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ABSTRACT 

   EPS geofoam blocks underlying compacted soil and structural loads become subjected to 

multi-axial loading. Effects of confining pressure on the stress-strain behavior of EPS 

geofoam have been investigated in previous studies. Some studies found increases in 

confining stress lead to corresponding decreases in both modulus and compressive 

strength. Increasing confining stress has also been reported to result in higher compressive 

strength. Regardless of the sense and attributed significance of the effects of confinement 

on EPS geofoam behavior, the implied effects on performance are generally not considered 

in practice. A series of triaxial compression tests were conducted on EPS geofoams of 

different densities over a range of confining pressures. Results from the investigation 

indicate increases in confinement lead to decrease in yield stress and post yield 

compressive resistances, depending on the EPS density and range of confining pressures. 

The practical significances of confining stress effects are discussed. An approach for 

incorporating the more significant effects of confining stress on EPS geofoam behavior is 

considered. 

   Evaluations of EPS-soil-structure interactions require reasonable representation of 

stress-strain relationships for numerical modeling. A method proposed in this work uses 

density of geofoam block and resin material properties to represent the stress-strain 

response of EPS geofoam. The stress-strain curves obtained from such representation are 

compared with results from laboratory tests and models by others. The stress-strain curves 

generated by the proposed method predict very well the relations especially for denser 

geofoams. A modified hyperbolic stress-strain relationships that can account for confining 



stress effects is also proposed. The modified hyperbolic model only requires three 

parameters that can be obtained from triaxial tests. Prediction accuracy of this model is 

compared with data from triaxial tests which were not part of data sets used to obtain 

model parameters. Comparison is made with other models proposed by different authors 

and the stress-strain relationships obtained by this approach predict test data well. 

   Characteristics of inherent and stress induced anisotropy of EPS geofoam was 

investigated by triaxial tests conducted on pre-stressed EPS geofoam. Induced anisotropy 

was observed to reduce the modulus significantly. 

   A series of creep tests were performed on different densities of EPS geofoam with and 

without confining pressures. The results showed confining pressures can significantly 

affect the creep responses of EPS geofoam. Effects of confining pressures on creep 

deformations were more pronounced for lower densities. 

   Creep tests were performed in a temperature controlled chamber to evaluate effects of 

cyclic temperatures. Coupled effects of temperature and creep were studied for different 

stress levels. Comparisons were made to actual field observations and FLAC model results. 

Strains and induced stresses from seasonal temperature variations were relatively small. 
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1. INTRODUCTION AND RESEARCH BACKGROUND 

   Geofoam (expanded Polystyrene, EPS) refers to block or planar low density plastic foam 

solids when used as a light weight soil substitute or for thermal insulation in geotechnical 

applications(ASTM D6817 2013). EPS geofoam in common use has density of 15 to 

30kg/m3 having a comparable strength and stiffness as medium clay. 

   EPS is a very light weight material with good compressive strength, high water resistance 

and excellent cushioning properties. Most of these characteristics are affected by the 

density and fusion of the molded foam material. 

   The closed cell structure of EPS results in excellent insulating characteristics that remains 

stable over the life of the material. There is no thermal drift associated with blowing agent 

migration and hence assures that the insulating performance will not deteriorate as long as 

the material is correctly installed and maintained. The insulation properties of the foam do 

not change significantly for temperatures up to 167 oF (75 oC) under long term 

temperature exposure with virtually no low temperature limit(Greeley 1997). 

The use of EPS geofoam in different civil and environmental engineering applications such 

as embankments, retaining walls, slopes, etc. is frequent especially in very soft soils. In 

many applications, EPS geofoam is subjected to compressive loads either from the dead 

load-surcharge or transient live loads. 

   Time dependent strains and residual deformations of structural systems are important 

design considerations for EPS geofoams. Creep deformations are minimized or essentially 

avoided in most design procedures by limiting allowable loads or surcharge pressures to 
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well below the prescribed compressive strengths of the EPS geofoam (usually 30 % of the 

strength at 5 or 10 % strain). 

   A number of investigations were carried out towards the evaluation of the salient 

properties of EPS geofoam including density, compressive strength, modulus of elasticity, 

yield strength, Poisson’s ratio, flexural strength, tensile strength, shear strength, creep 

deformation and thermal conductivity, etc. Among these properties, density, compressive 

strength, modulus of elasticity, creep properties and thermal conductivity are most 

commonly used in evaluating the performance of EPS geofoam in different geotechnical 

applications. With the exception of thermal conductivity, other properties were evaluated 

by performing short term and long term unconfined compression tests. Nevertheless, EPS 

geofoam is used in areas where loading condition may be multi axial. For example 

confining pressure may result in multi axial loadings. Confining pressure on EPS geofoam 

may result from lateral pressures due to soil or hydrostatic pressure. Some studies have 

also shown that increase in confining stress will reduce strength (Preber et al. 1994; Sun 

1997)]. Anasthas et al. 2001 performed triaxial tests on cylindrical samples of two different 

densities to investigate effect of confining stress on compressive resistance. Different 

confining stress levels and duration of confinement showed that compressive resistance of 

EPS geofoam reduced with increasing confining stress especially at confining stress levels 

closer to its unconfined compressive strength. This reduction in strength may make the 

applied stress in excess of the allowable load to result in increased creep deformation. 

However, the compressive strength of EPS geofoam tested at small confinement pressures 

(0 to 20 kPa) have shown that the strength increased as the confining stresses 

increased(Zou and Leo 2001). But the strength increase noted was very small. 
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Chun et al. 2004 tested the ultimate compressive strength of EPS geofoam samples of 

50mm diameter and 100 mm height of different densities (15, 20, 25, and 30 kg/m3). 

Confining pressures of 0, 20, 40, and 60 kPa were used with axial load applied 

perpendicular to the direction of fabrication at a loading rate of 1 %/minute. It was 

observed that the ultimate strength increased as the confining pressure increased but the 

effect of confining stress was small. 

   Thus, effect of confinement on the strength of EPS geofoam is uncertain. Tests with 

different cell pressures followed by application of deviatoric stresses at 1 or 10 % per 

minute can be made. Effect of duration of confinement before application of shear can be 

studied as well. Significance of confining pressure effect on the existing design approaches 

will be discussed. 

   Creep behavior of geofoam has been studied for unconfined axial compression(Anasthas 

2001; Sheeley 2000; Srirajan et al. 2001; Sun 1997). No study is available to date on effect 

of confining pressure on creep behavior of EPS geofoam. Creep due to confinement can be 

investigated by conducting a series of tests under biaxial loading. 

In addition to confining stresses, the mechanical behavior of EPS is also affected by factors 

like material density, strain rate and temperature(Atmatzidis et al. 2001; Chun et al. 2004; 

Duškov 1997a; Elragi et al. 2001; Preber et al. 1994; Wong and Leo 2006; Zou and Leo 

1998). 

   EPS geofoam has been used above ground and temperatures can go up to 40 oC. Hence, 

effects of temperature on the properties of this material should be investigated. The effect 

of temperature on the strength of EPS geofoam was studied by different researchers(Yeo 

and Hsuan 2009; Zou and Leo 2001). Generally, the compressive strength was observed to 
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decrease with increase in temperature. As a rule of thumb, in the range of –5 °C to 60 °C, 

the compressive stress at 10 %/ minute compression decreases by about 7 % of the value 

at 20 °C for each 10 °C rise in temperature. The cellular materials have a correspondingly 

higher compressive strength at temperatures below 20 °C, but the increase is less than 7% 

at temperatures below –5 °C. However, the cellular material does not become brittle even 

at –196 °C(BASF 1998). Effects of low temperatures on properties of EPS geofoam were 

also studied by Duškov (Duškov 1997a) by performing compression tests on cylindrical 

EPS20 samples at temperature ranges of -8.6 to -12.9 oC and found low temperatures did 

not change mechanical behavior of EPS. 

   Creep tests for different axial stresses were made and replicated at different 

temperatures in order to study the combined effect on EPS geofoam samples so as to 

understand its field behavior under similar circumstances. For testing, daily and seasonal 

temperature change effects were modeled by cycling the temperature in a temperature 

controlled chamber. 

   Triaxial tests were carried out to study confining stress effects on short and long term 

deformation behavior of EPS geofoam. Volumetric and axial strain relationship was 

studied. Volumetric deformation, axial deformation and applied load were measured 

respectively with differential transducer, LVDT and load cell. Tests were modeled in FLAC, 

finite difference based computer modeling software, and outputs were compared. Two 

cylindrical samples of different sizes were used. The first group was cylindrical EPS 

samples of 102 mm diameter and 203 mm height. The second group was 64 mm diameter 

and 127 mm height. Samples were precision cut to required dimensions in a factory. 

Densities of 16, 20 and 32 kg/m3 were considered. Different axial strain rate of loading 
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were used. Tests were conducted at approximately constant room temperature and 

humidity. Tests were performed to investigate temperature induced changes of confining 

pressure and associated creep deformations. Samples were placed in a chamber where 

temperature was set to desired values and deformation and temperature were recorded 

and subsequently compared with FLAC outputs. 

   Scope of this research were put in to five main sections: (1) studying effect of confining 

pressure on compressive strength, yield stress and elastic modulus of EPS geofoam (2) 

characterizing stress-strain relations of geofoam in the presence of confinement by using 

modified hyperbolic relationship (3) studying effect of induced anisotropy on stress-strain 

behavior of geofoam (4) examining effect of confining pressure on the creep behavior of 

EPS geofoam and (5) studying effect of seasonal temperature variations on long term 

performance of EPS geofoam.  

   Derivatives of this research were extracted as articles. One article was reviewed and 

accepted to be part of ASCE geotechnical special publication and two journal papers are 

submitted for review, other three are in preparation for submittal. 

   Organization of this dissertation is as follows. The first chapter is general introduction 

and research background. The second chapter covers literature review. Chapter three 

discusses lab tests and lab procedures followed. Test results, constitutive and FLAC 

modeling are discussed in detail in chapter 4. Finally in the fifth chapter, outcomes from 

this research are summarized with recommendations for further studies. 
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2. LITERATURE REVIEW 

2.1 Production of EPS Geofoam 

   EPS geofoam is manufactured by pre-expanding polystyrene beads which are moulded 

and fused in block-moulds using dry saturated steam. Generally three main stages exist in 

the manufacturing process of EPS geofoam: pre-foaming; maturation; and moulding blocks 

before cutting into predetermined dimensions (BASF 1993). The polystyrene beads 

themselves are produced by the polymerization of styrene monomer in an aqueous 

suspension. During the polymerization process a blowing agent, normally pentane is 

absorbed by the expandable polystyrene beads to enable expansion in the later production 

phase. Pentane is contained in petroleum and styrene is a petroleum derivative. Both are 

pure hydrocarbons, i.e. they consist solely of carbon and hydrogen. Expandable polystyrene 

(EPS) is product of polymerization of monostyrene by adding small amount of pentane, 

Figure 1. 

P o ly m e r iz a t io n

S ty re n e   C    H P e n ta n e   C   H
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C H    C H
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Figure 1. Schematic presentation of polymerization (BASF 1998) 
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   After completion of polymerization, the beads are separated from the water by 

centrifuging and drying. The dry expandable polystyrene beads are distributed with 

respect to their size by sieving. The beads are then coated to optimize the later conversion 

processes such as expansion and moulding. The average diameter and volume of these 

polystyrene resin beads is 1.0 mm and 0.52 mm3, respectively. Expandable resin beads are 

the raw materials that are supplied by chemical companies to geofoam manufacturers. 

Resin beads are supplied in different grades for producing foams of different applications 

like for general block and shape molding operations, leak resistance containers and 

packaging foams. 

   In geofoam manufacturing plants, the polystyrene resin beads are pre-expanded with 

steam at a temperature of about 100 - 110 °C. Pre-expanded beads are formed as the 

temperature softens the beads and pentane gas expands up to 50 times or more to create 

enlarged cellular structures within the pre-puffs. The density of the final foam block is 

governed by the degree of expansion, temperature, and duration of steam exposure during 

pre-foaming stage. This stage is relatively controllable and thus the density of the block is 

controlled with a certain precision. The pre-expanded beads or pre-puffs are cooled to 

mature and stabilize. After maturating, during which time air diffuses into the newly 

formed cells, this pre-foam is moulded and fused in shape or block-moulds, again under the 

influence of dry saturated steam. Some amount of recycled expanded polystyrene can be 

shredded and mixed with the pre-puffs just before molding. Figure 2 is a schematic 

representation of EPS manufacturing processes. Typical block sizes produced and 

commercially available in the United States are 0.61m x 1.22m x 2.44m (2 ft x 4 ft x 8 ft) 
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and may go up to 0.6m x1.25m x 8.0m (Negussey and Jahanandish 1993). Around 140 

geofoam manufacturing plants exist in the United States (Elragi 2000). 

E x p a n s io n
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Figure 2. Schematic representation of EPS production (BASF 1998) 

   The resulting geofoam consists of many hexagon-shape microcells containing air. The cell 

walls and air inside the microcells play a significant role in the compression properties of 

the geofoam. The solid density of polystyrene-1030 kg/m3 produces cellular solid densities 

in the range of 15 to 35 kg/m3, depending on the type of resin beads. High air content of 
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foam and the closed cell structures result in very low thermal conductivity and density, two 

main EPS geofoam characteristics. Expanded polystyrene is a thermoplastic material. In the 

absence of oxygen it will soften when heated and eventually becomes viscous and changes 

to liquid form and hardens when cooled (Koerner 2005). 

2.2 Properties of Geofoam 

2.2.1 Density 

   The density of EPS geofoam is considered as the main parameter for characterizing 

compressive strength, stiffness, creep and other mechanical properties.  EPS geofoam has a 

unit weight approximately 50 to 100 times lighter than conventional fill materials. Table 1 

provides unit weights of some light weight materials used in practice. Geofoam of different 

densities can be fabricated with application-specific properties; spanning from insulation 

to light weight construction purposes. The ranges of standard geofoam densities commonly 

vary between 16 kg/m3 to 32 kg/m3 (1pcf to 2pcf). Higher density blocks of up to 64 kg/m3 

can be produced. Light weight fill applications commonly use 20 to 30 kg/m3 and for 

insulation purposes 30kg/m3 or above are used to obtain optimum insulation 

properties(van Dorp 1988). Density of EPS geofoam is determined as per(ASTM D1622 

2008). The cost of EPS geofoam blocks is generally proportional to density. 

   EPS geofoam classifications based on density are commonly used by manufacturers and 

designers. For instance, ASTM standard D-6817 presents the types, physical properties, 

and dimensions of rigid cellular polystyrene (RCPS) intended for use as geofoam (ASTM 
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D6817 2013). Similarly C-578 is ASTM standard specification that covers types of rigid 

cellular polystyrene (RCPS) thermal insulations(ASTM C578 2011). 

 

Table 1. Light weight materials(Miki 1996) 

Material Density (kg/m3) Remarks 

Volcanic ash soil 1200 - 1500 Natural material 

Fly ash 1100  

Light clay (Leca) 800 - 1000  

Tire chips 700 - 900 Usually used above ground water level; 

cover soil layer of at least 0.9m is required 

Wood chips 700 - 1000 Usually to be used below ground water 

level; anti leaching measures needed 

Expanded beads mixed 

light weight soil 

700 or more Variable density; similar compaction and 

deformation characteristics to soil 

Air foamed mortar and air 

foamed light weight 

stabilized soil 

500 or more Adjustable density; flow able; self 

hardening 

EPS geofoam 14 – 32 Ultra light weight 
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2.2.2 Compression Strength 

   Information on the compression behavior of EPS geofoam is necessary for appropriate 

design of infrastructures which use EPS geofoam. The compressive strength of EPS 

geofoam is usually taken as the stress at which the axial strain reaches 5 or 10 %. 

Differences between strengths at 5 % (σc5) and 10 % (σc10) strain are relatively minor and 

both the 5 and 10 % strain criteria have been used in factored strength design procedures 

(Negussey 2007). 

   Unconfined compression tests on small sample sizes (50 mm cubes) are commonly used 

to obtain most of the available design parameters(ASTM D1621 2010). Compressive 

strengths increase with increasing sample size, but this increase is small (Atmatzidis et al. 

2001; Elragi et al. 2001). Results from unconfined compression tests adequately represent 

the mechanical behavior of EPS geofoams in applications where applied normal stresses 

remain well below yield stress or conceptual elastic strain limit. Shape, size and aspect 

ratio of EPS geofoam samples tested in unconfined compression have relatively 

insignificant effects on measured compressive strength at 10 % strain (Atmatzidis et al. 

2001; Eriksson and Tränk 1991). 

   Density of the EPS geofoam has a significant effect on the values of the compressive 

strength. The strength increases as the density of the geofoam increases (Negussey 2007). 

The compressive strength depends on the strain rate (Abdelrahman et al. 2008) as well as 

the temperature (Yeo and Hsuan 2009; Zou and Leo 2001). An increase in strength is 

observed when there is an increase in strain rate. However the strength decreases with 

temperature for temperatures above room temperature (BASF 1998; Yeo and Hsuan 2009). 
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2.2.3 Modulus of Elasticity 

   The initial modulus of elasticity, Ei (slope of the initial linear segment of the stress-strain 

curve), the compressive strength, σc10 (usually defined as the axial stress at 10 % axial 

strain) and the yield stress, σy (point of intersection of the initial linear segment and a post 

yield linear segment of the stress-strain curve) are used to characterize the stress stain 

curves obtained from the unconfined compression tests (Preber et al. 1994). Initial tangent 

modulus, Young’s modulus and modulus of elasticity are interchangeably used to define the 

initial linear portion of the stress-strain curve. The stresses are linear for smaller values of 

strains, usually up to 1 % axial strain (Abdelrahman et al. 2008; Horvath 1998). 

   Values of initial tangent modulus vary with density. Different authors have suggested 

empirical relations for Ei as a function of density. In all relations listed below Ei and density 

have units of MPa and kg/m3. 

(Magnan and Serratrice 1989)                                                                                (1) 

(Eriksson and Tränk 1991)                –                                                        (2) 

(Horvath 1995)              –                                                        (3) 

(Duškov 1997b)                                                                                      (4) 

(Elragi 2000)                                                                                (5) 

(Anasthas 2001)                                                                     (6) 

   Young's modulus values for geofoam are commonly determined by testing 50mm cube 

samples in accordance with(ASTM D1621 2010; LST, EN. 826 1998)]. But results from 

conventional 50 mm cube samples significantly underestimate Young's modulus values for 

EPS geofoam (Duškov 1997b; Elragi 2000). Modulus values that are obtained from these 

small size laboratory samples are about half of the values that were estimated from field 
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observations and should be increased for design applications(Negussey 2007). The initial 

tangent modulus value depends on the loading rate. Higher strain rates resulted in higher 

modulus values (Abdelrahman et al. 2008; Elragi 2000). 

2.2.4 Tensile Strength 

   The tensile strength of EPS geofoam is highly dependent on the degree of fusion of the 

expanded polystyrene beads. Tensile and flexural tests are useful indices as they imply how 

well the beads fused during manufacturing of EPS. Compared to the flexural and shear 

strength, tensile strength is highly affected by processing conditions (BASF 1998). For a 

given density, the mean value of tensile strength increases linearly with density. The mean 

value is given by the following expression which was obtained from data provided in (BASF 

1998). 

                                                                                            (7) 

where t, av is the mean tensile strength in kPa and  is EPS geofoam density is in kg/m3. 

2.2.5 Flexural Strength 

   The flexural strength of EPS geofoam is mostly used as quality control test. It also 

increases linearly with density. The fusion affects the ductility of the foam and is reflected 

in the degree of deflection. The magnitude of deflection gets less as the density increases. 

The mean value of the flexural strength is given by the following expression which was 

obtained from data provided in (BASF 1998). 

                                                                                            (8) 



14 

where f, av is the mean flexural strength in kPa and  is EPS geofoam density is in kg/m3. 

2.2.6 Poisson’s Ratio 

   Assuming EPS geofoam to be homogenous, isotropic and linear elastic; only two 

parameters, modulus and Poisson’s ratio, would be required for analysis. The Poisson’s 

ratio of EPS geofoam is reported to be a function of density in addition to confining stresses 

(Chun et al. 2004). 

