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ABSTRACT

Information in evolutionary algorithms is available at multiple levels; however most analyses

focus on the individual level. This dissertation extracts useful information from networks and

communities formed by examining interrelationships between individuals in the populations as

they change with time.

Network theoretic analyses are extremely useful in multiple fields and applications, e.g., bi-

ology (regulation of gene expression), organizational behavior (social networks), and intelligence

data analysis (message traffic on the Internet). Evolving populations are represented as dynamic

networks, and we show that changes in population characteristics can be recognized at the level

of the networks representing successive generations, with implications for possible improvements

in the evolutionary algorithm, e.g., in deciding when a population is prematurely converging, and

when a reinitialization of the population may be beneficial to avoid computational effort, or to

improve the probability of finding better points to examine.

In this dissertation, we show that network theoretic analyses can be applied to study, ana-

lyze and improve the performance of evolutionary algorithms. We propose various approaches to

study the dynamic behavior of evolutionary algorithms, each highlighting the benefits of studying

community-level behaviors, using graph properties and metrics to analyze evolutionary algorithms,

identifying imminent convergence, and identifying time points at which it would help to reseed a

fraction of the population.

Improvements to evolutionary algorithms result in alleviating the effects of premature con-

vergence occurrences, and saving computational effort by reaching better solutions faster. We

demonstrate that this new approach, using network science to analyze evolutionary algorithms,

is advantageous for a variety of evolutionary algorithms, including Genetic Algorithms, Particle

Swarm Optimization, and Learning Classifier Systems.
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CHAPTER 1

INTRODUCTION

Science possesses, as yet, no word by which such a community of living beings may be

designated; no word for a community where the sum of species and individuals, being

mutually limited and selected under the average external conditions of life, have, by

means of transmission, continued in possession of a certain definite territory. I propose

the word ‘Biocoenosis’ for such a community.

– Karl Möbius, 1877. The Oyster and Oyster Farming (English Translation of “Die

Auster und die Austernwirtschaft”)[49]1

In the field of Artificial Intelligence or Computational Intelligence, Evolutionary Algorithms

constitute a sub-field that focuses on heuristic optimization, search and learning. Metaheuristics

are applied and instantiated to perform these tasks.

The field of Evolutionary Algorithms (EAs) acts as an umbrella covering many different classes

of algorithms such as Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Learning

Classifier Systems (LCSs), Genetic Programming (GP), Evolutionary Programming (EP), and Evo-

lution Strategies (ESs), many of the concepts and algorithms are explained in [5]. In recent years,

many difficult problems have been solved by these approaches. Although not identical, these

1This was the first known developed concept of community in ecological history, coined by Karl Möbius as
“biocönose” (more often called by its German equivalents “Lebensgemeinde” and “Lebensgemeinschaf”)[54] in the
original 1877 version – although the more popular terms in English are “ecosystem” or “biotic community.”
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algorithms have many similarities – being population-based, driven by the principles of natural

selection, and used for optimization problems.

The problems addressed by these algorithms are characterized by the existence of a large land-

scape of candidate solutions, and the need to effectively search this landscape for optimum solu-

tions. Of course, such problems are computationally intractable, and brute force searching is not

a feasible option. But we may pose a relevant question: Is there some information available in the

landscape that we can use to find the next target points for the search?

Various algorithms address this question in different ways, determining different points of

search for the population to explore or exploit. Evolutionary algorithms are characterized by the

simultaneous exploration of multiple candidate solutions (or individuals) in a “population” that

changes with time. Although different generations of individuals in such algorithms may lead to

vastly different sets of individuals in the next generation (or iteration), one common feature is

that all these algorithms learn from the landscape in every generation. This results in probabilistic

moves towards a better solution, which may be slow or fast, in successive generations.

Evolutionary algorithms operate on sets or multi-sets of individuals (representations of candi-

date solutions), in which the relationships between individuals are usually ignored. Information

contained in multiple individuals can be combined or modified in interesting ways, leading to the

exploration of new candidate solutions, and selection strategies that favor better candidate solutions

help guide the algorithm towards steady improvement in the best solutions2 over time.

The techniques used in these algorithms are based on observations of nature. Biological pro-

cesses have been a source of fascination for humans for a very long time. These processes are

characterized by considerable complexity, be it evolution, or the search for food, or the process of

mating to produce the next generation of offspring, or the struggle for limited resources. Evolution

processes involve the struggle for survival from both an individual standpoint, as well as a species

standpoint.

2In the case of an elitist algorithm, a steady improvement is noticed because the best individual is always retained.
However, in a non-elitist algorithm, a solution could potentially get worse since the best individual also risks getting
eliminated from the population, albeit with a very low probability.
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The emergence of a population, and evaluation of individuals for their fitness, which in turn re-

sults in their respective probabilities of survival in the population, are ideas borrowed from Charles

Darwin’s theories of evolutionary biology [17]. Continuing with the theme that evolutionary com-

putation borrows ideas from evolutionary biology, we proceed to another trait that living organisms

exhibit in their ecosystems, viz., the formation of communities with some common characteristic(s)

binding them together. Since in many biological ecosystems, the formation of communities leads

to some very interesting phenomena, we explore the same in computational simulations of “intel-

ligence”. From a computer science/artificial intelligence perspective, viewing and understanding

the behaviors of populations as networks can provide the means for depicting the phenomenon of

community formation in ecology. This approach is the main focus of this dissertation.

1.1 Focus

In studies of evolutionary algorithms, relationships between individuals are usually ignored. Some

efforts have focused on relationships between subsets of the population. Our focus is on examin-

ing relationships between individuals, asking what happens over time to the structural properties

of networks representing evolving populations. Networks are important to study because of the

following reasons: (i) Networks take into account relationships between individuals (via the exis-

tence of edges and their lengths), (ii) Networks are better suited to depict various other kinds of

relationships as well, such as ancestral connections, and (iii) Networks provide useful models of

relationships that biological species share.

We formalize and analyze network representations of well-known instances of evolutionary al-

gorithms, viz., real-coded Genetic Algorithms [29], Particle Swarm Optimization [36], and Learn-

ing Classifier Systems [32] using nodes in the network to represent individuals in the population,

applied to benchmark optimization problems studied by many researchers.

In most other network-theoretic applications where networks change over time, the nodes in

a network are mostly the same from one instant to the next, although some edges (and a small
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number of nodes) may appear or disappear. However, in applying this approach to evolutionary

algorithms, we observe that individuals in an evolving population may not persist over time. Nodes

in a network vanish in one generation, so that there is no obvious “continuity” between networks

representing successive generations. Hence the key questions to be posed are at the level of the

entire network (representing the entire population) or its subgraphs (representing sub-networks

consisting of “related” individuals).

What kinds of relationships between individuals could be interesting in analyzing evolutionary

algorithms? One possibility is based on ancestral relationships in the evolutionary process, based

on the distance to the nearest common ancestor. For instance, an edge may be said to exist between

nodes representing two individuals if they have at least one common parent. Another computa-

tionally simpler approach is based on proximity between individuals (in the problem-specific data

space), measured using the Euclidean distance metric. Thus, an edge exists between two nodes if

the distance between them is less than a threshold that may be chosen based on problem-specific

characteristics or the properties of the current network.

This dissertation also addresses the problems of detecting convergence and initiating restarts in

GAs, using an approach based on the thesis that observable phenomena in dynamical systems can

be predicted based upon knowledge of an underlying structure which may be invisible by itself.

1.2 Outline

Chapter 2 presents some background material on EAs (GAs, PSOs, LCSs), and networks. We also

present some related work that views the population as beyond just individuals.

Following this, we discuss the motivation for the use of networks in Chapter 3, define our

network model, review some of the network parameters under study, and discuss parallels between

a GA and a dynamic network. We also trace the evolution of these parameters over multiple

generations. We discuss an inherent connection between the changing structure of the convex hull

of the largest component, evolution of triangles amongst individuals, the identification of the space
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where the optimum lies in a GA, and subsequently, its convergence.

Following this exploratory study, we present a few algorithms applied to real-valued Genetic

Algorithms highlighting the potential uses of such analyses in Chapter 4. Specifically, we show

a way to identify the region of interest by detecting convergence early, mainly by observing the

structure of the convex hull of the largest component. We also demonstrate another utility of such

metrics by “intelligently” identifying additional points in the search space to evaluate for better

objective function value using the centroid of the largest component. This is analogous to multi-

parent recombination in a niche, where the network structure is used to choose the parents. Early

detection of convergence is used in another algorithm to enforce diversity and hence guarantee

the exploration of other subspaces, which reduces the probability of premature convergence. We

also extend our analysis to PSOs utilizing the common features between GAs and PSOs, and study

early detection of convergence in a PSO.

We then begin our exploration of other forms of network construction. In Chapter 5, similar

studies are carried out while obtaining the networks from another point of view, viz., ancestral

connections in a GA, which provide information that is available within the evolving generations,

but is often ignored in practice. In Chapter 6, we show that these network theoretic ideas extend

readily to another form of EAs, viz., LCSs. Here, we observe many similarities in the evolution of

network measures with the evolutions seen in a GA or a PSO, although there are many differences

in the representation, structure and function of an LCS.

Finally, we summarize and discuss our observations in Chapter 7, and conclude and present

future directions of research in Chapter 8.
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CHAPTER 2

BACKGROUND: EVOLUTIONARY

ALGORITHMS, NETWORKS, AND RELATED

WORK

In this chapter, we describe some of the main characteristics of selected EAs. Following this, we

also describe some of the essentials of network science, and further discuss how networks serve as

a representative of interrelationships between individuals in the context of an EA.

