law

expressions of the reduced tuning parameter τ = (T − Tc)/Tc, for τ << 1. In other

words, a physical quantity χ, is expressed as χ(r) ∼ rν for r tending to 0. Here ν is

called the critical exponent associated with χ. One of the most important parameters

to describe the physical behavior close to a critical point is the correlation length,

ξ. The correlation length indicates how far microscopic particles of the system are

correlated. Accordingly, a particle will be physically related with the particles that

are at distance less than ξ. ξ is then a measure of the order of the system. At the

transition, the correlation length diverges.
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Discontinuous phase transitions, on the other hand, are driven by nucleation.

Think back to the van der Vaals equation and the gas-to-liquid phase transition

analysis. There is no diverging length scale. A typical length scale is set by the

critical size of the nucleation bubble. Once a bubble of one phase becomes large

enough, that phase will dominate the system.

If one regards the average number of contacts < Z > in a system of purely re-

pulsive soft spheres as the order parameter, then in the fluid phase < Z >= 0 and

in the rigid phase < Z >> 0. It turns out that this order jumps discontinuously

from zero to > 0 at the transition, suggesting a discontinuous transition [5, 6]. Sim-

ulations, however, indicate a diverging correlation length, which would point to a

continuous transition [5, 6]. Much effort has been put into numerical measurements

of such exponents with the hope that we would understand the nature of the jamming

transition from a microscopic level. This knowledge would then help us ultimately

understand experiments with sand and other athermal, disordered particle systems.

Not only have we failed in this task, arguments have been brewing over the existence

of a linear regime in such systems, etc. [12, 13]. In other words, I think that the

nature of the complications of even this simplified repulsive soft sphere system have

at least become more clear over the years.

So while I will not delve into the complications for the sake of brevity, let us take

a step back from the problem and go back to the time of Maxwell, yes, the Maxwell,

who thought about the nature of forces in sand piles among other things.

1.2 Constraint counting

To understand how a disordered network of springs, or a frame, becomes rigid,

Maxwell estimated how many springs would one need to constrain the system such

that all independent motions of the individual joints (between springs), each under

some given external force, are frozen out, i.e. become rigid with respect to each
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other [14]. In other words, Maxwell correctly pointed out that a system with more

degrees of freedom than those necessary to constraint local rotations and translations

is able to ”flow” in some way. Therefore, a ”fluid” of joints becomes a ”solid” when

its joints are constrained enough to constrain all the degrees of freedom (except for

global translations and rotations). Accordingly, a system of N joints in d dimensions

has Nd degrees of freedom as one joint has d degrees of freedom in space. So when

the number of constraints, is dN − d(d+ 1)/2, where the second term represents the

number of global (trivial) translations and rotations, the system is at the rigidity

boundary. To understand the second global contribution, a two-dimensional system

has 3 global degrees of freedom, two corresponding to the translation of all objects

in the network and one more for rotations. In three dimensions, there are 6 global

degrees of freedom, 3 account for translations and 3 more for rotations. In general,

it can be shown that for a joint in d dimensions it will have d(d+ 1)/2 global degrees

of freedom, corresponding to d translations and d(d− 1)/2 rotations.

How does one determine the number of constraints on a joint? The number

of constraint of a joint is determined by its neighboring springs. If < Z > is the

average number of springs per joint then the entire amorphous spring network contains
N < Z >

2
constraints. The 1/2 factor comes from the fact that each spring is counted

twice, as it is shared by two joints. Consequently, the system is at the boundary of the

fluid-rigid transition when Nd =
N < Z >

2
, that is when the average coordination

number satisfies < Z >= 2d. Notice that we have neglected the global translations

and rotations as the number is negligible for N >> 1. When < Z >< 2d, the system

is a fluid, i.e. not rigid.

Maxwell constraint counting approach was put on more rigorous footing more

than one hundred years later by Laman [15]. Maxwell assumed that each degree of

freedom was not spatially correlated with another. Is this assumption valid? It turns

out not to be in several explicit examples where Maxwell constraint counting would

incorrectly imply a rigid graph. To address this short-coming, Laman constructed a
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two-dimensional graph that is minimally rigid, which means that the graph is rigid

in that there is only one rigid cluster. The removal of just one edge results in at least

two rigid clusters so that the graph is not rigid as a whole. Minimally rigid graphs

satisfy precisely the Maxwell constraint counting including the trivial rotations and

translations degrees of freedom. Therefore, the number of edges is exactly 2N − 3,

where N is the number of vertices, as we demand the number of constraints be equal

to the number of degrees of freedom 2N minus the trivial translations and rotations,

that is 3. But then Laman went on further to investigate the minimal rigidity of all

subgraphs, which is why minimally rigid graphs in two dimensions are called Laman

graphs. Explicitly, Laman stated that a graph with N vertices is minimally rigid if

and only if, for all l, every l-vertex subgraph has at most 2l-3 edges, and the whole

graph has exactly 2N -3 edges. Some examples of the simplest Laman graphs are

given in Fig. 1.2, as well as an example of a graph that is not Laman.

(a) (b) (c)

Figure 1.2: (a) The simplest Laman graph. (b) The second simplest Laman graph. (c) The graph

is not Laman. The square can be deformed with no cost in energy (distances between points remains

fixed but shape does not).

In chapter 2 we are going to extract the rigid clusters of a flexible graph. To

determine the rigid clusters, I use the practical algorithm called the pebble game.

The pebble game [16] is a mathematical game that uses pebbles that are moved on

a directed graph, i.e. a graph where direction is assigned to its edges. The pebbles

go over the vertices of the graph according to some rules, and depending on the final

result it can be told if the graph is minimally rigid or not. Also by this algorithm it
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can be determined overconstrained regions that bear stress and rigid components of

the graph that do not bear stress.

While Laman’s approach holds in two dimensions, it applies to systems with

fixed connectivity, such as spring networks. To begin to deal with purely repulsive

particles, we introduce the jamming graph. In a particle system, unlike a bar-joint

network, the particles can come in and out of contact, i.e. the connectivity is not

fixed. And in mechanically stable packings for purely repulsive particles, each particle

must be locally mechanically stable. This local mechanical stability criterion in two

dimensions, turns out to be the property that each particle must be enclosed in a

triangle by at least three of its contacting particles. The jamming graph incorporates

both Laman’s nonlocal, or global, minimal rigidity criterion and local mechanical

stability. It is presented in Chapter 2 of the thesis and has been published in Physical

Review E last year [17]

1.3 Percolation

Given the complicated nature of jamming, let us take a step back and consider the

simplest phase transition in a disordered system, namely percolation. The standard

percolation model can be stated in this way: Given a lattice, occupy each site in-

dependently and at random with occupation probability p. Since p is a probability,

0 <= p <= 1. When p = 0, the lattice is empty, i.e. no occupied sites. When p = 1,

the lattice is fully occupied. As p is increased from zero, clusters start to emerge

(see Fig. 1.3(a)). Two neighboring occupied sites on the lattice are part of the same

cluster. In other words, neighboring occupied sites form clusters where any occupied

site in the cluster can be reached from any other occupied site in the cluster through

a series of neighoring occupied sites. As p grows these clusters grow in size. A cluster

is called percolating if it spans the lattice in any direction. For example, in Figs.

1.3(a) and 1.3(b) there is a percolating cluster.
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(a) (b)

Figure 1.3: (a) Each color denotes a cluster. The boundary conditions are fixed. The yellow cluster

percolates the system. (b) Clusters on a square lattice of a much larger size. The aqua-colored cluster

spans the system.

It has been shown that there exists a critical probability pc such that for p < pc

there is no percolating cluster and for p > pc there is always such type of cluster.

What happens at p = pc is actually a phase transition between the state of not

having a percolating cluster and the state of having one that percolates the lattice.

So tuning the occupation probability allows one to go from a system with no spanning

(or percolating) cluster, which is one phase, to a system with a percolating cluster,

which is another phase, such that a phase transition in the connectivity has occurred.

In other words, the tuning parameter for this system is the occupation probability.

In addition to a tuning parameter, one also defines an order parameter, as mentioned

previously. A convenient order parameter is zero in one phase and non-zero in the

other. The typical order parameter for percolation is the probability that an occupied

site is part of the spanning cluster, P∞. In the non-percolating phase, P∞ = 0 because

there is no spanning cluster. Even at the transition, P∞ = 0 since it so happens that
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Figure 1.4: For the square lattice (red dashed curve), P∞, the probability that a bond is in the

spanning cluster, scales as (p−0.5)5/36 just above the transition and for the Bethe lattice with z = 3

(blue solid curve) P∞ scales as (p − 0.5) just above the transition. It is just coincidence that the

transition probability is the same (p = 0.5) for these two types of lattices.

the spanning cluster is fractal such that in the infinite system limit the fraction of

occupied sites containing the spanning cluster vanishes [18]. For p > pc, P∞ > 0.

More precisely, P∞ ∼ (p − pc)
β just above the transition (p − pc << 1) with P∞

eventually becoming unity when p = 1. See Fig. 1.4. Note that this transition is a

continuous one because the order parameter is a continuous function of p. Of course,

it is not an analytic function of p given the discontinuity in the derivative.

While there is definitely more to be said about this phase transition in connect-

edness in percolation, I will emphasize two more relevant points before moving on

to constraint percolation. Our beginning discussion of the fluid-to-amorphous solid

transition is relevant here as percolation was initially conceived in the context of

gelation, the chemical process by which a solution of polymers cross-link to form a

gel—an amorphous solid [19]. In a bond formulation of percolation, occupied bonds

denote chemical crosslinks between two polymers. So percolation was motivated by
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Figure 1.5: A Bethe lattice with z = 3, where z is the coordination number. Note the absence of

loops. The numbers indicate the level, or layer, number.

this transition back in the 1940s [19]. As for the second point, the order parameter

exponent β mentioned in the previous paragraph depends, to some extent, on the

nature of the underlying lattice. On what is known as the Bethe lattice, which is a

tree structure with no loops, β = 1. See Fig. 1.5 for a depiction of a Bethe lattice

with coordination number z. On a square, or even triangular, lattice, β = 5/36. On

the latter two lattices, there are many loops, loops on all scales in fact. It is this no

loops versus loops that modifies the order parameter exponent so dramatically. Even

so, the phase transition still remains continuous in either case.

1.4 Constraint percolation

In percolating systems such as gelation [19] the development of crosslinks, or con-

nectivity, is random. In jamming, however, the connectivity, or contacts between

particles, is constrained. For a system of frictionless, spherical particles to be me-

chanically stable, there must be d + 1 contacts per particle and the forces must
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balance. How does one implement these constraints in a percolation model to work

towards understanding of the jamming transition? Well, the constraint percolation

model known as k-core percolation implements the d+1 contacts per particle [20]. To

define k-core percolation, occupy the sites of an empty lattice with probability p as

before. Occupied sites that have less than k occupied neighboring sites are recursively

removed until all occupied sites satisfy the clustering constraint at which the removal

stops. Cluster statistics analysis is performed on the remaining k-core clusters. See

Fig. 1.6 for an example.

Figure 1.6: An example k-core culling for k = 3 on the square lattice. Each picture represents one

iteration of the culling process. For this particular initial configuration, nothing remains. This is

because no finite k-core clusters can exist for this particular lattice and value of k. Therefore pc = 1

for 3 − core on the square lattice.

Even though with k-core percolation only some of the granular physics is cap-

tured, in fact a minimal amount, there is quantitative agreement between mean field

k ≥ 3-core exponents, k-core percolation studied on a Bethe lattice, and the expo-

nents measured in the jamming transitions (in two and three dimensions). Further-

more, despite the existence of critical behavior in terms of diverging length scales, for

both k ≥ 3-core and jamming, the order parameter, the fraction of sites making up

the jamming or the spanning k-core cluster, jumps discontinuously at the transition.

However, unlike ordinary discontinuous phase transitions where any further increase

in the tuning parameter produces a proportional change in the order parameter, an

increase in p here produces a response which scales as a square root. Therefore, the

k ≥ 3-core transition is of a mixed nature where the order parameter is discontinu-
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ous but the susceptibility diverges just as observed near in the jamming transition.

This behavior is very different from unconstrained percolation where the transition

is continuous [18].

What is known about k-core on other lattices besides the Bethe lattice? For

the k-core models studied so far on the triangular lattice or the cubic lattice the

transition appears to be continuous and in the same universality class of unconstrained

percolation, or the transition does not occur until pc = 1, i.e. no site is in the k-core

cluster except when p = 1. Examples of the first type of behavior are k = 3 on the

triangular lattice [21] and k = 3 on the cubic lattice [22]. Examples of the latter are

k = 4 on the triangular and k = 4 on the cubic lattice [23]. So why when going from

the Bethe lattice with no loops to Euclidean lattices with loops at all scales, does the

nature of the k-core percolation transition change? This is the question I would like

to address in Chapter 2 of the thesis. To do so, I must first introduce the notion of

hyperbolic lattices.

1.5 Hyperbolic Geometry

A geometry is a mathematical construction that is based on a set of postulates that

are assumed to be true and cannot be deduced from another hypothesis. The most

intuitive geometry is Euclidean geometry that is extensively applicable in the sciences.

One of the most remarkable postulates in Euclidean geometry is the so-called fifth

postulate. The fifth postulate states that parallel to a straight line there is one and

only one straight line parallel to it and passing through a given point A. For around

two thousand years leading up to the eighteenth century, various geometers tried

to demonstrate the internal consistency of Euclidean geometry from the other four

postulates and neglecting the fifth one, but they always reached a contradiction. In

the eighteenth century, however, it was proven that the negation of the fifth postulate

along with the other four postulates results in a new kind of geometry that is called
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hyperbolic geometry. This proof was done by Felix Klein in 1871 [24]. This new

geometry has some different implications as compared to the Euclidean geometry.

For example, the internal angles in a triangle sums to less than 180 degrees, the

circumference of a circle of radius r is greater than 2πr, and the Pythagorean theorem

is no longer satisfied. One of the most interesting facts of the hyperbolic geometry is

that it enables one to model geometric objects with properties that resemble those on

the Bethe lattice. The quotient between the perimeter and the area of a polygon in

Euclidean space is negligible when the polygon becomes sufficiently large, meanwhile,

on the Bethe lattice, the perimeter grows at rate comparable to, or greater than, the

area or volume. This propetry also holds for hyperbolic lattices.

(a) (b) (c)

Figure 1.7: Euclidean tessellations of the plane.

A very interesting implication is that hyperbolic geometry enables more tessella-

tions than Euclidean geometry. A tessellation of a plane is a tiling of the plane by reg-

ular polygons. The Euclidean plane just admits 3 tessellations, by triangles, squares,

and hexagons. See Figure 1.7. We use the standard Schlafli {P,Q} symbol to denote

a tessellation of the plane that at every vertex Q polygons of P sides meet. Conse-

quently, tessellations admitted by the Euclidean plane are {3, 6}, {4, 4}, and {6, 3}.
The hyperbolic plane admits any tessellation {P,Q} such that (P − 2)(Q − 2) > 4.

Note that the tessellations admitted by the Euclidean plane satisfy (P−2)(Q−2) = 4.

Therefore, there are an infinite number of tessellations that can be built on the hy-

perbolic plane. The hyperbolic plane admits several representations, one of the most

common is the Poincare disk. This is the open disk of radius one with its boundary
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representing infinity. The metric is such that two points at a Euclidean fixed distance

d < 1 will be more distant as they get closer to the boundary. Examples of tessel-

lations on the hyperbolic plane are shown in Figure 1.8. The famous artist M. C.

Escher, who was interested in the idea of depicting the infinite, and after correspon-

dence with the mathematician H. S. M. Coxeter, made the famous representation

illustrated in Figure 1.9.

(a) (b)

Figure 1.8: (a) A {4, 7} hyperbolic tessellation. (b) A {7, 4} hyperbolic tessellation.

Condensed matter physicists have become more interested in hyperbolic geom-

etry as of late. For instance, there is the description of the thermodynamics of a

fluid embedded in the hyperbolic plane [25] and the study of the Ising model on the

hyperbolic plane [26]. My reason for investigating, as you will see, k-core percolation

on hyperbolic lattices is to get at this question of why k-core percolation behaves

differently on Bethe lattices versus Euclidean lattices. Hyperbolic lattices interpolate

between the two in that the ratio of perimeter to area does not vanish in the infinite

system limit and the farther away one goes from the center of a hyperbolic lattice,

it is more difficult to return to the center, i.e. loops are not as prevalent as on the

Euclidean lattice. This investigation in presented in Chapter 3 and is being prepared

for submission [17].
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Figure 1.9: The famous bat picture drawn by M. C. Escher. All M.C. Escher works c© 2014 by

The M.C. Escher Company - the Netherlands. All rights reserved. Used by permission. Please see

www.mcescher.com.

1.6 Glassy dynamics and cell motility

A glass can be formed by cooling a viscous liquid at high enough rates so that it

avoids crystallization via nucleation [27]. This is the so-called glass transition and has

been very related to zero-temperature jamming transition via the jamming phase dia-

gram [28]. In this rapidly cooling liquid, it has been conjectured that the constituent

particles, now molecules, become trapped in cages by their neighboring particles. A

particle can leave its cage if it has enough energy to overcome the associated energy

barrier potential. It is this caging that increases the viscosity of the liquid by orders

of magnitude and may eventually freeze out the degrees of freedom in the system as

the glass transition is approached. These cages were initially conjectured to occur

in molecular glasses [29]. With the study of athermal systems such as sand grains

and colloids, where the size of the constituent particles are larger than molecules by

orders of magnitude, caging has been directly observed [30, 31]. See Fig. 1.10. As

one approaches a jammming-type transition, the number of particles involved in the

uncaging event becomes larger such that particle rearrangement becomes increasingly

collective. Eventually, as the temperature is lowered further, no particle can escape

their respective cage.
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Figure 1.10: A typical trajectory of a colloidal particle at 56 percent packing fraction for 100

minutes. The colloids spend most of their time confined in cages formed by their neighbors and

moved significant distances only during quick, rare cage rearrangements. Image from Ref. 31.

In the case of glasses, the energy barrier to overcome caging can be overcome

mainly via thermal fluctuations. In the case of foams, the energy barrier is overcome

if there is sufficient external force applied to the boundaries. Due to the disordered

nature of the system, there is a distribution of energy barriers.See Fig. 1.11. It is

useful to think of these energy barriers as transitions from one metastable state to

another. These states represent mechanically stable arrangements of sand grains, for

example. So as particle rearrangements occur the system goes from one metastable

to another in some complex potential energy landscape, where the minima represent

metastable states and the saddles represent transition paths that connect the various

minima [32].

The standard expression for the transition rate R over a barrier between two

energy minima A and B in a thermal system is given by an expression of the form

R = ω0e
−∆E/kBT (1.2)
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Figure 1.11: Simplified depiction of energy barriers in state space.

where R is the attempt frequency, kB is the Boltzmann constant, T is a temperature

of the system, and ∆E is the associated energy barrier. This equation is called the

Arrhenius equation. This rate can be calculated using a first passage time approach.

This rate is for one individual transition. In the complex potential energy landscape

there are many energy barriers.