Table 2. Values and expressions for Poisson's ratios 

Author Poisson’s ratio 

expressions or values 

Remarks 

(Eriksson and Tränk 1991) 0.05  

(Duškov 1997a),  <  0.15  

(Yamanaka et al. 1996) 0.075  

(Sanders 1996) 0.05 - 0.20 

(Horvath 1995) v = 0.0056+ 0.0024   = density (kg/m3) 

(Preber et al. 1994) 
3

σ
0 .2 0  - 0 .5

6 2 k P a
v   

3 = confining stress (kPa) 

3 <  62 kPa

(Chun et al. 2004) v = 0.0967+0.00308 -

0.00233 

 = density (kg/m3) 

3 = confining stress (kPa) 

(Wong and Leo 2006) <  0.15  

(Negussey and Sun 1996) 0.09 and 0.33  

(Momoi and Kokusyo 1996) 0.5  
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   Generally Poisson’s ratios are reported to be very small positive values for small strains 

and zero or negative values for large strains (Atmatzidis et al. 2001; Wong and Leo 2006; 

Zou and Leo 1998). Table 2 is a summary of values or expressions for Poisson’s ratios of 

EPS geofoams. Poisson's ratio values tend to be underestimated due to non uniformity and 

end effects in the proximity of the rigid loading platens (Elragi et al. 2001). 

   Broad range of variability and uncertainty in the values of Poisson’s ratio exist and hence 

factors that are perceived to affect the Poisson’s ratio determination need a more detailed 

study. 

2.2.7 Creep Behavior 

   EPS geofoams under service loads develop creep deformations. Live loads such as due to 

traffic and the associated deformations are generally transient. Post construction creep 

deformations of geofoam mainly depend on the level and duration of dead loading. Creep 

deformations are the main concern in the design of geofoams rather than shear failure.  

Creep is considered negligible if the initial strain does not exceed 0.5 % (Frydenlund and 

Aabøe 2001). The thickness of EPS geofoam will not change much over a long period of 

time if the initial compression is less than 1.5 % (BASF 1998). 

   Working stress values are selected so as to limit creep deformations to acceptable levels 

over the service life of the facility. A design approach developed in Norway is most 

commonly used and it is based on limiting the allowable surcharge load over geofoam to 

30% of the compressive strength at 5 % strain as determined by laboratory testing of small 

size samples at a strain rate of 10 % per minute (Frydenlund and Aabøe 1996). 
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Creep tests were conducted on 50 mm geofoam cubes using nominal stress levels of 30, 50 

and 70 or 80 % of the compressive strength (Anasthas et al. 2001; Sheeley 2000; Srirajan et 

al. 2001; Sun 1997). Results have shown that creep deformations can be considered 

negligible for stress levels less than 30 % of compressive strengths at 5 % strain, see Figure 

3. (van Dorp 1988) and (Duškov 1997a) also reported that if geofoam is exposed to loads 

greater than 50 % of the compressive strength at 5 % strain, larger creep deformations 

occur. At working stress levels of less than 50 % of the yield, geofoam is found to have 

insignificant creep deformation (Negussey and Jahanandish 1993). At yield and post yield 

stress levels, time dependent deformation will be of appreciable amount. 

 

Figure 3. EPS geofoam creep behavior under different stress levels (Sheeley 2000) 

   (Srirajan et al. 2001) have shown that creep behavior of EPS geofoam is affected by 

sample size and density. Larger samples experienced less creep deformation over a given 

time period and equivalent loading. Small samples overestimate creep deformation of EPS 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Digitized BASF and others.xlsx
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geofoam due to end effects and more pronounced seating error (Elragi et al. 2001; 

Negussey 2007). 

   Density is reported to have an effect on the creep behavior of EPS geofoam. Denser 

samples experienced less creep at the same level and duration of loading, Figure 4. But 

density had little or no influence on immediate strains for larger samples tested at equal 

stress levels of 50 % of compressive strength and lower (Srirajan et al. 2001).  

 

Figure 4. Density effect on creep of EPS geofoam (BASF 1998) 

   Two series of creep tests were conducted on cylindrical EPS geofoam by Duškov(Duškov 

1997b). In the first series, samples of 100 mm diameter and 200 mm high EPS20 were 

exposed to 20 kPa axial stress. In the second series both EPS15 and EPS20 samples of 150 

mm diameter and 300 mm height were exposed to 10 and 20 kPa stresses to represent 

light and heavy pavement structures. Observations of total strains over 400 days, resulted 

in 0.2 % total strain for the first series of tests of which 35 % (i.e. 0.07 %) occurred in the 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Digitized BASF and others.xlsx
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first day. For the second series of tests a total strain of 0.50 and 0.25 % for 20 and 10 kPa 

stresses respectively resulted and about 50 % of each happened in the first day. No 

significant differences were observed in EPS15 and EPS20 samples. ASTM - D6817 2013 

provides 70 and 110 kPa as the strength at 10 % axial strain for EPS15 and EPS20. Hence 

the axial stresses used in the above tests represent utmost 28.5 % of the strength for 

EPS15. 

   EPS samples of 50 mm cube and 18.4 kg/m3 density were tested for creep(Sun 1997). 

Axial loads of 6.6, 10.8, and 15.2 kgf which correspond to 30, 50, and 70 % of the 

unconfined compression strength at 5 % strain were used. The respective total axial strains 

were 0.8, 3.0 and 14.4 % respectively after 461 days. Strain recoveries of 0.7, 1.5 and 3.3 % 

were observed after 252 days past load removal. 

   Creep tests were done on 21 kg/m3 nominal density and 50 mm cube EPS geofoam 

samples by Sheeley,(Sheeley 2000).These samples had 98 kPa as the unconfined 

compressive strength at 5 % axial strain. The axial stresses were set as 30, 50 and 70 % of 

98 kPa. Axial strains were recorded for over 500 days and 0.95, 1.35 and 22 % axial strains 

were observed for the respective stresses. Out of which 66 and 68 % of the total axial 

strains were observed in the first day for 30 and 50 % loads respectively. Samples loaded 

with 70 % stress level continued to show increasing strains to 500 days. 

   Srirajan et al. 2001 reported creep tests on EPS geofoam of five different sample sizes of 

50, 64, 100 and 300 mm cubes and 300x300x600 mm blocks for 12 to 30 kg/m3 densities. 

Axial stress levels of 30, 50 and 80 % of the unconfined compressive strength at 5 % strain 

were used. The smaller sample sizes developed more creep deformation than the larger 

samples for the same level of loading and time. Different densities were tested for one 
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stress level and sample size. The results showed low density geofoam experienced more 

strains than high density geofoam. Most of the strains for all samples and tests occurred in 

the first day. 

   The amount of strains depends on the magnitude of stresses, sample size, density and 

duration of loading. For the same sample size, density and duration of loading, (Srirajan et 

al. 2001) and (Duškov 1997b) reported values of strains which were in direct proportion to 

the magnitude of stress levels for stress levels up to 50 % of the unconfined compressive 

strength at 5 % strain. 

   (Srirajan et al. 2001) noted that the practice of limiting the design stress to 30 % of 

unconfined compressive strength at 5 % strain was conservative. Hence, use of 50 % of the 

unconfined compressive strength at 5 % strain as a working stress was suggested. 

A large scale laboratory creep test was conducted on an EPS geofoam fill made from 

1x1.5x0.5 m blocks having an unconfined compressive strength of 100 kPa (Aabøe 1993). 

The plan dimensions of the fill were 4mx4 m and 2mx2 m at the base and top respectively. 

With average side slopes of 2:1, the 2 m high fill had four layers of blocks. Surcharge of 52.5 

kPa applied for 1270 days developed a total strain of about 1.187 %, out of which 64 % 

occurred in the first two days. 

   (Kutara et al. 1989) reported anisotropic behavior of EPS geofoam may affect the 

deformation characteristics of the material. Loading perpendicular to the direction of 

fabrication has shown higher deviatoric stresses at failure. But similar observation has not 

been confirmed by others. 
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   In creep tests conducted to date, effects of confinement and changes in volumetric strain 

have not been considered. This study examines these effects and associated practical 

implications in analysis and design of EPS geofoam. 

2.2.8 Interface Friction 

   The interface friction between EPS geofoam blocks can be high (Negussey et al. 2001; 

NRRL 1992) and is comparable to the internal friction angle of sand (Negussey 1997). The 

interface friction between geofoam and other materials is given in Table 3. The effect of 

density on the interface friction is small. 

Table 3. EPS geofoam interface friction factors (after Sheeley and Negussey 2001) 

Interface Peak factor Residual factor 

Foam – Foam, 20 kg/m3 (dry) 0.85 0.70 

Foam – Foam, 20 kg/m3 (wet) 0.80 0.65 

Foam – Foam, 30 kg/m3 (dry) 0.85 0.65 

Foam – Foam, 30 kg/m3 (wet) 0.75 0.65 

Foam – Foam, 20 kg/m3 (dry) 0.85 0.70 

Foam – cast in place concrete 2.36 1.00 

Foam – Textured HDPE membrane 1.00 1.00 

Foam – Smooth HDPE membrane 0.29 0.23 

Foam – Smooth PVC membrane 0.70 0.40 
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   (Sheeley and Negussey 2001) studied the practical significance of metal binders which 

have been used in the field to attach foam blocks and increase shear resistance. The binders 

did not provide increased shear resistance in one directional loading; instead they 

decreased the resistance in reverse loading and reloading. 

2.2.9 Thermal Property 

   More than about 98 % of the volume of EPS geofoam is air. This large air volume is 

divided into smaller volumes enclosed within cells and resulted in reduced convection 

currents. EPS geofoam has small thermal conductivity due to small amount of solid 

material and the air within smaller cells result in less heat transfer. Thermal conductivity is 

greatly affected by bulk density (BASF 1998). In Figure 5, minimum value of thermal 

conductivity is attained when density gets close to 30 to 40 kg/m3. As density increases 

further, thermal conductivity increases about linearly to a value of 0.13 W/ (m K) at 1050 

kg/m3 (compact polystyrene). (van Dorp 1988) also reported that the thermal resistance, 

R- value of geofoam, reaches maximum at about 35 kg/m3 density. R-value is expressed as 

the inverse of thermal conductivity. 

 

Figure 5. Thermal conductivity as a function of bulk density at 10 oC (BASF 1998) 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Digitized BASF and others.xlsx


22 

   Low thermal conductivity of EPS geofoam makes it an excellent insulation material. The 

performance of highway pavements and airport runways can be improved when geofoam 

is used as subgrade insulation in colder climates. It has also been used in the construction 

of slab-on-grade and shallow foundations where geofoam is employed as thermal 

insulation so as to minimize or avoid frost heave(NAHB 2004). 

   Thermal conductivity of EPS geofoam is affected by the amount of moisture which 

diffused in to the cells(Negussey 1997). Nevertheless, even in an extreme exposure to 

moisture the thermal conductivity of EPS geofoam is about 20 to 40 times less than that of 

soil (Horvath 1994). 

2.2.10 Effects of Moisture 

   EPS geofoam absorbs minute proportions of water(BASF 1998). The amount of 

absorption depends on factors like density, duration of moisture exposure and level of 

fusion of beads during production. High density, good fusion and smaller exposure result in 

less moisture absorption and vice versa. The absorbed moisture has a tendency to increase 

density and thermal conductivity. van Dorp (van Dorp 1988) reported about 10 % 

moisture absorption by volume for EPS geofoam in a roadway after 12 years of service. 

However the water absorbed by EPS geofoam has negligible effect on the mechanical 

properties (BASF 1998). 
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2.2.11 Chemical Properties 

   EPS geofoam is resistant to water and aqueous solutions of salts, alkalis, and acids. 

However adhesives, paints, and organic solvents may damage the foam. Table 4 is a 

summary of effects of different chemicals. 

Table 4. Resistance of EPS to chemical agents (after BASF 1998) 

Source of attack EPS resistance*  to attack 

Salt solutions (sea water) Resistant 

Soaps solutions and wetting agents Resistant 

Bleaching solutions, such as hypochlorite, chlorine water, 

hydrogen peroxide solutions 

Resistant 

Dilute acids Resistant 

35 % hydrochloric acid, nitric acid up to 50 % Resistant 

Anhydrous acids, (e.g., fuming sulfuric acid, glacial acetic 

acid, 100 % formic acid) 

Non Resistant 

Sodium hydroxide, potassium hydroxide and ammonia 

solution 

Resistant 

Organic solvents such as acetone, ethyl acetate, benzene, 

xylene, paint thinner, trichloroethylene 

Non Resistant 

Paraffin oil, Vaseline Limited Resistant 

Diesel oil , Motor gasoline  Non Resistant 

Alcohols (e.g., methanol, ethanol) Limited Resistant 

Silicone oil Resistant 

* Resistant = the foam remains unaffected even after long exposure 

  Limited Resistance =the foam may shrink or suffer surface damage on prolonged 

exposure 

  Non Resistant = the foam shrinks more or less rapidly and is dissolved 
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2.2.12 Properties Considered During Design and Construction  

a) Buoyancy: Uplift forces are main design concerns when EPS geofoam is installed 

below the ground water level or placed above the ground water table with potential 

flooding and groundwater rise. Thus, every design should assure an adequate 

surcharge either from the overburden pressure on top of the EPS blocks or from 

uplift resisting anchors.  Use of EPS in dry condition is preferred and regulation of 

ground water table can be considered. 

b) Concentrated loads: Under concentrated loads EPS geofoam will puncture easily. 

Load distribution concrete slab is commonly employed. The slab significantly 

attenuates the load on the EPS (Nishi et al. 1996). Placement of the EPS blocks under 

adequate soil cover is an alternate solution. 

c) Chemical attacks: Table 4 gives summary of substances which can dissolve EPS 

geofoam. Soils adjacent to EPS might also be contaminated and have solvents that 

can attack the EPS. Geotextile membranes or plastic covers will help to protect the 

EPS. Besides load distribution, concrete slab on top of the EPS fill can protect the 

EPS against gasoline or other solvent spills during construction or while in service. 

In general, tests are recommended if EPS geofoam is to be used in contact with 

substance of unknown composition (BASF 1998). 

d) Flammability: Geofoam is a combustible like other organic materials. Care should be 

taken during storage and construction. EPS geofoam produced with fire retardants 

is more difficult to ignite and has slow spread of flame but is more expensive. 

e) Insect Infestation: Thermal insulation property of geofoam makes it suitable place 

for insects to inhabit, deposit their eggs and store their food. Coating vulnerable 
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surfaces with cement slurry may help prevent insects temporarily. EPS geofoam 

with additives can also be manufactured making it resistant to insect attack. 

f) Ultraviolet degradation: Prolonged, direct exposure to UV from the sunlight 

degrades EPS geofoam surface and results in discoloration and dust. A reduction in 

peak interface friction is observed on such degraded geofoam (Sheeley and 

Negussey 2001). Prolonged direct sunlight exposure should be avoided by covering 

with opaque sheeting. 

g) Differential icing: When EPS geofoam is used as thermal insulation or fill under road 

pavements, ice may form during winter. Whereas the adjacent section of the rod 

without EPS geofoam may not form ice due to the geothermal heat. Such 

phenomenon on road where some portion is icy and the other ice free is called 

differential icing.  Differential icing due to placement of EPS geofoam under a road 

way is dangerous as compared to those occurring in bridges and girder supported 

pavements because drivers may not be ready for such unexpected instances. 

Increased thickness of granular base coarse above EPS geofoam fill reduces the 

magnitude of differential icing (Frydenlund and Aabøe 2001). 

h) Moisture absorption: When EPS geofoam absorbs some amount of moisture 

(maximum of about 10 % by volume), its density and thermal conductivity increase 

and should be accounted in design. For example if 20 kg /m3 foam absorbs 10 % by 

volume water, its density will approximately increase to 120 kg/m3. 

i) Durability: EPS geofoam is highly durable even when used in manure (fertilized 

earth with phosphates, acid rain etc). 
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j) Sliding: The interface between EPS geofoam blocks is high as long as there is 

adequate normal load. However sliding may occur during construction due to lateral 

loads from backfilling as the normal loads for the mobilization of friction resistance 

are not in place. Care must be taken to avoid such sliding. 

k) Block alignments and transition zones: Continuous vertical and horizontal joints 

between EPS blocks should be avoided by staggering the blocks so as to increase 

integrity of fill. Side slopes of EPS layers should be stepped in order to make a 

transition zone between geofoam and earth fill which will reduce problems of 

differential settlement. 

l) Environmental friendliness: Toxic fumes and water contamination are not expected 

when EPS geofoam is under fire. Chlorofluorocarbons (CFCs) and hydrogenated 

chlorofluorocarbon (HCFCs) are not released to the environment during production, 

processing and use of EPS, simply because they are not used in manufacturing. In 

addition alpha, beta, gamma radiations and radon were not detected in EPS 

geofoam. EPS geofoam is insoluble in water and does not contaminate ground water 

and does not affect plant and animal life (BASF 1998). 

2.3 Use of EPS Geofoam and Case Histories 

   Geotechnical engineering applications of EPS geofoam is enjoying wide acceptance 

especially in soft ground conditions due to a better understanding of its properties. EPS 

geofoam was introduced in 1950s as a light weight construction material (BASF 1998). 

Since then it is used in the construction industry of different countries for the first time, 



27 

Table 5. It has been used as lightweight fill, compressible inclusion, thermal insulation and 

small amplitude wave damping (ground vibration and acoustic)(Horvath 1997). 

Table 5. Historical first use of EPS geofoam 

Country First time use Project type Reference 

Germany 1960 Frost protection in pavement (Hillmann 1996) 

1995 Highway embankment 

Norway 1965 Insulation (Sanders et al. 1994) 

1972 Embankment (Frydenlund and 

Aabøe 2001) 

Japan 1985 Embankment (Miki 1996) 

United States 1960 Light weight fill (Monahan 1993) 

 

2.3.1 Light Weight Fill 

   EPS geofoam was first used as a light weight fill in Norway, in the reconstruction of the 

approach fill to Flom Bridge, near Oslo(Frydenlund and Aabøe 1996). One meter ordinary 

fill was replaced by EPS blocks in the embankments adjoining this bridge in order to reduce 

settlements. The embankments were resting on 3m thick peat above 10m soft, sensitive 

clay layer. It has then been used as light-weight fill in many civil engineering applications 

like in road embankments, bridge abutments, retaining walls etc (Duškov 1997a; Elragi et 

al. 2001; Murphy 1997). 
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   The Utah Department of Transportation (UDOT) and the Utah Transit Authority (UTA) 

have made extensive use of EPS embankment for several major interstate, light rail, and 

commuter railway embankments in Salt Lake Valley, Utah. Constructed between 1998 and 

2001, the Interstate 15 Design Build Reconstruction Project involved the widening of 

interstate embankments within a 27 km narrow corridor and limited right-of-way. 

Approximately, 100,000 m3 of EPS fill was placed at various locations to minimize post-

construction settlements of deep, compressible lake deposits (Negussey et al. 2001). 

A typical section of an embankment where EPS geofoam is used as a light weight fill is 

shown in Figure 6. Settlement problems can be reduced or avoided as the stress increments 

from EPS geofoam is much less than conventional earth fill. Steep side slopes up to 2:1 or 

more can be employed with EPS geofoam (Elragi 2000; Sun 1997). 

   EPS geofoam can also be used as a light weight fill at the back of retaining walls and 

bridge abutments in weak soils. It has double purposes. First smaller vertical stresses will 

help in minimizing or avoiding settlements in the back fill and hence avoid elevation 

difference between approach road and bridge deck. Secondly the lateral stresses on the 

wall are smaller as a result of smaller density, higher interface friction or interlocking and 

higher compressibility of EPS geofoam. The settlement in a bridge abutment was highly 

minimized by employing 9m EPS geofoam fill (Ishihara et al. 1996). About 28,000m3 EPS 

geofoam was used as a fill next to outside perimeter of basement of Carousel Mall, 

Syracuse, NY with the intention of decreasing settlement of edge of the building (Stewart et 

al. 1994). 
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Figure 6. Typical embankment section with EPS geofoam fill 

2.3.2 Compressible Inclusion  

   As a first documented use of EPS geofoam as a compressible inclusion, it was applied on a 

rigid concrete basement wall retaining approximately 10 m of sand and gravel fill (Partos 

and Kazaniwsky 1987). 