2.1 Evolutionary Algorithms

Evolutionary Algorithms are inspired by biological evolution and are used to solve problems which

are computationally hard. There are many algorithms with different characteristics, which still

have broad similarities which classifies them as EAs. We discuss a select few (Genetic Algorithms,

Particle Swarm Optimization, and Learning Classifier Systems) although there are many more. We

have chosen to work with these three classes of EAs.
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2.1.1 Genetic Algorithms

Genetic Algorithms [28][29][20][33][30] constitute a population-based class of heuristic algo-

rithms that are used extensively for search problems. This class of algorithms includes genetic

operators such as crossover, mutation, and parent selection based on fitness, all of which are ideas

borrowed from evolutionary biology.

In order to use these ideas effectively in problem solving, it is necessary to translate a biological

individual into a representation amenable to computer operations. This can be done in many forms,

popular ones being using a bit string or a real-valued number. Another translation needed into the

search space is the notion of fitness1 which is usually chosen to be proportional to the value of the

function being optimized.

The populations of individuals searching the landscape vary over time due to one generation

giving birth to a new one using genetic operators. The entire set of individuals in a generation gets

replaced by the next generation of offspring. However, the use of an elitist algorithm is popular,

i.e., one or more of the best individuals are retained in the population by virtue of their high fitness.

In the simulations carried out in this dissertation, we retain the best individual. This process is used

to solve different kinds of search problems.

An overview of a GA is shown in Figure 2.1. We describe below some of the simulated bio-

logical processes (genetic operators) that are implemented in a GA.

Crossover

A crossover or recombination operator applied to two parents creates two new offspring individuals

each having different portions of its parents’ genes. In “one-point crossover”, if two parents are

represented as a chromosome each (i.e., a bit-string), and the point of crossover is determined to

be at a particular point, the first child will have the genes (bits) of the first chromosome (parent)

1Historically, the term “fitness” has had many different definitions starting from Charles Darwin’s work, On the
Origin of Species[17], and Herbert Spencer’s coining of the term “Survival of the fittest” [70] in his book Principles
of Biology. A variety of different definitions have been proposed since then as comprehensively summarized and
discussed in [6] and [55]. However, the broadly accepted meaning of the term is an organism’s ability to survive and
reproduce in its environment.
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Fig. 2.1: Optimization performed by Genetic Algorithms
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Fig. 2.2: Genetic Algorithm – One-point crossover operator

before the crossover point, and the genes of the second chromosome after the crossover point. The

reverse applies to the second child, viz., it will have the genes (bits) of the second chromosome

(parent) before the crossover point, and the genes of the first chromosome after the crossover

point. This is illustrated with an example in Figure 2.2. In this figure, the two parents have 8-bit

chromosomes, and they give birth to two children, both of whom have 8-bit chromosomes as well.

Other crossover operators have also been proposed in the literature, e.g., two-point crossover and

uniform crossover.

If the parents are represented as real-valued numbers, then an arithmetic recombination opera-

tion is often used, and the children are formed by linearly combining components of their parents.

So, if the parents areX and Y , and the recombination (weighting) parameter is α, then the resulting

children are shown in Equation 2.1.

Child 1: αX + (1− α)Y ;

Child 2: (1− α)X + αY ; (2.1)
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Fig. 2.3: Genetic Algorithm - Mutation operator

Mutation

A mutation operator modifies a chromosome by altering it slightly, typically as little as one bit.

For a bit-string representation, if the kth bit undergoes mutation, it means that the bit is toggled.

This is also depicted pictorially in Figure 2.3. In this figure, the parent has an 8-bit chromosome,

and gives birth to one child, which has an 8-bit chromosome as well.

If the parents are represented as real-valued numbers, then the magnitude of the mutation can

be determined in many ways, a common one being proportional to the standard deviation, σ, of the

Gaussian distribution. So, if the parent is denoted by X , and the mutation parameter is β, then the

resulting child, C is shown in Equation 2.2.

C = X ± βσ (2.2)

If the parent is a vector of real values, this mutation operation occurs independently on each

component of the vector in a GA.2

2Evolution Strategies use more sophisticated approaches that adapt the mutation rates, perhaps basing these on the
learned relationships between different components of the vectors used for representation.
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Parent Selection

“Fitness” is usually identified with a measurable estimate of solution quality.3 Parent selection is

based on fitness. A roulette wheel selection process may be used, where the probability of choosing

a parent is proportional to its fitness. For any individual parent Xi,

P (Xi is chosen as a parent) ∝ Fitness(Xi), ∀Xi ∈ {Mating Pool} (2.3)

A parent can be chosen multiple times in a generation, in which case it contributes its genes

to many children. The idea is that if a parent is of better quality than others in the population,

it is desirable to try and improve upon it by using its genes as many times as possible, while not

sacrificing diversity – the lesser fit individuals are also given a chance, albeit a smaller chance.

The practical application of GAs to new and difficult problems is an art requiring considerable

empirical experimentation. In particular, an important obstacle is that populations may “converge”

to suboptimal solutions, where convergence refers to the fact that most individuals in the population

have become very similar, so that evolutionary operators are unable to explore new regions of the

search space. Subsequent execution of the GA for additional generations is no longer helpful,

and merely wastes computational effort. It would be best, at that point, to restart the GA with a

new set of individuals, perhaps merged with some of the better individuals from the most recent

generations.

Exploration vs. Exploitation

Two terms that are very common in EA terminology are exploration and exploitation. The term

exploration refers to identifying (previously unexplored) regions of interest without attempting to

find the regional best in any of the subspaces. Exploitation, however, is the fine-tuning of the

search after exploration has identified a subspace of interest which is likely to contain an optimum,

3In minimization problems, a high fitness implies a low function value. In order to avoid this confusion, we will
refer to this term as “function value” in our experiments as far as possible, since our experiments are mostly tested on
minimization problems.
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i.e., searching the neighborhoods.

The benefit of exploration is that new regions are visited, but it does not emphasize the improve-

ment of solution quality. Exploitation is the exact opposite in that it focuses only on improving the

result of a prior search by examining its neighborhoods, but not other spaces. Considerable work

has been done in analyzing the balance between exploration and exploitation and their tradeoffs,

summarized in a survey [16].

2.1.2 Particle Swarm Optimization

The idea of Particle Swarms was introduced by Kennedy, Eberhart and Shi [36][24][65][66]. It was

initially designed to represent movements of individuals, such as a flock of geese, a colony of bees,

a school of fish, and so on. When used to perform optimization tasks, several PSO models began

to be developed, summarized in [58]. Figure 2.4 depicts a basic Particle Swarm Optimization

algorithm structure. An implementation of the basic PSO is given in [13].

Unlike a GA, the next generation of individuals is determined by the position and velocity of

the individuals and the corresponding position of the global best individual, which is the individual

with the highest fitness, i.e., lowest function value. The term “generation” requires some clarifi-

cation here – it is not a new set of individuals as in the case of a GA, but just an updated position

and velocity vector of the same individuals from the previous time instant. In other words, it is an

iteration, but not quite a generation in a GA sense.

As in a flock of birds, let us represent each individual as having position and velocity vectors

< Xi, Vi >, each of which has D components (dimensions). So, the individual components can be

represented as:

Xi = (xi1, xi2, . . . , xiD)

Vi = (vi1, vi2, . . . , viD) (2.4)
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Fig. 2.4: Particle Swarm Optimization Flowchart
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and, the best previous position of any particle is represented as:

Pi = (pi1, pi2, . . . , piD) (2.5)

Further, let us represent the global best individual index by g.

Using the above system representation, the velocity and position of a particle in each dimension

d ∈ D are manipulated as follows [65][66]:

vid ← wvid + c1r1(pid − xid) + c2r2(pgd − xid) (2.6)

xid ← xid + vid (2.7)

where w, c1, c2 are values chosen by the practitioner and r1, r2 are values chosen from the

uniform distribution over [0, 1], that vary in each iteration.

In Equation 2.6, there are three main components:

• Inertial: In the first term (wvid), vid is proportional to the velocity at the previous iteration

which is responsible for playing a significant role in determining the particle’s position at

the next time instant. The term w is termed the “inertia weight” and is typically chosen from

the range [0.9, 1.2].

• Cognitive: The second term c1r1(pid− xid) represents the particle’s own “memory”. Hence,

it is dependent on particle i’s best known position pid.

• Social: The third term c2r2(pgd − xid) represents the particle’s bias based on the global best

found so far. This is explained by its dependency on the term pgd which is the global best.

Frequently used values of the coefficients c1 and c2 are around 2, and the selection of these

parameter values has been analyzed in detail to study the stability of swarms [14].

The random values r1 and r2 introduce the stochastic nature of dependencies on the cognitive

and social components respectively. Since these vary in each iteration, there is a dynamic balance
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of the weights assigned to the cognitive and social components, or a balance between exploration

and exploitation, without ignoring the past observed values (due to the presence of the inertial

component).

2.1.3 Learning Classifier Systems

Learning Classifier Systems (LCSs), originally proposed by Holland [32], use supervised and re-

inforcement learning concepts. In an LCS, a population of rules (also referred to as individuals or

classifiers) evolves on the basis of intermittent stimuli and reinforcements from the environment,

and learns which responses are appropriate when an input stimulus is presented to the system.

Simultaneously evolving multiple rules can be more efficient and effective than the alternative

of sequentially searching for the best rule that handles data not satisfactorily handled by earlier

rules. Furthermore, the evolutionary paradigm permits dynamic learning, in contexts where the

environment itself changes, or wherein massive amounts of data arrive in real time and must be

processed rapidly.