Dynamical consequences of this distribution of energy barriers can be obtained

using a trap model or a soft glass rheology model where the statistics of the energy

barriers are taken into account [33, 34]. I will not delve into the details of such cal-

culations here. Instead, I will tell you that the consequences of this energy barrier

distribution may lead to anomalous diffusion and dynamical hetereogenities. In a

typical diffusion process the mean squared displacement, denoted by < x2(t) >, of

a particle is a linear function of time. Anomalous diffusion is a diffusion process

where < x >2∼ Dtµ, where D is the diffusion coefficient and t is the time. For an

anomalous diffusion process µ is different from one. Anomalous diffusion processes

with µ > 1 are called super-diffusive and those with µ < 1 sub-diffusive. Dynamical

heterogeneities refer to the nontrivial spatiotemporal fluctuations that accompany

the temporary formation of rigid amorphous structures in glasses and granular ma-
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Figure 1.12: MCDK cells within a confluent monolayer. The scale bar is 100 microns.Image from

Ref. 35.

terials. For example, the relaxation times span a very broad range and are strongly

nonexponential.

And now we finally arrive at living matter. All of the above on glassy dynamics was

first thought of in the context of dead matter. And yet, when one studies dynamics

in confluent tissues—a collection of cells with no gaps between the cells—(see Fig.

1.12 for an image of a confluent tissue) one finds caging, anomalous diffusion, and

dynamical hetereogenities [35, 36, 37]. From a physicist’s perspective, one major

similarity between particle systems and cellular systems is that it costs energy to

deform either particles or cells. Cells are, well, viscoelastic objects at the ten micron

size scale. A tissue is a collection of such objects. While, indeed the mechanics of each

cell is more complicated than a repulsive soft sphere, perhaps some of the collective

mechanical and dynamical behavior carries over from the dead systems. What details
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Figure 1.13: Depiction of a T1 transition in a model confluent tissue.

are important for determining such properties and what details are not? From a

physicist’s perspective, one major difference between nonliving and living matter in

the context of the complex potential energy landscape is that an individual cell can

overcome an energy barrier by consuming its internal energy sources. Cells are active

material. It is not clear how this difference would change collective mechanical and

dynamical properties.

Unlike nonliving particles, even though the packing fraction of the confluent tissue

is unity, the cells can change shape and squeeze past their neighbors in the absence

of any applied force [38]. The cells do so via what is called a T1 transition, which is

simply a topological process that interchanges neighbors as illustrated in Figure 1.13.

Therefore, the analysis of the energy barriers a cell can potentially overcome in the

process of migration in a confluent tissue can be studied via these T1 transformations.

This work is presented in Chapter 4 and has been published [39] with a longer paper

in preparation [40].

1.7 Nonglassy dynamics and cell motility

In Chapter 5 of the thesis, I go back to the simpler problem of single cell migration.

Most quantitative understanding of single cell motility pertains to cells crawling on

synthetized surfaces coated with extracellular matrix (ECM) proteins [41, 42]. And

while progress has certainly been made in terms of being able to, for example, predict

cell shape based on its speed, is a smooth surface an environment native to an in vivo

crawling cell? The answer is typically no. Epithelial cells, when not in a confluent
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tissue, must crawl through the three-dimensional ECM to heal a wound. The ECM

consists mostly of fibrous collagen with a pore size that can range up to the order of

the cell size (tens of microns). How does this type of environment affect single cell

motility in terms of speed, overall direction of migration, and sensitivity or robustness

to changes in the environment?

Figure 1.14: Birdseye view of cell motion. Both cells are moving upwards. (a) Fluorescence image

of keratocyte cell. Image from Ref. 42. (b) Confocal reflection contrast image of a MV3 melanoma

cell. The scale bar is 18 microns. Image from Ref. 136.

Experiments clearly demonstrate that cells crawling through the ECM can take

on a very different shape from the ones crawling on two-dimensional surfaces, namely

they mimic the fibrous environment of the ECM by elongating as they traverse along

fibers [43]. An elongated shape is very different from the fan-like cell shapes observed

in two dimensions such that new approaches to quantitative modeling are needed.

Figure 1.14 illustrates the difference in cell shape between the two cases.

To give context to my work, let me review qualitatively cell crawling on two-

dimensional surfaces (see Fig. 1.15). The cell first extends its front via actin filament

polymerization and nucleation. Actin filaments are one of the three types of filaments

making up the cellular cytoskeleton (see Fig. 1.16(a)). An actin filament is a polar
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homopolymer filament with a plus, or barbed, end where G-actin monomers are added

and a minus, or pointed, end where depolymerization occurs. Due to a difference in

the off/on rates between the two ends, a phenomenon known as treadmilling can occur

where there is net motion of the center of mass of the filament via just polymerization

and depolymerization. The typical lengths of actin filaments range from 1 micron to

100 nanometers.

Figure 1.15: Side-view schematic of a cell crawling on a surface.
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As actin nucleation and polymerization occurs extending the cell front in a partic-

ular direction, the cell is also creating focal adhesions under this new extension. Focal

adhesions are large macromolecular assemblies that attach the cell to the underlying

substrate (see Fig. 1.16(b)). One of the dominant proteins in focal adhesions is inte-

grin. Meanwhile, focal adhesions are disassembled near the rear of the cell so that the

rear can retract to catch up with the front, which has continued to extend. The re-

traction is myosin-driven since the use of blebbistatin suppresses motility of a cell [44],

though leading edge cell fragments can continue to move via actin-treadmilling [45].

Myosin II is one of ATP-dependent motor proteins and is probably best known for

its role in muscle contraction. Individual myosin motors contain two heads and walk

along actin filaments towards the plus end. Myosin can aggregate to form myofila-

ments with one part of the myofilament cluster attaching to one actin filament and

the other part attaching to another actin filament, etc. See Fig. 1.16(c) for an illus-

tration from muscle where the action of the myosin contracts the sarcomere. The plus

ends of the actin filaments are located near each Z-disc in the figure. In the cytoskele-

ton, where the actin filaments are disordered, a similar contraction and, therefore,

retraction can occur so that the rear of the cell can catch up with the front.

In this cell crawling on surfaces scenario, actin filament nucleation is driven by the

branching agent, Arp2/3 [46]. Arp2/3 nucleates branched filaments at a reasonably

regular angle of 70 degree from the polymerizing end of actin filaments and, therefore,

helps set the lateral extent of the leading edge of the crawling cell. This extent can be

broad for crawling on two-dimensional substrates, resulting in fan-like shapes at the

leading edge. This fan-like shape is very different from those cells crawling along ECM

fibers. In Chapter 5, we propose a cell crawling model where Arp2/3 is not necessary

for migration. Instead, the important components are the stress fibers and the focal

adhesions. Stress fibers are similar to the organization of muscle, but more disordered,

and they extend across the cell as it moves. Focal adhesions mediate the interaction

between the cell and the ECM fiber. And while there is no fluid-to-amorphous solid
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transition in Chapter 5, the matter is living and the rigidity/elasticity of the stress

fibers is active. The work presented in Chapter 5 is currently under review [47].
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(a)

(b)

(c)

Figure 1.16: (a) Schematic of an actin filament. The diameter of a single actin monomer is roughly

5.4 nm. (b) A schematic of a cell interacting with a surface via focal adhesions with the integrins

denoted in red. (c) A schematic of a sarcomere, the unit that is repeated in striated muscle. The

length of a sarcomere is typically 2 microns.



Chapter 2

Jamming graphs: A local approach

to global mechanical rigidity

A model system for understanding the onset of rigidity in disordered particle packings

is a d-dimensional collection of frictionless, repulsive soft spheres at zero temperature

[5, 6, 9, 10, 11]. At small packing densities, minimal energy configurations are those

with no contacts between particles. As the packing density is increased, the contact

geometry abruptly changes from nonexistent to one where the average coordination

number equals 2d [6]. Moreover, the local coordination number for each particle

must be at least d + 1 in accordance with the Hilbert stability condition, or local

mechanical stability [48]. As the packing density is increased even further, the average

coordination number exceeds 2d with each particle still obeying the Hilbert stability

criterion.

The abrupt jump in contact geometry indeed has the flavor of a phase transition

even though no symmetries in the positions of the particles are broken [6, 9, 10]. Con-

tinuous transitions are typically accompanied with at least one diverging lengthscale

at the transition, such as connectivity percolation [18]. Discontinuous transitions,

however, are not typically characterized by any diverging lengthscales. And yet,

Wyart and collaborators [49, 50] identified a diverging lengthscale in the disordered
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solid phase, denoted as l∗, such that the combination of the discontinuous jump in the

average contact number and the diverging lengthscale suggests a more exotic mixed

transition, such as the found in k-core percolation [20].

This lengthscale, l∗, can be determined by finding a cut-out subsystem of some

length below which there exists extended zero energy modes, i.e. modes of vibration

that do not cost energy, within the subsystem and above which there does not. At the

transition, extended zero-energy modes proliferate due to the absence of redundant

contacts, and l∗ is of order the system size. As the system solidifies further with

added redundant contacts, l∗ decreases since such contacts make it less likely for

zero-energy modes to extend across the subsystem. In practice, this lengthscale l∗ is

inferred from numerical measurements of the frequency at which the density of states

deviates from the plateau region emerging at low frequencies. Very recently however, a

new construction of l∗ via rigid clusters results in a direct numerical measurement [51].

Another lengthscale associated with subsystems with fixed boundaries (as opposed

to cut/free boundaries) has been recently identified and scales similarly with l∗ [52,

53, 54], though corrections to scaling are discussed [52, 53].

While the focus on identifying a diverging lengthscale has been on the competi-

tion between bulk and boundary effects when cutting out a subsystem and probing for

extended zero energy modes, little work has been done to search for a lengthscale as-

sociated with a change in the zero-energy mode structure in response to the breaking

of one or several contacts, for example. After all, when searching for diverging length-

scales in systems undergoing phase transitions, one typically perturbs the system and

computes the lengthscale over which the system responds to that perturbation. And

while prior focus on cut-out subsystems has certainly proved useful, we ask what

can be learned from removing one or two contacts and looking for a lengthscale over

which the perturbation affects the mode structure? Point perturbations have been

performed when investigating the force network of the particle packing above jam-

ming [55, 56] and on phonon modes in floppy networks, i.e. below jamming [57].
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Here, we explore random bond deletion effects on the structure of zero-energy modes

via the study of rigid clusters and ask ”does some diverging lengthscale fall out of

such computations?” If so, is this lengthscale similar to l∗, or not?

To begin to answer such questions, we first present a novel way to build the contact

geometry of polydisperse, frictionless, repulsive soft discs in two dimensions at the

onset of rigidity. We do so with vertices representing particles and bonds representing

contacts between particles. After all, at the transition there are no forces, i.e. the

particles are in contact but not overlapping, so one does not necessarily need to

rely on forces explicitly to generate the packing. This jamming graph algorithm

uses spatially local rules to generate the contact geometry in two dimensions—local

rules that encode the global rule of minimal rigidity. Interestingly, the percolation

transition, with its local rules, can be described by a field theory [58]. If the abrupt

changes in contact geometry in the frictionless, repulsive soft sphere system can also be

characterized by local rules, can such a system be described by a field theory? After

introducing our algorithm, we then perturb the contact geometry of the jamming

graph and study the resulting rigid cluster distributions.

The study of rigid clusters has its roots in rigidity percolation [59, 60, 61]. In

rigidity percolation, one demands that the cluster spanning a system of randomly

diluted bonds on a lattice be rigid in the sense that if each bond were associated

with, for example, a spring, then there would be a finite energy cost to deforming the

cluster. In two dimensions, numerical studies suggest that the onset of rigidity is a

continuous phase transition [62, 63, 64]. Rigidity percolation differs from jamming in

that jamming occurs in a particulate system, where particles can come in and out of

contact, i.e. the connectivity is not fixed. Rigidity percolation also differs from both

jamming and the jamming graph in that there are local constraints on the geometry

to take into account local mechanical stability in the presence of purely repulsive

forces.

This chapter is organized as follows. Section II discusses the local and global
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properties of the contact geometry of frictionless, repulsive soft spheres. Section III

presents the algorithm for building a jamming graph, Section IV addresses perturba-

tions of the jamming graph, and Section V discusses the implications of our results.

2.1 Contact geometry of frictionless, repulsive soft

spheres at the onset of rigidity

The initial link between contact geometry and the onset of rigidity in mechanical net-

works with fixed connectivity is due to Maxwell via the Maxwell constraint counting

condition [14]. This condition is a necessary (but not sufficient) for mechanical rigid-

ity. It does so by counting the number of zero-energy, also known as floppy, modes in

the network, Nf , which depends on the number of independent constraints, Nc, and

the local degrees of freedom for each particle. For mechanical networks with particles

interacting via central forces,

Nf = Nd−Nc, (2.1)

where N is the number of particles in the network. The onset of rigidity, or minimal

rigidity, occurs when Nf equals the number of global degrees of freedom of the net-

work, Ng. When Nf = Ng, the network is minimally rigid and the removal of just

one edge in the network makes it flexible. In mean-field, one can replace Nc with

< z > N
2
, where < z > is the average coordination number such that the minimally

rigid condition in the large N limit becomes < z >= 2d, i.e. isostaticity. Numerical

simulations indicate that the onset of mechanical rigidity for soft repulsive, friction-

less spheres corresponds to the isostatic condition even though the connectivity of the

system is not fixed [6].

In two dimensions, one can extend the above necessary condition for minimal

rigidity in central-force fixed connectivity networks, such as the ones studied in rigid-

ity percolation, to necessary and sufficient using Laman’s theorem [15]: A network
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Figure 2.1: A jammed, bidisperse (i.e. with two different radius) particle packing with N = 1024

and packing fraction φ = 0.841. The colors denote the local coordination number, z, with light blue

denoting z = 0, magenta denoting z = 3, red denoting z = 4, blue denoting z = 5, orange depicting

z = 6, and purple denoting z = 7, which is possible for the 1.4 diameter ratio for the bidisperse

system.

with N vertices is generically, minimally rigid in two dimensions if and only if it has

2N − 3 bonds and no subgraph of n vertices has more than 2n − 3 bonds. Laman’s

theorem is global (or spatially nonlocal) in the sense that it involves all possible sub-

graphs. However, we will present a construction of the Laman graph implemented

via spatially local rules involving both the addition and deletion of bonds developed

earlier by Henneberg [65]. Such an algorithm falls under the jurisdiction of correlated

percolation where there are constraints on the occupation of bonds as the graph is

constructed. Note that for Laman’s theorem, Ng = 3. Moreover, a recent gener-

alization of Laman’s theorem to kN − Ng extends the concept of minimal rigidity

[66].

Fixed connectivity central-force networks from rigidity percolation and soft, repul-

sive discs differ from each other in the following two ways. In the particulate system,

the contacts are not fixed. These contacts break/rearrange as the system minimizes

its energy or responds to perturbations. Additionally, there are only repulsive forces in

the particulate system in contrast to central-force networks, which are typically spring

networks exhibiting both attractive and repulsive forces. Do these differences have
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any implications for characterizing the contact geometry of the particulate system at

the onset of rigidity, or jamming? Indeed, they do. At the transition, in addition to

the system being minimally rigid, each particle must be locally mechanical stable in

the presence of purely repulsive forces. Otherwise, an infinitesimal perturbation can

break a contact and the system becomes flexible.

What does local mechanical stability mean in terms of constraints on the contact

geometry? In two dimensions, a particle must have at least three contacts and those

contacts must be organized in such a way the particle cannot escape its local envi-

ronment via a perturbation. More precisely, any particle should have at least three

neighbors, i.e. it is 3 − core, and the particle should be inside a triangle determined

by at least three of its neighbors [48]. This local geometric condition is known as

the Hilbert stability condition and is illustrated in Fig. 2.2. If this local condition

is not obeyed, then the entire packing can go unstable due to an infinitesimal, local

perturbation.

(b)(a)

Figure 2.2: (a) The center particle is not mechanically stable (for the other two particles fixed).

(b) The center particle is mechanically stable.

Therefore, just as S. Alexander [48] argued that the concept of geometrical rigidity

for spring networks, when extended to particle networks, needs to incorporate the

breaking of contacts, the rigidity transition for frictionless, repulsive soft discs in two

dimensions is characterized by a spanning, planar graph obeying both the Laman

condition and by the principle of local mechanical stability (Hilbert stability). We

call this graph a “jamming graph”. The vertices in the graph represent the particles

and since the bonds represent particle contacts, the graph must be planar.

We would like to understand how such graphs obeying both global and local rules
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of mechanical stability are constructed in practice. It turns out that we will be able to

do so using an algorithm with spatially local moves. This is because one can build a

Laman graph via an algorithm called the Henneberg construction [65]. The algorithm

will be presented in the following section. Therefore, we now explore the notion of

minimal rigidity in particle packings in two dimensions, where the connectivity is not

fixed and the forces exterted above jamming are purely repulsive, by imposing both

types of mechanical stability.

2.2 Algorithm for building jamming graphs

2.2.1 Henneberg construction

Let us review the Henneberg construction [65]. For constructing a Laman graph, we

begin with a triangle and then add a vertex and connect it to prior vertices using the

Henneberg steps Type I and Type II defined below:

• Type I step: Add a vertex and join it to two prior vertices via two new bonds;

• Type II step: Add a vertex and join it to three prior vertices with at least

one bond in between the three bonds. Remove a prior bond between the three

connecting prior vertices.

See Fig. 2.3 for an illustration of the Henneberg construction.

A graph constructed using the Henneberg construction is Laman [15]. We can

see this via induction. Suppose the current graph G is Laman with N vertices and

2N − 3 bonds.

For the Type I step: Add vertex x. Graph G now contains N + 1 vertices and

2N − 3 + 2 = 2(N + 1) − 3 bonds. For any subgraph with n vertices, if it does

not include x, by the induction hypothesis, there are at most 2n − 3 bonds. If the

subgraph includes x, for the other n−1 vertices, there are at most 2(n−1)−3 bonds

between them, so in total there are at most 2(n− 1) − 3 + 2 = 2n− 3 bonds.
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(i) (ii) (iii)

Figure 2.3: (i) Graph before Henneberg step. (ii) Type I step with the new bonds denoted with

dashed lines. (iii) Type II step.

For the Type II step: Add vertex x and connect it to a, b, c. Graph G now contains

N + 1 vertices and 2N − 3 + 3 − 1 = 2(N + 1) − 3 bonds. For any subgraph with n

vertices, if it does not include x, by the induction hypothesis, there are at most 2n−3

bonds. If any subgraph includes x, for the other n− 1 nodes, there are at most

1. 2(n− 1) − 3 bonds, if not all of a, b, c are included.

2. 2(n− 1) − 4 bonds, if a, b, c are all included.

In case 1, there are at most 2(n − 1) − 3 + 2 = 2n − 3 bonds. In case 2, there are

at most 2(n − 1) − 4 + 3 = 2n − 3 bonds. Thus, the Laman condition is satisfied.

One can also show that every Laman graph can be decomposed into a Henneburg

construction.

The Henneberg construction (and the corresponding Laman’s theorem) is purely

combinatorial. It only deals with adjacency and not where the neighbors are located

spatially. Because bonds in the jamming graph represent contacts between particles,

we impose a planarity, or no-crossing condition, on the bonds. Moreover, if Ng = 2,

as opposed to Ng = 3, the above Henneberg construction is unchanged.
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2.2.2 Hilbert stability

We also invoke the local Hilbert stability condition for two-dimensional packings,

which states that any vertex should have at least three neighbors, i.e. it is 3−core, and

the vertex should be inside a triangle determined by at least three of its neighbors [48].

To determine whether or not a vertex is enclosed in a triangle by at least three of

its neighbors, we implement an algorithm based on the Jordan Curve Theorem [67].

It consists of drawing a horizontal line from the vertex and determining how many

crossings the horizontal line makes with the enclosed triangle. If there are an odd

number of crossings, then the vertex is inside the polygon as illustrated in Fig. 2.4.