   (Negussey and Sun 1996) showed that use of EPS geofoam in the active zone of basement 

wall significantly reduced the earth pressures on the walls. EPS is used as a compressible 

inclusion aiming at reducing the lateral pressure (Horvath 1992, 1997; Zarnani and 

Bathurst 2007). EPS geofoam is being used as a construction material of interest under 

conditions where its mechanical property like contraction under deviatoric loading can be 

used advantageously to lower lateral loading below normal earth pressures (Wong and Leo 
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2006). A strip of 0.5 m thick EPS geofoam utilized behind 14m high abutment highly 

reduced lateral pressure and overall bending moment (Matsuda et al. 1996). 

Studies have also shown that vertical EPS panels used as buffers reduced the seismic earth 

pressures against rigid non-yielding basement retaining walls, bridge abutments, etc 

(Athanasopoulos et al. 2007; Hazarika 2001; Pelekis et al. 2000; Trandafir et al. 2010; 

Zarnani and Bathurst 2009). 

   EPS geofoam can be used as a compressible inclusion on top of buried culverts. A very 

small compression of EPS causes portion of the fill over the culvert to move down; what is 

called negative arching. Shear stresses will mobilize on the sides and vertical earth 

pressure on the culvert reduces as part of the pressure is carried by neighboring ground, 

Figure 7. Up to 50 % vertical earth pressure reduction (Ooe et al. 1996; Vaslestad et al. 

1993) and up to 30 % cost reduction were obtained (Vaslestad et al. 1993). The stresses 

due to the seasonal heave and shrinkage of expansive soils can also be relieved by utilizing 

EPS geofoam as a compressible inclusion. 
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Figure 7. EPS as a compressible inclusion mechanism of arching 
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2.3.3 Slope Stability 

   Light weight characteristic of EPS geofoam was also employed to improve the factor of 

safety of slopes(Elragi 2000; Sheeley 2000). Even though the density of EPS geofoam is 

about 100 times less than the density of compacted-fill, its price can be about five times 

that of the cost of compacted soil of equal volume. Studies were done by (Negussey et al. 

2001) on the most effective placement of the geofoam with respect to volume and location 

so as to reduce costs. 

   A failed road embankment on US 160, Colorado, used about 648 m3 EPS geofoam as a fill 

in the crest of the slope to improve the factor of safety (Yeh and Gilmore 1992). About 1834 

m3 EPS geofoam was employed for 104 m long road embankment on a steep hill side 

(Suzuki et al. 1996). It was a cheap and fast solution. 

2.3.4 Thermal Insulation 

   Cold regions with seasonal ground freezing and potential frost heave demand shallow 

foundations to be placed below the depth of frost penetration(IBC 2006). EPS geofoam can 

be systematically employed as an insulation material in order to decrease the depth of frost 

penetration and hence allowing design and construction of shallow foundations called frost 

protected shallow foundations (FPSFs) (NAHB 2004). Shallower frost penetration depth 

results when the soil is warmed up by both the building heat and geothermal heat with 

placement of vertical and horizontal insulations, Figure 8. The insulation also minimizes 

heat lose from the building. 
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Figure 8. EPS application as a vertical and horizontal insulation 

   EPS geofoam is also used as insulation in highway pavements and airport runways so as 

to improve their performances by minimizing seasonal ground freezing and frost heave 

effects. To avoid problems of differential icing, the thickness of granular material above the 

EPS should be adequate. NRRL also suggested a minimum pavement thickness of 80 cm 

above geofoam to minimize icing possibility (NRRL 1992). Figure 9 is a cross section 

through a typical pavement where EPS geofoam is used as insulation. 
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Figure 9. EPS application as pavement insulation  
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   In 1985, Colorado Department of Highway successfully used geofoam as an insulation 

material in the reconstruction of subgrade of I-70 highway damaged by frost heave. XPS 

with thickness of 51 mm (2 in) and compressive strength of 276 kPa was employed 

(Upright 1989). 

   Generally in most geofoam applications a granular base is provided in order to allow 

drainage and minimize buoyancy problems. It also helps in creating a level surface for 

placement of the geofoam. 
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3. LABORATORY TESTS 

3.1 Introduction 

   In order to investigate the properties of EPS geofoam, a number of tests with different 

densities and sample sizes are done. The main focus of this investigation is study and 

understanding of confining pressure effects on the most important and commonly used 

parameters in the design and analysis of EPS geofoam. Compressive strength, modulus of 

elasticity, yield strength, Poisson’s ratio and creep deformation are studied and evaluated 

in the presence of different levels of confinement. Most of these parameters can be 

obtained by conducting short and long term unconfined compression tests. Existing design 

methodologies on EPS geofoam are solely based on unconfined compression tests. A 

number of unconfined short and long term tests are also done as a basis of comparison 

with results obtained from compression tests in the presence of confinement. Effect of 

temperature on behavior of EPS geofoam was studied by doing different tests inside a 

controlled chamber. Effect of cyclic temperature was also investigated. 

   Laboratory tests conducted in this research are classed under four main sections and are 

summarized in Table 6. 

1) Short term compression tests: These compression tests were done using a strain 

rate of 10 % per minute on EPS samples of different densities. Confining stress 

levels of 0 to 250 kPa were used. Fewer tests were done for axial strain rate other 

than 10 % per minute. Most tests were done at room temperature but some were 

tested at other temperatures. Finally compression tests were done in order to study 
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the effect of mechanical anisotropy on the compression characteristics of EPS 

geofoam. 

2) Isotropic compression tests: EPS geofoam samples of different densities and sizes 

were acted upon by isotropic compression where the isotropic pressure was varied 

at different rates. The bulk modulus and Poisson’s ratio were determined. 

3) Creep tests: Axial and volumetric deformations of EPS geofoam samples were 

obtained when samples of different densities and sizes are acted by different levels 

of confining pressure. The constant axial stress levels were also varied. 

4) Thermal tests: Temperature was varied in a controlled chamber and short and long 

term compression tests were done. Creep tests with cyclic temperature variation 

were done to simulate seasonal temperature variation effects. 

Table 6.Summary of tests 

Test type Density 

(kg/m3) 

Sample sizes Confining pressure 

kPa 

Compression tests 16, 20, 32 50 mm cube, 64 mm 

&102 mm diameter 

0 to 207 

Isotropic compression 16, 20, 32 64 mm &102 mm 

diameter 

0 to 103 

Creep 16, 20, 32 50 mm cube, 64 mm 

&102 mm diameter 

0 to 103 

Thermal  20 50 mm cube, 64 mm 

&102 mm diameter 

0 
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3.2 Sample Preparation 

   EPS geofoam cylindrical samples of 64 mm and 102 mm nominal diameter and 127 mm 

and 203 mm nominal height, respectively, were supplied by Shelter Enterprises Inc. The 

samples had nominal densities of 16, 20 and 32 kg/m3. Some of these samples were 

shortened to have an aspect ratio of 1:1. Block samples were also provided from which 

cubic samples were cut using hot wire cutter. 

   The samples supplied by the manufacturer and those cut in the lab were weighed using a 

sensitive balance + 0.01g and their dimensions were measured to a scale sensitive to 

0.01mm. The densities were calculated and are summarized in Table 7. 

Table 7. Summary of average calculated densities of different samples 

 

No. of Samples 

Density (kg/m3) 

Calculated Nominal 

14 15.11 ( + 0.33) 16 

14 19.20 ( + 0.55) 20 

17 29.14 ( + 1.16) 32 

3.3 Testing System and Procedures 

   GeoJac testing systems were used for most of the tests in this research. GeoJac testing 

systems use interconnected modules, power supplies and AD converters connected to a 

computer by a serial (COM) port. The computer exchanges reliable information (commands 

and data) with each module at high speeds, as high as 115200bits/sec (Trautwein 2004). 

The following are the three modules which are interconnected. 
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a)  TestNet modules- regulate the flow of commands and data between the computer 

and the load frame 

b) AD-IO modules - provide channels of analog data acquisition and excitation voltage 

for the sensors. Data rate of 80 readings per second (80Hz) was possible. 

c) SERVO modules –control the GeoJac actuators with commands to control the 

velocity and direction of movement of the actuators.  

8900N (2000lbf) capacity GeoJac automated load actuators were employed. 

   The sensors used in the tests include load cells, linear variable differential transducers 

(LVDTs), pressure transducers, and differential pressure transducers. 

 All the sensors were calibrated and cross checked for accuracy and stability. LVDTs were 

used to measure the vertical deformation of the EPS geofoam sample. They have sensitivity 

of + 0.025 mm (0.001 in) and a working range of 76.2 mm (3in).  

   The load cells were used to measure the vertical loads applied directly to the sample 

either using a loading platen alone or a piston rod attached with a platen in the case of 

triaxial tests. They can accurately measure a load as low as 0.5N (0.01lbf) and have 

capacities of 444.8 N (100lbf) to 8896.4 N (2000lbf). 

   During triaxial testing, the pressure in the cell was monitored using a pressure transducer 

having sensitivity of + 0.1 kPa (0.01psi) and working capacities of 1379 kPa (200psi). 

Volume accumulators were custom made in the workshop at Syracuse University. It has 

two pipes of diameters 19 mm (0.75in) and 63.5 mm (2.5in) from which de-aired water 

was supplied to the sample. The supply source was controlled by four way valves to allow 

recharge of emptied pipes. 
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   The differential pressure transducer of sensitivity + 0.01 kPa D (0.0014psi D) and 

capacities 6.9 kPa D (1psi D) to 34.5 kPa D (5psi D) were used to measure the differential 

pressure in the pipes. Differential pressures were calibrated with the volume change in the 

pipes.  

   In the short term compression tests, the axial stresses were applied by the vertical 

actuator at a predefined strain rate which in most cases was 10 percent per minute. For the 

long term compression or creep tests, a pre set constant value of axial stress was applied. 

The cell pressure for the confined triaxial tests was supplied from either pipe in the volume 

change measuring device. Regulated air pressure supply was introduced to the top of both 

pipes of the volume change measuring device. The air regulator was able to regulate up to 

137.9 kPa (20 psi) with + 0.001psi. Surge tank was also attached to the system in order to 

have a regulated air pressure supply. 

   Triaxial tests were done by using a triaxial cell which is commonly used for soil testing. 

The base and the top plates were of the same diameter as tested samples. The top plate was 

connected to a rod and the load cell during testing. The sample was covered by a rubber 

membrane and tied at the base and top plates with O-rings so as to prevent water. 

   When cell pressures were applied into the cell, there was some expansion of the acrylic 

triaxial cell wall. The volume of water taken to compensate for this expansion was 

subtracted from the total volume of water pushed into the cell so as to isolate the 

volumetric deformation of the EPS sample. For this effect, system calibration was made to 

provide compliance corrections for volume change readings during testing EPS geofoam 

samples. Hence, the volume expansion of the cell totally filled with de-aired water was 

measured for different cell pressures. A graph showing the relationship between measured 
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volume increase and the corresponding pressure level is shown in Figure 10. For a 

comparison, the radial strain due to the pressure is computed for the acrylic cylinder so as 

to have the new internal diameter of the cylinder. The volume increase with pressure was 

evaluated from the computed radial strain. The acrylic cylinder has an internal diameter of 

114.3 mm (4.5 in); cell wall thickness of 6.4 mm (0.25 in), and height of 273.1 mm (10.75 

in). The result from the theoretical computation agrees very well with the measured 

volume changes as shown in Figure 10. Cell pressure values of up to 206.8 kPa were used 

and a volume measurement error of up to 0.5 % could have been taken as sample 

deformation had the compliance correction not been done. High pressure resistant stiff 

tubes were used in all the connections in order to minimize the system compliance. 

 

Figure 10. Volume change vs. cell pressure plot 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/Calibration and observation/Calibration charts.xlsx


40 

3.4 Short Term Compression Tests 

   Unconfined and triaxial compression tests were done by using the GeoJac testing system. 

Vertical deformation of the sample was measured with LVDT attached to a rod. The rod is 

attached to top plate over the EPS geofoam sample. The displacement of the vertical 

actuator after being in contact with the sample can also be used to calculate the sample 

deformation. Load cell was used to measure the vertical load applied on the sample. In 

triaxial tests, the pressure inside the cell was monitored with a pressure transducer to 

make sure that the sample is acted upon by the applied cell pressure. The volume 

accumulator assembly and the differential pressure transducer were used to track 

volumetric deformation of the sample. The dry (low) side of the differential transducer was 

connected to the two pipes at the top using a T-connection. The wet (high) side was 

attached to the two pipes at the bottom also using a T- connection. Four-way valves were 

used to control connection of the wet side of the differential transducer to either the big or 

the small pipe. Flow to the triaxial cell was exposed to the wet side of the differential 

transducer. 

   The differential pressure measured is the head of water in the pipe connected to the wet 

side. Measurement of head difference at two different time periods enabled computation of 

volume of water pushed into the cell and hence volumetric deformation of the sample after 

compliance correction. 

   Finally axial strain, axial stress, cell pressure and volumetric strain were obtained at any 

stage of the test. Data collected by all sensors were logged in the central data acquisition 

system. Figure 11 shows the test set up for most of the tests conducted in this study. 
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Figure 11.Test setup for triaxial testing 

   In the triaxial tests, cylindrical EPS samples placed inside rubber membranes and tied at 

the top and bottom with O-rings were placed at the center of the cell. The cell was 

assembled and filled with de-aired water by making sure all air bubbles in all tubes were 

expelled out and replaced with de-aired water. A loading rod was threaded into the top 

plate seated on the sample. The free end of the rod had a load seat. The load cell was 

suspended from the vertical actuator that was mounted on a rigid loading frame. This 

arrangement avoided uplift on the rod when the cell pressure was applied. 

   Application of cell pressure and axial loading were started at the same time in most of the 

triaxial tests. However, for comparison some samples were allowed to deform due to cell 

pressure alone for two weeks before the axial load was applied at 10 percent per minute 
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displacement. Such effect of consolidation on the stress-strain relations was found to be 

negligible. 

3.5 Creep Tests 

   Long term compression tests were done by monitoring the deformation over a longer 

period of time under a constant axial stress. Unconfined and confined creep tests were 

done on cylindrical samples of EPS geofoam. For comparison purposes, unconfined creep 

tests were done on 50 mm cube samples. A similar test set up as explained above was used 

for creep tests. However the software controlling the closed loop system was different. The 

test was stress controlled where a preset axial stress was applied throughout the test 

duration. Axial stresses of 30 and 50 % of the unconfined compression strength at 10 % 

axial strain were used as constant axial stresses. Confining pressures were applied at the 

same time as the constant axial stress. Axial deformation, volumetric deformation, axial 

load, and cell pressure were recorded at preset intervals. 
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4. TEST RESULTS AND DISCUSSIONS 

   Test procedures and methods of data collection were discussed in the previous sections. 

Collected data were analyzed thoroughly and are presented in this section. Procedures 

followed in the data analysis are discussed as necessary. Test data are summarized in 

tables, figures and charts. The test results are discussed, compared and contrasted with 

reference to available published results, if there are any. Practical relevancies of outputs 

are also discussed. 

4.1 Short Term Compression Tests 

   Both unconfined and confined compression tests were conducted by using EPS samples of 

2 in cubes and cylindrical samples of nominal diameters 64 mm and 102 mm. Height of 

these cylinders were 127 mm and 203 mm, respectively. Sample densities of 16, 20, and 

32kg/m3 were used. Axial strain rate of 10 %/min was used unless indicated otherwise. 

Confining pressures 0 to 207 kPa were used. Confining pressure was applied at the same 

time as the axial compression unless indicated otherwise. 

4.1.1 Unconfined Compression Tests 

   Average axial strains and stresses were determined from axial deformations and axial 

loads registered by LVDT and load cell. A typical unconfined compression test result is 

plotted as stress vs. strain curve as shown in Figure 12. The initial portion of the curve 

usually has seating error as the sample might not be cut smoothly and the loading platen 

might not be just touching the sample during the initiation of axial loading. Seating error 

correction was made by extending the straight portion of the curve downwards and 
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moving the whole curve to the left to make the curve start at the origin in accordance with 

(ASTM D1621 2010). 

 

Figure 12.Stress vs. strain curve (64 mm diameter and 20 kg/m3) 

   The stress-strain curves are used to obtain different parameters. Definitions for most of 

these parameters are common. However their definition and notations as used in this study 

are included and shown in Figure 13. 

Initial elastic modulus, Ei: is the slope of the initial straight part of the curve. 

Post yield modulus, Ep: is the slope of the straight portion of the curve beyond the elastic 

yield.  

Unconfined compressive strength, c10%: is the compressive stress corresponding to an axial 

strain of 10 %.  

Yield strength, y: is the value of the axial stress corresponding to the intersection point of 

the initial straight part of the curve and the straight line part beyond yielding. The 

corresponding axial strain at this intersection is the yield strain, y. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/On New Samples/UCT.xlsx
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Figure 13. Notations and definition of parameters 

   Figure 14 shows stress-strain curves for unconfined compression tests with different 

strain rates, densities, and sample sizes. Values of elastic modulus, compressive strength 

and yield strength are higher for denser EPS geofoams, Figure 15. Axial strain rate and 

sample size effects on the initial elastic moduli were minimal for a given density. 

Nevertheless the compressive strength obtained on tests done with smaller axial strain 

rates were less than those obtained from tests done with higher axial strain rates. This 

difference has increased as the density increased, Figure 15. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/On New Samples/UCT.xlsx
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Figure 14. Stress vs. strain curves for unconfined compression 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/On New Samples/UCT.xlsx
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Figure 15. Variation of unconfined compression parameters with density 

   For sample sizes used in this study, sample size had little effect on the unconfined 

compressive strength. Parameters from unconfined compression tests will be compared 

and discussed with those obtained in confined tests later. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Tests done-Record.xlsx
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   Initial moduli obtained in this study are shown in Figure 16 along with results from 

previous studies as a function EPS density. The initial moduli obtained here are seen to be 

in agreement with those on the upper bound. 

 

Figure 16. Initial modulus vs. density 

   The following expression is proposed for initial modulus as a function of density. 

                                                                                                                                  (9) 

where Ei is in MPa and  is in kg/m3. 

   Similarly compression strength at 10 % axial strain is compared with results from 

previous studies. Figure 17 shows the unconfined compression strength at 10 % axial 

strain linearly increases with density. There is a reasonably good agreement among the 

results shown. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Tests done-Record.xlsx
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Figure 17. Compressive strength vs. density 

   The following expression is proposed for compression strength as a function of density.  

                                                                                                                            (10) 

where 10% is the compressive strength at 10 % axial strain in kPa and  is in kg/m3. 

   Values of post yield moduli depend very little on density of geofoam, Figure 18. Results 

from this study and others show similar relation between the post yield modulus and 

density. The following relation with density is suggested in unconfined compression. 

                                                                                                                                  (11) 

where Ep is in MPa and  is in kg/m3. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Tests done-Record.xlsx
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Figure 18. Post yield modulus vs. density in unconfined compression 

   Volumetric strains were calculated from changes in volume during uniaxial unconfined 

compression. Figure 19(a) shows a linear relation between volumetric and axial strains. 

Slope of this line is less than 1.0 suggesting that there is radial inward deformation. This 

was also evident during testing. However up to axial strain of 1 %, which is the elastic limit, 

this line has slope greater than 1.0, Figure 19(b). Hence the geofoam deformations were 

outward radially. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Tests done-Record.xlsx
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Figure 19. Volumetric strain vs. axial strain in unconfined compression 

   It should be noted that the relation between volumetric strain and axial strain is 

independent of density and sample size of the geofoam. 

(b) 

(a) 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Compression tests-with confinment.xlsx
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4.1.2 Confined Triaxial Tests 

   Most of the parameters used for characterization of EPS geofoam are obtained from 

unconfined compression tests. However, EPS geofoam is also employed in areas where 

confinement is unavoidable. Effect of confinement on general behavior of EPS geofoam has 

not been investigated adequately. Possibility of including confining stress effects on 

analysis and design of geofoams should be examined. 