Rules in an LCS receive external inputs and generate actions or outputs applied to the envi-

ronment. The results of these actions can then be evaluated, generating the feedback necessary to

apply selection pressure to the rules. If firing some rules results in actions that enable the system to

do well in the environment, then these rules are considered desirable, and persist in the system. On

the other hand, if rule-firing leads to poor performance, then such rules are likely to disappear from

the population, or be applied with considerably reduced frequency in the future. This approach is

implemented by associating each rule with a “strength” that indicates its relative quality.

The earliest such system applied to a practical problem was Goldberg’s LCS [28] to control

the flow of natural gas through a pipeline, detecting leaks and optimizing profit in the face of

seasonal and daily fluctuations in demand. LCSs have since been used in a wide variety of problem

types such as in data mining, scheduling and optimization. Stochastic mutation and recombination

operators based on trial and error (as opposed to a deterministic algorithm) have proven to be

successful very often for complex problems.
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At a high level, an LCS contains three components:

1. Performance System: This executes rules, possibly in parallel. Rule-firing may result in

direct interaction with the environment, or the generation of “messages” (in the working

memory of the system) that lead to the firing of other rules.

A rule can be depicted as follows:

Rule→ Condition : Action

2. Credit Assignment: This mechanism evaluates rules and adjusts their strengths depending

on system performance. Algorithms such as the “bucket-brigade” [77][29] are frequently

used for this purpose.

3. Rule Discovery System: Evolutionary algorithms are used, using mutation and recombina-

tion operators along with selection mechanisms.

Performance can be improved in some problems by grouping together rules in some manner,

just as modularization is helpful with traditional rule-based systems. Grouping can reflect inter-

dependencies and close connections between rules. Subsets of rules may be collectively evaluated

and rewarded or punished.

Two main varieties of LCSs have been proposed by researchers:

• In “Pittsburgh-style” classifier systems [68], a complete solution, i.e., a collection of many

rules, is evaluated together. Rather than a single rule or small group of rules, the entire set is

subjected to reward or punishment.

• “Michigan-style” systems (including Holland’s LCS), in contrast, reward or penalize indi-

vidual rules.

Most classifier systems use a simple language in which the right hand side is a bit string indi-

cating which actions are to occur, and the left hand side is a string with elements drawn from the
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alphabet 1, 0, #, where the “#” symbol represents don’t-care cases taking either 0 or 1 as possible

values, when the value of the corresponding attribute is irrelevant to the rule.

Each position in the left-hand-side of the rule represents a specific condition, and each position

in the right-hand-side corresponds to a specific action or hypothesis. For example, the rule

0#1#110#︸ ︷︷ ︸
Condition

: 10︸︷︷︸
Action

is interpreted to mean that if the first and seventh conditions are false, and the third, fifth and sixth

conditions are true, then the first corresponding action (from the right-hand-side of the rule) is to

occur, but not the second.

The right hand side of each rule is treated as identifying which “messages” are posted onto a

“blackboard” data structure when a rule is fired. Posting messages is analogous to asserting facts

in the working memory of a rule-based system. These messages may match with the left hand

side of another rule, leading to its activation and possible firing. However, this does not occur in

stimulus-response classifier systems, in which every rule interacts directly with the environment.

Holland’s formulation allows for the left hand side of a rule to contain any number of ternary

strings, and also allows negation [33]. For instance, the rule

0#1#

#0#0

¬11##


: 10

can be fired if two messages matching 0#1# and ##00 are present, and if there is no message

matching 11##.

These rules keep evolving through the generations and the performance of rule sets is expected

to improve with time.

XCS (X-Classifier System) [79][8][9][10] is an implementation of a Learning Classifier System

in which the fitness of a classifier is based on the payoff prediction accuracy, i.e., the accuracy
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Fig. 2.5: The XCS model proposed by Stewart Wilson [79]

in making a decision, and a Genetic Algorithm is executed on the action sets. Reinforcement

learning here is similar to Q-learning [75]. In this payoff-prediction model, the overall payoff is a

combination of the expected reward and payoff prediction of the best possible action. As opposed

to ZCS [78], it is an accuracy based algorithm, which means that the portion of the roulette-wheel

assigned to each classifier in this algorithm is proportional to the fitness measure obtained from its

accuracy (and not strength).

We use the XCS algorithm as the basis for our work – the algorithm and results shown in later

sections are based on implementations that use this framework. Figure 2.5 shows the structure of

Stewart Wilson’s XCS [79]. Other variations of LCSs are summarized in [72].

The GA running at the heart of the XCS is intended to evolve “maximally general, maximally

accurate” rules [11][44]. To achieve high generality of rules, we would like to have as many #s as

possible, without sacrificing accuracy. For instance, a rule #### : 1 is very general, but since

the four #s cover all possible inputs, they will have a high error, unless the problem being solved

involves every data point belonging to class 1, no matter the input. On the other hand, a rule such
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as 1011 : 0 is likely to be very accurate, but is not general enough to cover any data point other

than 1011.

Prior to exploring networks of rules in LCSs, we had begun the study of relationships between

rules and classes in an XCS system [39][40][50]. We had also discussed interrelationships between

multiple rules, rule-sets and classes [41]. Although these were information theoretic studies based

on Shannon’s entropy and mutual information [63] between rules and classes, they paved the way

for a deeper study of relationships between rules in an LCS system.

2.2 Networks

The study of graphs and networks has been ongoing for a long time. However, the study of dynamic

networks has been exciting considerable interest in recent years, particularly in the social networks

context, mostly because of the success and popularity of many online social networks such as

Facebook, Twitter, and LinkedIn. A comprehensive introduction to Network Science is provided

by Newman [53].

Although the terms “graphs” and “networks” may be used interchangeably in many cases, a

graph is an abstract representation of a network. For instance, a user’s friends and social connectiv-

ities constitute a network, but their representation is a graph. Similarly, in our case, the population

that is performing an optimization is a network of individuals, but is represented as a graph.

Any graph consists of a set of vertices (or nodes), V, and a set of edges E. An edge between

two nodes represents some form of connection between them. The edge can be directed, implying

that there is an asymmetric relation between the nodes, or undirected, implying a symmetric one.

One example of a directed graph models the Twitter network where if a person A follows a person

B, it does not imply that B follows A; for example, a celebrity on Twitter may have many more

followers than he/she is following. In the case of an undirected graph, such as in Facebook, if

a person A is a friend of person B, it implies that B is also a friend of A. This establishes an

undirected edge between the nodes representing the two people.
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We briefly describe below some of the fundamental network terminologies, metrics and mea-

sures, based on [53]. The example values in the descriptions are based on the Dolphin network

[45]4. We also describe some of these measures in the context of a GA in Section 3.3.

The Dolphin network is shown in Figure 2.6. Each node is a dolphin, and each edge represents

an interaction between two dolphins. This graph was drawn using Wolfram’s Mathematica [80].

• Weighted Networks: Edges can be assigned a weight, if there is a need to represent more than

just the presence or absence of edges. This is typically a real number, and it can represent

various measures in different kinds of networks. For example, in the dolphin network, if

we wish to represent higher frequencies of interaction among one pair of dolphins when

compared with another, we can assign that edge a certain weight indicative of this difference

in interaction levels.

• Community: A community is a subgraph which is characterized by a tightly-knit structure.

Each node in a community is connected to many others within that community, and signifi-

cantly fewer edges between communities. A network is said to have a community structure

if it can be sub-divided into such sub-networks (with or without overlaps).

• Degree centrality: The degree of a node is the number of edges connected to it.5 Typically,

the most important nodes of a network are considered to be the nodes with the highest de-

grees. So, in our dolphin network example in Figure 2.7, the dolphins at the centers of the

communities have higher degrees (or degree centralities in social networks) than the periph-

eral ones.

• Adjacency Matrix: This is a two-dimensional matrix with vertices representing the rows

and columns and the (i, j)th entry representing the presence or absence of an edge between

vertices i and j. This matrix consists of 1s and 0s in case of an unweighted network, i.e.,

the presence or absence of an edge, and real values in the case of a weighted one, i.e., the
4This dataset is an undirected social network of statistically significant frequent associations between pairs of 62

bottlenose dolphins in a community living off Doubtful Sound, New Zealand [46].
5Directed networks have an in-degree and an out-degree.
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strength of the edge. Also, the matrix is symmetric across the principal diagonal if the

network is undirected, and asymmetric if directed.

• Community Detection: We wish to separate the network into groups of vertices, often non-

overlapping (although there could be instances of overlapping communities as well). How-

ever, no constraints exist on the number of groups or on the number of nodes that can form a

community. Several algorithms have been suggested to perform this grouping based on the

same concept of communities remains the same in them. One form of communitization is

shown in Figure 2.7. This is the same network as in Figure 2.6, except that the communities

have been separated. These are represented by the various grouped nodes with one color

per community, and numbered I through IV . It is important to note that the network is

not modified in any way, it is only rearranged to highlight distinct entities, or communities.

We notice that there are two large communities (Communities I and II), one medium sized

community (Community III), and a very small community consisting of just two nodes

(Community IV ).

• Components: If there exists a path from every node to every other node in a network, then

the network is said to be fully connected. Figure 2.6 is an example of a fully connected

network. However, if the network can be divided into two or more subgroups which have

no connections to one another, then they are referred to as components of the network. For

example, if in Figure 2.7, there existed only intra-community edges and no inter-community

edges, then each community would have been a component.

• Large Component: If the size of a network component grows in proportion to the number

of nodes in the network, it is called a “Giant Component” [53]. When the network is not

associated with a specific growth process, we refer to a component that contains a large

proportion (say 80− 90%) of the nodes in the network as a “large” component.

• Hypergraphs: In certain cases, it is important to represent relations between three or more

vertices at a time. Such relations are represented using “hyperedges”, and graphs containing
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such hyperedges are known as hypergraphs.