Figure 2.4: Illustration for checking if a particle enclosed by a triangle.

2.2.3 Pseudocode

Graphs built by using Henneberg type II steps have typically more counter-balanced

vertices since the new vertex has more neighbors in comparison to Type I. So we build

a jamming graph implementing Henneberg type II steps only. The graph must be

planar and we implement periodic boundary conditions on a square of length unity.

We then enforce the Hilbert stability condition on each vertex. Here is the pseudocode

of our algorithm.

• Create a triangle. The length of the bonds is chosen randomly from the uniform

distribution on the interval [rmin, rmax], where rmin < rmax < 0.5. The triangle

is a minimally rigid k = 3, Ng = 3 structure.
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• Create a new vertex with random coordinates with the constraint that no ver-

tex be less than a distance rmin or greater than a distance rmax from any other

vertex and establish its neighbors according to the Type II Henneberg step.

This creation is succesful if the new bonds are not overlapping any of the sur-

viving prior bonds (keeping in mind that a Type II Henneberg move implies the

deletion of a prior bond).

• Repeat the above step N − 4 times to create a planar Laman graph with N

vertices.

• Check for those vertices that are not counter-balanced.

• For each vertex that is not yet counter-balanced, impose the following set

of strategies to enforce counter-balance. The strategies differ depending on

whether an uncounter-balanced vertex has at least two neighbors or at least

three.

• Counter-balance strategies for a vertex with at least three neighbors:

Suppose uncounter-balanced vertex p has neighbors n1, n2, and n3, as shown in

Figure 2.5. If p has more than three neighbors, we apply the following strategy

to each set of the three diferent neighbors of p. Choose n2 such that −→pn2 is

inside the angle n̂1pn3. Then choose a vertex x such that

−→x = −→n +
−→np

‖−→pn‖α; −→n = β−→n1 + (1 − β)−→n2, (2.2)

where α is equal to one half the distance from p to its closest neighbor and

0 < β < 1. To counterbalance p so that it belongs to the triangle △n1n2x, x

should be in the angle determined by the vectors −→n1p and −→n2p. By choosing

particular values for β, for example β = 1
10
, 1

2
, 9

10
, most of the region containing

the angle is scanned as illustrated in Figure 2.5.

New bonds xp, xn3, xz are created and the prior bond pn3 is deleted. Note

that the new bonds cannot cross any of the prior ones. Then, a prior vertex z is
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Figure 2.5: Left: An uncounter-balanced vertex p with at least three neighbors n1, n2, n3, is

counter-balanced by creating bond px and deleting bond pn3. Likewise, x is counter-balanced by

finding z such that x is inside triangle △zpn3, consequently creating bond xz. Right: An illustration

of different positions to choose an appropriate neighbor x for uncounter-balanced vertex p. Values

of β are chosen so that most of the space contained in the angle determined by vectors −→pn1 and −→pn2

is scanned.

chosen such that x is counter-balanced, which means it should be in the striped

region in Figure 2.5. If the above counter-balance strategy does not work, move

p towards n2 by a fraction of the length ‖−→pn2‖. Once p is moved, the above

strategy is tried again. If this particular construction does not work, chose n to

be between n2 and n3.

• Counter-balance strategy for a vertex with at least two neighbors:

Assume the situation depicted in Figure 2.6, where p is an uncounter-balanced

vertex with neighbors n1 and n2. In this case, create a new vertex x such that

−→x =
−→np
‖−→pn‖α; −→n =

1

2
(−→n1 + −→n2) . (2.3)

Then find two connected vertices a and b and create bonds xp, xa, xb and

delete the prior bond ab. This strategy is successful if the new bonds do not
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Figure 2.6: Uncounter-balanced vertex p is counter-balanced by finding two connected vertices a

and b such that the creation of vertex x and bonds xp, xa, and xb causes x to be counter-balanced.

Also, bond ab is deleted.

cross any of the prior ones and if either vertex a or b remain counter-balanced

after deleting the bond connecting them. It is important to note that one can

apply this strategy for a vertex with more than just two neighbors.

A few comments on the algorithm are in order. (0) The use of rmin and rmax set

the local neighborhood from which vertices are connected. It is in this sense that the

algorithm is local spatially. (1) We did not impose counter-balance during the Laman

construction because Type II Henneberg steps delete bonds so that a counter-balanced

vertex at one point during the graph construction may not be counter-balanced at

some later point in the construction. Of course, Type I Henneberg steps do not

delete bonds, but then a sizeable fraction of uncounter-balanced vertices emerge,

approximately 75 percent, as compared to jamming graphs constructed using the

Type II Henneberg steps, where approximately 50 percent of the bonds are counter-

balanced automatically. (2) The algorithm begins with a triangle, which is a 2N − 3

minimally rigid structure. While periodic boundary conditions imply Ng = 2, local
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structures that are the equivalent of 2N − 2 minimally rigid structure do not include

single-bonded triangles. More precisely, for N = 3, one connection between two

vertices must have a double bond. Since we begin the algorithm with a local structure

and build up the graph from there with specific boundary conditions imposed for

some fraction of connections that decreases as N increases, we implement Ng = 3.

The Ng = 2 versus Ng = 3 for periodic particle packings presumably accounts for

why an extra contact is needed a positive bulk modulus. (3) The jamming graph

is one connected structure, i.e. there are no rattlers. Rattlers are usually removed

by hand when studying elastic properties, for example, since they do not contribute

to the network. (4) New vertices may be added to the jamming graph to enforce

the counter-balance property. We use N to denote the number of vertices before

counter-balance is enforced such that the approximate number of final vertices is 3
2
N .

To compare the jamming graph algorithm with other algorithms generating min-

imally rigid particle packings, such particle-based algorithms range from minimiza-

tion methods [6] to adapative network methods [68] to molecular dynamics [69, 70]

to event-driven molecular dynamics [71]. When using these approaches, the transi-

tion point, defined by the packing fraction or the average pressure, can be protocol-

dependent [72, 73, 74]. Moreover, convergence issues exist [51]. Our algorithm uses

purely contact geometry to concretely define the onset of jamming in frictionless

spheres. Indeed, there exist algorithms to generate generic disordered minimally

rigid graphs via a matching algorithm [75, 76], where generic means that the vertex

coordinates are not related by any symmetry. These graphs are not planar nor is local

mechanical stability enforced. And finally, there exists a hybrid approach where high

density particle packings are used to generated a disordered hyperstatic graph [77].

Then, bonds are then randomly deleted from the graph until, for example, < z >= 4

is obtained. There is a constraint on the random deletion, however, where a bond is

not deleted if the local coordination number of either of the two associated vertices

goes below 3, otherwise known as the k-core condition [20]. However, both latter
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algorithms do not necessarily enforce the geometry of local mechanical stability.

2.3 Perturbing jamming graphs

Now that we have an algorithm to construct jamming graphs, we perturb these graphs

to determine how the system destabilizes (and restabilizes) mechanically. The desta-

bilization is studied via the identification of rigid clusters. A rigid cluster defines

those bonds that are rigid with respect to each other. A rigid cluster is defined on

the bonds, as opposed to the vertices, because a vertex can belong to two different

rigid clusters, while bonds can be identified with only one rigid cluster. The rigid

cluster size s is defined as the total number of bonds belonging to a rigid cluster.

We then use the powerful pebble game algorithm [16] to identify rigid clusters via

an additional test bond. By construction, the jamming graph is one minimally rigid

cluster. We now investigate how the jamming graph destabilizes with the removal of

one bond. Note that the size of rigid clusters is measured in terms of bonds and not

vertices.

2.3.1 One random bond deletion

The removal of one bond/contact creates exactly one floppy mode such that every

bond is no longer rigid with respect to every other bond in the graph. In other words,

there must be at least two rigid clusters in the graph. In fact, one can prove that

there must be an even number of rigid clusters. So, precisely how many pairs of

rigid clusters are there after one bond is randomly deleted: ”Many microscopic rigid

clusters with no rigid cluster of order the system size, or at least one rigid cluster of

order the system size coexisting with microscopic sized rigid clusters?” We define a

rigid cluster occupying some large fraction of the bonds in the system and to scale

with the system size to be a macroscopic rigid cluster. This macroscopic rigid cluster

need not necessarily span the system, though since it scales with the system size,
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then it is likely too. Microscopic rigid clusters, on the other hand, do not scale with

the number of bonds in the system The smallest minimally rigid cluster is a triangle.

It turns out that both scenarios are observed. See Figure 2.7. And while both

scenarios occur, it turns out that the most common scenario is the absence of at least

one macroscopic rigid cluster when one bond is deleted.

Figure 2.7: Left: Many small rigid clusters identified via color after the deletion of one

bond/contact, namely the bond between vertices 1 and 41 as numbered. The black dashed lines

indicate bonds that are not rigid with respect to any other bond. Right: A “macroscopic” rigid

cluster (in blue) along with a few small ones after the deletion of the bond connecting vertices 12

and 30.

And while the survival of macroscopic rigid clusters after one bond deletion is

apparent in the systems studied, do they persist in the large system limit? Figure 2.8

depicts the resulting rigid cluster size probability distribution, Prob(s) for N = 40,

80, 160, and 320. Note that the rigid cluster size is in terms of bonds such that

the rigid cluster sizes can be larger than the initial vertex number N . Indeed, the

probability of observing a macroscopic rigid cluster after one bond deletion decreases

with increasing system size. To obtain a systematic measurement, we compute the

area under the characteristic peak at the macroscopic rigid cluster sizes s, a#. See
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Figure 2.9. While the trend is not clearly power-law nor exponential, the area, a#, is

decreasing with N , suggesting that macroscopic rigid clusters after one bond deletion

vanish in the infinite system limit. This possibility, while not as likely as the many,

microscopic rigid clusters scenario, cannot yet be completely ruled out in the infinite

system limit, i.e. there is no mathematical proof.

For the sake of argument, consider the graph in Figure 2.10 [78]. Removal of the

red dashed bond corresponds to each bond not being rigid with respect to any other,

or many rigid clusters of size one. However, removal of one of the blue bonds leaves

the rest of the rigid structure unchanged (except for the one neighboring bond that

is no longer rigid with respect to any other bond). Depending on the bond that is

deleted, either scenario holds in the infinite system limit. And while the specificity of

this graph may not be useful for understanding the generic case, extensions of such

examples may indeed be.

In the system sizes studied, the two scenarios—(1) many microscopic rigid clusters

with no macroscopic rigid cluster and (2) at least one macroscopic, rigid cluster—

can be related to two different floppy modes. In the many microscopic rigid clusters

scenario, there is widespread break-up of the system. For bonds between individual

rigid clusters, there is zero-energy cost to deforming those bonds such that if they

are replaced by springs as is typically done when determining vibrational modes,

these bonds contribute to any zero-energy modes. If these bonds extend across the

system, as they do in the case of many microscopic rigid clusters, then the zero-energy

mode is an extended one. In contrast, the presence of at least one macroscopic rigid

cluster translates to a more localized zero-mode since the deforming bonds within the

macroscopic rigid cluster will result in some energy cost.

Our finding is presumably related to the recent finding of two kinds of instabilities

due to the breaking of contacts in a repulsive, frictionless particle packing at the onset

of rigidity [79]. In this work, two particles in contact are pulled apart, i.e. a bond

is deleted, and particle rearrangements driven by instabilities are identified. There
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Figure 2.8: Plot of Prob(s), the probability for a bond to participate in a rigid cluster of size s

after one bond is deleted from the jamming graph. The different graphs represent different system

sizes.
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Figure 2.9: Plot of the peak area for the macroscopic rigid cluster sizes, a#, as a function of N

initial vertices. The dashed line is merely a guide for th eye.

appear to be two kinds of instabilities—one extended and the other localized. While

force information is assumed in this study, our work only uses contact information.

In addition to the decrease in a# with increasing N , there is another trend in the

probability distribution of rigid cluster sizes as the system size increases. There is

a suppression of intermediate cluster sizes starts to emerge, i.e. a gap between the

microscopic and macroscopic rigid clusters emerges. There exists an upper bound on

the small rigid clusters that does not change with increasing system size. Interestingly,

Ref. [51] argued for the absence of intermediate rigid cluster sizes when introducing a

surface of cut bonds into the system based on a necessary, but not sufficient, condition

for rigidity.

What does a system size-independent upper bound on the microscopic rigid cluster

sizes imply about length scales? Should the macroscopic rigid cluster scenario vanish

in the infinite system limit, a diverging lengthscale emerges in the sense that going

from one macroscopic rigid cluster to many microscopic rigid clusters in the infinite

system limit corresponds to an infinite length associated with catastrophic break-up

of the one minimally rigid cluster.

How does our destabilization results for the jamming graph compare with other

minimally rigid graphs, ones where local mechanical stability need not be obeyed

as with typical rigidity percolation models? To answer this question, we generated
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Figure 2.10: Example graph where removal of the red, dashed line leads to all remaining bonds

not rigid with respect to each other (case (1) in page 42). The removal of any one blue line affects

only its neighboring blue bond. The rest of the graph is unaffected (case (2) in page 42). The three

black circles denote repetition of the blue hinge bonds.

minimally rigid graphs using the Henneberg Type I move (see Fig. 3) and did not

enforce local mechanical stability (counter-balance) for each vertex. Therefore, we

call these graphs Type I graphs. We then delete one bond randomly and compute the

resulting rigid cluster probability distribution. See Figure 2.11. As with jamming

graphs, the resulting rigid cluster distribution exhibits two scenarios—one with many

microscopic rigid clusters (and no macroscopic rigid cluster) and another less typical

scenario with at least one macroscopic rigid cluster—demonstrating a similar trend to

the jamming graph case. These results, again, suggest that there are both extended

and localized zero-energy modes in a minimally rigid system. However, for the Type

I graphs, the gap between the macroscopic and microscopic rigid clusters does not

emerge as clearly as compared to the jamming graph at similar system sizes.

This difference between between the jamming graph and the Type I graph could

be due to the connectivity of the Type I graphs, which is less constrained than the

jamming graphs. See Figure 2.12. In particular, the fraction of vertices with just two

bonds is about 59 percent. The removal of either bond removes the possibility of that

particular vertex participating in any rigid cluster of at least size three. While for

the jamming graph, the removal of a bond does not prevent the neighboring vertex of

now two or more neighbors from taking part in another local rigid cluster. In other

words, the rigid cluster structures are not as local as in the jamming graph such that

one may have to go to much larger system sizes to observe a gap in the rigid cluster
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sizes. Interestingly, Goodrich and collaborators [51] did not observe a sudden loss

of rigidity for a subsystem size below some lengthscale for bond-diluted hexagonal

lattices—a standard model for two-dimensional rigidity percolation—where vertices

of coordination number two are allowed. As with Type I graphs, it may be that one

must go to much larger system sizes to see a gap emerge.

Also, note that the coordination number distribution for the jamming graphs ex-

ceeds 6 (Fig. 12). Indeed, the kissing number (i.e. the contact number or number

of neighbors) for a monodispere disc packing is 6 and it is 12 for a three-dimensional

monodisperse sphere packing. In the repulsive soft disc simulations, the size distri-

bution is typically bidisperse (two sizes), where the ratio of the two radii is 1.4 so

as to obtain disordered packings [5, 6]. However, one also obtains a jamming transi-

tion with a polydisperse size distribution. The polydispersity would alter the upper

bound of the coordination number distribution, which is nonuniversal, but would not

alter the important universal properties of an average coordination number of four

and that each particle is enclosed by a triangle by at least three of its neighbors at

jamming.

After deleting one bond, let us briefly discuss how the system restabilizes me-

chanically (or not) with the random addition of one bond. If the added bond is

within one rigid cluster, then the bond is redundant and the graph does not resta-

bilize mechanically. However, if the added bond is between two rigid clusters, then

it is an independent constraint such that the graph becomes minimally rigid and,

therefore, must restabilize mechanically, i.e. there is only one rigid cluster. In terms

of a lengthscale affected by the perturbation, if the destabilized system is made up

of many microscopic rigid clusters, the lengthscale affected by the perturbation is of

order the system size, i.e. it is infinite in the infinite system limit, since the system

goes from many microscopic rigid clusters to one macroscopic rigid cluster with the

addition of one bond.
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Figure 2.11: Plot of Prob(s), the probability for a bond to participate in a rigid cluster of size s

after one bond is deleted from the minimally rigid graphs generated by Henneberg Type I moves

only. The different graphs represent different system sizes.
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2.3.2 Hyperstatic: Randomly adding and deleting more than

one bond

We begin with a jamming graph and randomly add some number of bonds, A. The

graph is no longer minimally rigid, i.e. it is now hyperstatic. This action allows us to

study systems that are “above” jamming where the macroscopic rigid clusters survive

at least one bond deletion. We can then randomly delete (different) bonds from this

hyperstatic graph and investigate how the system destabilizes mechanically. We may

then be able to identify a lengthscale that decreases from the system size at jamming

to some lengthscale smaller than the system size as a result of randomly deleting D

bonds.

For a concrete example, consider adding eight redundant bonds to a jamming

graph with N = 40. For 100,000 realizations, the random removal of one bond does

not create more than one rigid cluster, i.e. the system is still rigid globally. The

random removal of two bonds creates a few small rigid clusters in addition to the

macroscopic rigid cluster with a gap in between. See Figure 2.13. When three bonds

are randomly removed, however, we observe more of a qualitative change in the rigid

cluster size distribution. The gap between microscopic rigid clusters and macroscopic

rigid clusters closes. The concept of a single system with microscopic rigid clusters

distinct from macroscopic rigid clusters no longer makes sense. We are now beginning

to observe extended break up of the system. The gap size just before the extended

break-up sets a size scale, s#. This size scale can be easily converted to a lengthscale

via s# ∼ (l#)2 in two dimensions (assuming compactness).

How does s# scale with N and with distance to the rigidity transition? We

define ǫ = A
N

to describe the distance to the transition. More specifically, since

< z >= 2
Nf

(2Nf − 3 + A), with Nf representing the final number of vertices in the

graph after counter-balancing, then

< z > −4 +
6

Nf

=
4

3
ǫ, (2.4)
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where we have included the 1/Nf correction in the location of the transition [15, 80]

and used N
Nf

= 2
3
. For fixed ǫ, we observe that s# increases with increasing N until

beginning to reach a plateau that is independent of system size. We also observe that

as ǫ decreases, s# increases, though it will ultimately be cut-off by the system size.

In other words, s# is behaving as a size scale near a critical point. See Figure 14.

To test this hypothesis, we measure s# as a function of ǫ for several system sizes

and attempt finite-size scaling via the following route. Let l ∼ ǫ−ν , where l is some

underlying diverging lengthscale in the system. If the observed diverging lengthscale,

l#, is due to the underlying diverging lengthscale, then l# ∼ ǫ−ρ such that

l# = lρ/νf(l1/νǫ), (2.5)

with f(y) as some universal scaling function. For the cut-out subsystem analysis with

either free or fixed boundary conditions, ν = 1. If we assume this and set ρ = ν,

then we do not obtain a good scaling collapse. A more recent discovered diverging

lengthscale, lc, associated with the localization of phonon modes in floppy networks,

results in ν = 1/2 [57, 81]. If we, again, assume ρ = ν, we do not obtain a good

scaling collapse. We also tried the two remaining combinations of ν = 1, ρ = 1/2

and ν = 1/2, ρ = 1 and did not obtain good collapse. However, with ν = 1/3 and

ρ = 1/2, we do obtain a good scaling collapse. See Figure 14. While this data is

suggestive of perhaps a new diverging lengthscale in the system associated with point

perturbations via ν = 1/3, this possibility may be ruled out by the study of larger

system sizes.