   Effect of confinement on short term and long term compression characteristics of EPS 

geofoam was studied by conducting confined triaxial tests on samples of different densities 

and sizes. A wide range of confining pressures was employed so as to determine the critical 

confinement range where changes in the behavior of EPS geofoam can be captured. Bigger 

confinements were used for higher density geofoams. Confinement pressures of 0 to 207 

kPa were used. 

4.1.3 Effect of Confinement on the Short Term Compression 

   A preset constant confining pressure was applied on EPS sample jacketed in a rubber 

membrane at the same time as axial loading started. The cell pressure was measured by a 

pressure transducer; volumetric deformation of the sample was obtained from the volume 

of water pushed in to the triaxial cell using differential pressure transducer. The axial 

strain and stress were measured by use of LVDT and load cell, respectively. The stress-

strain curves obtained in confined tests were similar in shape to those obtained during 

unconfined compression tests. The stress-strain response of EPS geofoam samples under 

uniaxial compression but with different confining pressures are shown in Figure 20 

through Figure 22. These test results are for samples of nominal diameters 64 mm and 102 
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mm and aspect ratio 2:1. The stress vs. strain curves were corrected for seating errors and 

showed bilinear stress-strain relationship. For EPS geofoam of 16 kg/m3 density Figure 21 

shows consistent decrease in both the strength and initial tangent modulus as the confining 

stress increases. For confining pressure increase from 0 to 69 kPa, initial modulus 

decreased from 4.15 to 1.58 MPa and compression strength at 10 % axial strain reduced 

from 73 to 38 kPa. The modulus and strength decreased to about 40 and 50 % of 

unconfined compression values respectively. Such very big effect on these design 

parameters is not taken in to account in practice. Thus EPS fill designed with unconfined 

compression strength and modulus would experience about 50 % increase in deformation. 

Confining pressure of 69 kPa can result from pressure head of about 7 m. Further increase 

in the confinement pressure has an opposite effect on these parameters. The situation 

reversed at a certain confining pressure level. This confining pressure is between 69 and 

103 kPa. The exact determination of its magnitude may not be easy but an attempt can be 

made by using smaller confinement pressure increases between tests having confinements 

of 69 to 103 kPa. The modulus and compressive strength started increasing from their 

smallest magnitude corresponding to the shift. 

   Similar observations can be made from Figure 21 and Figure 22. For 20 kg/m3 density, an 

increase in confining pressure from 0 to 103 kPa resulted in a decrease in the strength and 

modulus from 112 to 50 kPa and 6.80 to 1.92 MPa respectively. The reduction was about 

45 and 30 % of strength and modulus of unconfined compression values respectively. 

   When the confining pressure increased from 0 to 172 kPa, the initial modulus reduced 

from 9.78 to 5.81 MPa and the strength from 196 to 89 kPa for a density of 32 kg/m3. Up to 
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60 % and 45 % of the unconfined compression values are obtained respectively for 

modulus and strength for confining pressure of 172 kPa. 

   The confining pressure level at which a shift from decrease in modulus and strength to 

increase was dependent on the density of the geofoam. This confining pressure was 

between 103 and 138 kPa for 20 kg/m3 and for 32 kg/m3 it was between 172 and 207 kPa. 

Denser geofoam required higher confining pressure to reach this shift in behavior. The 

exact confining pressure values at which this shift occur should be found by using a smaller 

pressure increase step between tests near the thresholds. These values are observed to be 

very close to the unconfined yield strength and are discussed later. 

 

Figure 20. Deviator stress vs. strain plots (16 kg/m3 and 64 mm diameter) 

 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Compression tests-with confinment.xlsx


55 

 

Figure 21. Deviator stress vs. strain for 20 kg/m3 (a)64 mm (b)127 mm diameter 

(a) 

(b) 
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Figure 22. Deviator stress vs. strain for 32 kg/m3 (a)64 mm (b)127 mm diameter 

   Even though higher confining stresses are not common in practice, it is of academic 

interest to investigate effect of such confinement on the behavior of EPS geofoam. Tests 

were done for higher confining stresses and Figure 23 shows such test results. The 

(a) 

(b) 
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behavior observed is similar to that of soils; where the strength and initial modulus 

increase with confining stresses. Thus there is confinement stress level at which the 

geofoam will start behaving like soil towards application of confining pressure. This stress 

level depends on the density of geofoam and gets higher as the density increases. It should 

be pointed out here that the confinement level should be stated when referring to effects 

on the behavior of EPS geofoam. 

 

Figure 23. Deviator stress vs. strain plots for higher confining stresses (20 kg/m3) 

   Stress–strain curves for uniaxial compression stages as shown in Figure 24 are offset by 

the axial strains that developed as confining pressures were applied. Strain contributions 

from both the confining and uniaxial compression stages were considered to compare with 

limit stress states at 1 or 10 percent axial strain. Depending on the confining pressure level, 

limit stress states were reached with combination or separate application of confining and 

deviator stresses. For example, the deviator stresses for 1 and 10 percent axial strain under 
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unconfined compression were about 55 and 101 kPa, respectively. For 69 kPa confinement; 

1 percent axial strain occurred under the confining pressure only and the deviator stress at 

combined 10 percent strain was only 55 kPa. Whereas, both 1 and 10 percent limit strains 

developed only under 138 kPa or greater confining pressures. 

 

Figure 24. Deviator stress vs. major axial strain plots (20 kg/m3) 

   Volumetric strains that developed under different confining pressures and the respective 

uniaxial compression stages are shown in Figure 25. The uniaxial compression states began 

from close to the line of 1:3 slope. This line represents states for isotropic responses to 

neutral or hydrostatic pressures. Thus the EPS geofoam samples were inherently isotropic 

in responding to uniaxial loading at each confinement level. 
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Figure 25. Volumetric and axial strains for uniaxial compression under different confining 

pressures (20 kg/m3) 

4.1.3.1 Effect of Duration of Confinement 

   It was stated that the confining pressure was applied at the same time as the initiation of 

the axial loading. Tests were done to examine the effect of duration of confinement on the 

response of EPS for the same state of test conditions. Figure 26 shows triaxial tests done 

with a confining pressure of 34 kPa. In one case the confining and axial loading are applied 

simultaneously. In the other case the axial loading was started after 15 days of application 

of 34 kPa confining pressure. The initial elastic modulus and strength at 10 % axial strain 

were not affected much. It looks like that margin of error is small like the one that could 

have resulted when doing the same test using different samples. 

207 kPa 

138 kPa 

0 kPa 
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Figure 26. Effect of duration of confinement (a) 20 (b) 32 kg/m3 

   And hence effect of duration of confinement was neglected in this study and most of the 

tests were done by applying confining pressure and axial loading at the same time. 

(a) 

(b) 
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4.1.3.2 Effect of Density on Short Term Compression 

   The stress-strain curves for higher density samples in unconfined compression test were 

shown to plot above those with lower density. Elastic modulus and compressive strength 

values were higher for denser geofoams. Confining pressure effects for 64 mm diameter 

and 127 mm high samples but for two different densities are shown in Figure 27. The 

compression strength at 10 % strain decreased by about 20 % over confining pressures of 

0 to 69 kPa for 32 kg/m3 density. It decreased by over 50 % for the same confining 

pressure range but 16 kg/m3 density. The moduli were relatively unchanged for the 32 

kg/m3 density but successively decreased for the 16 kg/m3 density. The initial modulus 

decreased by about 60 % for confining pressure increase from 0 to 69 kPa. The lower 

density EPS geofoam was much more affected by the confining pressures of up to 69 kPa. 

This is because 69 kPa confining stress is close to the value at which the geofoam behaves 

much like soils, where increase in confinement favors strength. The confining pressure at 

which such shift in behavior towards confinement occurs is higher for denser geofoams as 

mentioned above. With much higher confining pressures, the dense EPS geofoam also 

experienced significant modulus and strength reduction. 

   For high confining pressures, the geofoam behaved like soils in that the stress-strain 

curves for higher confining pressures plotted above those with smaller confining pressure. 

Figure 28 shows results for samples of the same size but different density. However the 

increase in initial modulus and compression strength was relatively small. 
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Figure 27. Effect of low confinement for different densities 

 

Figure 28. Effect of high confinement for different densities 
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4.2 Compressive Strength and Modulus of Elasticity  

   Compression strength and modulus are among the most important parameters for 

analysis and design of EPS geofoam. This section summarizes effect of confinement on the 

compressive strength and modulus of elasticity of EPS geofoam as obtained in this study. 

Practical relevance of effect of confinement in design and analysis of EPS geofoam will be 

discussed. 

   Triaxial tests were done for confining pressures ranging from 0 to 60 kPa to develop an 

elastoplastic hardening constitutive model for EPS geofoam(Leo et al. 2010; Wong and Leo 

2007, 2006). The samples used were cylindrical of size 50 mm in diameter and 50 mm in 

height. All had the same density of 20 kg/m3. Drained shearing was made with axial loading 

rate of 0.4 %/min after the volume change due to confining pressure stabilized. Results 

indicated increase in confining pressure caused in reduction in the strength (Figure 29). 

The initial Young’s modulus for all cases was reported more or less constant (E=3.95 MPa). 

Triaxial compression tests were done by Atmatzidis and others (Atmatzidis et al. 2001) for 

a wide range of densities and limited confining pressures. Cylindrical samples 50 mm 

diameter with aspect ratio of 2 were used. Tests were conducted using three different cell 

pressures corresponding approximately to 20, 40 and 60 % of the yield stress. The axial 

load was applied at rate of 1 %/min.  The experimental results indicated a reduction in 

initial modulus and strength as can be seen in Figure 29. 

   Chun et al. 2004, 2001 conducted triaxial tests for 15, 20, 25, and 30 kg/m3 densities 

under confining stresses of 0, 20, 40 and 60 kPa. Cylindrical samples with 50 mm diameter 

and 100 mm height were used. The axial loading was applied at a strain rate of 1 %/min. 

Their results suggested higher compressive strengths and initial tangential moduli with 
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increasing either density or confining stresses. However the deviator stress was shown to 

decrease with increase in confining stress as in Figure 29. 

   Padade and Mandal 2012 conducted a series of unconsolidated undrained triaxial tests on 

cylindrical specimens (diameter=75 mm and height=150 mm) for four densities (15.3, 

20.34, 22.43, and 30.59 kg/m3) and presented the results as Mohr’s circle plots. Shear 

strength parameters were inferred from such plots. Confining stresses of 50, 100 and 150 

kPa were used for these tests. A constant strain rate of 0.8 %/min was used. Inferred 

strength results of this study are included in Figure 29. The authors suggested that the 

strength increased as the confining stress increased. However when the unconfined 

strength was plotted together with those from the confined tests, the strength decreased 

initially and then increased with further increase in the confining stress. Thus such 

outcomes call for stating the confinement range for a specific density when considering 

effect of confinement on strength. 

   (Leo et al. 2008) conducted true triaxial tests to investigate the behavior of EPS geofoam. 

Prismatic blocks of 70 x 70x 140 mm and 16 kg/m3 density were tested by applying 

controlled stress at a rate of 75 kPa per minute. The strengths and moduli decreased under 

increasing confining pressures. 

   Preber et al. 1994 performed uniaxial compression and undrained triaxial tests on EPS 

geofoam for four densities (16, 20, 24, and 32 kg/m3) and four confining stresses (0, 21, 41, 

and 62 kPa). Although use of cylindrical sample was implied, the size was not specified. The 

results indicated the strength and initial modulus decreased with increasing confining 

stresses. This confining stress effect on the strength is summarized in Figure 29. 
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Figure 29. Plot of deviator stresses vs. confining stress from previous investigators 

(a)16 kg/m3 (b) 20 kg/m3 (c) 24 kg/m3 (d) 32 kg/m3 

(d) 

(a) 

(b) 

(c) 
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   Compressive strength results from undrained triaxial compression tests on 20kg/m3 

density cylindrical samples of 50 mm diameter and height reported by (Zou and Leo 2001) 

are shown in Figure 29. Gain in strength was observed with increasing confining stresses 

ranging from 5, 10, 15 and 20 kPa subjected to axial loading rate of 10%/min were 

employed during testing. 

   Athanasopoulos et al. 1999 reported that the compressive strengths and elastic moduli 

decreased with an increase in confining stress (see Figure 29). Triaxial tests were done on 

cylindrical samples of 71.5 mm in diameter and 150 mm in height at an axial loading rate of 

3.3 %/minute. Confining stresses of 0, 20, 40, and 60 kPa were used. Only samples of 

17.5kg/m3 density were investigated. 

   Anasthas et al. 2001 performed triaxial tests on cylindrical samples of diameter and 

height 76 mm and 915 mm respectively. Nominal densities of 16 and 26 kg/m3 were used 

with confining stresses of 0, 25, 35, 50, 75, and 100 kPa. A strain rate of 10 %/min was 

employed with the duration of confinements of 0, 3, and 24 hrs. The results from these 

tests showed that duration of confinement had little effect and the strength and modulus 

decreased with increase in confining stress. Expressions relating compressive strength 

with confinement were presented and results from these tests are included in Figure 29. 

   Sun 1997 reported a compressive strength reduction of up to 57 % when the confining 

stress increased from 0 to 68.9 kPa for 14.4 kg/m3, density geofoam. For 50 mm cube 

samples of 14.4, 20.4 and 22.4 kg/m3 density, confining stresses of 0, 34.5, and 68.9 kPa 

and constant strain rate of 10 %/min were used. Data obtained from these triaxial tests are 

also included in Figure 29. 
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   Unconfined and triaxial tests done in this study considered wide range of confining 

stresses and three densities. Test results are discussed and compared with others. Figure 

30 shows that modulus and compressive strength reduced with an increase in confining 

pressure up to a certain confining pressure value. These results are for 20 kg/m3 density 

and 64 mm nominal diameter samples. With further increase in confining pressure the 

modulus increased but the rate at which the modulus increased with confinement was 

gradual. The confining pressure value at which this shift happened was between 69 and 

103 kPa but very close to 103 kPa. 

 

Figure 30. Effect of confining pressure on modulus and strength at 10 % strain, 10% 

   Thus effect of confinement on EPS geofoam should be considered in two confining 

pressure ranges-low and high confining pressures. Low confining pressure range for a given 

density is the pressure range at which a decrease in both the initial modulus and strength 
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are observed with an increase in confining pressure. On the contrary, high confining 

pressure range is the confining pressure range at which both strength and modulus 

increase with an increase in confining pressure. EPS geofoam of 16 kg/m3 density showed 

the low confining pressure range is from 0 to 69 kPa whereas the corresponding value for 

32 kg/m3 density is about 0 to 172 kPa. But the high confining pressure ranges are 

confinements greater than 69 kPa and 172 kPa for densities of 16 kg/m3 and 32 kg/m3 

respectively. 

   Different densities of EPS geofoam samples were tested and Figure 31 and Figure 32 

show effect of confining stresses on initial modulus and compression strength. It can be 

noted that the higher the density, the higher are the initial tangent modulus and the 

strength at 10 % axial strain. 

 

Figure 31. Effect of confining pressure on initial tangent modulus 
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Figure 32. Effect of confining pressure on the strength, 10% 

   Initial tangent modulus and compressive strength for low confining pressure ranges were 

used to fit curves that relate with density and confining pressures. Figure 33 shows 

relations between compression strength with confining pressure. 

   Sample size differences are shown to affect the expressions obtained. However variations 

in the results are minimal and thus are combined to get general expressions, Figure 33 (c). 

The expressions relating compression strength at 10 % axial strain and confinement are 

given below for different densities. 

(16 kg/m3)                                                                                                             (12) 

(20 kg/m3)                                                                                                           (13) 

(32 kg/m3)                                                                                                           (14) 

c and 10% are in kPa. 
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Figure 33. Deviator stress vs. confinement for different densities (a) 64 mm 

(b)102mm (c) 64 & 102 mm diam. combined 
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   The compression strength at 10 % axial strain was plotted with results of other previous 

investigators. The trend followed was same among most of the results. All results from 

different investigators are lumped to one for same density as shown in Figure 34. Even 

though the trends followed were similar in most studies, smaller R2 values suggest that 

combined plots fit poorly for each density. Such scattered results may be due to differences 

in sample densities, sizes and shapes. 

  

Figure 34. Deviator stress vs. confinement for different densities (Lumped results) 

   Initial tangent modulus decreased linearly with confinement for low confining pressure 

ranges. This is explained by the R2 values which are about 1.0 in Figure 35. Figure 35 (a) 

and (b) show that if only one sample size was considered for a given density, the linear fit 

was excellent. Results from mixed sample sizes showed the same linear variation but the fit 

has less R2 values but still acceptable, Figure 35 (c). However, use of such expressions 

obtained from mixed sample sizes may not result in big variations in the results. 
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Figure 35. Modulus vs. confining pressure for different densities (a) 64 mm 

(b)102mm (c) 64 & 102 mm diam. combined 
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   Anasthas et al. 2001 provided general expressions relating the initial and post yield 

modulus as follows. 

                                                                   
        (15) 

                                                                
                  (16) 

where  is density in kg/m3 and c is the confining pressure in kPa 

   Preber et al. 1994 conducted confined triaxial tests with samples of density 16, 20, 24 and 

32 kg/m3. Confining pressures of 0, 21, 41 and 62 kPa were used. The initial modulus, yield 

strength and post yield modulus were related with both density and confining pressure 

using generalized equations given below. 

                                                                             (17) 

                                                                                  (18) 

                                                                                    (19) 

                                                                                   (20) 

                                                                                    (21) 

      
 
       
                                                             (22) 

where c = confining pressure in kPa  

 = unit weight of EPS geofoam in kN/m3 

Ei and Ep is the initial and post yield modulus respectively in kPa 

Xo is the strain value at the intersection of the initial tangent line and the 

plastic tangent line. 

Yo is the axial stress value corresponding to strain Xo 

I = intersection of the axial stress axis and the plastic tangent line 
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   The following expression was proposed for axial stress-strain relationship of EPS block. 

                           
    

 
                                                      (23) 

where      
  

    
 

 

   
       

  

           
       and all other terms are given above 

Figure 36 shows plots of initial tangent modulus vs. confining pressure from this study 

with others. The initial moduli from Preber (Preber et al. 1994) seem to be underestimated. 

It can be seen that the rate of decrease of modulus with confinement is similar irrespective 

of density. This is suggested based on slope of the lines. Thus the moduli in the presence of 

confining pressure can be obtained if the initial moduli for zero confinement are obtained 

from unconfined compression tests. 

 

Figure 36. Modulus vs. confining pressure for different densities 

   The following expression provides the initial modulus for low confining pressures which 

are in the practical ranges of confinement. 
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                                                                                          (24) 

Where        = initial modulus in MPa at a confining pressure of c 

      = initial modulus in MPa for unconfined compression 

  c = confining pressure in kPa 

   Figure 37 shows plot of post yield modulus with confining pressure. Results from this 

study and others are shown. Linear increasing trend is observed for the post yield modulus 

as the confining pressure increases. It has some dependence on the density of geofoam. The 

following general expression is provided for post yield modulus as a function of confining 

pressure and unconfined post yield modulus. 

                                                                                          (25) 

Where         = Post yield modulus in MPa at a confining pressure of c 

      = Post yield modulus in MPa for unconfined compression 

  c = confining pressure in kPa 

 

Figure 37. Post yield modulus vs. confining pressure for different densities 
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4.3 Yield Stress of EPS Geofoam 

   Yield stress is not used as a basic parameter in analysis and design of EPS geofoam. 

However, during investigation of effect of confinement on the property of geofoam, it is 

observed to be the main parameter. In this section an attempt is made to relate yield stress 

to density and modulus of resin beads. 

   Yield stress was defined as stress corresponding to intersection of the initial tangent line 

and the post yield tangent line, see Figure 13. Yield stresses in unconfined compression 

tests are shown as a function of density in Figure 38. The yield stress increased with 

density and was dependent on axial strain rate during testing. Yield stresses from tests 

with axial strain rate of 10 % per min were greater than those obtained with 1 % per 

minute strain rate. 

 

Figure 38. Yield stress vs. density from unconfined compression tests 
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   Compression strength at 10 % axial strain is plotted against yield stress in Figure 39. The 

plot is linear and the following expression is provided between the strength and yield 

stress. 

                                                                                      (26) 

where both the compressive strength       and the yield stress     are in kPa. 