2.2.1 Networks in the context of EAs

Genetic Algorithms and other population-based evolutionary algorithms are rich sources of infor-

mation contained in the ever-changing generations and populations. The effects of genetic opera-

tors and other ideas borrowed from observing various biological species serve as models to study

the growth of a species from its infancy to maturity as a community or communities. Observing

that the natural behavior of most species in the biosphere is to form cohesive communities (or

networks) for survival and growth, we believe that a deeper understanding of such evolutionary

systems can be greatly enhanced by the science of networks.

Considering also that each generation of an evolving population contributes towards one snap-

shot of a network, we have, in effect, created a dynamic network with a simple biological evolution

system.

2.3 Related Work

We describe below some of the works that consider populations as more than just collections of

disconnected individuals.

• One of the earliest works exploring different subspaces in a GA proposes the concept of

crowding [19]. This is a specialization in steady state GAs where offspring are constrained

to replace similar parents.

• In multi-deme algorithms [57], islands of individuals are formed and breeding is strictly

local.

• Niching [47] involves the creation of sub-populations which explore different “niches” or

regions of interest. These sub-populations may be stable through the runs especially when

there are multiple global optima.
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• Panmictic GAs [3] – This paper summarizes different panmictic and island models explored

by researchers.

• Parallel GAs [12] – This approach involves the creation of isolated groups of individuals that

explore different subspaces in parallel. Strategies are formulated to govern the occasional

migration of individuals between islands.

All of these approaches (formulated in the works cited above) consider subsets amongst the

population in different ways. Also, a few articles have been written focusing on related topics,

such as the following:

• Clusters in an evolutionary system which focus on traditional clustering techniques [52].

• Adaptive crossover and mutation rates based on clusters [81], which suggests that crossover

and mutation should not have a constant rate throughout the run.

• Formation of stable clusters, particularly in swarms [2], and communities in evolving net-

works [56].

• Creating rule clusters in an XCS system to specialize rule-sets and to merge rules which

overlap, and the removal of redundant rules [64], and attribute co-occurrence networks in

LCSs [73].

• Another alternate form of rule specialization involves the study of the development of spe-

cialized rule-sets from a mutual information viewpoint [69]. Here, interaction between dif-

ferent rules is defined by the mutual information between them.

Other related works include the study of graphs with edge weights denoting how often indi-

viduals place children in adjacent vertices, also discussing the balance of drift and selection being

affected by graphs [43]. Networks based on shared parents at multiple levels are studied in [76],

addressing genetic drift and the unification of parent selection processes.
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By contrast, our focus is on examining relationships between individuals, interrelationships

between individuals and different properties of the EA that we can gather from these networks,

and possible ways of using this information to enhance them. We ask what happens over time

to the structural properties of networks representing evolving populations, and then treat these

networks as a useful characterization of the EA, in order to study potential improvements.

In other words, we wish to first run an EA without altering it, and then observe the dynamics

from the point of view of the evolving networks. We attempt to study the behavior of the EA

without looking at the EA parameters. We then draw parallels between EA measures and network

measures and show evidence of the underlying inter-relationships between individuals. We also

use information obtained from such evolving networks – again, without using information from

the EA – to take decisions about altering the runs of the EA.

Typically, reseeding criteria are based on:

• an a priori bound on the number of fitness evaluations,

• values of the best or average function value, or

• increments in fitness values below a set threshold.

Various other stopping criteria have been proposed in [4], [31], [61] and [27]. Also, various

parent selection mechanisms, cataclysmic mutation, and other approaches are described in [26].

Work in [59] focuses on increasing search around points of good fitness values by sampling the

search space around the most fit points.

However, the focus of our work is not to modify the GA parameters or set different thresholds

for them, but to:

• use the evolving networks as a means to identify potential convergence,

• decide on time instants to reseed,

• identify regions of interest, and
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• identify points likely to be better candidates (higher fitness), based on changes in popula-

tions.

The focus is mainly on functions which have many potential basins of attraction, i.e., functions

prone to premature convergence. We demonstrate the role that networks (or interactions between

individuals) play here.

This work explores in detail the inherent relationships between individuals, their behavior when

communities or components form, and the support that networks provide in improving the search

features of an evolutionary algorithm. Emphasis is not just on the positions of the optimum points,

but the paths that the individuals take to reach them.

We have now introduced the essential background material on different types of EAs and net-

works, and described some of the related work. In the next chapter, we describe one way of

defining a network that models an EA, and study the evolution of network and EA parameters.
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CHAPTER 3

DISTANCE-BASED NETWORK MEASURES

In this chapter we begin by defining the Euclidean Network, describe various network metrics and

measures under study in the context of an EA, study the evolution of a large component, and list a

selection of benchmark optimization problems with different characteristics.

3.1 The Network

We define a Euclidean Network G =< V,E > as follows:

• V: All n individuals in the population are vertices or nodes.

• E: Two individuals have an edge between them if the Euclidean distance between them

is less than the “Edge Threshold” value (δ). In our simulation, this value is chosen to be

proportional to the length of the body-diagonal of the search space, since the “closeness” of

two points is relative to the space being searched.

We discuss GAs and PSOs in the context of the above definition of a Euclidean network. We

also define and analyze another form of network for GAs based on ancestral information. Fi-

nally, we define a different network for LCSs as the individuals are ternary strings, and we define

similarities between individuals based on comparing individual bit positions.
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In Euclidean networks, we look for the formation of a large component. Through this, we find

that a majority of high fitness individuals often lead the component down a somewhat deterministic

path of high exploitation, leading eventually to convergence.1

The identification of the largest component is done efficiently using Tarjan’s algorithm [71].

The complexity of this algorithm is O(V + E) where V is the number of nodes, and E is the

number of edges.

3.2 Evolution of a large component

Snapshots of the network and component formation along with the emergence of a large component

are shown in Figures 3.1a-3.1f, for a real-coded GA, with population size = 30, two-point crossover

rate = 0.8, adaptive feasible mutation rate = 0.2, and roulette selection, generated using the GA

Toolbox in MathWorks’s MATLAB [48]. Edge lengths shown are longer than typical values for

clarity of demonstration. The background is the contour plot2 of Rastrigin’s function [60], having

global minimum at (0,0), and the networks are superimposed on it. Solid (red) lines indicate

connections within the largest component, dotted (black) lines are used within smaller components.

Shaded (green) circles are the individuals with highest centrality. Squares denote other individuals.

The individuals in these components, especially those in the large component, demonstrate a

form of “democracy” in making GA decisions. A large number of individuals “voting” that an

optimum solution lies in their vicinity will help in many ways, as shown in later chapters.

3.3 Network measures under study

We list below some network measures under study. In Figures 3.2a-3.2h, it is important to note the

strong correlations between the evolution of network measures and GA properties. These correla-

1The emergence of this component and its collapse leads to a comparison with “Exploration vs. Exploitation” as
discussed in Section 2.1.1. This is because formation of the component signifies the exploration phase, and its collapse
corresponds to exploitation.

2The dark (blue) contours are lines joining points having lower function values and the function values increase as
the contour colors change towards a lighter shade (red).
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(a) Exploratory phase – We see a few components, one larger than the rest,
and a few unconnected individuals.

(b) A few generations later – This illustrates the kinds of components that
can be formed. They are not clusters in the typical sense.

Fig. 3.1: Different phases in a GA optimization run
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(c) Midway – We see that a large component has formed. Smaller compo-
nents and unconnected individuals can also be seen.

(d) Exploitation Phase, late in evolution – Only one large component is seen
(and the convex hull has become much smaller), but the algorithm has not
converged.

Fig. 3.1: (...contd.) Different phases in a GA optimization run
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(e) Almost converged

(f) Converged

Fig. 3.1: (...contd.) Different phases in a GA optimization run
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tions highlight the main point of this study, viz., since there are many network metrics that correlate

well with GA evolution, we can harness these to understand the dynamics of relationships between

populations of a GA better and hence detect convergence early, and improve GA performance (as

discussed in later chapters).

(a) Number of nodes in the largest component: Since multiple components are formed, our main

focus is on the component which has the largest number of nodes. It steadily increases and

reaches the population size while the GA approaches convergence.

(b) Average Degree and Component Average Degree: We now consider the average degree of all

nodes in the population and the average degree of all nodes in the largest component. Both

these measures grow steadily, and convergence is implied when the largest component degree

ceases to grow.

(c) Volume of component: The convex hull (hyper) volume of the component. The definition of a

convex hull is as per Cormen [15]:

The convex hull of a set Q of points is the smallest convex polyhedron P such that each point

in Q is either on the boundary of P or in its interior..

Many algorithms have been proposed to compute the hypervolume of a hull. Figure 3.2b

illustrates (for a network representing a GA) how a hull area rises initially and then shrinks.

Algorithm 1 shows how this measure can be used.

(d) Number of edges: The total number of edges in the whole network. As seen in Figure 3.2c,

this measure has small values in the early stages of EA evolution, incremental jumps in the

middle, and finally a large jump near EA convergence, to remain essentially constant from

there onwards.

(e) Number of triangles: This measure counts the number of instances of nodes A, B, and C

such that all three nodes are within the edge threshold distance δ, i.e., all three have edges
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connecting each other. Its evolution is illustrated in Figure 3.2d, and has characteristics similar

to edge count.

(f) Objective function values of nodes with highest degree: There could be multiple nodes with

maximal degree and their objective function values are averaged and plotted in Figure 3.2e.

This has a plot similar to the mean or best function value.

(g) Centroidal function values: Centroidal function value is the value of the objective function at

the centroid of the largest component. The centroid, G, for a set of k points in Rn is defined as

follows:

G =
x1 + x2 + · · ·+ xk

k
(3.1)

where each xi is an n-dimensional vector.