It is interesting to note that mean-field correlation length exponents of 1/4, 1/2,

and 1 exist in disordered systems [20, 49, 50, 57, 81], while a correlation length

exponent of 1/3 is presumably less common. Incidentally, while ν = 1/4 (and ρ = 1/2)

is not as good a collapse as with ν = 1/3, it cannot be ruled out at this stage. However,

we can conclude that ν = 1, 1/2 and/or ρ = 1, 1/2 does not lead to sufficient collapse

for at least the system sizes we study.
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Figure 2.13: Plot of Prob(s), the probability for a bond to participate in a rigid cluster of size s

after A bonds are randomly added to the jamming graph and then D bonds are randomly deleted.

Two different system sizes are shown.
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2.4 Discussion

We have presented an algorithm for the spatially local construction of jamming

graphs. Jamming graphs represent the contact geometry of frictionless, repulsive

soft discs in two dimensions at the onset of mechanical rigidity. In other words, they

contain both the property of local mechanical stability and the necessary and suffi-

cient condition for minimal rigidity via the Henneberg construction. Since the bonds

represent contacts between particles/vertices, the jamming graph is planar. Vary-

ing the construction of these (and related) graphs allows us to turn on/off different

properties of particle packings at/near the onset of rigidity in a controlled way to

ultimately form a more concrete and comprehensive picture of jamming.

Our construction of jamming graphs begs at least three immediate extensions of

study. For the first extension, if one associates a disc with each vertex and each bond

dictates the contact between two discs, then we can potentially analyze the question

of whether or not there exists a unique packing fraction at the onset of rigidity in

the infinite system limit [6, 72, 82, 83, 84]. Indeed, there have been a number of

different definitions of the onset of jamming ranging from the random closed packing

(RCP) point [6, 85] to a maximally jammed state [82] to a jamming line [83, 84].
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To address this issue, we can create a physical realization of discs from a jamming

graph using the circle packing theorem [86]. The circle packing theorem states that

for every connected simple planar graph G there exists a circle packing in the plane

whose intersection graph is isomorphic to G. There are more strict conditions for

uniqueness as such and these will be explored. Note that to more readily associate a

jamming graph with a disc packing, we will allow for a polydisperse size distribution

of discs. While we can immediately explore this issue in two dimensions where both

Laman’s theorem is exact and the circle packing theorem holds, it would be interesting

to extend the jamming graph to three dimensions and higher. It turns out that

the three-dimensional version of Laman’s theorem for some networks are essentially

exact [87]. Higher-dimensional extensions of the circle packing theorem would indeed

be more challenging.

As for the second immediate extension, with jamming graphs we can search for

interplay between global mechanical stability and local mechanical stability since

we can easily turn off/on local mechanical stability. This on/off switch allows us to

compare the mechanics of fixed connectivity networks from rigidity percolation [60, 61]

with repulsive particle packings [54, 57, 77, 88]. While local mechanical stability may

not play as much of a role at the transition (other than suppressing fluctuations [50]),

it will certainly play a role in particle rearrangements above jamming, where local

mechanical stability is also required. For instance, if particle chains form as a result of

some perturbation, the chain should buckle so that particles having two contacts will

ultimately have at least three contacts with the appropriate geometry. Such particle

rearrangements above jamming can also be studied using jamming graphs with the

removal and addition of bonds. For instance, if the breaking of a contact results in

a vertex not being counter-balanced, with some input of force information [79, 89,

90, 91], a sequence of moves can be generated to regain the local mechanical stability

while ensuring that the graph remain hyperstatic.

For the third immediate extension, local rules governing a system may lead to a
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field theory, should one exist. And while there is not necessarily consensus on a field

theory for jamming [92, 93], our spatially local construction of the jamming graph

may provide insight for building a modified field theory for a system with both local

and global constraints. Such a framework may accelerate the quest to determine how

to classify the various constraints in terms of potentially different universality classes.

For instance, enforcing only the local k-core constraint leads to one type of phase

transition, while the counter-balance constraint leads to another [20, 94]. And while

such attempts are not currently appreciated in the field, a classification system based

on constraints will ultimately emerge.

For instance, the notion of constraints changes when one deviates from friction-

less, repulsive soft discs. Ellipsoidal particle packings may or may not be isostatic at

the onset of rigidity depending on which degrees of freedom can be accessed [95, 96].

It turns out that one can also extend Laman’s theorem in two dimensions to sys-

tems with other degrees of freedom [66] and, correspondingly, extend the Henneberg

construction. Such an extension of the jamming graph may, therefore, prove useful

for understanding the onset of rigidity for nonspherical particles. As for frictional

systems, while the history of the contact information may be difficult to incorporate

into an equivalent jamming graph, one can extend the pebble game (to a (3,3) pebble

game) to map out the rigid clusters of frictional packings to compare with frictionless

packings [97]. These endeavors (and others) will help form a concrete framework for

the onset of rigidity in disordered systems.

After constructing these jamming graphs, the deletion of one bond allows us to

study how the system destabilizes. In the system sizes studied, there exist two sce-

narios, one where the removal of the bond leads to catastrophic collapse of the single

rigid cluster with many microscopic rigid clusters (an extended zero-energy mode) and

the other where at least a macroscopic rigid cluster survives (a localized zero-energy

mode). As the system size increases, the probability of the localized zero-energy mode

decreases. It would be interesting to prove whether or not this probability vanishes in
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the infinite system limit. Particularly in two dimensions, there is a wealth of math-

ematical literature on minimal rigidity to potentially go beyond heuristic arguments

and numerics.

As opposed to uncovering a diverging lengthscale in surface versus bulk effects [49,

50, 51, 52, 54], we have potentially uncovered a new diverging lengthscale in the rigid

phase in response to random bond deletion. With a correlation length exponent close

to 1/3, it appears that this new lengthscale is not related with the introduction of

a force monopole in the particle packings [56]. However, once forces are introduced,

and/or the contact geometry is allowed to rearrange as the system responds to the

point perturbation, then one should presumably obtain the prior result. Again, the

ability to build upon the jamming graph by incorporating further detail bit-by-bit

will allow us to identify the properties ultimately dictating a particular behavior or

response.



Chapter 3

Constraint Percolation on

Hyperbolic lattices

3.1 Introduction

Geometry plays a key role in driving physical processes in such different physics fields

as relativity, cosmology, quantum field theories, and condensed matter. In condensed

matter systems specifically, the effect of geometry on the nature of a phase transition

is of interest. In particular, Hyperbolic spaces that possess a constant negative curva-

ture of -1 have been applied recently in several condensed matter models, namely the

Ising model and percolation. Why consider hyperbolic spaces? Hyperbolic geometry

connects to properties of mean field theory, or Bethe lattices, with the same nonvan-

ishing ratio of surface to volume of compact structures as the size of the lattice scales

to infinity. The relevance of loops, moreover, are small. Accordingly, hyperbolic lat-

tices provide a test bed for studying phase transitions in a geometry that interpolates

between Bethe lattices and Euclidean lattices. Hyperbolic lattices are also interesting

from a jamming and glassy physics perspective because they provide a natural mech-

anism in two dimensions to frustrate global crystalline order and allow for a more

tractable model to study glass transition and jamming in two dimensions [98].
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We use hyperbollic tessellations here to study k-core and force balance percolation

models. Recall that k-core percolation is constraint percolation model where occupied

sites having less than k occupied neighboring sites are pruned starting with an initial

random and independent occupation of sites. This pruning is done consecutively until

all occupied sites have at least k occupied neighboring sites. In mean field, k-core

percolation resembles some properties of a mixed phase transition, i.e. discontinuity

in the order parameter and a diverging length scale, as in the jamming transition.

And yet k-core percolation on Euclidean lattices appears exhibit either a continuous

phase transition in the same universality class as unconstrained percolation or no

transition (pc = 1). So we ask the question: What is the nature of the k-core

percolation transition on hyperbolic lattices? Will the transition behave more like

what is computed on the Bethe lattice, or not?

As you will soon discover, many of the numerical techniques developed for the

analysis of the phase transition from not-spanning to spanning in unconstrained per-

colation are not as readily applicable on hyperbolic lattices given the strong boundary

effects. As a means of comparison, we also investigate counter-balance percolation

on hyperbolic lattices. Counter-balance percolation is another constraint percola-

tion model [94] in which each site is first occupied with some occupation probability

p. Then, if an occupied site is not surrounded by neighboring occupied sites such

that local mechanical stability can be guaranteed, the occupied site is removed from

the lattice. This procedure is repeated until all occupied sites obey the occupation

constraint. This model was studied in two- and three-dimensions. Numerical simu-

lations suggested strongly signs of a discontinuous transition in the standard order

parameter (i.e. the fraction of sites participating in the spanning cluster) which also

occurs in jamming. And yet numerical simulations also suggested that there exists a

correlation length scale diverging faster than any power-law, which is different from

jamming with numerics suggesting the more standard power-law diverging correlation

length [5].
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So we expect counter-balance percolation to be discontinuous on various Euclidean

lattices. A mean field theory of counter-balance percolation is not possible because

spatial information is encoded in the constraints. Studying counter-balance percola-

tion on hyperbolic lattices will allow us to work towards a mean field theory without

giving up the spatial constraints. We expect counter-balance percolation to exhibit

a discontinuous percolation transition on hyperbolic lattices since it already appears

to be in the presence of many loops. This behavior should give us something to com-

pare against when trying to determine whether or not k-core percolation exhibits a

discontinuous transition on hyperblic lattices. This information will help us better

understand the nature of k-core percolation, which, again, is a minimal model of

jamming to help lay the foundation for microscopic understanding of the jamming

transition.

The remainder of this chapter is organized as follows: We will study several prop-

erties of k-core percolation models for k = 1, 2, 3, and counter-balance percolation

on hyperbolic tessellations. We present in Section 2 details of the hyperbolic lattice

and various percolation algorithms. In Section 3 we present a theoretical proof that

the threshold for counter-balance percolation is strictly less than one for most of the

tessellations. This section is a bit technical and can be skipped by the reader should

their interest be more in the nature of the phase transition. We present our numerical

results in Section 4, where we study the order parameter, the crossing probability,

and the cluster size distribution. We summarize and discuss the implications of our

results in Section 5.

3.2 Model and methods

The key step in the simulation process is to construct a hyperbolic lattice. We do this

by implementing the algorithm described in detailed in Ref. [99]. In the construction

of a {P,Q} hyperbolic lattice, where, again, P denotes the number of sides of each
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polygon and Q denotes how many polygons meet at a vertex, the central polygon is

built first, this is the first layer. Then by translations and rotations of the central

polygon, the second layer is built. This process is followed recursively until a desired

number of layers are built. An l-layer is composed of those polygons that do not

belong to an m-layer for m < l and share an edge or vertex with a polygon in

the (l − 1)-layer. The algorithm makes use of the Wierstrass model for hyperbolic

geometry, where points lie on the upper sheet of the hyperboloid x2 + y2 − z2 = −1.

Consequently, rotations and translations are given by 3 × 3 Lorentz matrices. The

Wierstrass is related to the Poincare model through the stereographic projection

toward the point (0, 0,−1)t given by
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The exponential growth of number of vertices with respect to the number of layers

constrains severely the number of layers used in the simulations. Typically we simulate

Figure 3.1: {3, 7} tessellation on the Poincare disk.
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around 10 layers. This is comparable to the recent work by Gu and Ziff studying

ordinary percolation on hyperbolic lattices [100]. Ziff is considered a leader in the

world of numerical analysis of percolation. We impose fixed boundary conditions.

Recent work on implementing periodic boundary conditions in certain tilings may

ultimately be investigated [98]. However, the sets of hyperbolic tillings that can be

used using the methods in [98] have less than 30000 sites due to a lack of knowledge

of all possible normal subgroups of a given Fuchsian group.

Once a tessellation is created, each of its sites are occupied with probability p. For

k-core percolation, we then recursively remove any occupied site (excluding boundary

sites) that has less than k occupied neighboring sites. For counter-balance percolation,

we recursively remove any occupied sites (excluding boundary sites) that are not

enclosed by a triangle of neighboring occupied sites, i.e. those sites that are not

mechanically stable. We do this until all occupied sites obey the imposed constraint.

We have numerically tested on around one million runs, that the order in which we

check the counter-balance constraint does not affect the final configuration, i.e. that

the model is abelian. It has been also argued that the k-core model is abelian [101].

We then use the Hoshen-Kopelman algorithm to identify the clusters and their

respective sizes. To determine if a cluster is spanning, we break up the lattice into

four cardinal regions: NE, NW , SW , and SE. See Figure 3.2. We regard the cluster

as percolating, or spanning, when it connects either NE and SW sites or NW and

SE sites, as in Ref. [100]. We then measure the probability to span, or cross for an

occupation probability p and we call it R(p). We also measure the number of times

we check the lattice to cull occupied sites not obeying their respective constraints.

This culling time tends to diverge near the transition.
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3.3 Theoretical proof of pc < 1 for some hyperbolic

tillings

It has been mentioned that there exists two critical percolation probabilities, pl and

pu for ordinary percolation on hyperbolic tillings. For our counter-balance model

however, it seems there is just one critical percolation probability according to the

results presented later. Let us call this probability, pCB, the probability above which

we have a percolating cluster. It is possible to prove that pCB < 1 for some hyperbolic

tillings {P,Q}. The proof follows two steps:

1. To establish the existence of trees on a tessellation {P,Q} with a certain con-

nectivity that depends on the parity of Q. For Q even we demand a connectivity

z = 6 and for Q odd, z = 5.

Figure 3.2: {3, 7} tessellation on the Poincare disk with the four boundary regions.
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2. We apply a well known result of k-core percolation on trees, i.e. that the critical

percolation is less than one when k < z. For our purposes we require k = 5

for Q even and k = 4 for Q odd. Accordingly we need to show that sites on

a percolating cluster for 5-core model on those z = 6 trees, and Q even case,

satisfy counter-balance condition. In a similar way for the Q odd case.

Let us prove each of these items in due order.

1. We need to show the existence of trees of connectivity z = 6 and z = 5 for Q

even and odd, respectively. Let us suppose Q is even. It is easy to see that

z = 6 trees cannot be built when Q = 4, 6 as there is not enough ”space” to

build such kind of trees. The case Q = 8 is more interesting.

Figure 3.3: Impossibility of building a tree of connectivity z = 6 on the {3, 8} tessellation due to

the lack of space

The tessellation {3, 8} do not admit such construction because the tree over-

lap onto itself as illustrated in Fig. 3.3 where red arrows shows some of those

positions at which the tree (green) effectively overlaps onto itself.

However z = 6 can be built on tessellation {4, 8}. To see this we choose a

site which we call the 0th-generation. The first generation are the neighbors

of such site. The nth-generation will be formed by those sites neighbors of the

(n− 1)th-generation that do not belong to a kth-generation where k < n. This
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is illustrated in Fig. 3.4. By construction, between two adjacent 1st-generation

sites on the z = 6 tree there is one 2nd-generation site which does not belong to

the tree. Now between the closest sons of those 1st-generation sites which are

2nd-generation sites belonging to the three, there are six 3rd-generation sites

not belonging to the tree. By construction such tree can be expanded without

overlapping.

Figure 3.4: Tessellation {4, 8} enables the construction of trees of connectivity z = 6

For P > 4 we have more vertices in each layer which gives more space to build

the tree, and the same construction holds. Accordingly we can build z = 6 trees

on tessellation {P, 8} when P > 3. Likewise, it can be checked that for any P , Q

even and Q > 9, it is possible to build a tree of connectivity z = 6. Analogously,

it is checked that trees of connectivity z = 5 can be built on tessellations {P, 7}
where P > 3, and for any tessellation {P,Q} where Q > 8 is odd. In summary

those trees necessary for our proof can be built on any tessellation {P,Q} as

long as Q > 8 and for the tessellations {P, 7}, {P, 8} as long as P > 3.

2. Any site of the trees built in step 1. of a {P,Q} tessellation will be contained

in a Q-gon as illustrated in Fig. 3.5.

Now let us take such Q-gons on a euclidean setting as illustrated in Fig. 3.5(c)

and 3.5(d). One of the neighbors of central site is isolated from others, let us call
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(a) Tree of connectivity z = 5 on the {4, 7} tes-

sellation

(b) Tree of connectivity z = 6 on the {4, 8} tes-

sellation

(c) Euclidean illustration of the ”central” part of

the z = 5 tree on tessellation {4, 7}
(d) Euclidean illustration of the ”central” part of

the z = 6 tree on tessellation {4, 8}

Figure 3.5: Tree construction on the hyperbolic tessellations

it north neighbour, N . It happens that any tree of connectivity 4 (Q even case)

containing site N and imbedded in those trees of connectivity z = 5, satisfy the

counter-balance condition as indicated in Fig. 3.6.

Notice that this triangle condition on the central site is preserved in the hy-

perbolic geometry because the function that relates those polygons in different

geometries preserves topology. A similar proof applies to trees of connectivity
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5 embedded in those trees of connectivity z = 6 (Q even case).

Notice that this analysis holds for any site so we can always construct such

a Q-gon with the same characteristics for any site occupied site. Now let us

call p4c the critical percolation probability for 4-core percolation on trees of

connectivity z = 5 and p5c such probability for 5-core percolation on trees of

connectivity z = 6. It follows from the discussion above that pCB < p4c for

Q even, and pCB < p5c when Q is odd (search p4c and p5c) at least for those

tessellations where we can make the construction illustrated in Fig. 3.5.

3.4 Results

We work with tessellations {3, 7}, {7, 3}, and {4, 7}, where the first two tessellations

are the most common studied [100, 102]. We study k = 1, 2, 3-core percolation and

counter-balance percolation on such tessellations. The order parameter, defined as

S1/N , where S1 is the size of the largest cluster and N the total number of sites,

determines the continuity/discontinuity of the transition, i.e. should it increase from

zero continuously as the occupation probability p is increased, then the transition is

continuous. We also study properties of the full cluster size distribution (not just

the largest cluster). To independently determine where the threshold occurs, we

measure the crossing probability R(p) discussed below. Recall that for unconstrained

(a) Heptagon 1 (b) Heptagon 2 (c) Heptagon 3 (d) Heptagon 4

Figure 3.6: Illustration of all the possible cases of occupation for a 4-core cluster on a tree of

connectivity z = 5
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percolation on hyperbolic lattices there are two thresholds pl and pu, not just one.

3.4.1 Crossing probability

It has been proved that unconstrained percolation exhibits three phases on a hy-

perbolic lattice [103]. Specifically, for p < pl there is no percolating cluster, for

pl < p < pu there are infinitely many percolating clusters, and when p > pu there is

just one percolating cluster. The existence of three phases is reflected in the crossing

probability, R(p). According to Ref. [100], as the number of layers tends to infinity,

R(p) tends to a function that in the intermediate phase is a straight line with finite

slope in the infinite layer limit. If there is just one phase boundary, as with un-

constrained percolation on Euclidean lattices, then in the infinite system limit R(p)

jumps discontinously at the boundary from zero to one through some value of R(pc)

(the Cardy crossing value) at the transition. So there would be no finite slope region

in the infinite system limit.

Since k = 1-core percolation removes only isolated occupied sites, it is equivalent

to unconstrained percolation. We should, therefore, observe this finite slope interme-

diate region in the crossing probability as the number of layers tends towards infinity.