 

Figure 39. Compression stress vs. yield stress in unconfined compression tests 

   Different densities of EPS geofoam samples were tested under a range of confining 

pressures and yield stress is shown in Figure 40. Yield stress is shown to decrease with 

confining pressure up to a confining pressure close to the yield stress in unconfined 

compression for the same density. 
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Figure 40. Yield stress vs. confining pressure (a) 64mm (b) 102 mm diameter sample 

   The yield stresses decreased by about 35 % over confining pressures of 0 to 69 kPa for 32 

kg/m3 density. The yield stresses decreased by about 75 % for the same confining pressure 

range but 16 kg/m3 density. The 69 kPa confining pressure was lower than the yield stress 

of the 32 kg/m3 density and higher than the yield stress for the 16 kg/m3 density. The 

(a

) 

(b) 
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lower density EPS geofoam was much more affected by the confining pressures of up to 69 

kPa. Confining limit pressures for each density over which yield stresses decreased were in 

the range of the respective yield stresses for unconfined compression. With much higher 

confining pressures, the dense EPS geofoam also experienced significant modulus and yield 

stress reduction. Further decreases of modulus and yield stresses with increasing confining 

pressures were small for 16 kg/m3 density geofoam, Figure 40. 

   Yield stress and confining pressure were normalized with the unconfined compression 

yield stress, yo, of same density, Figure 41. It can be seen that decline in yield stress with 

an increase in confinement was up to the point where the ratio of the confining pressure to 

the unconfined yield stress is about 1.0. Thus, the upper bound of low confining pressure 

range for a given density can be taken as a confining pressure value equal to the unconfined 

compression yield stress, yo. 

 

Figure 41. Normalized stresses with respect to the unconfined yield stress 
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   The rate at which the yield stress decreases with confinement was the same irrespective 

of density, Figure 41. This trend was also shown in Figure 42. Hence yield stress for any 

confining pressure can be obtained from the unconfined compression yield stress and is 

discussed below. At low confining pressures, for confining pressure ratios less than 1.0, 

yield stresses decrease with confining pressures. At higher confining pressures, for 

confining pressure ratios greater than 1.0, yield stresses increase. A confining pressure 

ratio of 1.0 means the confining pressure is equal to the unconfined compression yield 

stress of the same density. Hence for EPS geofoam of 16 kg/m3 density, the unconfined 

compression yield stress is 69 kPa and the low confining pressure range is from 0 to 69 

kPa. Whereas for 32 kg/m3 density, the yield stress for unconfined compression is 172 kPa 

and the low confining pressure range is 0 to 172 kPa. Confining pressures greater than 69 

and 172 kPa are high confining pressures for 16 and 32 kg/m3 densities, respectively. Note 

that the decreasing yield stresses were in the elastic range for each confining stress level.  

 

Figure 42. Yield stress vs. confining pressure for low confinement 
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   An expression is provided for the yield stress corresponding to any confining pressure. 

                                                                                         (27) 

where        = yield strength in MPa for a confining pressure of c 

      = yield strength in MPa for unconfined compression  

  c = confining pressure in kPa 

   Major yield stress, i.e. yield stress with confining stress, and confining stress were 

normalized with the unconfined yield stress, yo, of the respective density as shown in 

Figure 43. It can be seen that the ratio is close to one and hence the major yield stress 

remained constant especially for low confining stresses. In other words the major principal 

stresses remained relatively constant over the lower or elastic range of confining 

pressures. At higher confining stress ratios, yield stress ratios increased gradually. 

 

Figure 43. Major yield stress vs. confining pressure normalized by unconfined yield 

stress 
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   Overall, for each density and confining stress level, yield states can be approximated as 

major principal stress states, and thus equal to the yield stress for unconfined compression, 

Figure 44. This was also evident in results reported by Wong and Leo 2006. 

 

Figure 44. Confining stress effect on yield and major stresses  

   Yield stresses, for unconfined compression can be estimated for the EPS density, , in 

terms of the density, s, and modulus, Es, of polystyrene; the solid constituent as: 

         
 

  
 
 

                                                              (28) 

   Equation (28) is a variation of the theoretical expression suggested by Gibson and Ashby 

(Gibson and Ashby 1999) to represent deviator stress states. The unconfined yield stress 

calculated from (28) agrees very well with the test results as shown in Figure 45. The 

calculated yield stress of 101 kPa for unconfined compression is significantly greater than 
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the allowable working stress of 50 kPa at 1 percent limit strain reported in ASTM D 6817 

for EPS22. 

 

Figure 45. Unconfined compression yield stresses 

   Major principal stresses for low confining pressures, c, remained reasonably constant as: 

                                                                    (29) 

   For unconfined compression, the yield and the major principal stresses are the same. 

Hence, the yield stress at a confining pressure, c, would be; 

                                                                     (30) 

   Thus, yield stresses at different confining pressures can be estimated by: 

        
 

  
 
 

                                                      (31) 
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   Yield stresses calculated from (31) were normalized by atmospheric pressure to compare 

with results for 16 and 32 kg/m3 nominal densities, Figure 46. The low confining pressures 

range for the 16 kg/m3 density is much lower than for the 32kg/m3 density. Thus Equation 

(31) follows the results for the higher density geofoam over a wider range of confining 

pressures. This is due to the fact that the higher the density the more is the polystyrene. 

 

Figure 46. Normalized yield stresses with respect to atmospheric pressure 

1. Unconfined compression stress-strain curve from density and yield stress 

   The yield stress was given as a function of density of EPS block (Eq. 28). The initial and 

post yield moduli can also be obtained as a function of density of geofoam from (Eq. 9) and 

(Eq. 11) respectively. Expression in (Eq.23) was employed for generating the stress-strain 

curve. 
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Figure 47 Prediction of stress-strain curve from density of geofoam (32 kg/m3) 

   In Figure 47, the stress-strain curve labeled as “this study” was generated from density of 

geofoam block and known properties of the polystyrene beads. Very good agreement was 

obtained with lab test data. However, prediction accuracy is shown to reduce as the density 

of the geofoam decreases because the yield stress obtained from density and modulus of 

polystyrene (Eq. 28) is smaller than the actual yield stress. Density decreases as 

polystyrene amount per unit volume of geofoam decreases. In addition the gas contained 

within cells starts to take part in carrying stresses as the cell walls collapse. This could be 

part of the reason for getting less yield stress values in case of low density geofoams. 
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Figure 48. Prediction of stress-strain curve from density of geofoam (16 kg/m3) 

   The deformation resistance of closed cell geofoam is the sum of the following three 

contributions: contribution of cell-edges, compression of the cell fluid and the membrane 

action of the cell faces(Gibson and Ashby 1999). At small stress, the resistance for loading 

is contributed from cell edges and membrane action of the cell faces. But as the stresses 

increase, the cell walls collapse and transfer the stresses to the cell fluid which is commonly 

air in geofoam and hence the increase in pressure will be greatly resisted by the fluid or the 

air within the cells. When the sample is compressed its volume decreases from Vo to V. And 

assuming the temperature remains constant, the pressure in cell increases from Po to P and 

Boyle’s law yields 

                                                                         (32) 

   The pressure increase in the cell fluid will give the geofoam some additional carrying 

capacity. The total stress resistance expected during testing geofoam would be 

         
 

  
 
 

     
    

 
                                                          (33) 
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   Figure 48 showed that the strain stress curve obtained using (Eq. 28) plots below the test 

result due to the fact that the resistance contribution from the cell fluid is not taken into 

account. 

 

Figure 49. Strain rate effect on the unconfined compression strength 
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   Strain rate effects on the stress-strain relations were studied (Elragi 2000). The stress-

strain curves for slower loading rates plot below those of fast loading rates and the 

following expression was given for unconfined compressive strength. 

                                                                                       (34) 

Where        = compressive strength in kPa at 10 % strain 

  R = strain rate in % / min 

    = density in kg/m3 

   Figure 49 shows plots obtained from (Eq.34). The right plot shows that strain rate effect 

is higher when rate is below about 10 % and relatively constant when the rate is greater 

than 10 % per min. The left plot shows that as the density increases the rate effect also 

increases. 

 

Figure 50. Effect of loading rate on the stress-strain behavior  
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   Loading rate dependency of stress-strain relation is thus related to load carrying 

contribution of air in the cells. Load resistance of air within the cell is shown to be higher in 

tests which are done at faster loading rates. Figure 50 shows tests done at different loading 

rates for different densities. 

Table 8. Values of different parameters for different strain rates 

 

Parameter 

16 kg/m3 32 kg/m3 

10 %/min 0.001 %/min 10 %/min 0.001 %/min 

Ei (MPa) 3.16 2.13 7.55 4.14 

Ep (MPa) 0.17 0.06 0.28 0.15 

y (kPa) 78.8 50.0 172.0 111.7 

10% (kPa) 91.7 54.4 193.5 122.5 

 

   Expressions for initial and post yield modulus as a function of strain rate (R) and 

density( were provided (Elragi 2000). 

                                                                                          (35) 

                                                                                             (36) 

where Ei and Ep are in MPa ; R in %/min and  in kg/m3. 

   It can be noted from Figure 49 and (Eq.34) through (Eq.36) that initial modulus, post 

yield modulus, yield stress and compressive stress at 10 % decrease as the strain rate 

decreases. 

    Taking the strain rate effect in to account, the prediction from (Eq. 28) has improved a lot 

for lower density as shown in Figure 51. 
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Figure 51. Prediction of stress-strain curve from density of geofoam (16 kg/m3) 

   The yield stress in unconfined compression test is shown to be linearly related with 

density of EPS block geofoam, see Figure 38. They are related by the expression: 

                                                                                       (37) 

Where       = yield stress in kPa in unconfined compression 

    = density in kg/m3 

   For geofoams with lower densities, (Eq.37) was used for yo instead of (Eq. 28) and the 

prediction of the stress-strain relationship is improved a lot as shown in Figure 52. 

2. Confined compression stress-strain curve from density and yield stress 

   In this section a similar approach is followed to develop the stress-strain curves for 

confined triaxial tests. The yield stress expression of geofoam tested at a confining pressure 

of c was given in (Eq.27). Note that in the equation the only variables are density of 

geofoam and confining stress as the unconfined yield stress yo is a function of density of 
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geofoam block and bead density and modulus as explained above.  The initial and post yield 

moduli of a confined test can also be obtained as a function of density of geofoam and 

confining stress from (Eq. 24) with (Eq. 9) and (Eq. 25) with (Eq. 11) respectively. 

Expression in (Eq.23) was employed for generating the stress-strain curve. 

 

Figure 52. Prediction of stress-strain curve from density of geofoam (16 kg/m3) 

 

Figure 53. Prediction of stress-strain curve from density of geofoam (32 kg/m3) 
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   The stress-strain curves obtained in this study are shown in Figure 53 along with the 

corresponding lab test results. Very good agreement between lab results and the proposed 

method is evident especially for low range of confining stresses.  The stress-strain curve for 

lower density geofoam is shown Figure 54. As discussed above there is some effect of 

resistance by the air in the cells of the geofoam and hence lab test results show higher 

stresses than predicted results. 

 

Figure 54. Stress-strain curve from density of geofoam (16 kg/m3) 
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4.4 Use of Hyperbolic Relationship to Characterize Stress-Strain Behavior 

   EPS geofoam blocks underlying compacted soil interact with the surrounding materials 

and are subjected to multi-axial loading. Moreover prediction of EPS-soil-structure 

interaction requires a reasonable representation of stress-strain relationships for 

numerical modeling. Existing constitutive representations of stress-strain relations for EPS 

geofoam are limited. Some require many parameters which should be obtained from long 

procedures and predictions from some are very poor when compared with lab test data. In 

this work, an attempt is made to employ the hyperbolic stress-strain relationships with 

some modifications for EPS geofoam in such a way that effect of confining stresses on 

stress-strain relationship can be properly represented in analysis. This modified hyperbolic 

stress-strain model requires only three parameters which can be obtained from triaxial 

tests conducted with different confining stresses. The prediction accuracy of this model 

was compared with data obtained from triaxial tests which were not part of data sets used 

to obtain model parameters. Comparison was made with other models and the stress-

strain relationships predicted using the proposed model agreed very well with test data. 

Introduction 

   Instability and settlement problems in compressible and weak soils have been resolved 

through use of EPS geofoam as light weight fill material (Duškov 1997a; Elragi et al. 2001; 

Frydenlund and Aabøe 1996; Murphy 1997; Negussey and Srirajan 2001; Negussey and 

Stuedlein 2003). EPS geofoam in service can experience pressures from biaxial or triaxial 

directions. In addition to overburden pressure, confining pressures on EPS geofoam may 

develop from active soil or hydrostatic pressures. In most prior applications, EPS geofoam 

placements were near surface and above groundwater levels. EPS geofoam installations at 
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larger burial depths and below groundwater or extreme flood levels experience confining 

pressures. Analysis of substructures involving EPS geofoam requires constitutive relations 

to properly model soil-EPS-structure interactions. Stress-strain behavior of geofoam in 

compression can be considered reasonably linear elastic up to about 1 % strain and 

apparent yield. Beyond yield, behavior of EPS geofoam is non linear, inelastic and depend 

on the strain level and hence, the assumption of elastic analysis may not suffice. The stress 

and strain behavior was approximated as linear elastic perfectly plastic (Takahara and 

Miura 1998) and as nonlinear elastoplastic (Hazarika 2006). Two classes of models are 

reported in the literature for EPS geofoam: those which do not consider time dependent 

stress-strain behavior or creep (Chun et al. 2004; Hazarika 2006; Preber et al. 1994); and 

those which consider creep (Findley and Khosla 1956; Findley 1960) The modified 

hyperbolic relationship proposed here is for a rapid loading test where the axial stress was 

applied at a strain rate of 10 %/min. Triaxial tests were done for different confining 

pressures and densities. Three parameters -K, n and m were determined from tests to 

calibrate the modified hyperbolic stress-strain relations. The modified hyperbolic model 

representations from this study are compared with previous models  

Triaxial Compression Tests and Results 

 Triaxial tests with cell pressures of 0, 34, 69, 103 and 172 kPa; and three nominal densities 

of 16, 20 and 32 kg/m3 were conducted in this study. Two cylindrical sample groups were 

tested. The first group was 64 mm in diameter and 127 mm in height. The second group 

has 102 and 203 mm as diameters and height, respectively. Samples were precision cut to 

required dimensions in a factory. Tests were conducted at constant room temperature and 

axial strain rate of 10 %/minute. Both volumetric and axial deformations were recorded. 
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   The stress-strain response of EPS geofoam samples under uniaxial compression but with 

different confining pressures are shown in Figure 55 These test results are for samples of 

nominal 64 mm diameter and 127 mm height. For each test, the pre-set confining pressure 

was applied immediately before axial compression at 10 %/ min displacement was 

initiated. Load, displacement and volume changes were recorded with time. The stress vs. 

strain curves were corrected for seating errors and show reasonably bilinear stress-strain 

relationships. Figure 55 also shows consistent decreases in both strength and initial 

tangent modulus with increasing confining pressures. At higher confining pressures which 

are greater than unconfined yield stress, decreasing trends in strength and modulus 

reversed(Birhan and Negussey 2014). Such high confining pressure states are not 

considered in this modified hyperbolic modeling of EPS geofoam behavior. 

The Hyperbolic Relationship 

   Hyperbolic stress-strain models has been used to characterize soil stress-strain behavior 

for a long time(Duncan and Chang 1970; Duncan 1980; Kondner and Zelasko 1963). The 

hyperbolic equation proposed by Konder and his coworkers is of the form  

        
 

 

  
    

 

          

                                                                 (38) 

in which 1 and 3 are the major and the minor principal stresses; = the axial strain, 

Ei=the initial tangent modulus and (1 - 3)ult = the asymptotic value of the stress 

differences or limit of stress-strain curve at large strain. In order to obtain values of Ei and 

(1 - 3)ult Equation (38) is rewritten as 

 

       
 

 

  
 

 

          
                                                                 (39) 
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Figure 55. Deviator stress vs. strain for EPS geofoam (a) 16 (b) 20 (c) 32 kg/m3 

density 

(a) 

(b) 

(c) 
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and plots as a transformed straight line on   and 
 

       
 axes. Test data are plotted on the 

transformed axes and Ei is obtained from the 
 

       
 intercept of the best fit line and the 

slope corresponds to 
 

          
. 

   Effect of confining stresses on the stress-strain relationship is represented by empirical 

equation of the form 

          
  

  
  
 
                                                                (40) 

   The parameter K and n are modulus number and modulus exponent respectively and Pa is 

atmospheric pressure with same unit as 3. Eq. (40) is a modification on the empirical 

relation given by Duncan and Chang 1970. K and n are determined from two steps (see 

Figure 56): (i) for each test obtain Ei from transformed plots (ii) plot  
  

  
 vs. 

  

  
 where 

  

  
 is in 

logarithmic and 
  

  
 in arithmetic scale. And hence slope of an exponential trend line fit is K 

and the exponent is n. The value of K is obtained when confining pressure is zero, and it is 

very close to the initial modulus in unconfined compression multiplied by atmospheric 

pressure. 
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Figure 56. Parameters for modified hyperbolic stress-strain relation (a) 

Transformed plot (b) Plot for obtaining K and n 

   Triaxial test data were analyzed and are summarized in Table 9 for three densities. Values 

of n for EPS geofoam are negative contrary to that of soils. This suggests that there will be 

reduction in initial modulus as confining pressure increases. The exponential fits have R2 

values essentially close to 1.0. 

(a) 

(b) 
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Table 9. Summary of modulus number (K) and modulus exponent (n) 

Density (kg/m3) Sample diameter (mm) K n R2 

16 64 38.11 -1.18 1.00 

16 102 47.53 -1.22 1.00 

20 64 59.4 -0.93 0.97 

20 102 70.37 -1.02 0.96 

32 64 127.89 -0.41 0.97 

32 102 117.21 -0.54 0.96 

 

   It can be seen in Table 9 that sample size and density gave little variations on values of n, 

but higher variations on values of K. K was related to the initial modulus in unconfined 

compression. Effects of specimen size and density on properties of EPS geofoam were also 

reported previously (Elragi et al. 2001; Hazarika 2006). However, sensitivity of the current 

proposed method to the variation of such small values was observed to be negligible. Use of 

these parameters was made to determine Ei, Eq. (40), and to characterize stress-strain 

curves. When 
 

          
.was plotted against confining pressure, linear relationship was 

observed for a given density, Figure 57. 
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Figure 57. Variation of 1/(1 - 3)ult with confining stresses for 20 kg/m3 EPS 

geofoam 

   It should be noted that the stress-strain curve for EPS geofoam will not have an 

asymptotic value of (1 - 3)ult like that of soils. EPS geofoam gets stronger at very high 

strains and thus the hyperbolic stress-strain relation will not appropriately represent the 

behavior for very high strains which are beyond relevance for modeling. However it is 

found to be appropriately representing the stress-strain relationship for strain levels in 

practical strain ranges, say about up to 10 % to 15 %. 

   Modified hyperbolic parameters obtained above were employed to plot stress-strain 

curves. Figure 58 shows such plots and data obtained from triaxial tests. It can be seen that 

the curves obtained from the modified hyperbolic relation agreed reasonably with the test 

data. The model was able to capture the effect of confinement on the stress-strain behavior. 
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Figure 58. Modified hyperbolic stress-strain relation and test data 

Modeling of Triaxial Tests in FLAC 

   Triaxial loading of EPS geofoam was modeled in FLAC (FLAC V.6 2008), a finite difference 

program. A programming language called FISH- which is embedded within FLAC was used 

for modeling non-linear stress or strain dependent behavior. Non linear elastic moduli of 

soils were evaluated as a function of confining stress and mobilized strength using 

hyperbolic model (Duncan and Chang 1970). Here, the hyperbolic model was used to model 

EPS geofoam in FLAC. 

   The triaxial test was modeled as axisymetric and fixed in the horizontal direction on the 

left boundary. Platens used for applying the load were very stiff as compared to the EPS 

sample and the boundary was treated as rigid. To simulate this rigid boundary, a constant 

velocity was applied at the top of the sample keeping the bottom fixed. Even though the 
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real boundary condition applied at the top was free, the top boundary was shown fixed in 

Figure 59 only due to the application of constant velocity to displace the sample downward. 