We observe from Figure 3.2g that there are some generations where this value is lower than

the best function value, i.e.

f(G) ≥ f(xi), i = 1, 2, . . . , n. (3.2)

The plots in Figure 3.2a-3.2h are for Rastrigin’s function [60], and similar results were obtained

for many other test functions as well: Ackley’s path function [1], DeJong’s first function [19],

Easom’s function [23] and Schwefel’s function [62]. The plots for these functions also have similar

characteristics as observed in Rastrigin’s function, but we have shown only the plots of one function

(Rastrigin’s) for demonstration.

From the plots of network metrics over time, we make a few interesting observations. In Figure

3.2b, the area of the largest component (convex hull) typically is very low in the beginning and rises

slowly during the exploratory phase. We then notice a steep rise when a large component forms,

and then a fall as if the convex hull has “collapsed under its own gravity”. In Figure 3.2g, we see

that there are a few instances where the centroid is a better point than all the other individuals in
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(a) The number of individuals in the largest component

(b) Convex Hull area of the largest component

Fig. 3.2: Network Metric/Measure Plots for a GA run
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(c) Edge count – As the number approaches the maximum, we see cliques forming.

(d) Number of triangles formed – As in the previous figure, when this number approaches the
maximum, again we see cliques forming.

Fig. 3.2: (...contd.) Network Metric/Measure Plots for a GA run
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(e) Average of nodes with highest degree

(f) Comparison: Average Degree of (i) All individuals (ii) Only those in the largest component –
Typically the average degree in the largest component will be higher.

Fig. 3.2: (...contd.) Network Metric/Measure Plots for a GA run
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(g) Comparison: Best Function Value and Centroidal Function Value

(h) Best and Mean function values – Included to compare other network measures with the GA.

Fig. 3.2: (...contd.) Network Metric/Measure Plots for a GA run
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the population. This is likely because points are converging from different parts of the landscape,

which indicates that there is a region of interest at the center of these points. Assuming that the

surface is not very randomly structured (in which case, a random search could work equally well),

it is likely that there are some points in the center of these converging individuals which have

better fitness than the individuals explored so far. We use these observations to develop algorithms

to understand better and enhance the EA, in the next two chapters.

3.4 Test problems - Optimization

We address network models of EAs, applied to minimization problems. Mathematically, a mini-

mization problem in the real space is defined as:

For any function,

f : Rn → R (3.3)

we wish to find the vector:

x∗ ∈ Rn such that f(x∗) ≤ x, ∀x ∈ Rn (3.4)

To this end, we use the following widely used benchmark test problems. Some special features

of each problem are also listed and contour plots (for two-variable versions) are also shown in

Figures 3.3a-3.3e, in order to visualize the main problems optimized throughout this dissertation.

(All are minimization problems with a global minimum of 0.)

1. Rastrigin’s Function [60]: This is a widely used multimodal function, having multiple local

minima uniformly distributed.

f(x) = 10n+
n∑

i=1

(x2i − 10 cos(2πxi)), xi ∈ [−5.12, 5.12] (3.5)
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(a) Rastrigin’s function

(b) Ackley’s function

Fig. 3.3: Contour plots of test functions
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(c) DeJong’s First function

(d) Easom’s function

Fig. 3.3: (...contd.) Contour plots of test functions
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(e) Schwefel’s function

Fig. 3.3: (...contd.) Contour plots of test functions
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2. Ackley’s Path Function [1]: This is another widely used multimodal test function.

f(x) = 20 + e− 20 exp

(
−0.2

√∑n
i=1 x

2
i

n

)
− exp

(∑n
i=1 cos(2πxi)

n

)
xi ∈ [−32.768, 32.768]

(3.6)

3. DeJong’s first function [19]: This test problem is a simple unimodal sphere like function.

f(x) =
n∑

i=1

x2i xi ∈ [−5.12, 5.12] (3.7)

4. Easom’s Function [23]: This function is characterized by a single narrow mode.

f(x) = 1−
n∏

i=1

(cos(xi))exp

(
−

n∑
i=1

(xi − π)2

)
, xi ∈ [−100, 100] (3.8)

5. Schwefel’s Function [62]: This is well-known to be a tough problem, and is the toughest test

problem of the five. It is a multimodal function with geographically distant local minima.

f(x) =
n∑

i=1

(
−xisin(

√
|xi|
)

xi ∈ [−500, 500] (3.9)

3.5 Summary

In summary, we have addressed five topics in this chapter:

1. We have shown a way to represent the EA population using a network representation of the

population. We have demonstrated one way to create this network, i.e., based on Euclidean

distances. In later chapters, we discuss two other kinds of networks, one based on ancestry

and another on bitwise differences in an LCS. However, we emphasize that these are only a

few examples of network formation, and there could be many more.
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2. We have related the development of a large component to convergence. While the example

shown in Figures 3.1a-3.1f serves as an observation of an interesting pattern, we will show

similar results on several test problems (over many runs), in the next two chapters.

3. We then observed a pattern in how the size of the large component changes with time, and

used it to predict imminent convergence. We will formalize an algorithm in the next chapter

using this observation.

4. We have also identified several network measures are strongly correlated with convergence

in the EA, and examining changes in these with time. We use some of these measures in the

later chapters to develop different algorithms.

5. Finally, we described the benchmark test problems on which the EAs are tested. These are

widely used by researchers to test EA algorithms because of the special characteristics of

these problems. The set of problems was chosen such that they represent a wide variety of

characteristics, such as a simple unimodal problem, a narrow unimodal problem, multimodal

problems, and a multimodal problem with traps.

In the next three chapters, we describe experiments with various EAs, by defining and studying

the evolution of different kinds of networks of populations. The first set of experiments involves

constructing Euclidean networks in a GA, and we demonstrate that similar networks can be ex-

tended to a PSO as well.
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CHAPTER 4

EUCLIDEAN NETWORKS IN GENETIC

ALGORITHMS AND PARTICLE SWARM

OPTIMIZATION

In this chapter, we use the emergence of large components in a network to perform early detection

of convergence in an EA. Whereas traditionally used convergence criteria in GAs remain somewhat

strict since the criteria are based on properties of the best point or the mean of the entire population

as a whole, the corresponding criteria in the networks domain are relaxed, i.e., the formation of

a large component is observed more easily than measuring minute changes in best/mean function

values. This is because an additional piece of information is available, viz., movements of groups

of individuals towards a basin of attraction, when compared with the other typically used factors

such as best and mean function values.

PSOs have different dynamics than GAs, with particles that possess position and velocity com-

ponents. However, with respect to our network formation, they are similar to GAs, i.e., they have

a global best individual acting as an attractor, i.e., influencing the movement of other individuals

in the population. In this chapter, we explore the utility of Euclidean networks in both GAs as well

as PSOs.
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4.1 GAs - Largest Component and Clique Formation

In past work, the convergence based termination criteria of a GA depend on values of the best ob-

jective function value and average function value. In some instances, the criteria depends on some

combination of the two, e.g., the function value has changed less than a predetermined thresh-

old value. It could also be an upper limit on the number of generations. We propose below two

algorithms, based on network metrics to detect convergence and hence terminate the GA.

4.1.1 Convergence and its relation to the convex hull volume

The pattern in the rise and fall of the convex hull area, as seen in Figure 3.2b, is used to formalize

the following observation:

Observation 1 Initially there is no significant large component. As a large component emerges,

the convex hull of this component grows. After the hull swells, it shrinks in size to a much smaller

volume (barring minor size fluctuations) and reaches a very small fraction of its previous highest

peak. We hypothesize that as the hull shrinks while still retaining the majority of the individuals,

the GA converges, and cannot be expected to do much better unless the population is significantly

perturbed.

The above observation leads us to the following algorithm.

Algorithm 1 Convergence detection based on the convex hull of the largest component
1: Initialize a population of n individuals;
2: α takes values in [0.6, 0.9], ε takes values in [0.005, 0.03];
3: repeat Perform recombinations and mutations to obtain next generation of GA
4: until number of individuals in the largest component, ≥ α.n

(This indicates that a large component has emerged.)
5: γ ← Greatest Hull Area (observed so far) of the largest component
6: repeat Perform recombinations and mutations to obtain next generation of GA
7: until hull area ≤ ε.γ, and number of individuals in the largest component ≥ α.n

(This indicates that the convex hull has collapsed and further iterations are not needed.)

In Algorithm 1, α indicates the fraction of population which must constitute the largest compo-

nent in order to distinguish it from other “big” components that occur by chance. ε is the fraction
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of the largest hull area obtained to which the largest component should collapse in order to detect

convergence. Hence, once the hull area goes from γ to ε.γ, we recommend that the algorithm be

stopped, provided the number of individuals in the component,

n∗ ≥ α.n (4.1)

Most standard GA crossovers are convex operators [51]. This observation of convexity is con-

sistent with our view that a component forms and then shrinks, and this notion has been exploited

in the above algorithm. The results are in Table 4.1. The main observation in this table is that most

∆ (the difference between the function value at the generation recommended by the algorithm for

stopping and the value obtained if the GA had continued until convergence) values are very close

to 0 indicating very little loss in solution quality, even if the run is stopped very early.

Another alternative approach to convergence detection is triangle counting. Triangle counting

also tends to be a good indicator of convergence especially since convergence implies that there is

a large number of individuals connected to each other, which in turn leads to formation of cliques

based on our definition of edges. We now make an observation regarding triangle formation.

Observation 2 The count of the number of triangles has a positive trend. Initially, it remains well

below the value of the total possible number of triangles, viz.,
(
n
3

)
,where n is the total population

size, and then the count increases suddenly and is comparable to
(
n
3

)
.