This finite slope region has indeed been observed in Ref. [100] for k = 0-core percola-

tion. Fig. 3.7(a) presents the crossing probability for all four percolation models. To

check for the existence of the intermediate region in R(p) we extract its maximum

slope M near the inflection point. We then plot the inverse of this slope as a function

of the 1/ℓ and extrapolate to the number of layers, ℓ, going to infinity limit. The re-

sults are illustrated in Fig. 3.8. The inverse of the slope, 1/M tends to similar values

for 1-core and 2-core models. For 1-core, it tends to 0.240 and 0.223 for the 2-core

model. Meanwhile 1/M tends to 0.131 for 3-core model. The fact that the inverse

of the slope tends to -0.036 for the counter-balance model, which is much closer to

zero than the three other models, is an indication that the slope tends to infinity at

the transition. Consequently there should be just two phases for the counter-balance
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model.

The suggestion of a finite slope regime of R(p) for all three k-core percolation

models suggests that there is a intermediate phase for R(p). In other words, all three

models behave similarly to unconstrained percolation. Of course, we have empirically

chosen a function to implement the extrapolation. In Ref. [100], the maximum slope

M as a function of N(ℓ)−0.7, where N(ℓ) is the number of vertices in a layer was used.

In this work, different choices of the exponent did not affect the outcome. We also
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Figure 3.7: Crossing probability on {3, 7} tessellation and different percolation models. counter-

balance model apparently is discontinous which is confirmed by the extrapolating the value of the

slope with 1/l.
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tested different slightly extrapolation functions and our results remain unchanged in

terms of the interpretation.

3.4.2 Order Parameter

For unconstrained percolation on Euclidean lattices the order parameter, P∞, is a

continuous function of p. Since k = 1, 2-core models are equivalent to unconstrained

percolation in terms of the transition, they should behave similarly. While the order

parameter in k = 3-core on the Bethe lattice jumps discontinuously at the transition,

on Euclidean lattices it does not. For counter-balance percolation on two- and three-

dimensional Euclidean lattices, the order parameter jumps discontinuously at the

transition. We present P∞(p) for different layer numbers for the four different models

on the {3, 7} tessellation in Fig. 3.9.

Since any differences between the curves is not clear by eye, we perform a similar

extrapolation to what was used for the study of R(p). We measure the maximum

slope of each curve and plot the inverse of the maximum slope, 1/S0 with respect to

1/l. Should the transition be continuous, then the y-intercept of 1/S0 to be greater
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Figure 3.8: Inverse slope of Crossing probability, 1/M , tendency on 1/l for different models on the

{3, 7} lattice. For 1-core model 1/M tends to 0.240, for 2-core to 223, for 3-core to 0.131, and for

counter-balance (CB) to -0.036 indicating M is tending to ∞ as l tends to ∞.
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than zero. Should the transition be discontinuous, then the y-intercept should vanish.

We found that the 1-core and 2-core models have a very similar limiting value, 1/S0 =

0.0953 and 1/S0 = 0.0996, respectively. The y-intercept tends to 1/S0 = 0.0686 for

the 3-core case, which is different than the previous two cases, but still non-zero. The

k-core models may indeed be continuous phase transitions for the {3, 7} tessellation.

For the counter-balance model, the same extrapolation method yields tends to a

negative value as shown in Fig. 3.10 that is very close to zero. This result may indicate

that counter-balance percolation belongs to a discontinuous phase transition. This
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Figure 3.9: The order parameter for the different models on the {3, 7} lattice.
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result is expected since it is discontinuous on Euclidean lattices as well.

3.4.3 Cluster sizes

For unconstrained percolation on Euclidean lattices the cluster size distribution, ρ(s),

for cluster size s falls off exponentially below pu = pl, becomes power law at pu = pl,

and is believed that ρ(s) ∼ exp(−η(p)s1−1/d) for p > pu [18]. One might therefore

expect that rho(s) ∼ exp(−s) for p > pu for a hyperbolic lattice since it shares some

similar properties with the Bethe lattice. The Bethe lattice is a high-dimensional

graph in the sense that the probability of forming a loop is zero. We now present

the histogram for the cluster sizes (which has the same scaling as ρ(s))for the various

models. We observe for all the k-core models and the counter-balance the following

behavior. Below some probability, pclus, the histogram is concave as seen in Fig. 3.11.

Then the histogram becomes power law when p > pclus with an additional peak at

the end of the distribution. Accordingly, for p > pclus the histogram scales as s−τ ,

except for the peak.

We have the following values for τ for the different models. For the k-core models

τ = 2.09, 2.07, 2.04 for k = 1, k = 2, and k = 3-core models respectively. These

values agree with earlier simulations of unconstrained percolation on the hyperbolic
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Figure 3.10: The inverse of the maximum slope of the order parameter as a function of ℓ for the

different models on the {3, 7} lattice.
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lattice [102]. For the counter-balance model, τ = 1.76. Again, the counter-balance

model appears to be a different phase transition from the k-core models. More impor-

tantly, the data suggests that, again, k = 3-core behaves similarly to unconstrained

percolation, which is the same observation for k = 3-core on Euclidean lattices.

For the {3, 7} tessellation, the k = 1-core histogram becomes more broad with

increasing occupation probability and remains broad at larger p. The k = 2, 3-core
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Figure 3.11: Cluster size histograms (as opposed to distributions) for different models and the

{3, 7} lattice. 10000 samples were implemented for each data set.
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models exhibit similar behavior. However, the small system sizes limit our interpre-

tation.

For the counter-balance model, the cluster size histogram becomes broad at p ≈
0.8 with an additional peak at s ≈ 5000 (for l = 8). An additional peak is not

observed in the k-core models. Is this peak robust at larger system sizes? If pu < 1,

then this graph could be an indication that counter-balance is different from k-core

in the hyperbolic plane. Larger system sizes are being studied. Moreoever, at even

larger p, the cluster size distribution appears to scale differently then the p = 0.8

curve, which is different from the k-core model results.

3.4.4 Culling time

The culling time is the number of sweeps through the lattice to complete the culling/removal

process for those occupied sites not obeying the respective constraints. On Euclidean

lattices, the culling time for k = 3-core and counter-balance percolation increases

near the percolation transition due to an increasing lengthscale in the distance over

which the removal of one occupied site triggers the removal of other occupied sites.

In Fig. 3.12, we observe the culling time for tessellation {3, 7}, for k = 2, 3-core and

counter-balance models. Note that for k = 1-core it just takes one sweep of the lattice

to eliminate sites no satisfying the constraint so there is no diverging lengthscale.

According to Fig. 3.12, there is a peak in the culling time T as a function of p. Note

that the position of the peak for the k-core models does not move and presumably

yields an estimate for pl. Accordingly, on {3, 7} for the 2-core model, p2l ≈ 0.28,

and for the 3-core model p3l ≈ 0.45. However, for counter-balance model the peak is

increasing with the number of layers. We obtain the extrapolated p∗CB ≈ 0.837 when

scaling pCB as l−1. While there are the two regimes of many spanning clusters and

one unique spanning cluster for k = 1-core, it is not obvious that these two regimes

exist for k = 2, 3-core. A peak that remains broad in the infinite system limit may

be indicative of the two regimes.
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3.4.5 Debate about pu

There exist three phases for unconstrained percolation on a hyperbolic lattice [103].

For p < pl there is no percolating cluster, for pl < p < pu there are infinitely many

percolating clusters and for pu < p the infinite number of percolating clusters join

form one. There is not clear consensus, however, about how to numerically calculate

pl and pu. According to Ref. [102] pl can be measured as the probability above

which there is a cluster connecting boundary points to the center. And pu can be
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Figure 3.12: Culling time for the different constraint percolation models for the {3, 7} lattice.

Each data set was averaged over 50,000 samples.
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measured in three different ways. The probability above which the ratio between the

second biggest cluster and the biggest cluster, S2/S1, becomes negligible, or there is

a finite fraction of the boundary points connected to the middle, or the cluster size

distribution P (s) becomes power law.

According to Ref. [100], pl and pu can be measured from the crossing probability

R(p), i.e. the probability of having a cluster going from one side of the lattice to

the other. While this is the more straightforward measure, it would be good to find

other measurements as consistency checks. It is important to note that there is a
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Figure 3.13: Ratio S2/S1 for different models and for Tessellation {3, 7}
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relationship between pl and pu on a lattice and its values on the dual lattice that are

denoted as pl and pu respectively. Such relationship is

pl + pu = 1, , , pl + pu = 1. (3.2)

As the measurement of pl is less controversial than the one for pu we can use Eq. (3.2)

to calculate pu by calculating pl on the dual lattice. Regarding the controversy for

calculating pu, Ref. [102] determines a way of finding pu by measuring the ratio

S2/S1 between the second largest and largest clusters. The initial claim was that in

the infinite limit such a curve will be discontinuous at some intersection point (see

their Fig. 4).

We measure the ratio S2/S1 where S1 is the size of the biggest cluster and S2 is

the size of second biggest cluster. Again, the p at which this ratio jumps to zero in the

infinite limit determines pu (according to Ref. [102]). In a more recent paper though,

the same authors state it could be the case that the curve not be discontinuous at

this point, such as the curves for R(p). In fact, according to Fig. 3.13(a) this seems

to be the case here. So we do not rely on this method any further.

For k = 1-core model we developed an estimate for pu according to the procedure

outlined in Ref. [100] for tessellations {3, 7} and {7, 3}. We measure the slope of

the curve on the crossing point region (see Fig. 3.13(a) for tessellation {3, 7}).
Accordingly, the best estimate for pu in the tessellation {3, 7} is pu = 0.73± 0.02 and

in the tessellation {7, 3}, pu = 0.86 ± 0.02.

To estimate pl we search for the point at which the crossing probability is greater or

equal than 10−4, similar to the procedure followed in Ref. [100]. For these calculations

the data was averaged over 100000 runs and has large fluctuations.

In Fig. 3.14 we illustrate the extrapolation for getting pl for the k-core models

on the tessellation {3, 7}. For k = 1-core, pl = 0.20; for k = 2-core, pl = 0.24; for

k = 3-core, pl = 0.37 Accordingly, for unconstrained percolation (k = 1-core) on

tessellation {3, 7}, we have pl + pu = 1.06, which very roughly satisfies eq. 3.2.
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3.5 Discussion

We have studied four constraint percolation models on mainly the {3, 7} hyperbolic

tessellation. We find that all three k-core models exhibit similar behavior falling
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0.9989. I am showing here just the correlation

with N

Figure 3.14: Crossing Probability results for different models and for Tessellation {3, 7}
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under the universality class of unconstrained percolation. This is not a surprise for

k = 1, 2-core percolation, which have been shown to behave similarly to unconstrained

percolation. However, given the mixed k = 3-core transition on Bethe lattices, but the

continuous phase transition (should pc < 1) on Euclidean lattices may be surprising.

In fact, earlier work of k = 3-core percolation on hyperbolic lattices argued that the

transition behaves discontinuously (in terms of the order parameter). In this earlier

work, it was proven that pc < 1 for k = 3-core percolation on hyperbolic lattice of

certain types, which is an important step in that it constrains the analysis of the

data. However, there was no proof of the discontinuity, only arguments and some

numerical evidence. So our results do not contradict mathematics.

An interesting result is that k-core models exhibit two critical probabilities, pl and

pu, meanwhile counter-balance model seems to exhibit just one critical probability.

This comes from the fact that the counter-balance condition constrains the spatial

occupation of neighbors of an occupied site in such a way that the cluster tends

to expand in every direction. It does not allow the possibility of having several

percolating clusters that do not overlap.

From Sec. 3.4.3 we have for the cluster size critical exponent the values τ =

2.09, 2.07, 2.04 for k = 1, k = 2, and k = 3-core models respectively. Meanwhile, for

the counter-balance model we have τ = 1.76, all this on the tessellatiion {3, 7}. Then

it seems to have a clear distinction again between counter-balance and the k-core

models, which all seem to have a similar behavior.

According to the behavior of the order parameter, P∞, k-core models exhibit a

continuous transition, while counter-balance is discontinuous, at least on the {3, 7}
tessellation. Counter-balance percolation is also discontinuous on Euclidean lattices

so it does not change this nature by the changing of the underlying geometry.

The observation that the nature of the transition in k = 3-core percolation does

not change from Euclidean lattices to hyperbolic lattices may indicate that any de-

crease in the number of loops is not enough to drive the transition from a mixed
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transition on the Bethe lattice, where there are no loops. In other k = 3-core percola-

tion is very sensitive to loops. We must think about this further to better understand

the nature of the k-core percolation phase transition in all geometries.



Chapter 4

Cell motion in densely packed

tissues

4.1 Introduction

There has been much quantitative study of individual cells moving on two-dimensional

surfaces [41, 42]. Recent work on cell motion in densely packed tissues (composed

of many cells), however, demonstrates properties that are rather different from the

properties of individual cell motion. More specifically, in densely packed, or confluent,

tissues, where there are no gaps between cells, researchers have discovered signatures

of collective motility such as dynamical heterogeneities [35, 36], caging behavior and

anomalous diffusion [37]. The first two properties cannot be observed in single cell

experiments and individal cells tend to undergo a persistent random walk, as opposed

to anomalous diffusion [104]. These differences are significant since a cell moving

through other cells is a more native environment than a single cell moving on a

two-dimensional surface.

Dynamical hetereogeneties, caging behavior, and anomalous diffusion occur in

many glassy non-biological materials, including polymers, granular materials, and

foams [27]. As mentioned in the introduction, they can be understood in terms of the
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potential energy landscape, which specifies the total potential energy of a material as

a function of the positions of all the degrees of freedom, such as the particle positions.

Any glassy material spends most of its time close to a mechanically stable minimum

in the potential energy landscape. Rare fluctuations, however, can overcome the high

energy barriers and allow the material to escape to a new minimum. These collective,

rare fluctuations typically involve a particle escaping from a cage generated by its

neighbors and the subsequent rearrangment of such particles. Therefore, knowing

the distribution of these energy barriers contributes toward the understanding of

particle motion in such systems.

The distribution of energy barriers in rigid nonliving materials such as dry foams

has been studied [105]. Dry foams are jammed at confluence. The individual ele-

ments, therefore, do not change neighbors unless a sufficient external force is applied

at the boundaries. So energy is injected at the boundaries via shear to study the rear-

rangements. The rearrangements tend to occur at special weak regions or soft spots

in the material [106] and the energy barriers associated with these rearrangements

are power-law distributed [105].

Since cells in confluent tissues constitute living, or active, matter, they can regu-

larly intercalate, or exchange neighbors in the absence of external forces [38]. They

do so by actively changing their shapes and exerting forces on contacts to overcome

large mechanical energy barriers and transition from one metastable state to another.

So cell motility in tissues is set not by single-cell migration rates but instead by the

rate at which cells can squeeze past neighbors. Because energy is injected locally,

instead of globally at the boundaries, the statistics of energy barriers explored by

cells might be very different from those in inactive materials.

There is currently no existing theoretical framework for predicting energy barriers

to cell motion in confluent tissues. This work represents the first attempt to do so.

We will do it using a shape equilibrium, or vertex, model where each cell has an

energy contributing to bulk deformations, an energy contributing to surface tension,
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and a contribution accounting for the elastic contractility of the actomyosin based

cortex [107]. Such models been successfully used to predict the minimum energy

shapes of 2D cross-sections of 3D cells in confluent tissues [108, 109, 110, 111]. We

should mention that although several recent particle-based models for collective cell

motion show signatures of glassy dynamics [112, 113], these break down at confluence

and do not capture changes to cell shapes that occur during intercalation.

This chapter is organized as follows. We first present the shape equilibrium model

used to describe the deformations of cells in confluent tissues. We then study active

T1 transitions between four cells in this model, which is the minimum number of

cells required in any T1 transition. Recall from the introduction that a T1 transition

allows for neighbor exchange so that a cell can move through the confluent tissue via

a sequence of T1 transitions due to its activity (hence the term “active T1 transi-

tion”). We study the energy barrier associated with this transition numerically and

analytically. We then study a collection of 64 cells and compare our results to the

simpler four cell case, as well as hint at what can happen when one of the cells moving

through the confluent tissue is of a different type than others with an eye towards

understanding how cancer cells move through tissue at the single cancer cell level.

We end with a discussion of the implications of our work.

4.2 Model and Methods

To capture the shapes of cells and how the shapes evolve as cells migrate in a confluent

tissue, we consider the following energy functional for the ith cell in a two-dimensional

slice/monolayer of a three-dimensional confluent cell packing that depends on its

shape [109]:

Ei = ξiP
2
i + γiPi + βi(Ai − A0)

2, (4.1)

where Pi and Ai are the perimeter and area of the ith cell respectively. The first term

in this energy is quadratic in the perimeter. It represents the active contractility
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due to the actin-myosin sub-cellular cortex as regulated by an elastic constant ξi.

The second term in Eq. (4.1) captures the competition between line tension in the

cortex and the effects of cell-cell adhesion. When cells strongly adhere, it is more

energetically favorable to increase its perimeter, hence implying a negative γi. When

cell-cell adhesion is small and surface tension dominates, then γi is positive.

The third term in Eq. (4.1) can be obtained by the following argument. Assume

that a cell is an incompressible medium with fixed volume V0 in three dimensions.

When packed into a columnar layer, the height of each cell is given by H and the

area A such that V0 = AH. With V0 fixed, the change in the cell height is related to

the change in cross-sectional area,

δH ∼ −∆A. (4.2)

Under confluent conditions (no gaps between cells), the change in the columnar height

is determined by the strength of the adhesion with the neighboring cells. To first

order, this adhesive energy can be approximated by a linear spring coupling to the

change in cell height, ∆H:

E ∼ ∆H2. (4.3)

Combining these two equations, we arrive at the third term in the cell shape energy,

where βi is the height elasticity set by intercellular adhesion and Ai0 is the preferred

area of the ith cell.

The shape energy for the ith cell (Eq. (4.1)) contains a gauge freedom since

its definition depends on differences from some baseline energy. It is the energy

differences that are physically relevant. Using this gauge freedom, we can complete

the square for the perimeter term to write

Ei = ξi(Pi − Pi0)
2 + βi(Ai − A0)

2, (4.4)

where an effective preferred perimeter Pi0 = −γi/(2ξi) can be defined.
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For the moment, we consider all single cell properties to be equal, i.e. βi = β, ξi =

ξ, Ai0 = A0, and Pi0 = P0 for all i. The total shape energy for a confluent monolayer

composed of N cells can then be written non-dimensionally as

ε =
1

βA2
0

N
∑

i=1

Ei =
N

∑

i=1

[(ai − 1)2 + κ(pi − p0)
2], (4.5)

where ai = Ai/A0 and pi = Pi/
√
A0 are the rescaled area and perimeter respectively.

The rescaled modulus κ = ξ/(βA0) is the generalized contractilty and p0 = P0/
√
A0

is the generalized line tension. Note that p0 becomes negative when cell-cell adhesion

is negligible and surface tension dominates. We will not consider that case here and

only focus on p0 > 0 here.

The above mechanical energy functional has been remarkably successful in predict-

ing cell shapes in embryonic tissues [108, 110] and it allows for anisotropic interactions

between cells. Although a few researchers have used these models to investigate the

effects of cell growth and division [108, 109]. We will now use it to analyze cell

migration.