 

Figure 59. Typical axisymetric geometric model 

   Unlike soils, EPS geofoam gains strength at very large strains and failure cannot be 

defined for the model. However, deviatoric stress at 10 % axial strain (10%) was taken as 

the deviator stress at failure, (1-3)f. The deviator stress reduced with confining pressure 

increase, Figure 60. The deviator stress at any confinement was observed to vary as  

                                                                                    (41) 

   The reduction rate, m, was about 0.60 kPa per 1 kPa confining pressure increase and 

10%,o is unconfined compression stress at 10 % strain. 

y 

x 
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Figure 60. Deviator stress at 10 % strain vs. confining pressure 

   Three major parameters: K, n and m were used for the proposed model. Unconfined 

compression stress and initial modulus are readily available. With these parameters, FLAC 

was used to model triaxial test response for EPS geofoam. The stress stain relationship 

obtained from such analysis is presented in Figure 61 with the accompanying lab data. 

Within working strain levels, the results from the FLAC output agree reasonably with the 

test data. 

Comparison with Results from Other Constitutive Models 

   In order to compare the prediction capability of the proposed model, comparison has 

been made with models from Chun et al. 2004; Preber et al. 1994; Wong and Leo 2006. 

Chun et al. 2004 proposed a constitutive model for EPS geofoam where the major principal 

stress was related with the major principal strain. This mathematical model takes into 

account the density and confining pressure effects on the stress-strain behavior. Preber et 
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al. 1994 provided generalized equations for model parameters as a function of density and 

confining pressure. An elastoplastic hardening constitutive model proposed by Wong and 

Leo 2006 has six independent parameters which can be obtained from triaxial test data. 

 

Figure 61. Deviator stress variation with confining stresses-FLAC and test data  
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Figure 62. Comparison with other models (c=0 kPa and 20 kg/m3 density) 

 

Figure 63. Comparison with other models (c=34 kPa and 20 kg/m3 density) 
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   Figure 62 and Figure 63 show the stress-strain relation predictions by Chun et al. 2004, 

Preber et al. 1994, Wong and Leo 2006 and the proposed model. The model presented in 

this study is reasonably in agreement with the test results. The hyperbolic model can be 

incorporated for numerical analysis. 

Conclusion 

   Modified hyperbolic model proposed in this study can take in to account the effect of 

confinement on the stress-strain behavior of EPS geofoam. The model can account for 

reduction in strength and modulus as a result of confinement increase. The three 

parameters for the model-K, n and m were determined from triaxial tests performed at 

different confining pressures. Results from the modified hyperbolic model agree with test 

results and can easily be integrated in numerical modeling. 
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4.5 Effect of Induced Anisotropy on the Behavior of EPS Geofoam 

   EPS geofoam is commonly installed under pavement structures in very soft and 

compressible soils to minimize settlements. Loading and unloading occur due to live loads 

either during construction or operation of the pavement structure. Stresses beyond the 

elastic limit induce plastic strains and hence induce anisotropy. Thus, effect of such 

introduction of stress or strain anisotropy on EPS geofoam performance should be 

investigated to appropriately design geofoam fills. Design of EPS geofoam fill is based on 

the premises that strain induced in the fill remains within the 1 to 2 % strain. In addition 

EPS geofoam is assumed isotropic irrespective of the stresses acting on it. However, 

unanticipated strains may exist either due to machinery operation during construction or 

confining stress effects. Effect of induced anisotropy on EPS characteristics was 

investigated by triaxial tests conducted on pre-stressed geofoam. Practical significance of 

induced anisotropy was discussed. 

   Design parameters for EPS geofoam are commonly derived from unconfined compression 

tests on 50 mm EPS cube samples(ASTM D1621 2010). A typical corrected stress-strain 

curve for a 20 kg/m3 EPS geofoam is shown in Figure 64. The initial modulus of elasticity, 

Ei (slope of the initial linear segment of the stress-strain curve), the compressive strength, 

σc10 (usually defined as the axial stress at 10 % axial strain) and the yield stress, σy (point of 

intersection of the initial linear segment and a post yield linear segment of the stress-strain 

curve) are used to characterize the stress stain curves obtained from the unconfined 

compression tests(Preber et al. 1994). Results from conventional 50 mm cube samples 

significantly underestimate Young's modulus values for EPS geofoam(Duškov 1997a; Elragi 

2000). Modulus values that are obtained from small size (50 mm cubes) laboratory 



108 

samples are about half of the values that were estimated from field observations and 

should be increased for design applications (Negussey 2007). 

  

Figure 64. Load-deformation behavior of 20 kg/m3 EPS under short-term unconfined 

axial compression loading 

   Compressive strength of EPS geofoam increase with increasing sample size; but this 

increase was small (Atmatzidis et al. 2001). Results from unconfined compression tests 

adequately represent the mechanical behavior of EPS geofoams in applications where 

applied normal stresses remain well below yield stress or conceptual elastic strain limit. 

Shape, size and aspect ratio of EPS geofoam samples tested in unconfined compression 

have relatively insignificant effects on measured compressive strength at 10 % 

strain(Atmatzidis et al. 2001; Eriksson and Tränk 1991). 

   Density of the EPS geofoam has a significant effect on the values of the compressive 

strength. The strength increases as the density of the geofoam increases (Negussey 2007). 
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   Kutara et al. 1989 reported anisotropic behavior of EPS geofoam may affect the 

deformation characteristics of the material. Loading perpendicular to the direction of 

fabrication showed higher deviatoric stresses at failure. The compressibility of EPS 

geofoam is highly affected by the shape of the cells. Cells close to the mold wall are usually 

flattened due to the moulding processes. If the compressive loads are applied 

perpendicular to the direction of stretching, the flattened cells will be flattened more and 

smaller values of compressive strength are obtained (BASF 1998). 

Compression tests were performed on EPS geofoam samples of different densities, sizes 

and shapes. Nominal density of 20 kg/m3 EPS geofoam was tested. Cubic samples of size 

50, 75, 127 mm and cylindrical samples of 64 and 102 mm nominal diameters with aspect 

ratio of 2:1 were tested. The cylindrical samples were precision cut to required dimensions 

in the factory. Unconfined compression tests were done. In triaxial tests, samples were 

encapsulated in rubber membrane prior to assembling in a triaxial cell. The cell was filled 

with water and confining pressures were applied through an attached accumulator. Tests 

were conducted at constant room temperature. Load, volume change and axial deformation 

were recorded. 

Isotropic Compression Test 

   Isotropic compression tests were conducted on cylindrical EPS geofoam samples of 64 

mm diameter and 127 mm height. Cell pressure was applied at a specified rate. For 

constant pressure infusion setting, average pressure rates detected by the cell pressure 

transducer were 234 and 15 kPa/minute during the initial and post yield stages, 

respectively. The axial strain rates were 2.4 and 0.8 %/minute during the initial and post 

yield stages. The corresponding volumetric strain rates were 6.9 and 1.9 %/min. Axial and 
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volumetric deformations were recorded. Figure 65 shows the deformation response from 

isotropic compression test. The slope of volumetric vs. axial strain plot is 3.0, which 

suggests EPS geofoam is isotropic. Repeat tests for three different densities from same 

manufacturer resulted consistent isotropic responses irrespective of the density tested. 

  

Figure 65. Deformation response due to isotropic compression  

Uniaxial Loading and Unloading Tests 

   Figure 66 is the stress-strain plot for 20 cycles of loading and unloading to an axial strain 

of 2 % and final loading to 25 % axial strain after the 20 cycles at strain rate of 10 

%/minute. The cyclic loading and unloading did not change the initial modulus of elasticity. 

This suggests the EPS geofoam behaved elastically when the axial strain limit remained 

below 2 %. Flaate 1987 reported cyclic load tests on EPS geofoam withstood unlimited 

number of cyclic loads as long as the loads were below 80 % of the compressive strength. 

van Dorp 1988 also reported that there was no change in the initial tangent modulus when 
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a 20 kg/m3 EPS was subjected to 2 million cycles of straining between 0 and 1 % at cyclic 

strain rate of 10 Hz. 

 

Figure 66. Loading and unloading in the elastic range 

   When loading and unloading occurred at a strain level outside of the elastic range, there 

was plastic strain accumulation and reloading modulus degraded relative to the initial 

elastic moduls. Figure 67 shows 20 cycles of loading and unloading at a strain level of about 

5 %. The initial elastic modulus is 3.69 MPa whereas the rebound and the reload moduli are 

2.85 and 2.64 MPa, respectively. Decrease in modulus got pronounced as the strain level for 

loading and unloading increased. Eriksson and Tränk 1991 reported that the initial moduli 

in the second and third cycles were much less than the first cycle when EPS geofoam was 

loaded to 10 % strain level in three loading and unloading cycles. 
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Figure 67. Loading and unloading out of the elastic range 

   Figure 68 is a plot showing effect of axial strain level at the time of loading and unloading 

cycles. It is evident that the reloading modulus gets smaller and smaller as the pre-strain 

level increases. 

 

Figure 68. Loading and unloading at different axial strains 
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   Magnitude of plastic strain as a result of loading and unloading depends on the amount of 

pre-stressing or pre straining. For example when a stress value corresponding to 10 % 

axial strain is used as the pre-stress, there was 4 % plastic strain accumulation at the end of 

20 cycles of loading and unloading. But at the end of the 20 cycles, the plastic strain was 2% 

for a pre-stress value corresponding to 5 % axial strain, Figure 68. 

Effect of Induced Anisotropy on Stress-Strain Relations 

   When EPS geofoam is used as a fill there can be pre-straining during construction due to 

operation of heavy trucks and machineries. In addition, improper working loads may 

produce strains outside of the elastic range. Effects of such induced strains on the stress-

strain characteristics were studied by doing tests on samples of pre-strained EPS geofoam. 

Big cubes (76 and 127 mm) of EPS geofoam were loaded to different strain levels at a strain 

rate of 10 percent per minute. From these strained big cubes, 50 mm cube samples are cut 

from the middle by noting the orientation of loading. Unconfined compression tests were 

done on 50 mm cube samples as per ASTM - D1621 2010. Tests were done both in the 

same and orthogonal directions to the pre loading. 

   Figure 69 shows the effect of pre-stressing on the stress-strain relation when the sample 

is reloaded in the same direction as the pre-loading. The initial elastic modulus degraded as 

the percentage of pre straining increased. When similar tests were conducted in the 

orthogonal direction to the pre straining, the stress-strain curves remained relatively 

unaffected, Figure 70. 
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Figure 69. Stress vs. strain plots for same direction of reloading 

 

Figure 70. Stress vs. strain plots for orthogonal direction of reloading 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Draft Papers/Figures on paper-Induced Anisotropy.xlsx
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Figure 71. Combined stress vs. strain plots for 10 % pre straining 

   The practical implications of such tests can be seen as in Figure 71. If analysis of EPS fill is 

based on elastic parameters obtained from virgin samples, the deformations computed 

would be small due to higher values of initial modulus. However such computed 

deformations would be greater if some percentage of pre straining of EPS geofoam during 

construction or operation had occurred. Figure 72 shows the degradation of initial 

modulus with increasing level of pre-straining in the same direction. About 50 % reduction 

in the initial elastic modulus is observed when the percentage of pre straining increases 

from 0 to 10 %. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Draft Papers/Figures on paper-Induced Anisotropy.xlsx
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Figure 72. Initial modulus vs. percent of pre straining 

   Effects of isotropic pre-straining were also investigated. Cylindrical samples of 102 mm 

diameter and 203 mm height were confined isotropicaly with a cell pressure of 69 kPa until 

there was no further reduction in volume. It was observed during isotropic compression 

that the samples were compressed about 30 % in volume and 10 % in height. Small 50 mm 

cube samples were cut from these pre compressed big cylindrical samples and tested as 

per (ASTM D1621 2010). Results showed that effect of isotropic pre-straining on the elastic 

modulus was very small, Figure 73. Test results from very slow axial strain rate loading and 

staged loading test are also shown. Axial strain rate of 0.005 %/min was used for the very 

slow test. In the staged loading test, each load was made to stay for 2 hrs so that most of the 

strains, both elastic and inelastic, would be recorded. Staged and slow tests gave relatively 

same results and showed very small difference with value of elastic modulus which was 

obtained from fast loadings with axial strain rate of 10 %/min. However it should be noted 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Draft Papers/Figures on paper-Induced Anisotropy.xlsx
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that yield stress and compressive stress at 10 % strain are less than from fast loading 

results. 

 

Figure 73. Varieties of unconfined compression tests (20 kg/m3) 

   Yield stresses from fast and slow tests were about 91 and 68 kPa respectively. There was 

about 25 % increase in the yield stress when fast strain rate of 10 %/min was used. 

Similarly compressive stresses at 10 % strain were 107 and 76 kPa for fast and slow tests 

respectively. About 30 % increase in strength was observed in the fast test. Axial stress at 

10 % strain for both pre-strained tests (isotropic and uniaxial) was about 124 kPa as 

presented in Figure 73. This was comparable with axial stress at 20 % strain on the virgin 

sample as the pre-strained samples had already 10 % axial strain. The yield stress in the 

virgin and pre-strained samples done at the same strain rate was reasonably the same. 

Hence yield stress was not dependent on pre-straining but depended on strain rate. 

 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Draft Papers/Figures on paper-Induced Anisotropy.xlsx
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Results of Exhumed Blocks from I88 over Carrs Creek  

   A culvert that carried Carrs Creek under Interstate 88 was washed away by a heavy storm 

in June 2006 in the town of Sydney, Delaware County, NY. In the reconstruction of the 

culvert, EPS geofoam fill was selected for light weight and rapid placement. The 

reconstructed pavement on the culvert settled excessively and the EPS geofoam fill was 

exhumed. EPS geofoam of 20 kg/m3 density was used at a depth of about 3.4 m under a 0.6 

m pavement structure and 2.8 m soil fill. Unconfined compression tests were conducted on 

exhumed and fresh geofoam samples and results are shown in Figure 74. Plots designated 

as highly strained and least strained are for samples cut from highly and least deformed 

exhumed geofoam blocks respectively. Results of virgin samples were found to be similar 

to those of least strained samples. 

 

Figure 74. Results from exhumed geofoam blocks (20 kg/m3) 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Carr's creek/Exhumed geofoam UC tests.xlsx
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   Modulus of highly strained samples is about 0.82 MPa and that of fresh geofoam is about 

3.78 MPa. Up to about 80 % modulus reduction was observed. Similarly, compression 

strength at 10 % axial strain reduced from 120 to 71 kPa due to pre-strain, which is 40 % 

reduction. These reduced modulus and compression strength could be contributors to 

settlement of the pavement. It should also be noted that the overburden pressure on the 

EPS geofoam fill in the project was about 70 kPa. This was excessive as compared to the 

recommended 30 % of the strength at 10 % axial strain, which is about 40 kPa for EPS 

geofoam of 20 kg/m3 density. 

   Effect of induced anisotropy on the stress-strain characteristics of EPS geofoam is not 

considered in the design of fills. Pre-straining of EPS fills may result from operation of 

heavy machineries or trucks during construction. Such pre-straining is shown to result in 

degradation of the initial elastic modulus and hence higher magnitudes of deformation in 

service. 
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4.6 Creep Tests  

   Time dependent deformation under sustained loading or creep is an important 

consideration in the long term performance of EPS geofoam. Design of EPS geofoam fills is 

mainly based on limiting working stresses to produce tolerable deformations. Results from 

unconfined uniaxial creep tests have provided justification for such design criteria. With 

different types of applications involving submergence and higher surcharge loads, creep 

deformations under confining pressures have been occurring. A series of creep tests were 

performed on different densities of EPS geofoam with and without confining pressures. The 

results showed confining pressures can significantly affect the creep responses of EPS 

geofoam. Effects of confining pressures on creep deformations were more pronounced for 

lower densities. 

   EPS geofoams under service loads can develop significant creep deformations. Live loads 

due to traffic can introduce changes in confining pressure states. However, magnitudes and 

durations of transient stresses increments in EPS geofoams due to live loads remain small 

with benefit of concrete load distribution slabs or deeper cover. For large heights of EPS 

geofoam installations and potential submergence, larger surcharge depths may be required 

to resist potential uplift due to buoyancy. The combination of large hydrostatic pressures 

and saturated surcharge depths can produce significant sustained confining pressure 

increases on buried EPS geofoam installations. Post construction creep deformations of 

geofoam mainly depend on the level and duration of dead loading. Both creep and transient 

deformations can be of main concern in design of geofoams. Working stress values are 

usually selected so as to limit creep deformations to acceptable levels over the service life 

of the facility. The design approach developed in Norway is most commonly used and is 
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based on limiting allowable dead loads on geofoam to 30 % of the compressive strength at 

5 % strain. In addition, another 10 % of the compressive strength is allowed for transient 

live loads. Design values are based on unconfined compression loading of 50 mm cube 

samples at a strain rate of 10 % per minute (Frydenlund and Aabøe 1996). Creep tests 

were conducted on 50 mm geofoam cubes using nominal stress levels of 30, 50, and 70 % 

of the compressive strength (Anasthas 2001; Sheeley and Negussey 2001; Srirajan et al. 

2001; Sun 1997). Results showed that creep deformations can be considered negligible for 

stress levels less than 30 % of compressive strengths at 5 % strain. Creep behavior of EPS 

geofoam is affected by sample size and density (Srirajan et al. 2001). Larger samples 

experienced less creep deformation over a given time period and equivalent loading. Small 

samples tend to overestimate creep deformations of EPS geofoam due to end effects and 

more pronounced seating error (Elragi et al. 2001; Negussey 2007). Denser samples 

developed less creep strains for the same duration and magnitude of loading (BASF 1998, 

Srirajan et al. 2001). Full scale laboratory creep tests for axial stress of 50 % of the 

unconfined compressive strength showed that total observed axial strains were 1.2 % after 

1270 days, out of which 64 % was in the first two days (Aabøe 1993). For the same sample 

size, density and duration of loading, (Srirajan et al. 2001) and (Duškov 1997b) reported 

reasonably linear elastic range of response to stress levels of up to 50 % of the unconfined 

compressive strength at 5 % strain. Duškov 1997, van Dorp 1988, Sheeley and Negussey 

2001 also reported that with sustained loadings greater than 50 % of the compressive 

strength at 5 % strain, creep deformations develop. (Srirajan et al. 2001) suggested 

working stress levels of up to 50 % of the unconfined compressive strength at 5 % strain 

may be reasonable. With deeper burial of EPS geofoam blocks and possible submergence 
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and flooding, in post construction, conditions that can produce significant lateral pressures 

can develop. The experimental investigation and findings in this work are aimed to provide 

a better understanding of the significance and effects of confining pressures on EPS 

geofoam engineering behavior. 

   A series of uniaxial (unconfined), isotropic and conventional triaxial monotonic loading or 

confined creep compression tests were performed EPS geofoam samples. Three grades, 

nominal densities of 16, 20, and 32 kg/m3, of EPS geofoam were tested. Cylindrical samples 

were pre-cut to required dimensions at the factory. Most of the 64 and 102 mm nominal 

diameter samples were of 2:1 (H:D) aspect ratio. Calibration curves were developed to 

provide compliance corrections for triaxial cell volume expansion. Test samples were 

encapsulated in rubber membrane prior to assembling in a triaxial cell for confined creep 

tests. Triaxial cell was filled with water and confining pressures of 0, 34 and 69 kPa were 

rapidly applied through an attached accumulator. Constant axial loads corresponding to 0, 

30 or 50 % of unconfined compression strength at 10 % axial strain were applied 

immediately following application of confining pressure. The feedback loop controlled 

testing system was programmed to follow desired stress paths or maintain set loading 

rates. Actual dimensions and weights for each test specimen were determined as selected 

for testing. All tests were performed at constant room temperature. Axial loads and 

deformations, cell pressures and volume changes were monitored and recorded through 

the data acquisitions system. 