This phenomenon is seen in Figure 3.2d, and Table 4.1 shows an example of the results indi-

cating that a large number of triangles are formed. An algorithm utilizing this observation and the

formation of cliques is described in Section 4.2.1.

Time complexity: For the classical GA, on average, a run of the GA on Rastrigin’s function

(population size of 30, 200 generations) took 0.61 seconds to run. Whereas, using the proposed

algorithm, stopping at Generation 48 , including computation of network metrics, took only 0.19

seconds to run. Although there is a slight overhead time per generation, stopping early clearly

saves a lot of computation time without sacrificing quality (note that ∆, the difference between the
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function value at this stopped generation and the value obtained if we had continued the GA until

convergence occurred, is close to 0). This implies that the earlier termination of the GA is indeed

acceptable.

Experimentally, we also found that the values of “Gen” do not differ much for α ∈ [0.6, 0.9] or

ε ∈ [0.005, 0.03], they all lie within 1 or 2 generations of each other. Smaller values of α typically

yield components that are too small to indicate convergence, and large values of ε may stop the

algorithm too early. Further, we observed that it is best to keep the edge threshold (δ) low, e.g.

δ ≤ PopSize−1 (4.2)

As δ increases, we again run the risk of stopping the algorithm too early, which may yield

unacceptable values of ∆. However, we observed that as long as δ satisfies Equation 4.2, the

algorithm is not very sensitive to fluctuations in the value of δ. As δ gets lower, the accuracy gets

higher, i.e., ∆ reaches even smaller values, although it would mean that the recommended stopping

generation also increases correspondingly.

Although the approach described in this algorithm does not always yield as good a result as

when the GA is allowed to converge fully, our focus is on identifying a small space in which the

optimum solution lies and an “acceptable solution” is attained. If further refinement is required

based on the application, local search techniques (such as hill climbing) may suffice since the

global optimum zone has been identified with reasonable confidence.

In certain problems where premature convergence is likely (e.g., due to local and global optima

being distant), it can be useful to restart GAs. However, waiting until the algorithm has converged

can prove computationally expensive. An implementation of this idea, using early identification of

premature convergence to perform multiple GA restarts, is shown in Section 4.5.
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Table 4.2: Detection of Convergence in a GA – Various dimensions – Population Size 50

Dim Function Gen ∆
3 Rastrigin 38.733 0.001748
3 Ackley 30.667 0.001433
3 DeJong1 41.6 3.37E-06
3 Easom 31.433 1.80E-05
3 Schwefel 103.03 0.009694
5 Rastrigin 51.2 0.027936
5 Ackley 38.067 0.009637
5 DeJong1 61.1 0.000312
5 Easom 55.567 0.000121
5 Schwefel 145.23 5.1762
7 Rastrigin 67.4 0.31953
7 Ackley 44.533 0.062387
7 DeJong1 74.7 0.000871
7 Easom 59.867 0
7 Schwefel 152.93 24.723

4.2 GAs - Identification of Imminent Convergence – Mul-

tiple Dimensions

In Tables 4.2-4.4, we list the findings of imminent convergence as per Algorithm 1 for different

values of selected algorithm parameters. Table 4.5 and Figure 4.1 summarize the same for all

dimensions and parameters. We work with the same set of five benchmark problems – Rastrigin’s

function [60], Ackley’s path function [1], DeJong’s first function [19], Easom’s function [23] and

Schwefel’s function [62]. Here, we examine problem instances of higher dimensionality. The gist

of the algorithm is that we identify when a component forms with a majority of the individuals,

and then proceed to observe the convex hull collapse due to convex crossover behavior [51].

Tables 4.2-4.4 present results for population sizes in the range (50−150), different dimensions

(3 − 7) (number of variables in the optimization problem), and for Distance Threshold value of

δ = 0.5 (percent of the body diagonal of the search space). In each case, the generation at which

the collapse of the convex hull described before and the cost of stopping early, denoted by ∆, are

listed. By cost, we mean the improvement that we end up sacrificing if we stopped at the prescribed
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Table 4.3: Detection of Convergence in a GA – Various dimensions – Population Size 100

Dim Function Gen ∆
3 Rastrigin 37.533 0.000392
3 Ackley 31.033 0.0013
3 DeJong1 40.367 1.94E-06
3 Easom 32.4 1.17E-05
3 Schwefel 80.967 6.52E-05
5 Rastrigin 53.033 0.008336
5 Ackley 40.233 0.004607
5 DeJong1 51.933 9.59E-05
5 Easom 60.5 6.53E-05
5 Schwefel 103.4 0.002297
7 Rastrigin 64.467 0.10989
7 Ackley 43.167 0.02399
7 DeJong1 66.7 0.000252
7 Easom 98.267 0
7 Schwefel 142.83 0.16308

Table 4.4: Detection of Convergence in a GA – Various dimensions – Population Size 150

Dim Function Gen ∆
3 Rastrigin 37.5 0.000165
3 Ackley 29.467 0.00141
3 DeJong1 36.467 1.13E-05
3 Easom 39.167 9.00E-06
3 Schwefel 68.3 3.57E-05
5 Rastrigin 48.433 0.04186
5 Ackley 40.333 0.005203
5 DeJong1 55.5 3.61E-05
5 Easom 62.167 3.43E-05
5 Schwefel 97 0.000964
7 Rastrigin 62.733 0.021634
7 Ackley 42.1 0.01363
7 DeJong1 64.6 0.000187
7 Easom 101.93 0
7 Schwefel 121.33 0.023488
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Table 4.5: Euclidean Networks in a GA – Frequency Distribution of ∆ – Over all parameters:
Dimensions 3− 7, Population sizes 50− 150, Distance Threshold, δ = 0.01, 0.05, 0.1

Bins Frequency Cumulative %
1E-07 14 3.73%

0.00001 44 15.47%
0.001 120 47.47%

0.1 160 90.13%
1 21 95.73%

10 12 98.93%
More 4 100.00%

Fig. 4.1: Euclidean Networks in a GA – Frequency Distribution of ∆ – Over all parameters
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generation as opposed to continuing until all convergence criteria are met. This was also tested for

a few other population sizes, dimensions and distance threshold values as well, but only a summary

is listed here.

So for instance, row 1 of Table 4.2 should be interpreted as follows: “For population size

of 50, in the 3-variable version of Rastrigin’s function, stopping at Generation 39 as opposed to

continuing on to Generation 200 (or the minimum function value improvement threshold), yields a

function value that is 0.001748 more than the converged value, when averaged over 30 runs.” This,

and other rows in the tables provide evidence that exploitation is the dominant process in the later

generations of the algorithm. We hypothesize that we do not need this degree of exploitation and

the algorithm in Section 4.5 describes a process that continues to explore with some individuals

(i.e., some fraction of the population), while leaving the remainder of the population to exploit.

4.2.1 GA convergence and its relation to clique formation

The growth of the number of edges and the number of triangles as seen in Figures 3.2c and 3.2d

lead us to the following observation:

Observation 3 The number of connected edges or triangles grows from zero (or close to zero) to

the maximum possible, i.e., it grows from a completely disconnected graph structure and devel-

ops into a clique towards convergence. Once a clique is formed, the region of interest has been

identified and the algorithm cannot be expected to do much better.

This observation leads us to Algorithm 2.

Algorithm 2 Convergence based on clique formation
1: Initialize the population;
2: Edge threshold, δ takes values < PopSize−1;
3: repeat Perform recombinations and mutations to obtain next generation of GA
4: until A complete clique containing PopSize nodes is formed.

The results of Algorithm 2 are tabulated below (in Table 4.6). Here δ = 0.001 which is much

less than all the population sizes used for experimentation. However, we do not dwell on this
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Table 4.6: Results of running algorithm 2 (Average of 30 runs). (i) Pop – Population Size (ii) Gen
– Generation at which the algorithm is stopped according to the algorithm, i.e., the first occurrence
of a clique (iii) ∆ – The difference between the function value at this stopped generation and the
value obtained if we had continued the GA until convergence occurred.

Rastrigin Ackley Dejong Easom Schwefel
Pop=100 Gen 48 42 57 45 62

∆ 2.59E-7 0 2.73E-10 0 0
Pop=30 Gen 48 37 47 70 129

∆ 0 1.00E-4 6.50E-8 0 0
Pop=10 Gen 69 63 114 70 Clique not formed

∆ 4.00E-4 1.32E-2 5.25E-5 6.10E-4 -

algorithm for too long since we note that there could be instances of the clique not forming at all

depending on the problem being solved. Another reason that we do not examine this further is

the high complexity of this approach, i.e., the identification of triangles, which involves examining

every triplet of points. This would lead to a computational complexity of O(n3) which would be

an issue at higher population sizes.

4.3 GA and Centroid of the Largest Component

In Figure 3.2g, we observe that the function value at the centroid of the largest component is

occasionally better than the best individual in the population. This observation is exploited to

improve the GA, and is summarized below:

Observation 4 The individuals of a population often converge from different directions into the

optimum and hence the centroid of the largest component, which lies in the middle of this com-

ponent, often has the best objective function value amongst all individuals. In other words, the

largest component identifies the region of interest and its centroid may have a better value than all

of the individuals in the population.

This leads us to Algorithm 3, which treats this additional point as an individual and evaluates

its fitness.
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Fig. 4.2: Population around a global minimum – Additional point to evaluate

The additional point that we evaluate is shown in Figure 4.2. The points 1,2, and 3 lie in

different directions from the global minimum. Hence, it can be expected that the point at the

center (center of gravity) of these individuals is often better than all three of them.

This algorithm is not the same as multi-parent recombination [25]. Selection of parents in

multi-parent recombination systems is non-trivial, since it is necessary to decide the number of

parents, select them, and decide how to recombine them. Our approach can, however, be viewed

as a network-based deterministic way to identify parents for one multi-parent recombination per

generation.