Under confluent conditions, cells can only rearrange via active T1 topological

swaps, as illustrated in Fig. 4.1. Although cell division and death can lead to fluid-

like behavior [114], these are not necessary for cell migration [37, 115] and, therefore,

we study cell packings in the absence of these processes. When considering a packing

of cells, to induce an active T1 transition at an edge, the total energy is minimized

while the length of the edge L is actively decreased from h until the edge reaches zero

length. Such processes are common during planar junction remodeling in epithelial

layers [38]. A topological swap takes place at L = 0. The new edge is actively

increased back to its initial length and then allowed to relax to its final unconstrained

minimized state. Except for this active T1 transition, the topology of the network of

vertices and edges remains fixed. Cell motion can arise due to a sequence of active

T1 transition by an individual cell.

How is the total energy minimized? Each cell is specified by its vertices, edges,
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Figure 4.1: Illustration of an active T1 transition in a model confluent tissue. Cells E1 and E2

share an edge before the transition and become disjointed after the transition, while S1 and S2 are

disjointed before the transition and share an edge after the transition.

and faces. Surface Evolver uses this information to numerically minimize the energy

of the N cell system using gradient descent, with respect to the vertices of the cells, to

find the nearest local minimum [116]. The edges of the cells are also refined (bisected)

to look for more continuous changes in shapes before the energy minimization takes

place. All structures and states studied here have been minimized such that the

average energy of a cell changes by less than one part in 105 between consecutive

minimization steps.

This active T1 transition can be easily studied with N = 4 cells, the minimum

number of cells required for the transition. We do so assuming a hexagonal arrange-

ment of hexagonally shaped cells for simplicity. Polygonal shaped cells are observed

in images in monolayers of confluent tissues so this simplification is not superficial.

Moreover, while an N = 4 cell seems very simplistic, active T1 transitions can be

experimentally studied in such a system as long as the four cells are confined presum-

ably.

We also study the active T1 transition in many cell packings. To generate an

amorphous packing of N > 4 cells, we generate a random point pattern of N points

in a box of length L, with L chosen such that the area per cell is unity. Periodic

boundary conditions are implemented. This initial random point pattern is generated

using uniformly distributed points. A Voronoi tessellation is then generated based on

the initial random point pattern resulting in a fully connected structure of N cells.
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This structure is then inputted into Surface Evolver as described above.

4.3 Results

4.3.1 N = 4 cells

To study active T1 transitions, which is minimally a four cell-interaction, we begin

with the simplest N = 4 cell system shown in Fig. 4.2. As stated previously, the

active T1 move is induced by shortening the green apical junction, initially of length

L = h. When the green apical junction is shrunken to zero length, L = 0, a topological

swap is made such that neighboring cells are exchanged. After the apical junction

remodeling, L is then increased until L = h with energy minimization invoked at each

change in length. For convenience, we set ai = 1 and κ = 1.

To study the energy barriers to cell migration using active T1 transitions, in Fig.

4.3, we present the shape of an active energy barrier by plotting εtot(L) for p0 = 3.0.

We observe that as the edge length decreases, the energy of the system increases until

reaching a maximum at L = 0. The energy then decreases as the edge length is

increased again after the active T1 transition. The energy barrier ∆ε is given by

∆ε = ε4(0) − ε4(L). (4.6)

So the cell must overcome this energy barrier to obtain new neighbors.

To understand the effect of p0, which means increasing the cell-cell adhesion, we

present ∆ε for p0 ranging from 3 to 4 (Fig. 4.4). We observe that as p0 increases, ∆ǫ

decreases monotonically until reaching zero. The decrease is approximately linear,

but clearly there is some curvature. Beyond p0 & 3.8, the active energy barrier

vanishes. A finer increment in p0 and additional refinement reveals that the active

energy barrier vanishes near p0 ≈ 3.72, which is the perimeter of a regular hexagon

of unit area. The additional refinements, where the number of refinements is denoted

by NR increases the number of degrees of freedom since each edge is bisected with
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(a) (b)

(c)

Figure 4.2: (a) The initial N = 4 cell configuration. (b) The length of the center horizontal edge

(colored green) decreases. (c) The N = 4 cell configuration after the active T1 transition is applied,

and the now vertical center edge is expanded.

each refinement. While this is only a four-cell system, it is interesting that we observe

an active rigid-to-fluid transition where the system goes from having active energy

barriers to impede cell migration to not having active energy barriers so that it is easy

for a cell to migrate through the confluent tissue as the cell-cell adhesion increases.

We should mention that near the rigid-to-fluid transition (the vanishing of the energy

barrier), we checked that NR = 3 refinements agreed with NR = 2.

To understand the rigid-to-fluid transition in this N = 4 cell system, let us con-

struct the following analytical calculation. We consider a system of four regular

hexagonal cells with unit area. Correspondingly, the length of each side of each

hexagon is h =
√

2√
3
√

3
. It is then assumed that the only region near the edge that is

transformed changes shape. Accordingly, the change in energy for the system illus-
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Figure 4.3: The total energy of the N = 4 cell system with p0 = 3.0. The energy barrier is denoted

by ∆ε. Points A and B correspond to Fig. 4.2(a) and Fig. 4.2(b) respectively. The negative lengths

correspond to before the T1 transition and the positive correspond to after.

trated in Fig. 4.2 when the edge undergoing the T1 transition shrinks from L = h to

L = 0 is

∆εA(L) =
4

∑

i=1

{(ai(L) − 1)2 + κ(pi(L) − p0)
2} −

4
∑

i=1

{(κ(6h− p0)
2}

= 8S(L)2 + 2κ
[

4h+ 2h′(L) − p0)
2
]

+ 2κ
[

3h+ L+ 2h′(L) − p0)
2
]

−
4

∑

i=1

{(κ(6h− p0})2,(4.7)

where S(L) =
√

3h(h − L)/8 and h′(L) = 1
2
h
√

7 − 4L
h

+ L2

h2 . See Fig. 4.5 for the

definitions of S and h′. Note that we have not minimized the energy in this calculation

and therefore distinguish this energy change, ∆εA(L), from ∆ε above, where the

energy is minimized at each step. Figure 4.6(a) plots ∆εA(L) as a function of L

for p0 = 3.0. The curve looks similar in shape to the minimized curves (Fig. 4.3),

but the scale is larger because the energy is not being minimized, only tracked. If

we plot ∆εA(h) from this analytical calculation as a function of p0, then we obtain

Fig. 4.6(b). We, again, observe a rigid-to-fluid transition with the energy barrier

vanishing around p0 ∼ 4.4. This transition is surely an upper bound because we

have not minimized the energy. In any event, at large enough p0, the energy barrier
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Figure 4.4: The energy barrier as a function of p0 ranging from 3 to 4 varying the number of

refinements, NR. In Surface Evolver, each refinement bisects an edge to double the number of

vertices. There is a rigid-to-fluid transition (the vanishing of the energy barrier) around p0 = 3.72.

vanishes.

We should also note that a similar analytical calculation but with the area fixed

yields a vanishing of the energy barrier near p0 = 3.8, which is the preferred perimeter

for a pentagon with unit area. With this result, the rigid-to-fluid transition could

simply be interpreted as the emergence of zero energy cost pentagons (for fixed area),

which is one of the final two polygons involved in the T1 transition.

How does energy barrier change with different shape profiles of the cells as they

make the active T1 transition? Even in this simple N = 4 cell system arranged in

this particular manner, can we address this question by adding vertices to some of

the edges near the active T1 transition and pinning these additional vertices. For

instance, we pin four vertices involved in the active T1 transition some distance from

the transition edge. We denote that distance to be x. See Fig. 4.7. Figure 4.8

shows several energy traces as the T1 edge is swapped for different xs. For small x,

x < 1/2, the energy required to undergo a T1 transition is larger than the barrier so

and the T1 transition does not occur. What does this mean physically? When x is
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Figure 4.5: Schematic for quantities used in the analytical calculation. The quantity S is the area

of the triangle enclosing it.
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Figure 4.6: (a) Energy trace for active T1 transition for p0 = 3 from the analytial calculation. (b)

Energy barrier as a function of p0 from the analytical calculation.

near zero, the “nose” of the transition cell is very narrow and constrained, making

it more difficult to move past its neighbors. As x increases to h, the nose becomes

broader. We find that the active energy barrier decreases with increasing x in Fig.

4.9 for larger x (x > 1/2). This result suggests that the broader the nose, the faster

the cell can migrate, assuming the attempt frequency as discussed in Chapter 1 is

independent of the profile. In other words, a needle-like protrusion for the moving cell

would not be as energetically favorable if it wanted to optimize its migration speed.

To demonstrate that our results are rather independent of the number of refinements

and the precision level in accepting when the energy stops changing, we plot our
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Figure 4.7: Schematic depicting the parameter x used in the calculation. The blue circles denote

added vertices that are pinned before the active T1 transition.

results for different numbers of refinements and for different precision level. Recall

that our precision level is one part in 105 is used throughout, unless stated otherwise.

Finally, before going to the many cell case, we investigate the change in the energy

barrier when the migrating cell is different from the remaining cells. Such investigation

could be useful to study how cancer cells, for example, migrate through a confluent

tissue. While tumors tend to be stiffer than the surrounding healthy tissue, individual

cancer cells tend to be softer (lower Young modulus, analogously lower βi) than

healthy cells [117]. This difference can be captured in our model by changing the

generalized contractility κ, or equivalently a dimensionless parameter γ multiplying

the area term for the i = 1 entry of the energy. This i = 1 cell represents the cancer

cell. Now see Fig. 4.10. We find that as cancer cell becomes softer by decreasing its

γ1, the energy barrier for the T1 transition is lowered monotonically. So the cancer

cell will be more motile than a healthy cell.

4.3.2 Many cells

We now consider N = 64 cells. Figure 4.11 shows an example packing. Fig. 4.11.

Figure 4.12 then shows the total energy of the system as a function of the edge length
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Figure 4.8: Energy barrier traces for different xs for p0 = 3.0.

during a typical T1 transition. As before, the length L is displayed as a negative

number before the T1 transition and positive after the T1 transition. The energy

barrier for this process ∆ε is defined as the minimum energy required to escape state

A towards another stable state D. The shape of the energy barrier profile looks very

similar to the N = 4 case. Also note that as in the shape profile study for N = 4

cells, the energy continues to increase after the T1 transition (Fig. 4.12(c)). In some

of these cases, once all the edges in the system are relaxed (unpinned), a lower energy

state can be found. So the energy barrier required for the active T1 transition is

larger than the energy required, i.e. the transition does not occur.

With this amorphous packing we can now obtain statistics for ∆ε. We do so by

testing the active T1 transition path on six randomly generated tissues each consisting

of N = 64 cells. With each tissue consisting of 6N
2

= 192 unique edges, a total number

of 1152 unique transition paths can be investigated. These transition paths contain

different topologies and shapes. For all cells in the tissue, we set the parameters

such that the minimal shape for each cell is a regular hexagon of area 1: κ = 1 and

p0 ≈ 3.722.
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Figure 4.9: (a) Energy barrier as a function of x for different numbers of refinements (NR) and

(b) for different precision levels for the energy (SE). The precision level is set to 10−5 unless stated

otherwise.

The distribution of energy barriers ̺(∆ε) of these transitions is shown in Fig.

4.12(c). The tail obeys an exponential distribution:

̺(∆ε) ∝ e−c ∆ε/〈∆ε〉 = e−∆ε/ε0 , (4.8)

where fitting has determined c = 1.18 and we define ε0 = 〈∆ε〉/c. This exponential

distribution is robust to changes in model parameters κ, p0, and cell-to-cell variations

(A0 → A0i) [40].

Our data suggests that the exponential tails ultimately arise from an interplay

between the statistics of edge lengths and the energy functional. The initial T1 edge

lengths denoted by Lα are Gaussian distributed. We find, however, that the change

in energy due to a reduction in cell perimeter is quadratic in Lα, resulting in an

exponential distribution for energy barriers. Our results should be constrasted with

nonliving sheared foams. Sheared foams generically generate power-law distributed

energy barriers with an exponential cutoff [105]. Our exponential energy barriers

appear to be a unique feature of confluent tissues where energy is injected locally.

This is intriguing because it is precisely the distribution seen in glassy systems with

quenched disorder [33]. One could argue that a power-law distribution of energy
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Figure 4.10: ∆ε for p0 = 3, κ = 1 for all four cells and different γ1 for the migrating cell (initially

the leftmost cell), where γ1 is a dimensionless parameter multiplying the area term in the energy.

barriers indicates a more collective process than an exponential distribution. With

our shape change model, there are indeed more degrees of freedom than the shape

fixed foam model. The overall effect may be to average over spatial fluctuations in a

way that the more simple trap model that does not take into spatial preferences in

going from one trap to another is more applicable than the foam model.

4.4 Discussion

We have simulated confluent tissue monolayers and numerically calculated the energy

barriers required for cell rearrangements via active T1 transitions. We first measure

the energy barrier for an N = 4 cell packing. We also investigate the dependence of

the energy barrier on the shape profile and when one type of cell is migrating among

another type of cells forming a tissue. We have also investigated the statistics of

these energy barriers by studying N = 64 cell packings. We demonstrate that the

distribution of energy barriers, ̺(∆ǫ), is exponential. The shape of the energy barrier

in the N = 64 case is rather similar to the N = 4 case, interestingly enough.
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Figure 4.11: An N = 64 amorphous, confluent cell packing. See. Ref. 39.

What consequences does this finding have for a cell migrating through a confluent

tissue via consecutive active T1 transitions? Recall from Chapter 1 that in traditional

statistical mechanics, the rate at which a nonequilibrium (but thermal) system tran-

sitions from one metastable state to another is described by an Arrhenius process,

R = ω0e
−∆ε/ε0 , (4.9)

where ∆ǫ is the energy barrier separating two metastable states, ω0 is an inherent

escape attempt frequency, and ε0 = kBT is the scale of energy fluctuations.
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Figure 4.12: Typical energy barrier traces from the N = 64 cell simulation. The EB stands for

energy barrier. (a) After the active T1 transition, without extra relaxation of the edges by unpinning

blue vertices, the energy is a global minimum. (b) After the active T1 transition, the energy does

reach a local minimum, but after edge relaxation to black vertices, can reach a global minimum. (c)

The energy continues to rise after the active T1 transition, without relaxation, no energy barrier

is observed. With relaxation of all the edges in the system, a lower energy state can be found. So

the energy barrier required for the active T1 transition is higher than the energy required to the

perform the active T1 transition, which means the transition will not occur. See Ref. 39.

While the assumptions on which Eq. (4.9) is based do not necessarily hold in

biological tissues, analogues to parameters ω0, ∆ε, and ε0 exist in cells and likely

govern cell motility. Several successful tissue models have characterized cell activity

using an effective temperature ε estimated from membrane ruffling [118]. Both ε

and the rate at which cells attempt to cross barriers ω0 are correlated with cell

protrusivity and active shape fluctuations, which are determined in large part by the

cell’s individual biochemical makeup. For simplicity, we assume that ω0 and ε0 are

single-cell properties that are constant throughout the tissue, although other choices

are possible and would be interesting directions of future study. In contrast, the
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Figure 4.13: (a) The average ∆ε as a function of p0 for different κs. The circle and the diamond

denote the perimeters of a circle and a circle respectively (both with area fixed at unity). (b) The

average energy barrier dependence on κ is simple and can be scaled out. (c) The distribution of

energy barriers in active T1 transistions. (d) The rigid-to-fluid transition in the N = 64 cell system.

See Ref. 39. Also note that ∆̄ε = ε0.

distribution of energy barriers, ̺(∆ε), is clearly a collective property determined by

cell-cell interactions and the geometry of cell packing inside the tissue, as described in

the previous section. We should also note that one can modify the Arrhenius factor

to include a self-propelledness aspect of the cell. Please see Ref. 39 for more details.

From Eq. (4.9), the trapping time τ ≡ ω−1
0 e∆ε/ε0 is distributed at long times as

̺(τ) ∝ ω0

(ω0τ)1+∆ε/ε0
. (4.10)

When 0 < ∆ε
ε0

= µ < 1, the averaging trapping (waiting) time diverges. In this

regime, the total excursion time t of a migrating cell can be estimated from the
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largest trapping time τc in M steps, or

t ∼M

∫ τc

τ̺(τ)dτ ∼M

∫ M1/µ

τ−µdτ ∼M1/µ. (4.11)

Here the upper bound of M1/mu is obtained by assuming that a waiting time longer

than τc occurs only one during the sequence. From the above scaling, the mean-

squared displacement of the migrating cell is

< X2 >∼ tµ. (4.12)

Since 0 < µ < 1, this behavior is called sub-diffusive. When µ > 1, this anomalous-

type behavior is transient, but the time over which it persists diverges as µ→ 1.

In sum, the exponential distributed energy barriers can lead to such phenomena as

anomalous diffusion, which has been observed in cell migration in zebrafish embryos.

Note that we did explicitly map the parameters in the model to actual numbers. And

while there is work done trying to infer mechanical parameters from the observed

geometry of two-dimensional cell arrays [119], the prediction of anomalous diffusion

and other glassy phenomena [39] is somewhat insensitive to the parameters used as

physicists search for new mechanisms in biology based on minimal models, as opposed

to explicit quantitative agreement. The implications for glassy dynamics in confluent

tissues may dramatically affect the cell sorting process—the process by which different

types of cells cluster to form organs and tissues.



Chapter 5

Active elastic dimers: Cells

crawling along rigid tracks

Epithelial cells crawl to heal a wound, white blood cells migrate to chase and ingest

harmful bacteria, and, in an embryo, neural crest cells move away from the neural

tube to generate neurons, bone cells, and muscle cells [120, 121]. Since cell motility

is integral to a wide range of physiological processes, quantitative understanding of it

is an important step in the quantification of cell biology at and beyond the cell size

scale.

To date, most quantitative understanding of cell motility pertains to cells crawling

on surfaces [41]. For example, one can predict the shape of a crawling cell based on

its speed [42]. And yet, is a smooth surface a native environment for a crawling

cell? The answer is typically no. For instance, epithelial cells must crawl through the

three-dimensional extracellular matrix (ECM) to heal a wound. The ECM consists

mostly of fibrous collagen with a pore-size that can range up to the order of the cell

size (tens of microns) [122]. So how does this type of environment affect single cell

motility in terms of speed, overall direction of migration, and sensitivity or robustness

to changes in the environment?

There has been a recent explosion in experiments tackling this question [5-17].
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These experiments clearly demonstrate that cells crawling through the ECM can

take on a very different shape from the ones crawling in two dimensions, namely,

they mimic the fibrous environment of the ECM by elongating as they traverse along

fibers [123]. An elongated shape is very different from the fan-like cell shapes ob-

served in two dimensions such that new approaches to quantitative modeling may

be needed. Based on these results, cell crawling experiments in one dimension have

been conducted to study how one-dimensional single cell migration compares to three-

dimensional single cell migration along fibers [124, 125]. Moreover, as the cell crawls

through the ECM, the cell remodels it, again, calling for new approaches to prior

two-dimensional quantitative modeling. While three-dimensional cell migration ex-

periments are becoming numerous, there have been very few studies focused on quan-

titative modeling of these experiments.

Here, as a first step, we focus on modeling cells that move along very taut ECM

fibers—taut enough such that they are essentially featureless (rigid) tracks. To do

so, we build a one-dimensional model of cell motility along one fiber, or track, via a

bead-active-spring model, the properties of which will be described below. See Figure

5.1. Bead-spring models have been successfully used to elucidate the role of cell

mechanical properties in driving shape dynamics for cells crawling in two dimensions.