   Results of unconfined and isotropic compression tests on 64 mm diameter EPS geofoam 

samples of 20 kg/m3 density are shown in Figure 75. Axial strain rate of 10 % per minute 

was maintained for the unconfined compression and volumetric strain rate of about 7 % 
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per minute was observed. In isotropic compression, for a constant pressure infusion 

setting, average pressure rates detected by the cell pressure transducer were 234 and 15 

kPa/minute during the initial and post yield stages, respectively. The axial strain rates were 

2.4 and 0.8 %/minute during the initial and post yield stages. The corresponding 

volumetric strain rates were 6.9 and 1.9 %/min. The stress-strain plot for unconfined 

compression is in terms of axial stress and strain; whereas the isotropic compression result 

is in terms of cell pressure and volumetric strain. As yielding and crushing of cell walls 

occurred in both unconfined and isotropic compression, response curves of similar shape 

developed [Figure 75 (a)]. Both unconfined and isotropic compression responses develop 

apparent yielding at approximately 93 and 63 kPa, respectively. The corresponding 

estimates of Ei and Bi suggest a Poisson’s ratio of about 0.25. At 10 % axial and volumetric 

strains, the respective unconfined and isotropic compression strengths were 116 and 82 

kPa. The yield stresses are at about 80 % of the corresponding compressive strengths for 

both the unconfined and isotropic compression. Throughout the isotropic compression, the 

proportion of axial to volumetric strains remained about 1:3,Figure 75 (b). Thus the 

inherent isotropy of the material was preserved in both the elastic and plastic range of 

deformations. 
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Figure 75. Isotropic and unconfined compression tests (20 kg/m3) 

4.6.1 Isotropic Creep 

   Figure 76 presents axial and volumetric strains that occurred over 14 days under 

isotropic pressures of 34 and 69 kPa. The 20 kg/m3 and 64 mm diameter samples 

produced about 2 and 17 % axial strain and about 6 and 33 % volumetric strain, 

(a) 

(b) 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Isotropic compression tests.xlsx
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respectively. The 34 kPa pressure was at about 50 % of the yield stress and produced 

relatively lower strains. 

 

 

Figure 76. Isotropic creep test results (20 kg/m3) 

(a) 

(b) 
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Whereas the 69 kPa isotropic pressure was just higher than the yield stress in isotropic 

compression and produced significantly higher strains. Most of the deformations at both 

pressure levels occurred early. About 62 and 76 % of the total observed axial strains for 34 

and 69 kPa compression over 14 days developed after 1 day of loading. 

 

Figure 77. Axial, radial and volumetric strains with time (20 kg/m3) 

(b) 

(a) 
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Inferred radial deformations from observed axial and volumetric deformations indicate the 

samples deformed isotropicaly in response to the sustained 34 and 69 kPa cell pressures, 

Figure 77. The initial axial and volumetric strain rates were high and included the 

respective elastic deformations on immediate application of the confining pressures. 

 

Figure 78. Axial and volumetric strain rates with time (20 kg/m3) 

(a) (a) 

(b) 
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Strain rates continued to decrease and remained in apparent primary stages throughout 

the creep loading of 14 days, Figure 78. 

   Figure 79 shows isotropic creep results for 16 and 32 kg/m3 EPS geofoam densities. Total 

axial strains of 12 and 32 % were observed in 14 days for EPS geofoam of 16 kg/m3 density 

under 34 and 69 kPa confining pressures. The axial strains for 32 kg/m3 density were 

negligible for both 34 and 69 kPa confining pressures, also over 14 days. Strain rates 

continued to decrease for both densities, Figure 80, and remained in apparent primary 

stages. Effects of confinement were much more pronounced for the lower density EPS 

geofoams. 

 

Figure 79. Isotropic creep test results (16 and 32 kg/m3) 

 

Figure 80. Axial strain rates with time (16 and 32 kg/m3) 

file:///H:/AGB2011/Papers/Research/Lab Tests/Axial & Cell- creep tests.xlsx
file:///H:/AGB2011/Papers/Research/Lab Tests/Axial & Cell- creep tests.xlsx


129 

   Figure 81 shows axial strains for 64 and 102 mm diameter samples of 20 kg/m3 density. 

Both 34 and 69 kPa isotropic pressures were applied for 14 days. The 64 mm diameter 

samples developed 0.6 and 14 % axial strain while the 102 mm diameter samples 

developed 0.8 and 17 % strains. All test samples had aspect ratio of 2:1. For the relatively 

small contrast in the sample diameters, the effect of sample size was not as significant as 

differences in density and confining pressure levels. 

 

Figure 81. Sample size effect on isotropic total axial strain (20 kg/m3) 

   Design of EPS geofoam for creep is based on unconfined compression tests. However, 

occurrence of lateral deformations in confined environment may lead to movement of soil 

fill into the space created by such radial deformation, and hence uneven surface 

deformations could result. Uneven and higher deformations of EPS geofoam fill may lead to 

rutting and cracking related failure of the pavement system. Confining pressure of 69 kPa 

may develop in the field in special cases. 

file:///H:/AGB2011/Papers/Research/Lab Tests/Axial & Cell- creep tests.xlsx
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4.6.2 Confined and Unconfined Creep 

   Test sample densities, unconfined compressive strengths at 10 % axial strain as well as 

average axial stresses for 30 and 50 % of unconfined compressive strengths for creep 

loading are provided in Table 10. Creep tests were done on cylindrical samples of 64 and 

102 mm nominal diameter with aspect ratios of 1:1 and 1:2 (H:D). Cube samples of 50 mm 

size were also used for comparison. 

Table 10. Axial constant stresses used for creep tests 

Density (kg/m3) 16 20 32 

Unconfined compression strength @ 10 %  (kPa) 69 106 178 

30 % axial stress (kPa) 21 32 53 

50 % axial stress (kPa) 35 53 89 

 

Axial deformations with time for uniaxial unconfined and confined creep tests for 20 kg/m3 

density are shown in Figure 82. For unconfined compression, Figure 82 (a), the maximum 

axial strain observed in 14 days was less than 2 % for axial stress of 30 % of unconfined 

compression strength(32 kPa). Axial strain of 4.6 % was observed in 14 days when the 

axial stress increased to 50 % of the unconfined compression strength (53 kPa). Strains 

observed from circular samples of different aspect ratio were similar and agree with that 

obtained from 50 mm sample. The results are reasonably in agreement with reported 

findings by Srirajan et al. 2001 of axial strains of less than 2 % for applied stresses less than 

50 % of compressive strengths. 

   Figure 82 (b) represents results for creep tests with confining pressure of 34 kPa in 

addition to constant axial stress of 32 kPa. Axial deformations increased from about 2 % to 

approximately 20 % for 34 kPa confinement with axial stress of 32 kPa. Axial deformations  
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Figure 82. Axial strain vs. time for creep tests on 20 kg/m3 a) unconfined b) 34 kPa 

and c) 69 kPa cell pressures. 

(a) 

(b) 

(c) 
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were still increasing at the end of 14 days. When confining pressure of 34 kPa was applied 

with 53 kPa axial stress, 50 % of the unconfined compressive strength, about 48 % axial 

deformation developed. Separately applied, axial stresses at 30 and 50 % of unconfined 

compression strength at 10 % strain as well as isotropic compression at 34 kPa (50 % of  

 

 

Figure 83. Volumetric strain vs. time for creep tests on 20 kg/m3 and a) 34 kPa and 

b) 69 kPa cell pressure 

(a) 

(b) 
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yield stress under isotropic compression) all resulted in axial strains of 5 % or less. Figure 

82 (c) shows the severe influence of confining pressure on axial deformation. For 69 kPa 

confinement and 30 % axial stress, axial deformation reached over 30 % in 1 day and more 

than 40 % after 14 days and was continuing to increase. For 50 % axial stress and 69 kPa 

confinement, over 50 % axial strain occurred in 1 day. There were no apparent creep 

deformations for 30 % axial stress after 14 days loading without confining pressure. 

 

Figure 84. Strain rates and total strains (34 kPa and 20 kg/m3) 
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   When 34 kPa confining pressure was applied with 30 % axial stress, the volumetric strain 

of the sample reached nearly 30 % in about 14 days and was still increasing, Figure 83 (a). 

For unconfined compression at the same axial stress level, the initial volumetric strain was 

about 2 % and further creep strain was not evident. The corresponding axial deformations 

for these two conditions were about 20 and 2 %, respectively. 

   Tests done with 69 kPa confining pressure produced large volumetric deformations, 

Figure 83 (b). Confining pressure of 69 kPa with 30 % axial stress resulted in volumetric 

strain of about 62 %. For unconfined compression at 30 % axial stress, this value was about 

2 %. The respective axial strains were about 50 and 2 %. When the constant axial stress of 

50 % was applied with 69 kPa confining pressure, axial strains increased to above 60 %. 

   Figure 85(a) shows unconfined creep deformations at respective 30 % of compressive 

strength axial stresses for three densities, Table 1. EPS geofoam of 32 kg/m3 density 

developed 0.7 % axial strain as compared to 2.5 % for 16 kg/m3 density in 14 days. For the 

same level of loading, both initial and subsequent creep strains were highest for the lowest 

density of 16 kg/m3. When confining pressure of 34 kPa was applied together with 30 % 

axial stress, observed axial strains after 14 days jumped to about 2 and 35 % for 32 and 

16kg/m3 densities, respectively, Figure 85(b). When the confining pressure was doubled to 

69 kPa, the corresponding axial strains for 32 and 16 kg/m3 densities became 

approximately 16 and 56 % in 14 days, Figure 85(c). 

   Figure 86 shows volumetric creep strains over 14 days for cell pressures of 34 and 69 kPa 

but no additional axial stresses. Volumetric creep strains for 34 kPa cell pressure exceeded 

40 and 25 % for 16 and 20 kg/m3 density, respectively. For 32 kg/m3 density, volumetric 

creep strains were less than 1 %. For 69 kPa cell pressure volumetric creep strains were  
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Figure 85. Unconfined and confined creep at 30 % of strength loading for 16, 20 and 

32 kg/m3 densities a) unconfined b) 34 kPa and c) 69 kPa confinements. 

(b) 

(a) 

(c) 
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Figure 86. Volumetric strains (a) 34 kPa (b) 69 kPa confinement 

50 % and greater for 16 and 20 kg/m3 densities. The volumetric creep strain for 32 kg/m3 

density was more than 10 % also after 14 days. For all confined creep results, axial strains 

were about one third of volumetric strains in both initial and end of test stages. 

(a) 

(b) 

(b) 
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  Test results from this investigation indicate confining pressures can have significant effect 

on creep deformations of EPS geofoam. Results from tests on 20 kg/m3 density samples 

from 14 days of loading are summarized in Figure 87. Vertical pressures and deformations 

are represented in terms of major principal stresses and strains. The major principal 

stresses are in terms of total stresses and not effective stresses. This is because almost all 

of the EPS geofoam volume consists of gas (air) within relatively impervious closed cell 

microstructures. Deformation of the cell structure and volume change of the trapped gas 

result from applied total stress changes. The trend lines are isochrones for 0.001, 0.1 and 

14 days of sustained loading. Each isochrone is defined by major principal stresses from 

both unconfined and confined creep. This is in line with findings that yield stresses for 

unconfined and confined compression remain approximately constant when expressed in  

 

Figure 87. Equal time creep curves for unconfined and confined compression of 20 

kg/m3 density. 
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terms of the major principal stress for one density or type of EPS geofoam(Birhan and 

Negussey 2014; Wong and Leo 2006). Significant creep deformations developed beyond a 

threshold major principal stress of about 35 kPa for 20 kg/m3 density EPS geofoam in both 

confined and unconfined compression loadings. 

   For an allowable working stress entry on the x axis, the strain value for a particular 

isochrone represents the total major strain that developed. The isochrones converge 

towards a major stress near 30 kPa below which creep strains become negligible. For the 

20 kg/m3 density, this threshold stress state is close to the Norwegian criteria of 30 % of 

compressive strength at 5 % strain for dead loads. Additional allowance of 10 % 

compressive strength for attenuated live loads would be above the threshold but durations 

of loading would be short and much less than for the lowest isochrones. Over 50 % of creep 

deformations that occurred after 14 days of loading occurred in the first day. Strain rates 

continued to decrease and remained in apparent primary state. 

   Design with EPS geofoam is based on limiting allowable stresses to maintain creep 

deformations over the service life of the project to tolerable level. Support for the design 

approach has been based on unconfined compression short and long term tests. Results 

reported in this investigation indicate confining pressures can significantly increase creep 

deformations. Criteria for yielding and creep in unconfined and confined compression can 

be related to states of total major principal stress. For the same percentage of design loads 

relative to compression strengths, EPS geofoams of higher densities develop lower creep 

deformations. In situations where groundwater and lateral earth pressures can produce 

significant boundary total pressures, effects of confinement on EPS geofoam creep 

deformations should be considered in design. Most of the creep strains would tend to occur 
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in the few weeks after loading. Adapting the construction sequence with complementary 

monitoring can be helpful to reduce creep deformations after project completion. 
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4.6.3 Effect of Cyclic Stresses on Creep 

   Creep tests were done on EPS geofoam where additional cyclic stresses were applied 

after some time to study effect of cyclic stresses resulting from vehicles either during 

construction or operation of pavements where geofoam is used as light weight fill. A double 

axel truck induced an estimated average stress increase of up to 34.5 kPa or more on EPS 

geofoam fill employed without redistribution concrete slab. Such stress increase was 

considered as an increase in deviator stress when the EPF fill is dry and as cell pressure 

increase if there is poor drainage with higher water level. In the saturated case where the 

surrounding soil is not free draining and the water level is high, the pore water pressure is 

directly transferred to the EPF fill and is modeled by the cell pressure increase. 

Nevertheless, use of distribution concrete slabs significantly reduced stress increases on 

EPS fill. 

 

Figure 88. Axial stress of 45% and effect of increased stresses after 1 hr 
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   Figure 88 shows results of creep tests on 20 kg/m3 and 121 mm diameter EPS geofoam 

samples where stresses were increased after 1 hr. Initially axial stresses of 48 kPa (1000 

psf), which was 45 % of the compressive stress at 10 % axial strain, were applied in all 

cases shown. After 1 hr, additional stresses of 34.5 kPa were applied. The additional 

stresses were applied as a) constant axial stress b) constant cell pressure c) cyclic cell 

pressure and d) cyclic axial stress. The cycles repeated after 5 minutes assuming that one 

vehicle passed after the other in 5 minutes. Except the test where additional cyclic axial 

stress was applied (case (d)), deformation trends followed by the other three cases were 

reasonably similar. It can be noted that axial strain of about 2 % due to the 45 % axial 

stress increased abruptly to strains of up to 15 % after 160 minutes in the three tests and 

to about 12 % for the case where the additional stress was cyclic axial stress. Results from 

these tests suggest that use of concrete distribution slabs and free draining soil around EPS 

geofoam fill helps to reduce geofoam deformation. 

 

Figure 89. Axial stress of 70 % with 21 kPa and effect of increased stresses after 2 hrs 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Cyclic stress tests Carr's Creek/Cyclic stress tests.xlsx
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   Confining pressure of 21 kPa with axial stress of 70 % of the compressive strength at 10 

% axial strain was applied and deformation was observed for 2 hrs. Additional cyclic stress 

of 34.5 kPa was then applied either as deviator axial stress or cell pressure. Axial strain of 

up to 24 % was observed after 2 hrs of loading before the application of the cyclic stresses 

as shown in Figure 89. When the cyclic stresses were applied the axial strains reached 

about 52 % after about 300 minutes from start of the test. These tests were done to 

investigate significance of EPS geofoam design with higher axial stress loading like 70 % of 

the compressive strength. 

   The cyclic stresses resulted in cyclic strains particularly for tests which were having 

relatively less initial stresses. Hence, cyclic strains are more pronounced in Figure 88 than 

Figure 89. 

  



143 

4.6.4 Relaxation Tests 

   In creep tests, constant loads were applied and the resulting deformations were observed. 

Another phenomenon that needs to be studied is relaxation. In relaxation tests, axial 

deformation is kept constant after some time and loads were observed in time. Relaxation 

tests were done on 50 mm cubes of 20 kg/m3 EPS geofoam samples with axial stresses of 

30, 50 and 70 % of the compression stress at 10 % axial strain. Axial stresses were first 

applied for one day and the actuator was stopped so that the axial strain was kept constant 

with load being monitored with time. Loads corresponding to 30, 50 and 70 % axial 

stresses were 193, 138 and 83 N, respectively. These loads were kept constant for one day 

and after one day relaxation tests started. It can be seen in Figure 90 that the loads got 

smaller and smaller with time. Bigger relaxations were observed for bigger loads. The test 

with 70 % axial stress has reduced from 193 to 120 N which was about 40 % relaxation. 

 

Figure 90. Load relaxation after one day loading 
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   Percentage relaxations are shown Figure 91 and it can be noted that the percent 

relaxations in 16 days were about 40, 25 and 13 % for axial stresses of 70, 50 and 30 % 

axial stresses, respectively. 

 

Figure 91. Percent load relaxations 

   Rate of relaxation was greater at the start and got smaller and smaller with time. After 

two weeks of observation, the loads or stresses were relatively constant. EPS geofoam can 

be used as backfill materials in bridge abutments and such relaxations may be manifested 

while in service. Thus lateral load reductions of up to 40 % can be expected depending on 

the initial stress levels. 
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4.6.5 Creep Constitutive Modeling 

   Time dependent behavior of EPS geofoam is affected by density, stress level, duration of 

loading and temperature. Creep and relaxation are time dependent properties of EPS 

geofoam. Creep is deformation that occurs in time under constant stress whereas 

relaxation is reduction in stresses with time under constant strain. In this section the creep 

deformation will be modeled using available constitutive models. 

Constitutive Modeling of Creep of EPS Geofoam 

   Creep or stress-strain-time characteristic of geofoam has been modeled by different 

investigators. In most of these models, the total strain is in general expressed as (Horvath 

1998): 

                                                                        (42) 

where       = the total strain at some time t after stress application 

   = the immediate strain when the stress is applied and  

  c = the time dependent creep strain at time t after stress application.  

   The stress is assumed to be applied instantaneously, and will stay constant permanently. 

One such creep model for EPS geofoam blocks is the General Power Law equation which 

uses coefficients developed by the Laboratoire Ponts et Chaussess (LCPC) is (Magnan and 

Serratrice 1989): 

  
 

   
           

 

  
 
    

  
               

 

  
  
                                    (43) 

Where   = total strain at some time t after stress application in decimal (not in %) 

   = applied stress in kPa 

  t = time after stress application in hrs 
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  Eti = initial tangent modulus of the EPS block geofoam in kPa 

  y = yield stress in kPa 

Eti and y of EPS geofoam blocks were empirically related with the density,  (kg/m3) of 

EPS geofoam blocks as follows: 

                                                                              (44) 

                                                                             (45) 

where Eti and y are in kPa and,  in kg/m3 

   Hence the complete General Power Law equation of LCPC is: 
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Note that the yield stress, y was equivalently referred as plastic stress p. 

   Another creep model known as the Findley equation was proposed in order to obtain the 

total time dependent strain of geofoam(Findley 1960). The total creep is obtained from: 
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Where   oand c are as defined above. 

  m = a dimensionless material parameter 

  nF = a dimensionless Findley material parameter 

  mF = a dimensionless Findley material parameter 

  t = time after stress application in hrs 

  to = one hour (used to normalize time) 

  'oF = a dimensionless Findley material parameter 

  eF = a Findley material parameter with dimensions of stress 

  mF = a Findley material parameter with dimensions of stress and 
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   = applied stress in kPa 

   The Findley equation as originally presented is only part of the above expression and 

given below(Findley 1960). It will be referred here as the original Findley equation. 

                
 

  
 
  

                                   (48) 

where              
 

   
  

   Creep tests were conducted on block molded EPS by BASF AG in Ludwigshafen, Germany 

during 1987 to 1989. (Horvath 1998) considered three of these tests conducted on 50 mm 

cube samples of 20 kg/m3 density for axial stresses of 30, 40 and 50 kPa and the following 

expression was proposed. 

             
 

    
                

 

  
                         (49) 

where  is in kPa and t is in hrs. This is applicable only for density of approximately 20 

kg/m3, applied stress of < 50 kPa and at temperature of about 23 oC. This equation is 

referred to as modified Findley equation in the subsequent discussions. 