The emphasis of this algorithm is on the approach of the population towards the optimum,

rather than just the position of individuals. Essentially, we are betting in favor of eliminating the

least fit point so that we can keep the centroid, provided the centroid is fitter than the best indi-

vidual, i.e., we include one additional point in the exploitative set and one less in the exploratory

set. Table 4.7 shows that in 22 out of 25 cases, the modification yields a better function value. The
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Algorithm 3 Centroid of the Largest Component
1: Initialize the population;
2: repeat Compute function value of centroid of the largest component
3: if There is more than one largest component then
4: Pick one of these components at random;
5: end if
6: if Function value of centroid is better than the function value at all other points
7: in the population then
8: Delete worst individual in population;
9: Introduce new individual at centroid;

10: end if
11: Perform recombinations and mutations to obtain next generation of GA
12: until Number of generations ≥Maximum number of generations, or convergence occurrence,

whichever is earlier

t-test compares best values obtained at the 100th generation for 30 runs of both the regular and

modified algorithms.

Table 4.7 also includes cases in which premature convergence1 may occur. This is included

to show that the added exploitation does not cause any more cases of premature convergence than

before. In Table 4.8, the results of running the above algorithm for 30 cases of regular convergence

are shown.

We note from Table 4.8 that the additional exploitation performs better in general, or at least

no worse when the GA approaches convergence. Hence, the above two tables illustrate that (i) this

algorithm does not increase the possibility of premature convergence, and (ii) it achieves a better

solution, in general.

4.4 A Restart Policy for GAs

In problems where premature convergence is likely (due to local and global optima being distant),

it can help to restart GAs, i.e., reinitialize a population, and begin from scratch. However, waiting

until the algorithm has converged can prove computationally expensive.

We propose the following approach: using algorithm 1, identify convergence. Once the al-

1The convergence of an algorithm at a local optimum that is not the global optimum.
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gorithm has converged, change the function values of the landscape in and around the identified

optimum to a very large value (or infinity), and restart. The algorithm will now avoid such a

“blanked out” zone and continue to explore other areas. Continuing thus, the algorithm is more

likely to identify the global optimum in future generations.

The above approach leads to the algorithm below. This is a consequence of Algorithm 1 which

is used to identify if the algorithm is headed towards a convergence. If we were to wait until

convergence is reached, we will not be in a position to maximize the benefits of using a restart

procedure.

Algorithm 4 GA Restarts based upon early identification of convergence
1: ω ←∞
2: repeat
3: Initialize the population;
4: Use Algorithm 1 to identify the vector x∗ where the algorithm is likely to converge;
5: Significantly diminish the fitness of points surroundingx∗;
6: ω ← min(ω, f(x∗))
7: until Restart limit is reached
8: Return ω

In Figures 4.3a-4.3j, we present the results of applying this algorithm to the Schwefel function

[62]. This is a multimodal function with distant local optima, one of which is the global optimum.

Hence, many algorithms can be trapped in the local optima. For the two-dimensional case, this

function has 4 geometrically distant local optima (and several smaller local optima), at regions

close to the four corners of the search square, with one of them being the global optimum with a

value of 0, at (420.9867, 420.9867). We see that this is reached after a restart. The algorithm is

restarted a few more times in case there is a better optimum found, we note that in the process it

identifies other local optima.

The shaded (green) circle shows the algorithm identifying the optimum. The square areas are

the “blanked out” spaces. These areas are very poor by way of function value, and hence the

algorithm is forced to explore other areas. This continued exploration increases the probability

of finding the global optimum zone. For further refinement, results may be improved by either a

GA restart seeding the population around the blanked out zone with best function value, or a local
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(a) Premature Convergence

(b) After a restart – Global optimum identified

Fig. 4.3: Restart Policy
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(c) After another restart – Convergence at local optimum

(d) Restart 3

Fig. 4.3: (...contd.) Restart Policy
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(e) Restart 4

(f) Restart 5

Fig. 4.3: (...contd.) Restart Policy
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(g) Restart 6

(h) Restart 7

Fig. 4.3: (...contd.) Restart Policy
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(i) Restart 8

(j) Restart 9

Fig. 4.3: (..contd.) Restart Policy
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search of the area.

If the region around the identified optimum is not “blanked out”, then it is possible that the

algorithm could get caught in the same local minimum again. Due to the creation of a very poor

fitness zone, the same region will not be explored again, leading to exploration of other spaces.

The number of restarts also depends on the number of potential basins of attraction. However,

in these experiments, we have set the number of restarts to 10, so that most local minima can be

identified and not re-explored.

However, there is one major problem with this restart model. We do not know how to define the

ideal dimensions of the poor fitness regions. If we have a priori information regarding the surface,

which makes it problem dependent, we can perform this method of restarting, but in many cases,

we may not have this information. Hence, we approach it from a different perspective as seen

in the next section. In this policy, we do not require any additional information about the search

space.

4.5 Another Reseeding Policy for GAs

Waiting for the “collapse” of the convex hull is essentially over-exploitation. Hence, as soon as the

largest component (with a majority of the population forming it) is formed, we reseed a portion of

the component to force exploration of other spaces. This leads to interesting phenomena as shown

in Figures 4.4a-4.4k, and the events are summarized in Table 4.9. In other words, in our greedy

reseeding policy, we do not wait for the collapse to happen, we wait for the large components to

form and then reseed immediately.

The details of the procedure that we recommend to solve complex problems such as the Schwe-

fel function [62], i.e., to determine when to reseed, is described in the next algorithm.

Algorithm 5 sketches the reseeding procedure. This algorithm determines when to reseed, but

the process of reseeding itself is done randomly over the entire search space. Note that when the

reseeding happens, only some individuals from the largest component are chosen to be reseeded.
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Individuals that are not part of the component are left alone, since they are still exploring and have

not yet been drawn to the basin of attraction.

Algorithm 5 A Reseeding Policy Based on Early Detection of Convergence
Initialize the population;
n← Population Size;
δ ← Edge Threshold, i.e., the fraction of the body-diagonal of the search hyperspace that deter-
mines whether an edge exists or not;
α← Fraction of components in order to identify a large component;
repeat Perform recombinations and mutations to obtain next generation of GA

if number of individuals in the largest component ≥ α.n (i.e., a likely convergence zone)
then

Retain a representative fraction (ω) of the component
Allow the remaining population to search the space, i.e., reseed them randomly in the

entire search space and include them in the mating pool.
end if

until Number of generations ≥ Maximum number of generations, or convergence occur-
rence based on changes below the set thresholds for mean/best fitness or genotypic similarity,
whichever is earlier

Our typical experimental settings were: α ∈ [0.6, 0.9], δ ∈ [0.01, 0.1], ω ∈ [0.5, 0.8] and

results have been found to be insensitive to parameter values as long as they are in these ranges.

These parameters can take values from a wide range without significantly affecting the algorithm’s

performance.

Figures 4.4a-4.4k show the gradual progression of the effect of reseeding while solving the

Schwefel’s function in two variables for easy visualization. The distances between the local optima

of this function result in the traditional GA converging prematurely without reaching the global

optimum. We use this function mainly to test our reseeding mechanisms in various experimental

settings. In these figures, we demonstrate how a large component forms around one of the local

optima, then moves to a better fit region, albeit still not the global one, and finally settles on the

global optimum.

The background in Figures 4.4a-4.4k is the contour plot of Schwefel’s function. The fore-

ground consists of red circles which are the individuals, red dashed lines show connections in

the largest component, and black dotted lines connect vertices within smaller components. The
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Table 4.9: Summary of results observed in Figures 4.4a-4.4k

Generation Observation
11 Large component formed, convergence headed towards local optimum

near (−500, 500)
12 Reseeding
14 Identified new region of interest (near (500,−500)), although most of

the population is still around the previous optimum
19 Another large component formed, identified a better fit region near

(500,−500), genetic operators drive population near this optimum
20 Reseeding
33 Large component forms again; population still gravitates back towards

(−500, 500). The reseeding has not yet found the global optimum re-
gion.

34 Reseeding
51 Now some individuals are around the (500, 500) region, containing the

global optimum (which is at (420.97, 420.97))
58 Large component forms once more; the high-fitness around that region

causes the genetic operators to drive the population towards (500, 500)
59 Reseeding
69 Yet another large component forms – since the fitness around the top-

right corner is the best there is, the population will continue gravitating
toward this over and over again with a very high probability

observations from these figures are summarized in Table 4.9.

4.5.1 Observations

Tables 4.10, 4.11 and 4.12 contain a summary of results obtained while running Algorithm 5 for

different settings. We observe the function value at Generations 10, 50, 90, i.e., early, middle and

late in evolution, for an unseeded version, 20%, 30% and 40% of the population in the largest

component replaced. The tables show the following results:

1. Table 4.10 – Different Population Sizes, all values are averaged over all Dimensions and

Edge Thresholds (δ).

2. Table 4.11 – Different Dimensions, all values are averaged over all Population Sizes and

Edge Thresholds.
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(a) Generation 11: Convergence appears to be heading to the bottom left local opti-
mum.
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(b) Generation 12: Reseeding

Fig. 4.4: Reseeding Policy
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(c) Generation 14: Identified a new local region of interest (bottom-right), although
most of the population is still around the previous optimum.
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(d) Generation 19: Being a better fit, individuals crowd around the new optimum.

Fig. 4.4: (...contd.) Reseeding Policy
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(e) Generation 20: Reseeding.
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(f) Generation 33: Population still appears to gravitate back towards the bottom right
optimum.

Fig. 4.4: (...contd.) Reseeding Policy
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(g) Generation 34: Reseeding.
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(h) Generation 51: Now some individuals are around the top-right optimum, the global
optimum.