In particular, Refs. [21] and [22] have captured bipedal locomotion in crawling cells

using a two dimensional bead-spring model. Ref. [23] introduces a one-dimensional

Brownian inchworm model for directed self-propulsion in the presence of noise. This

model consists of an elastic dimer representing the front and rear of the self-propelled

particle and shows that an effective friction force that depends on the elastic coupling

between the two beads can rectify diffusive motion to lead to directed motion (even

in the absence of an externally imposed gradient).

In our bead-active spring model, the spring represent stress fibers comprised of

actin, myosin, and cross-linker complexes [126]. Because the stress fibers contain

myosin motors, they contain an “active” component. ATP-driven myosin walk to-
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wards the plus end of the actin filament such that two actin filaments of opposite

orientation coupled via myosin will contract, as in muscle. While the orientation of

the actin filaments is not as regular as in muscle, i.e. some filaments coupled via

myosin are not oppositely oriented, overall contraction is still occurs [127]. So the

spring denotes the stress fibers, and the beads denote the location of focal adhesions,

which enable the stress fibers connect to the ECM. Integrins are one of the main

proteins comprising focal adhesions [128]. As far as the type of molecular bonding,

it has been shown that integrins can act as catch bonds [129]. For catch bonds,

the bond lifetime increases with increasing force before decreasing with even further

increase in force, while for slip bonds, the bond lifetime decreases with increasing

force [130, 131]. Catch bond behavior is less intuitive than slip bond, but their en-

hanced strength over a range of forces may play a key role in how cells respond to

and explore their mechanical environment.

With these minimal ingredients in our quantitative model, we explore the follow-

ing questions: What is the interplay between the kinetics of focal adhesion binding to

the rigid track and the active mechanics of the stress fibers in affecting cell speed in

this constrained environment? What about the role of myosin (active cross-linkers)

versus passive cross-linkers in one-dimensional cell crawling? Also, what is the role

of randomness, due to activity, on cell crawling? More precisely, how robust is the

motion to randomness? The answers to these questions can then be tested in vitro

with various knockdowns and/or mutant fibroblasts, for example, crawling along fab-

ricated microbridges (with no side walls) as a starting point for understanding how a

cell moves in the complicated microenvironment of the ECM.

The organization of this chapter is as follows. The next section details the ingre-

dients for the minimal bead-active spring model along with the equations of motion

of the model. Section III presents estimates of the parameters used. Section IV ex-

plores solutions to these equations, i.e. cell movement, in the physiological part of

the parameter space. The final section, Section V, addresses the implications of our



5.1 A minimal model 100

Figure 5.1: Side-view schematic of a two-bead-spring model of a cell crawling along a narrow track.

work.

5.1 A minimal model

We start by asking the following question: which aspects of two-dimensional cell

movement hold for cells crawling along the fibers of the ECM, one of the native en-

vironments for a crawling cell? Two-dimensional cell crawling studies support the

following scenario [41]: The cell extends its front via actin filament nucleation and

polymerization and then creates mature focal adhesions under the new extension.

Meanwhile, focal adhesions are disassembled near the rear of the cell so that the rear

can retract to catch up with the front, which has since continued to extend. The re-

traction is myosin-driven since the use of blebbistatin suppresses motility of a cell [44],

though leading edge cell fragments can continue to move via actin-treadmilling [45].

In this two-dimensional scenario, actin filament nucleation is driven by the branching

agent, Arp2/3 [46, 132]. Arp2/3 nucleates branched filaments at a reasonably regular

angle of 70 degree from the polymerizing end of actin filaments and, therefore, helps

set the lateral extent of the leading edge of the crawling cell. This extent can be

broad for cells crawling on two-dimensional substrates, resulting in fan-like shapes at

the leading edge.

Some aspects of this description of two-dimensional cell crawling still hold for

cell migration on ECM fibers, in the sense that there is extension, the assembly and

disassembly of focal adhesions, and contractility driven by myosin. The most notable

difference from two-dimensional studies is the elongated shape of cells undergoing
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mesenchymal migration, or crawling along fibers. This observation has led researchers

to conjecture that this particular mode of cell migration is effectively one-dimensional

migration [123]. There are other observations that are consistent with the conjecture.

For instance, Arp2/3 does not appear to be as important in generating motion here

since the rather wide branch angle leads to large lateral lengths, which would not be

commensurate with the underlying fiber [133]. Instead, actin filament nucleation via

Arp2/3 is important for generating pseudopods whose possible function could be to

search out for other ECM fibers to move along.

Here we study the motion along one fiber only, and focus on the interplay between

stress fibers and focal adhesion. To quantify the interplay between focal adhesions

and myosin-driven contractility, we construct a minimal one-dimensional model for a

crawling cell as two beads connected by an active spring. The two beads denote the

two ends of a cell that attach to the surface via focal adhesions. While focal adhesions

occur throughout the cell, traction force microscopy indicates that the focal adhesions

exert the largest stresses at the edges of a crawling cell on surfaces [134]. We assume

that the same observation holds for cells crawling in confined constrictions. Bead

1, denoted by position x1(t), is to the right of Bead 2, denoted by x2(t) as shown

in Fig. 5.1. The beads have masses m1 and m2, and friction coefficients γ1 and γ2

respectively. The friction coefficients model the focal adhesions, or attachment to the

fiber, while the active spring in-between the two beads denotes the stress fibers. Let

us now quantify the concept of an active spring.

5.1.1 Stress fibers as active springs with two equilibrium

lengths

Stress fibers primarily consist of actin filaments, myosin, and alpha-actinin, a pas-

sive cross-linker [126]. A few other proteins, such as zxyin, colocalizes with alpha-

actinin [135]. The stress fiber is made up of parallel arrangements of actomyosin units

in series. Each actomyosin unit is considered as two actin filament rods connected by
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a myosin minifilament and alpha-actinin at each end. Since the stress fibers in cells

crawling in constrained geometries exhibit more ordered stress fibers than the cells

crawling on surfaces, using this fundamental muscle-like element is very useful [136].

See Figure 5.2. For a static cell, the stress fiber is under contractile tension as it

adheres to the substrate. In a moving cell, the focal adhesions are being created and

destroyed. Since myosin exhibit catch bond behaviour with an optimum load force

of about 6 pN per motor, the myosin may not always be under sufficient load (or too

much load) to walk efficiently along the actin filaments [137].

More specifically, when focal adhesions are just beginning to form at the front

of the cell, myosin are not pulling due to the small applied load. And when myosin

are not pulling, the plus end of actin filaments separate/extend. We argue that the

plus ends extend to relieve the strain in the alpha-actinin such that it approaches

its equilibrium configuration. See Figure 5.2. In this alpha-actinin extension mode,

the mechanical stiffness of the active spring, k, is primarily due to the stiffness of

the alpha-actinin. Moreover, the equilibrium spring length of the active spring is

denoted by xeq1. As the focal adhesions at the front of the cell mature over a time

scale of seconds [138], the myosin come under load again such that they “catch” and

exert contractile forces on each pair of actin filaments to induce a contracted mode

causing the alpha-actinin to stretch and rotate in the opposite direction. In this

mode, myosin provide the mechanical stiffness of the spring and there is a second

equilibrium spring length, xeq1 − xeq2, with xeq2 < xeq1 as indicated by the isolated

stress fiber experiments [127].

How then does the stress fiber switch back the extension mode? As the myosin

contract, strain builds in the alpha-actinin. This strain build-up can be enhanced

by zxyin binding to the alpha-actinin such that the myosin no longer “catch” and a

transition is then made to the extending mode. Experiments tracking zyxin in static

cells find that it colocalizes to places along the stress fiber under high tension and

have argued that zyxin could act as some molecular switch from one mechanical state
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to another [139].

Given these two modes of the stress fiber, passive extension and active (motor)

contraction, we model the elasticity of the stress fiber as a spring with two different

equilibrium spring lengths. The transition between the two modes of the active spring

is determined by the extension of the spring. The larger the extension of the spring,

the more tensile load on the myosin so as to induce contractility of the myosin.

Therefore, a simple model for the equilibrium spring length, xeq, of this active spring

is

xeq = xeq1 − xeq2Θ(x1 − x2 − l), (5.1)

where Θ(x1 −x2 − l) is the Heaviside step function. See Figure 5.3. With this choice,

when x1 − x2 > l, the equilibrium spring length is shorter when myosin actively pull

and longer when the myosin do not. Moreover, l is bounded below by xeq1 − xeq2 and

above by xeq1. With this changing equilibrium spring length, the spring is now an

active contractile element.

In addition to the catch-bond kinetics of the acto-myosin bonds, alpha-actinin

exhibits catch-bond kinetics as well [140]. Catch-bond kinetics indicate some sort

of conformational change in the protein such that the conformation of the alpha-

actinin in the extended mode may indeed be different than when in the contracting

mode. The binding of zxyin may also affect the conformation of the alpha-actinin.

A possible change in conformation of the alpha-actinin suggests that the transition

between extension and contraction is not necessarily reversible, particularly if zxyin

bind in one conformation (but not the other) [139]. Moreover, when the active spring

is in its extended mode, there is less overlap between the actin filaments such that

it is less likely that additional alpha-actinin can bind together two actin filaments.

Conversely, when the active spring is in its contracted state, it is more likely that

an additional alpha-actinin can link two actin filaments together. Therefore, for the

active spring to extend, it must overcome the additional binding energy of the added

alpha-actinin, i.e. bonds must be broken. However, this additional binding energy is
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Figure 5.2: Schematic of contractile units in a stress fiber in extended mode (top) and contracted

mode (bottom). The blue filaments represent actin filaments, red rectangles, alpha-actinin, and

the green shapes, myosin minifilaments. For simplicity, we have not shown any contractile units in

parallel, only three units in series.

not present as the active spring contracts.

To account for potential conformational changes in the alpha-actinin, additional

alpha-actinin binding, and even internal frictional losses, we allow l to take on two

values, l↑, as the active spring extends and l↓ as the active spring compresses with

l↑ > l↓. In sum, the equilibrium active spring length takes on the form,

xeq = xeq1 − xeq2Θ(x1 − x2 − l↑), (5.2)

when the active spring is extending and

xeq = xeq1 − xeq2Θ(x1 − x2 − l↓), (5.3)

when the active spring is contracting. This means that the description for xeq con-

tains hysteresis. Such hysteresis in stress-strain behavior is often found in materials

where the strain history affects the observed stress giving rise to different stress-strain

paths for loading and unloading. Prime examples are the phenomenological Johnson-

Segalman model of viscoelastic behavior [141], and the experimentally observed strain

history dependent mechanical response of soft biological tissue [142]. We must also

point out that a recent viscoelastic model for stress fibers is an active version of an

viscoelastic polymer model [143]. Because the width of the hysteresis represents a

strain barrier and the height a strain “input”, the height of the hysteresis loop must

be greater than the hysteresis width to generate motion.
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5.1.2 Focal adhesions provide an elastic friction

Now that we have quantified our active spring, we turn to the focal adhesions. The

mechanical interaction between the migrating cell and the ECM are mediated by

cell surface receptors and associated ligands in the ECM. The ECM glycoprotein

fibronectin and the transmembrane receptor proteins of the integrin family, form the

major and most well-characterized receptor-ligand pair [144]. In their inactive state,

integrins exist in a bent, relaxed form so as to avoid the formation of physiologically

harmful cell-cell or cell-ECM connections. Once they are activated via a vertical load,

they undergo a conformational change to an extended state [129, 145]. When in this

state, AFM experiments find that integrins respond additionally to an increase in the

lateral distance between the two extended dimers with an increased bond lifetimes for

applied forces up to 30 pN [129]. In other words, integrin can act as a catch bond. It

may indeed be the maturation of the focal adhesion that triggers this lateral distance

and, thereby, the catch bond mechanism of the integrins [145].

In light of these findings, we conjecture that in the front of the cell, integrins

are more likely to act as catch bonds due to maturation of focal adhesions. In the

back of the cell, however, integrin act as typical slip bonds, where focal adhesions are

merely being disassembled. Therefore, in the front of the cell, the initiation of focal

adhesions call for a “small” friction coefficient, but once the focal adhesion forms and

develops, it has a large friction coefficient when compared to an integrin slip bond.

This “catching” mechanism of cell-track adhesion allows the cell’s front to expand

and explore new territory and after having done that, then allows for the cell’s rear

to retract with the cell front not losing grip on the new territory it just explored due

to the catch bond mechanism. Since the stress fibers and the focal adhesions are

connected, we define

γ1 = γ11 + γ12Θ(x1 − x2 − l↑(↓)) (5.4)

with γ11, γ12 > 0 and γ11 < γ12. For small extensions of the cell, the friction at the



5.2 Estimation of parameters 106

leading bead is smaller than for large extensions. Larger friction implies a larger

unbinding rate for integrins and, therefore, the integrins can more effectively grip

the track. In addition, because the integrins track the myosin activity, the hysteresis

exhibited by the myosin is also exhibited in the friction. See Figure 5.3. Finally, γ2,

the friction coefficient for the now “rear” bead, is assumed to be constant with the

integrins acting as ordinary slip bonds.

5.1.3 Equations of motion

With the stress fibers modeled as an active spring with spring constant, k, and a

changing equilibrium spring length, and the focal adhesions localized at the front and

the back beads of the two bead-active spring model, the two coupled equations for

the motion of the beads are as follows:

miẍi(t) + γi(x1, x2, l
↑, l↓)ẋi(t) = ±k(x1 − x2 − xeq(x1, x2, l

↑, l↓)) +
√

Aiζi(t). (5.5)

Note that we have included an “active noise” term, where Ai is the variance of

the active noise contribution due to stochasticity in motor activity, and ζi(t) is a

Gaussian random variable with < ζi(t) >= 0 and < ζi(t)ζj(t
′) >= δijδ(t− t′). Here,

Ai does not satisfy a fluctuation-dissipation relation and is not associated with any

temperature. We will study this model for both Ai = 0 (deterministic) and Ai > 0

(non-deterministic).

5.2 Estimation of parameters

Now that we have the formal solutions for the relative and center-of-mass coordinates,

let us present estimates for the parameters involved before analyzing the solutions in

further detail.
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Figure 5.3: Left (a): Plot of the equilibrium spring length xeq as a function of x1 − x2. Right (b):

Plot of friction coefficient γ1 as a function of x1 − x2. The parameters used are listed in Table I.

5.2.1 Active spring parameters

The actomyosin units account for both the passive mechanical stiffness and the active

contractile properties of the stress fiber. The stiffness of the myosin minifilament is

represented by a spring of stiffness Nmkm, where Nm is the number of myosin motors

in the minifilament and km is the spring constant for each individual myosin with

km ≈ 1 pN/nm (1 pN/nm = 1 nN/µm) and Nm ≈ 50 [146]. For Nm ≈ 50, the

typical length of a myosin minifilament is 0.3 µm, while its width is approximately 30

nm [147], which is also consistent with the approximate length of alpha-actinin. Each

motor exerts equal and opposite contractile forces on the two actin filaments, denoted

each by f , on the two actin filaments. Each myosin motor head can exert a maximum

of f/2 = 3 pN of contractile force [148]. The actin filaments are modeled as rigid

filaments with the pair of spanning a maximum length L. Typically, L = 1 µm. Each

alpha-actinin is modeled as a linear spring with spring constant, k0 ≈ 50 pN/nm and

rest length La that can change due to potential conformational changes in the alpha-

actinin between the extending and contracting modes of the actomyosin units [149].
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As mentioned previously, experiments on isolated stress fibers find up to a 23

percent decrease in length with the addition of ATP [127]. In the extended mode,

we use an equilibrium spring length, x1eq = 50 microns since stress fibers typically

consist of about 50 actomyosin units in series and each of the units span a maximum

of 1 micron [150]. Given the experimental results for percentage of decrease in length

of the stress fiber due to myosin contractility, we will explore a range of percentages

around 10 percent.

With the above ingredients, we can also estimate the effective stiffness of the stress

fiber active-spring as follows. The effective stiffness of a myosin minifilament consist-

ing of Nm ≈ 50 myosin motors, each with a myosin spring constant approximately

1 pN/nm in parallel, is 50 pN/nm. In the extended mode of the active spring, the

alpha-actinin contributes to the elasticity, in the contracted mode, the myosin minifil-

aments contribute to the stress fiber elasticity. This leads to a spring stiffness of

∼ 50 pN/nm for either mode for each unit such that k = 50 pN/nm (Np/Ns), where

Ns is the number of acto-myosin contractile units in series and Np in parallel. With

Ns = 50 and Np = 1, k ≈ 1 pN/nm. For Np >1, the effective stress fiber spring

constant is larger.

5.2.2 Friction parameters

We model the integrins as springs with dissociation kinetics described by catch or slip

bond behavior. Each integrin bond can be thought of as a single Hookean spring and

allowed to fail at one point at the cell-ECM interface. At the back of the cell, the

unbinding kinetics of the integrin bond will follow slip bond behavior with an effective

dissociation rate, K∗
off , that increases exponentially according to a Bell Model [131],

or

K∗
off = Koffe

Fbond/Fb (5.6)



5.2 Estimation of parameters 109

where Koff is the unforced dissociation rate of the slip bond, Fb = kBT/ψ is the

characteristic bond rupture force and ψ is a characteristic unbinding lengthscale, and

Fbond is the tension within an individual slip bond spring. Hence, the slip bond

lifetime simply decreases with increasing applied tensile force.

For the front bead, the integrin bond acts as a catch bond in the presence of

developing focal adhesions and the dissociation kinetics is a sum of two pathways—one

where the bond is strengthened by the applied force and other where it is weakened.

The summative unbinding rate can be written as follows:

K∗
off = Kse

Fbond/Fb +Kce
−Fbond/Fb (5.7)

where, the unforced unbinding rates Ks = Koffe
−Fs/Fb and Kc = Koffe

Fc/Fb are each

associated with each pathway [151].

Once Koff is known, the friction coefficients can be computed using using the

formula,

γ =
Nintkint

K∗
off

, (5.8)

where Nint is the number of bound integrins and kint is the spring constant of the

molecular bond. We use kint ≈ 10 pN/nm and Nint ≈ 1, though we will explore

other values. Since integrins form the bond between the cell and the substrate, we

use the kinetic curve obtained from Kong and collaborators for the lifetime of a single

bond as a function of applied loard [129]. For the front bead, we use K∗
off = 1 s−1

to compute γ11 = 10 nN s/µm, the weaker coefficient, and an off-rate of 1/3 inverse

seconds for the stronger value of the friction coefficient of the front bead, leading to

γ12 = 20 nN s/µm. Then, γ11 + γ12 = 30 nN s/µm. For the back bead, Kc = 0 and

we use K∗
off = 0.5 s−1 to arrive at γ2 = 20 nN s/µm.
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Parameters Values

k 1 nN/µm

xeq1 50 µm

xeq2 5 µm

l↓ ∼ 46.5 µm

l↑ ∼ 48.5 µm

γ11 10 nN s/µm

γ12 20 nN s/µm

γ2 20 nN s/µm

m1,m2 ∼ 0

A1, A2 ∼ 0

Table 5.1: Table of parameters used.

5.3 Results

To solve the equations of motion, (Eq. 5.5), we neglect inertia, as demanded by the

physiological conditions. We then first investigate the cell crawler in the absence of

any noise such that A1 = A2 = 0. Next, defining x = x1 − x2 and subtracting the

equation of motion for x2 from x1, we arrive at

ẋ = −(
1

γ1(x, l↑(↓))
+

1

γ2

)k(x− xeq(x, l
↑(↓))), (5.9)

depending on whether the spring is extending or compressing. Similarly, the equation

of motion for the center of mass is

vcm(t) = ẋcm = −1

2
(

1

γ1(x, l↑(↓))
− 1

γ2

)k(x− xeq(x, l
↑(↓))), (5.10)

where xcm = x1+x2

2
. A non-zero center of mass velocity translates to motion of the

cell.