   Creep models discussed above will be used to predict strains and are compared with test 

results. EPS geofoam of 20 kg/m3 has been tested for both short term and long term 

compression. Compression strength of 54, 91 and 107 kPa was obtained respectively at 1, 

5, and 10 % axial strains. Initial modulus and unconfined yield stress of 6.47 MPa and 96 

kPa respectively were obtained from same test. 

   Test results for 50 mm cube samples are shown in Figure 92 along with creep model 

predictions. It is shown that original Findley equation [Eq. (48)] predicted the axial strains 

better. On the other hand, LCPC creep model’s [Eq. (46)] prediction was less than observed 

axial strains during testing. Value of initial elastic modulus in the LCPC model is higher than 
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that obtained during testing. Test result value instead of equation. (44) was used for initial 

tangent modulus and the prediction was better as shown by the curve labeled as ‘LCPC-

modified’; and this is close to that of the original Findley’s prediction. Similar observation 

was reported previously (Horvath 1998). 

 

Figure 92. Creep models and test data for 30 % axial stress and 20 kg/m3 

   Shown also in Figure 92 is prediction using modified Findley equation [Eq. (49)]. This 

also resulted in smaller strains. It can be said that all the creep models predicted strains 

which are less than test results. Creep models were used to predict the axial strain at 

10,000 hrs (~417days) and these values are very small even when compared to test result 

values at 1,000 hrs (~42days). 

   Cylindrical samples of 64 and 102 mm diameters with aspect ratio of 2 (AR=2) are also 

shown in Figure 92. Results from modified Findley are in both cases greater than test 

results in early stages and thereafter test results exceeded predicted strains. But 
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predictions from original Findley and LCPC creep models are less than the test results. 

When samples with smaller aspect ratio were used (AR=1), the predictions from all creep 

models were less than the test results. Note that axial strain from test result on 50 mm cube 

sample is greater than all the others. In addition, samples with smaller aspect ratio have 

more axial strains. 

   For tests done with axial stress of 50 % of compression strength at 10 % axial stain, 

predictions from creep models are far from test results as shown in Figure 93. It is shown 

that cylindrical sample of 102 mm diameter showed axial strain of about 4 % as compared 

to predicted value of 1.5 % in 14 days. Note that 50 % axial stress (i.e. 53 kPa) is a little 

greater than half unconfined yield stress of 96 kPa. 

 

Figure 93. Creep models and test data for 50 % axial stress and 20 kg/m3 

   Findley parameters used above are based on test results conducted on 50 mm samples of 

20 kg/m3 EPS geofoam. These parameters were determined here based on test results on 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Creep constitutive models.xlsx
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cylindrical samples of 64 and 102 mm diameter with aspect ratio of 2. The modified 

Findley equation is given by 

              
 

   
               

 

  
                          (50) 

where  is in kPa and t is in hrs. This is applicable only for density of approximately 

20kg/m3, applied stress of < 53 kPa and at temperature of about 23 oC. Results of this new 

equation are shown in Figure 94 by curves labeled as “Modified Findley (2)”with results 

from earlier equations. Small improvement is shown for predictions with axial stress of 53 

kPa. For smaller stress, the result is about the same as that from equation based on 50 mm 

cube samples. 

 

Figure 94. Modified Findley equation based on results on cylindrical samples of 20 

kg/m3 

   Creep tests were conducted on cylindrical samples of 16 kg/m3 EPS geofoam. Creep 

models were used to predict axial strains and these outputs are portrayed in Figure 95. 
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Findley parameters obtained for 50 mm cube samples of 20 kg/m3 were used in order to 

test their applicability for other densities. Here also the original Findley equation [Eq. (48)] 

predicted the axial strains better. The LCPC creep model [Eq. (46)] prediction was less than 

the measured axial strains. The LCPC prediction was improved by using initial modulus and 

yield stress values obtained from compression tests as shown by the curve labeled as 

‘LCPC-modified’. 

 

Figure 95. Creep models and test data for 30 % axial stress and 16 kg/m3 

   Creep models were also used for axial stress of 50 % and Figure 96 shows that all creep 

models predicted axial strains less than measured values during testing. It can be noted 

that modified LCPC model predicted better than others. 
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Figure 96. Creep models and test data for 50 % axial stress and 16 kg/m3 

   Findley parameters for 16 kg/m3 were obtained and the following modified Findley 

equation is provided based on data from cylindrical samples of 64 and 102 mm diameter 

with aspect ratio of 2. 

              
 

   
               

 

  
                          (51) 

where  is in kPa and t is in hrs. This is applicable only for applied stress of < 35 kPa and at 

temperature of about 23 oC. Modified Findley results are labeled in Figure 97 as “Modified 

Findley(2)”. The predictions were reasonably good for both 30 and 50 % axial stresses. 

Available creep model are mostly for 20 kg/m3. Thus equations for other densities are 

provided based on 2 weeks duration of loading; nevertheless, long duration of loading must 

be conducted for better results. 
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Figure 97. Modified Findley equation based on results on cylindrical samples of 16 

kg/m3 

 

Figure 98. Modified Findley equation based on results on cylindrical samples of 32 

kg/m3 
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   Creep models were also employed for 32 kg/m3 and the modified Findley equation [Eq. 

(49)] does not work for this density. LCPC equation predicted smaller axial strains than 

observed as shown in Figure 98. 

   Parameters for Findley equation were obtained for 32 kg/m3 EPS from tests on 

cylindrical samples. Axial stresses of 54 and 90 kPa were applied during testing. The 

modified Findley is given for 32 kg/m3 EPS as: 

               
 

   
              

 

  
                          (52) 

where  is in kPa and t is in hrs. This is applicable only for applied stress of < 90 kPa and at 

temperature of about 23 oC. Results from this modified Findley are labeled in Figure 98 as 

“Modified Findley(2)”. The predictions were excellent for both 30 and 50 % axial stresses. 

Note also that the equations were used to predicted total axial strains up to 2years 

(17520hrs) where as observed strains during testing were for about two weeks (336hrs). 
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4.7 Temperature Effects on the Behavior of EPS Geofoam 

   EPS geofoam can be used in areas where the temperature may rise as high as 40o C. Effect 

of temperature on the strength of EPS geofoam was studied by Yeo and Hsuan 2009 and 

Zou and Leo 2001. Generally, compressive strength was observed to decrease with increase 

in temperature. Duškov 1997a conducted compression tests on cylindrical EPS20 samples 

at temperature ranges of -8.6 to -12.9 oC and found that low temperatures have no negative 

impact on the mechanical behavior of EPS. (Zou and Leo 2001) studied effect of 

temperature on compressive strength, yield stress, initial Young’s modulus, plastic tangent 

Young’s modulus and creep behaviors. EPS geofoam of 20 kg/m3 and 50 mm diameter with 

aspect ratio of 1:1 were used. Confining pressures of 0, 5, 10, 15 and 20 kPa were used for 

three temperatures 23 (room temperature), 35 and 45 o C. Decrease in compressive 

strength, yield stress, initial Young’s modulus, and plastic tangent Young’s modulus were 

observed with temperature increase for unconfined compression with axial strain rate of 

10 %/min. In addition, creep test results of 30, 40 and 50 kPa stresses at room temperature 

and 40 o C showed that the creep response for 40 o C was more for same stress level. 

   Most of the studies available compared response of EPS geofoam at constant temperature. 

In this study, creep responses of EPS geofoam to cyclic temperatures were evaluated by 

conducting creep tests in a temperature controlled chamber. Coupled effects of 

temperature and creep were studied for different stress levels. Comparison was made to 

long term field observations at the Interstate 15 reconstruction project in Salt Lake City, 

Utah. FLAC models were run for lab and field size samples and the results were compared. 

Thermal induced stresses in EPS geofoam placed in constrained states were observed. 
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Tests with Different Temperatures 

   Seasonal temperature variations were observed to affect deformation magnitudes of EPS 

geofoam fills. Creep tests were done in a thermal chamber where the temperature can be 

varied in a controlled cycle. The test set up is shown in Figure 99. Load cell, LVDT and 

thermistor were used for measuring load, deformation and temperature respectively. The 

chamber has ability to cycle the temperature at set time intervals. In these tests, 

temperature was set to stay at 24 oC for 24 hrs and then to immediately increase to 40 oC 

and then kept constant for another 24 hrs. Again the temperature was immediately 

dropped to 24 oC and kept constant for 24 hrs followed by immediate drop to 0 oC and kept 

constant for 24 hrs and finally immediately rose to 24 oC. This 72 hr cycle was repeated as 

many times as needed as shown in Figure 100. 

  

Figure 99. Set up of creep test inside chamber 
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Figure 100. Typical temperature variation with time inside chamber 

Creep Tests at Constant Temperatures  

   EPS geofoam samples of 64 mm diameter and 20 kg/m3 density were used to conduct 

creep tests at three different constant temperatures. The axial stresses were kept constant 

at 32 kPa, which is 30 % of the compression stress at 10 % axial strain. Figure 101 shows 

results of creep tests at room temperature (24 oC), 0 and 40 oC. Highest initial and creep 

strains were observed for creep tests with 40 oC. Initial strains for 0 and 24 oC were both 

about 0.8 % with creep strain remaining relatively constant for 0 oC and moderately 

increasing with time for 24 oC. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Thermal-tests.xlsx
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Figure 101. Creep tests at three temperatures 

   Figure 102 shows the stress-strain curves in unconfined compression tests at different 

constant temperatures. The stress-strain relations remained relatively the same for 0, 24 oC 

and room temperature (which was close to 24 oC). But for 40 oC temperature the stress-

strain curve was below others showing that there was reduction in the initial modulus, 

yield stress and compressive strength. Reduced initial strain in creep tests at elevated 

temperature was related to lower initial modulus. Similar results were reported by Zou and 

Leo 2001. 

file:///G:/LCS/Negussey_lab/Amsalu/AGB2011/PhD Research/Lab Tests/Thermal-tests.xlsx
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Figure 102. Unconfined compressions tests at constant temperatures 

Creep Tests with Cyclic Temperature 

   Figure 103 shows total deformations with time for an axial stress of 32 kPa (which is 30 

% of strength at 10 % strain). Creep results with cyclic temperature variation showed 

cyclic deformation trend when compared with creep results of constant room temperature. 

More total axial strain was observed when the temperature was lower and vice versa. 

When the temperature increased polystyrene and air inside the foam cells expanded to 

counterbalance deformation resulting from axial loading. Thus, axial strains due to load 

and expansion due to temperature cycles were out of phase. This trend was observed for 

small axial stresses. Tests were repeated on other samples of same density but different 

sample sizes. Figure 103 (b) shows repeatable trend. 
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Figure 103. Axial strain with time for cyclic temperature change (32 kPa & 20 kg/m3) 

   Cyclic deformation trend when the axial stress was increased to 54 kPa (i.e. 50 % of 

strength) is shown in Figure 104. The thermal expansion of the geofoam was suppressed by 

large magnitude of deformation due to larger axial load. Unlike results shown in Figure 
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103, there is no observable depression in the plots during temperature rise. But the saddles 

during temperature drop stayed similar irrespective of the magnitude of the axial stresses. 

 

Figure 104. Axial strain with time for cyclic temperature change (54 kPa & 20 kg/m3) 

Field Observation at Interstate 15 

   Geofoam fill performance monitoring was made at Interstate 15 Reconstruction Project in 

Salt Lake City, Utah (Negussey and Stuedlein 2003). Magnet extensometers were used in 

the 100 South geofoam embankment where magnet plates, which can move with the 

surrounding EPS geofoam fill, were installed along a central PVC access riser pipe. Magnet 

plate positions followed the fill deformations and successive changes in position with 

respect to an initial baseline survey represented magnitude of movement or deformation 

over a depth profile. Solid lines of Figure 105(a) show plots of such settlements in 

reference to initial baseline survey at deferent levels along the depth. Calculated seasonal 

thermal deformations are plotted in Figure 105(b) along with mean daily temperatures 

with respect to time. When seasonal thermal deformations (Figure 105(b)) are taken out 
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from the observed deformations (solid lines of Figure 105(a)), EPS creep deformations 

were obtained and are plotted as broken lines of Figure 105(a). Exclusion of thermal 

deformations from observed movements resulted in less undulated plots. The magnet 

extensometer observations made over long period clearly showed seasonal trend of cyclic 

deformation. Magnitude of seasonal thermal deformations was about 0.16 % and was of 

similar magnitude to that measured in the lab. Observed strains in 100 South geofoam 

embankments are shown in Figure 106. The strains plotted are results of both thermal and 

creep deformations. Seasonal undulations in the strains are clearly visible in this plot. 



163 

 

Figure 105. EPS Deformation from magnet extensometer, South array. 

(a) 

(b) 
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Figure 106. Strains in EPS from magnet extensometer, South array. 

   The deformation is observed to be out of phase with the seasonal temperature variation. 

This same trend was observed in creep tests with cyclic temperature variation. 

FLAC Modeling 

   EPS geofoam samples of 64mm diameter and 127 mm high were modeled in FLAC to 

simulate temperature changes and time taken to reach steady state and thermal 

deformations. Expansion of 0.076 mm and contraction of 0.114 mm were calculated when 

temperature changed from 24 to 40 oC and from 24 to 0 oC or 0.00375% strain per oC 

change. Temperature reached a steady state of 40 from 24 oC in about 1300seconds as 

shown in Figure 107. Similarly 2200 sec were taken to reach 0 oC from 24 oC. 
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Figure 107. Time to reach steady state in a 64 mm diameter sample for temperature 

change from 24 to 40 oC  

   Time for steady state is where all points within the sample reach the steady state. 

Temperature distribution within the sample at the 5th minute is shown in Figure 108 when 

the temperature was changing from 24 to 40 oC. EPS geofoam fills in the field would be of 

much larger dimensions. Thus, 4.5 m by 4.5 m EPS geofoam was analyzed in FLAC in order 

to determine the time needed to reach steady state and the thermal deformations as a 

result of temperature change. About 34.7 days were needed to reach a steady state of 40 oC 

from 24 oC with maximum deformation of 3.02 mm. If period of cyclic temperature 

variation was less than 34.7 days, this deformation might not be observed. Same 

observations can be made in Figure 105 and Figure 106 that cyclic responses of big fills 

were seasonal and did not have daily cyclic periods as the 4.5 m high fill needed longer 

time to reach steady state to develop observable deformations in daily temperature cycles. 
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Figure 108. Temperature distribution at the 5th minute (64 mm x 127 mm) 

   Temperature distribution of the 4.5 m x 4.5 m EPS geofoam model at the 5th minute is 

shown in Figure 109. The temperature within the section ranged 24 to 25 oC as compared 

to 35 to 39.5 oC in the smaller section, Figure 108. On the 5th minute, 64 mm x 127 mm 

section deformed by about 0.122 mm (0.096% strain)as compared to about none the 4.5 m 

x 4.5 m section. 
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Figure 109. Temperature distribution at the 5th minute (4.5 m x 4.5m section) 

   Investigation of FLAC outputs suggest that the temperature lag between what was set in 

the chamber and that in the sample was short as compared to the 24hr cycle period set in 

the chamber. 

   EPS geofoam fills may be used in constrained areas and stresses may be induced when 

the temperature rises. FLAC model of 64 mm x 127 mm section was constrained at its 

boundaries and the temperature was increased from 10 to 35 oC. The stresses induced 

were plotted as a function of time when the temperature increased as shown in Figure 110. 

Maximum confining stress of about 4.5 kPa was observed. Tests were also done in the 

temperature controlled chamber with the load measured in a constrained condition as the 
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temperature changed. A stress of about 4 kPa was observed for a temperature rise to 35 oC, 

Figure 111. Test result and FLAC predicted induced stresses were close and small. 

 

Figure 110. Induced stresses due to temperature rise (64 mm x 127 mm) 

 

Figure 111. Measured stresses due to temperature changes 
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   Stress-strain behavior of EPS geofoam remained relatively unaffected up to a temperature 

of 24 oC. Elevated temperatures affected the behavior of EPS geofoam and resulted in 

higher initial and creep deformations. Seasonal temperature variations produced small 

seasonal deformations. Stress induced in constrained EPS geofoam application due to 

change in temperature would also be small and can be neglected in practice due to inherent 

relaxation properties of EPS geofoam. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

   Effects of confining pressure and temperature on the compression and creep behavior of 

EPS geofoam were studied and the following conclusions and recommendations were 

made. 

1. In the elastic or working stress range, the yield stresses of low and high density EPS 

geofoam decreased as confining pressures increased. But under higher confining 

pressures, yield stresses reversed from decreasing to increasing. At one density, the 

critical or transition confining pressure at which yield stresses began to increase 

with increasing confining pressure was at a value about equal to the unconfined 

compression yield stress. For confining pressures over which yield stresses 

decreased, major principal stresses at yield remained relatively constant. The major 

principal stresses at yield increased with density. Yield stresses can be estimated 

from density and modulus of elasticity of the resin bead, allowing for both the EPS 

density and anticipated confining pressures. Yield conditions on the basis of major 

stress can account for confining stress effects. 

2. The stress-strain relations for both unconfined and confined compression can be 

generated using density of geofoam block and resin bead properties. The results 

obtained are in good agreement with lab test results. The proposed method 

furnishes the stress-strain relations easily and can be employed in numerical 

modeling. It is one of the easiest models to predict the stress-strain relations in EPS 

geofoam. 

3. Design with EPS geofoam is based on limiting allowable stresses to maintain creep 

deformations over the service life of the project to tolerable levels. Support for the 



171 

design approach has been based on short and long term unconfined compression 

tests. Results reported in this investigation indicated that confining pressures can 

significantly increase creep deformations. Criteria for yielding and creep in 

unconfined and confined compression can be related to states of total major 

principal stress. For the same percentage of design loads relative to compression 

strengths, EPS geofoams of higher densities develop lower creep deformations. In 

situations where groundwater and lateral earth pressures can produce significant 

boundary total pressures, effects of confinement on EPS geofoam creep 

deformations should be considered in design. Most of the creep strains would tend 

to occur in the few weeks after loading. Adapting the construction sequence with 

complementary monitoring can be helpful to reduce creep deformations after 

project completion. 

4. EPS geofoam relaxation property was studied and the rate of relaxation was greater 

at the start and got smaller and smaller with time. After two weeks of observation 

the loads or stresses were relatively constant. EPS geofoam can be used as backfill 

materials in bridge abutments and such relaxations may be manifested while in 

service. Thus lateral load reductions of up to 40 % can be expected depending on 

the initial stress levels. 

5. Effect of induced anisotropy on the stress-strain characteristics of EPS geofoam is 

not considered in the design of fills. Pre straining of EPS fills may result from 

operation of heavy machineries or trucks during construction. Such pre straining is 

shown to result in degradation of the initial elastic modulus, and hence higher 

magnitudes of deformation in subsequent loadings. 
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6. Hyperbolic relationship has been employed successfully for stress vs. strain 

representation of geofoams. The modified hyperbolic model proposed here 

considered the confining pressure effect and was able to predict the reduction in 

strength and modulus as a result of confinement increase. The three parameters-K, 

n and m were determined from triaxial tests performed at different confining 

pressures. The model results agree well with test results and can be integrated into 

numerical modeling. 

7. Stress-strain behavior of EPS geofoam remained relatively unaffected up to a 

temperature of 24 oC. Elevated temperatures reduced the initial modulus and creep 

deformations were higher. 

8. Seasonal temperature variations resulted in seasonal cycles of deformations of 

relatively small magnitudes. Stresses induced in constrained EPS geofoam due to 

changes in temperature were also small and can be neglected in practice due to 

inherent relaxation properties of EPS geofoam. 

 

   Studies done here to investigate the effects of confinement and temperature on behavior 

of EPS geofoam were not exhaustive and the following are recommended for future studies 

 Longer duration creep tests for developing creep models for analysis and design of 

EPS geofoam 

 Effect of confinement on creep characteristics should also be investigated for very 

big samples to account sample size effects 

 Effect of cyclic confining pressures of higher magnitudes on the deformation 

characteristics of EPS geofoam 
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 Effect of cyclic stress on EPS geofoam after long time creep 

 Relaxation tests for longer duration and amount of stress 

 Coupled confining stress and thermal tests with modeling 

 Longer duration creep tests for developing creep models for analysis and design of 

EPS geofoam under confinement 

 Coupled effects of induced anisotropy and confining pressure on the behavior of EPS 

geofoam 
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