Since the center of mass velocity equation depends on x, we first solve the equation

of motion for x. To do so, we break up the system into when the equilibrium spring
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length is xeq1 and when the equilibrium spring length is xeq1 − xeq2. In the former

case,

xI(t) = xeq1 + (x(0) − xeq1)e
− k

γ2

(γ11+γ2)
(γ11)

t
, (5.11)

and in the latter,

xII(t) = xeq1 − xeq2 + (x(0) − xeq1 + xeq2)e
− k

γ2

(γ11+γ12+γ2)
(γ11+γ12)

t
. (5.12)

Now, depending on the history of the spring, be it contracting or extending, we

can piece together these solutions accordingly. For example, assume x(0) ≥ l↑, then x

decreases and obeys xII(t), which decreases exponentially with time. This is because

the cell has “over-extended itself” in its search for new territory and now the focal

adhesions have matured so both the equilibrium spring length is decreased, due to

myosin-induced contractility, and the front catch bonds “catch” such that the back

of the cell can catch up with the front without losing new ground. After the initial

decrease in x, as soon as x decreases below l↓, then the myosin effectively stop pulling,

due to strain built up in the stress fibers from the focal adhesions and alpha-actinin,

and the equilibrium spring length increases with new focal adhesions developing at

the front. Once this happens, we re-zero our time clock back to t = 0 and iterate

xI(t), an exponential expansion given the initial condition, until x becomes larger

than l↑ such that xII(t) solutions become valid and the process repeats itself. As

we will see below, this cyclic process in an overdamped system leads to net motion

due to (1) the switching between the two equilibrium spring constants, which drives

the overdamped system out-of-equilibrium, and (2) the asymmetry in the friction

coefficients. Both properties are needed for motion.

Let us analyze the active dimer motion as a function of the width and height

of the hysteresis loop. Defining w = 1
2
(l↑ − l↓) and h = 1

2
xeq2, the two timescales

over which the cell undergoes extension and contraction are given by tI = β log h+w
h−w

and tII = α log h+w
h−w

respectively, where α = γ2(γ11 + γ12)/k(γ11 + γ12 + γ2) and

β = γ2γ11/k(γ11 + γ2). As stated earlier, w < h for motion to occur since the active
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strain energy generated by the myosin must overcome the strain barrier by the alpha-

actinin. When the active dimer is extending to relieve the strain in the alpha-actinin

and x > l↓, the maximum and minimum values of the center of mass velocity are

vcm,max,I =
k

2

(

1

γ11

− 1

γ2

)

(h+ w)

vcm,min,I =
k

2

(

1

γ11

− 1

γ2

)

(h− w). (5.13)

Similarly, when the dimer is contracting, and x < l↑, the maximum and minimum

values of the center of mass velocity are given by

vcm,max,II =
−k
2

(

1

γ11 + γ12

− 1

γ2

)

(h+ w)

vcm,min,II =
−k
2

(

1

γ11 + γ12

− 1

γ2

)

(h− w). (5.14)

Finally, the time-averaged-over-one-period vcm, or v̄cm, is given by

v̄cm =
tI v̄cm,I + tII v̄cm,II

tI + tII

, (5.15)

where

v̄cm,I =
(γ2 − γ11)

2tI(γ11 + γ2)
(xI(0) − xeq1)(e

− k
γ2

γ11+γ2
γ11

tI − 1), (5.16)

and

v̄cm,II =
(γ2 − (γ11 + γ12))

2tII(γ11 + γ12 + γ2)
(xII(0)− (xeq1 − xeq2))(e

− k
γ2

γ11+γ12+γ2
γ11+γ12

tII − 1). (5.17)

The time-averaged-over-one-period vcm would presumably be the simplest measure-

ment an experimentalist could perform. So we will study it in detail.

Using our parameter estimates from Sec. III, we first present results for xrel(t),

xcm(t), and vcm(t). See Figure 5.4. Apart for the initial cycle, for each subsequent

cycle, the time in the extension mode is 5.65 s and the time in the contraction mode

is 10.17 s. Note that the time scale for the extension mode, which corresponds to the

timescale for focal adhesion maturation, is in agreement with the observed timescale

of seconds for focal adhesion maturation [138]. We find vcm,max,I = 0.088 µm/s,
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vcm,min,I = 0.038 µm/s, vcm,max,II = 0.029 µm/s, and vcm,min,II = 0.013 µm/s. The

time-averaged-center-of-mass-velocity is v̄cm = 0.033 µm/s. This value is in reason-

able agreement with the order-of-magnitude time-averaged velocity for wild-type HT-

1080 fibrosarcoma cells crawling in the ECM [152]. Of course, we have not yet taken

into account the elasticity of the collagen fiber(s) such that we expect our result to

be an upper bound on the speed. Interestingly, the maximum instantaneous velocity

of the center of mass is the same order as keratocytes crawling on surfaces [42]. The

time-averaged velocity of the center of mass is about an order of magnitude smaller.

So, using physiologically based independent estimates for the parameters involved we

obtain reasonable cell speeds for cells traveling in the ECM.

How does v̄cm vary with the spring parameters, namely, k, h, and w? In Figures

5.5 and 5.6, we plot both v̄cm and xcm(t) for several values of these parameters. As

indicated by Eqns (5.15)-(5.17), v̄cm increases linearly with the spring constant k. On

the other hand, increasing the width of the hysteresis loop, w, decreases v̄cm since there

is a larger strain barrier to overcome to elongate. Once the strain barrier becomes

equal to or larger than the added strain energy (due to myosin pulling, for example),

i.e. w > h, then the active cell can longer move effectively. Moreover, increasing the

difference between the two equilibrium spring lengths (increasing h), adds more active

strain energy into the system with the motors contracting more effectively such that

the active dimer can crawl faster until the speed becomes limited by the asymmetry

in the friction coefficients. An increase in h can be driven by the addition of myosin

(in the contraction mode) or increasing the spring constant associated with the alpha-

actinin since the extension mode is driven by releasing strain in the alpha-actinin (as

opposed to actin growth).

As stated previously, it is the combination of the nonequilibrium nature of the

active spring and the asymmetry of the friction that leads to motion. We have added

this asymmetry explicitly given the molecular understanding of how the integrins

behave as catch bonds as focal adhesions mature. In the absence of this asymmetry,
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Figure 5.4: (a) Plot of cell length x = x1 − x2 as a function of time for the parameters given in

Table I. (b) Plot of position of the center of mass, xcm, as a function of time. (c) Plot of velocity of

the center of mass, vcm, as a function of time.



5.3 Results 115

0 50 100 150 200

time (sec)
0

2

4

6

8

10

12

14

x cm
  (µ

m
)

k = 0.5 nN/µm
k = 1 nN/µm
k = 2 nN/µm

Figure 5.5: Left: Plot of center of mass for cell as a function of time for different spring constants

k. The parameters are from Table I (unless stated otherwise).

i.e. γ11 + γ12 = γ2 with γ12 = 0, then vI,II,cm = 0. Moreover, if γ12 = 0, then

v̄cm = 0 (even for γ2 6= γ11) because any new territory gained during the extension

mode will be lost during the contraction mode. See Figure 5.7. Moreover, in breaking

the symmetry, we have made a choice as to which direction the active dimer crawls.

The cell can change direction when γ11 > γ2 and γ12 < 0. Since motion of the center

of mass in the extension mode is now to the left, as long as the asymmetry in the

friction coefficients in the contraction mode is such that not all new territory gain

is lost, then there is net motion to the left. We also observe that as the difference

between γ11 and γ2 increases, v̄cm also increases. This increase allows the extension

mode of the active dimer to be more efficient at exploring new territory and increases

v̄cm (provided γ12 6= 0 to model the catch bond behavior of the integrin at the front

of the cell). See Figure 5.7.

Now let us investigate the motion of the active dimer when nonequilibrium noise

(Ai > 0) is turned on? Is the motion robust? Why ask this? Well, the cell is very

much a dynamic entity. There is mounting evidence that the motion of objects placed

in a cell, such as a carbon nanotube, couples to myosin-driven stress fluctuations in

the cytoskeleton [153]. These fluctuations are reminiscient of thermal noise, but with

a nonthermal origin. To study the effect of noise on our crawling cell, we simulate
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Figure 5.7: Left: Plot of xcm(t) for different friction coefficients. Right: Plot of v̄cm(γ11).

the equations of motion using the Euler-Maruyama scheme with Ai > 0 [154]. We

define A = A1 = A2.

Given our deterministic active dimer, for small enough values of A, the noise can

be added perturbatively and should not affect the cyclic behavior of the active dimer.

More precisely, we find that for A < 0.1 nN2 s, the noise does not affect the motion

of the cell with the cyclic behavior between the extension and contraction modes

remaining on average (See Figure 5.8). However, as A is increased beyond 0.1, nN2 s,

the scallops become washed out on average, though the average speed of the cell
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remains virtually unchanged. One can estimate the upper bound of this crossover.

When the cell is in the extension mode, for instance, the variance, σI(t), is given by

σI(t) =< x2
I(t) > − < xI(t) >

2= A(γ11+γ2)
kγ2γ11

(1 − e
2k(γ2+γ11)t

γ2γ11 ). When
√

σI(t) becomes

of order the hysteresis width in the timescale tI (to use as a first approximation),

then the area of the deterministic hysteresis gets washed out on average. This upper

bound corresponds approximately to A ≈ 10 nN2s, which is a bit larger than the

observed value. One can improve upon this upper bound by taking into account the

directionality of the hysteresis loop and determine the average time scale that the

velocity of the relative coordinate goes from positive to negative (a velocity zero-

crossing). This is because a velocity zero-crossing can drive the active dimer from

one mode to the other. One can impose a threshold on the noise for this switching to

occur. We leave such modifications for potential future work. What we have learned,

however, is that the deterministic model for the model cell is robust to a range of

nonequilibrium, or active, noise. The upper limit of this range maps to an effective

diffusion constant of approximately 10−3 µm2

s
.
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Figure 5.8: Plot of xcm(t) for different values of the noise with A = A1 = A2.

Finally, we ask the following question: How does the motion of the active dimer

change if the hysteresis loops contain finite slopes? Then, in going from one mode

to the other, the stress fiber would no longer behave as a switch, but the change in

equilibrium spring length would depend continuously on the strain. Since the integrins



5.4 Discussion 118

0 50 100 150 200

time (sec)
0

1

2

3

4

5

6

<
x cm

>
 (

µm
) A = 0

A = 0.01 nN
2
 sec

0.0001 0.001 0.01 0.1 1

A   (nN
2
 sec)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

<
v cm

>
 (

µm
/s

ec
)
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for A = 0 and A = 0.01 nN2s.

are ultimately coupled to the stress fibers, changes in the friction coefficients would

also depend continuously on the strain. Well, as long as curves with finite slope

intersect with the x = xeq, as is the case with our model, then motion will cease

since this is an overdamped system now in equilibrium. See Figure 5.9. However,

the addition of active noise kicks the dimer out of equilibrium and motion resumes.

If the active noise is sufficient to change the direction of the strain (extending to

compressing, for example), there is a switch from one equilibrium spring constant to

the other. A threshold on this switch will require an active noise strength above this

threshold to regain motion. Furthermore, at least for A1 = A2, as the strength of the

active noise increases, so does the average velocity of the center-of-mass, or < vcm >,

though the increasing the active noise strength by an order of magnitude eads to a

gain of a few tenths of a percent. In sum, for this finite slope case, active noise is

crucial for sustainable net motion.

5.4 Discussion

We have constructed a minimal model for cell moving on a rigid fiber. The model

contains two beads and one spring, the beads representing the front and the back of
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the cell respectively. Friction coefficients for each bead represent the focal adhesions

between the substrate and the cell. We assume the back bead to have constant

friction, while the front bead friction changes as nascent focal adhesions become

mature focal adhesions to grip the surface via their catch bond behavior. In addition,

the single spring connecting the front and the back beads models the basal stress

fibers stretching along the cell. The effect of myosin is modeled by a change of

the equilibrium spring length. When myosin is actively contracting, the equilibrium

spring length is shorter than when myosin is not. We have emphasized that the

extension mode is driven by relieving strain in alpha-actinin binding, which could be

enhanced due to zyxin binding to alpha-actinin, when the myosin unbind. Both the

catch bond behavior and/or dynamics of alpha-actinin may give rise to hysteresis in

this active contractility, which we have incorporated into the model.

We find that the activity of the myosin and the asymmetry in the friction coef-

ficients due to catch bond behavior of the integrins at the front of the cell and slip

bond behavior at the back are both needed to obtain directed motion of the crawl-

ing cell in an overdamped system in the absence of any noise. Like Refs. [155] and

[156], our model does not require actin-filament nucleation driven by the branching

agent Arp2/3 for cell motility. This is important for elongated cells crawling along

ECM fibers where Arp2/3 plays a role in generating pseudopods to potentially ex-

plore new ECM fibers, but does not drive motility [133]. In contrast to Ref. [155],

where an advection-diffusion equation for the motor concentration coupled with an

active contractile stress drives the motion, our model takes into account the stress

fiber structure and the interaction with the subtrate via focal adhesion friction. In

constrast to Ref. [156], our model is deterministic and observes motion in the direc-

tion of larger friction (at least for some part of the cycle), which is in keeping with

experiments [134].

Using independent estimates for the parameters in the model, we find reasonable

agreement with observed speeds of elongated cells crawling along ECM fibers [152].
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We also study the average speed as a function of the parameters, which can pre-

sumably be qualitatively explored, at least, via knockdowns of the proteins involved

or via mutants. For instance, the larger the difference between the two equilibrium

spring lengths, the faster the average cell speed. A larger difference could be due to

more myosin (to enhance the contraction mode), or more alpha-actinin (to enhance

the extension mode). Interestingly, increased expression levels of alpha-actinin are

found in melanomas and in tumor cell lines with faster migration rates (than the

corresponding healthy cells) [157]. We also find that the net deterministic cell mo-

tion is robust to active noise. For the time being, we varied the parameters of the

model independently and studied the time-averaged center-of-mass velocity, or speed.

However, varying some of the parameters simultaneously may yield an optimal speed.

Our model may help understand the finding of oscillations observed in cells that

are lacking in the protein zyxin. More specifically, recent experiments [152] have

found that zyxin-depleted cells migrating in the ECM move persistently along highly

linear tracks before reversing their direction. This reversal persists resulting in oscil-

lations. These oscillations have also been observed in cells moving on one-dimensional

micro-patterned substrates, but not in two dimensions. Such periodic migration has

been shown to result from the coupling between cell shape and actin-polymerization

driven polarity in phase-field models of cell migration [158]. While protrusive stresses

generated by actin filament nucleation via Arp2/3 (and subsequent polymerization)

at the leading edge of the cell play a key role in two-dimensional cell migration, it

is less dominant in three-dimensional migration. Our model does not require actin

filament nucleation and may provide further insight into the underlying mechanism

for the above periodic migratory motion in the one and three dimensions. Should

zxyin be knocked down, then the switching behavior in our active spring between

contraction and extension may become compromised over time (with redundant pro-

teins not as efficient as zxyin) and the cell will eventually not be able to move. Hence,

it will fluidize, reorient itself, and begin to crawl in another direction to search out
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new space. In the one-dimensional case, the cell can only reverse its direction to

search out “new” space.

One important advantage of our minimal model is that its simplicity easily allows

for extension. For instance, we can (1) introduce Arp2/3 generated pseudopods via

extra beads and active springs (2) incorporate elasticity into the track, (3) introduce

a cell nucleus via extra beads and active springs, and (4) scale up to many cells

interacting via cadherins. As for adding elasticity to the track, the motility of cells

migrating in the ECM depends on its microstructure [5-17]. What are, then, the

strategies or optimization principles that cells use to migrate in the ECM such that

they can harness the elasticity of the ECM fibers to move, while also overcoming the

physical barriers to motion imposed by the matrix architecture? We can begin to

answer such questions by coupling our model cell to an extensible worm-like polymer

and probe the cell’s motility. As for introducing a cell nucleus, the discovery of

actin stress fibers extending over the nucleus [159] such that as the cell crawls the

nucleus is squeezed in the direction transverse to crawling [160], begs for study via

modeling. We can add these actin cap stress fibers to our basal stress fiber model and

address whether their presence helps speed up or slow down a cell crawling along a

one-dimensional elastic fiber. And, finally, the extension to interacting active elastic

dimers is motivated by recent experiments on a collection of spindle-shaped NIH-

3T3 cells at high densities [161]. Given the geometry of such cells, their mechanism

for motion may indeed be similar to one described here. This begs the question,

under what conditions does the cell motion not rely on actin-filament nucleation and

polymerization, other than the constrained geometry case of crawling along ECM

fibers? Confinement by other cells, potentially of a different type, may indeed be

another possibility.



Chapter 6

Future directions

The jamming graph is a useful mathematical object that enables one to study the

connectivity of a purely repulsive particle packing at the rigidity transition. We

were able to show two different scenarios when a jamming graph becomes flexible

by deleting just one edge. In one case the result was many small rigid clusters and

in the other case very few small rigid clusters emerged. We naturally conclude that

there is a set of critical edges whose removal produces many rigid components. It

would be interesting to have a characterization of such critical edges. It would also

be interesting to impose positive weights on the jamming graph to represent forces

(once redundant bonds are added) and ask about the interplay between connectivity

and forces given some dynamical rules for the breaking and forming of contacts. It

is also possible to assign to each vertex in the jamming graph a disk of appropriate

radius by means of the circle packing theorem [86]. By using both force assignments

to the edges of the graph and disk assignments to the vertices, one can approach more

accurately the complexity of the problem.

The study of constraint percolation models on hyperbolic lattices allowed us to

deduce that k-core percolation for k = 1, 2, and 3 demonstrate similar behavior in

the sense that all of them exhibit the three phases of ordinary percolation in this

type of geometry: there are no percolating clusters for low values of the occupation
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probability p, several percolating clusters for a probability between two critical val-

ues, and one ”big” percolation cluster for probabilities higher than those two critical

probability values. This conclusion is inferred from the behavior of the crossing prob-

ability. For the case of counter balance percolation, it seems there is just the usual

two percolation phases, no percolating cluster for occupation probability less than a

threshold value and one percolating cluster for occupation probabilities higher than

this value. The code for generating hyperbolic tessellations is, in general, useful to

analyze other physical problems. For example, we could study the jamming graphs

that are set on a hyperbolic geometry. This would allow us to interpolate away from

Euclidean lattices and study the effect of loops on rigidity. Arguments have been

made as to the loopless nature of the jamming transition, i.e. the jamming system

acts if it were on a Bethe lattice (a mean field system). It would be interesting to

better understand how this property comes about.

The finding of glassy dynamics for cell migration in confluent tissues may have

all sorts of consequences for cell sorting. Cells are the basic structural and functional

units of living matter (beyond the micron scale), so understanding the ability of

different types of cell to sort and form organs and tissues is an important problem.

Chapter 5 is, in some ways, complementary to Chapter 4 in that it models single cell

motion and the interaction with the substrate, as opposed to cell-cell interaction. It

would be interesting to combine some of the details at the level of various proteins

developed in Chapter 5 with the collective cell model studied in Chapter 4 to arrive

at a more comprehensive theory of cell migration.
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