Fig. 4.4: (...contd.) Reseeding Policy
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(i) Generation 58: The high-fitness around that region makes the individuals abandon
the previous optima and crowd around the new optimum.
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(j) Generation 59: Reseeding.

Fig. 4.4: (...contd.) Reseeding Policy
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(k) Generation 69: Since the fitness around the top-right corner is the best there is,
the population gravitates toward this again. This process continues until convergence
criteria are met.

Fig. 4.4: (...contd.) Reseeding Policy
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3. Table 4.12 – Different Edge Thresholds, all values are averaged over Population Sizes and

Dimensions.

The main observations are that the initial values (Generation 10) are somewhat equal for the

different replacement settings, and we observe improvements during the middle of the run (Genera-

tion 50). Finally, when we reach the late stages of the run (Generation 90), all the experiments with

different values for the parameters (population sizes, dimensions, and edge thresholds) yield much

better function values than the original unmodified GA. This arises as a result of the phenomena

observed in Figures 4.4a-4.4k, i.e., the forced exploration reduces the occurrences of premature

convergence, thus leading to better function values.

We observe that in all the three tables, viz., Tables 4.10, 4.11 and 4.12, although performance

starts off similar in the early stages (Generation 10 in the tables), it improves greatly compared

to the original GA late in evolution (shown at Generation 90), since there would have been few

instances when reseeding would have occurred by this time.

Figure 4.5 shows the above observations pictorially and includes runs from populations of sizes

50 − 150 in generating the figure. These are plotted late in evolution (here, Generation 90). Each

point in the graph is a result of 30 runs. Function values are, in general, much better with any

fraction of replacement in a wide range of values. We also note from Figure 4.5 that as dimensions

increase, the problem complexity increases leading to worse function values; and with increase in

population sizes, the function values improve. One section of this figure, having a population size

of 100, is also plotted separately in Figure 4.6 to examine the details.

In Figure 4.7, we show a boxplot comparing different versions of the algorithm; unmodified,

20%, 30% and 40% modifications. This plot shows that there is significant benefit to using this

reseeding policy, and that reseeding yields results of similar quality for a wide range of fractions

of population reseeded.

One set of values, i.e. Population size=100, Number of variables=3, Distance threshold=0.5

is examined in more detail. In this, we focus on the best function values late in evolution. A

histogram of these values is given in Figure 4.8, and shows the number of occurrences of function
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Fig. 4.6: Results of reseeding (Schwefel function, three different edge thresholds per dimension,
different fractions replaced, Population size = 100)
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Fig. 4.7: Boxplot of function values
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Fig. 4.8: Histogram of function values (Schwefel function, Average of 30 runs)

values in various ranges, with and without reseeding. Clearly, there is an improvement in function

values as a result of the reseeding. Other settings also yield similar kinds of plots.

We also performed all these experiments for other test functions listed previously. On average,

in approximately 60% of the cases, improvements were observed. Hence, even if there are no

traps, this method of reseeding results in improvements, though not substantial, since the problems

themselves are not too difficult.

Reseeding often creates a set of individuals that are of poor quality (compared to individuals

in an evolved population), because they are randomly chosen. It follows that the mean value of

the function is likely to get worse each time there is a reseeding because the newly replaced points
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will, in most cases, be placed at a point of poorer fitness (or higher function value). However, the

best value appears to be usually better as is seen in plots and tables. Typically, near convergence,

a GA has somewhat equal mean fitness and best fitness values. Although reseeding improves the

best fitness values, it sacrifices the mean fitness values, which is expected and acceptable, since the

final desired result is just the best value. Figure 4.9 shows this pictorially.

So far, we have explored in detail the roles that Euclidean network analysis can play in a GA.

In the next section, we examine similar (Euclidean) networks in modeling a PSO.

4.6 Networks in Particle Swarms

In this section, we define and study Euclidean networks in a PSO. A brief introduction and a

description of the processes in a PSO was given in Chapter 2. As mentioned earlier in this chap-

ter, although a PSO is different from a GA, both share some similarities in that they are both

population-based, and the best individuals act as attractors. We exploit this similarity later in this

section by developing an algorithm very similar to the one used for GA convergence detection.

4.6.1 What is different about the PSO?

Particle Swarms were initially developed to model groups of individuals. But unlike a swarm of

bees or a flock of geese, the individuals in an instance of the PSO algorithm do not group together

into well-defined structures. There is a probabilistic attraction for each particle towards the global

best (or the leader of the flock), as well as attraction towards its own best known position. In

addition, we must also consider the stochastic nature of the search process which is inherent in

almost all forms of EAs.

In a GA, we had the advantage of a convex operator, crossover. Since PSO does not utilize

crossover, the global best acting as an attractor has a similar effect, being one of three components

that determines a particle’s next position and velocity as seen in Equation 2.6. Hence, we can

draw a rough parallel between the convexity of the crossover operator of a GA and the likelihood
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of global best values exerting continuous pressure drawing individuals towards it. We attempt to

exploit this information through experimentation.

The global component of Particle Swarms acts as the main attractor; this is roughly analogous

to the best individual of a GA and the effect it has on the rest of the population. Both of these

behave as attractors, but in very different ways as explained below.

A GA exerts pressure by choosing the choosing the individuals of higher fitness more fre-

quently as parents, and hence the individuals in the next generation are hence more likely to re-

semble the fitter individuals of the current generation. However, the global best in the PSO exerts

pressure by directly attracting all individuals. In a GA, it is likely but not certain that the best

individual will contribute much to future offspring since the best being chosen as a parent is proba-

bilistic. Similarly, the global best in a PSO may exert only a weak attraction if the randomly chosen

weighting parameter r2 is small. Consequently, we expect that the network analysis of PSO and

GA should be similar. From the point of view of the evolving networks, the mechanism by which

the global best acts as an attractor does not matter, since we exploit the commonalities between a

GA and a PSO, i.e., large subsets of individuals moving in the same direction indicate a region of

interest. In the remainder of this chapter, we evaluate this hypothesis.

4.6.2 Experiments

We explore the issue of convergence detection based on the communities and structures formed by

the swarms. This convergence detection is somewhat greedy in nature, and identifies instants in

time when the efficacy of a PSO is no longer significant. This leads to answering the important

question of how far is far enough. Although there will likely continue to be very minor improve-

ments, the minor changes will be far too small to justify application of a computationally expensive

process such as a PSO (or in the previous cases, a GA).

We present below an algorithm very similar to the one seen in Algorithm 1. The Euclidean

networks are defined in exactly the same way as in Genetic Algorithms in Section 3.1, i.e., by

defining a threshold (to determine the existence of an edge) based on the body-diagonal of the
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search space. Algorithm 6 exploits the convergence of a PSO, exactly as in the GA context, i.e.,

using the collapse of the convex hull.

Algorithm 6 Early convergence detection in a PSO based on the convex hull of the largest compo-
nent

1: Initialize the population;
2: α takes values in [0.6, 0.9], ε takes values in [0.005, 0.03];
3: repeat Perform velocity and position based computations to obtain next generation, as in

Equations 2.6 and 2.7
4: until number of individuals in the largest component ≥ α.n

(This indicates that a large component has emerged.)
5: γ ← Greatest Hull Area (observed so far) of the largest component
6: repeat Perform velocity and position based computations to obtain the next swarm
7: until hull area ≤ ε.γ, and number of individuals in the largest component ≥ α.n

(This indicates that the convex hull has collapsed and further iterations are not needed.)

Test problems and Results

We test Algorithm 6 on the same benchmark problems as before – Rastrigin’s function [60], Ack-

ley’s path function [1], DeJong’s first function [19], Easom’s function [23] and Schwefel’s function

[62].

Tables 4.13-4.15 show the results for a selected set of parameters and dimensions. Table 4.16

and Figure 4.10 summarize our observations for all dimensions and parameters. We note that most

∆ values are very close to 0 which indicates that we sacrifice very little accuracy by predicting

early convergence and stopping our algorithm.

4.6.3 Observations: Convergence Detection in PSOs

In this section, we have explored the applicability of convergence detection in a way very similar to

the ones used for a GA by making use of the similarities between a GA and a PSO, and not focusing

on the differences. As we observe from Tables 4.13-4.15, the cost of stopping our algorithm early

by detecting impending convergence is indeed low. A more detailed discussion on the different

kinds of networks that are formed in GAs and PSOs (as well as LCSs) is given in Chapter 7.
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Table 4.13: Detection of Convergence in a PSO – Various dimensions – Population Size 50

Dim Function Gen Conv ∆
3 Rastrigin 100.33 141.4 0.066354
3 Ackley 92.767 160.1 0.00238
3 DeJong1 92.433 107.57 7.11E-08
3 Easom 70 70 0
3 Schwefel 85.067 132.27 0.000278
5 Rastrigin 103.07 164.17 0.39994
5 Ackley 88.9 174.6 0.024197
5 DeJong1 88.433 120.5 3.37E-06
5 Easom 49 49 0
5 Schwefel 81.567 145.97 0.005433
7 Rastrigin 98.567 167.93 0.74628
7 Ackley 88.633 184.1 0.08751
7 DeJong1 87.8 131.03 2.73E-05
7 Easom 49 49 0
7 Schwefel 82.733 161.6 4.1643

Table 4.14: Detection of Convergence in a PSO – Various dimensions – Population Size 100

Dim Function Gen Conv ∆
3 Rastrigin 102.27 133.73 8.2E-06
3 Ackley 94.133 157.8 0.001306
3 DeJong1 92.933 102.93 1.55E-08
3 Easom 63.5 63.5 0
3 Schwefel 86.8 129.23 2.48E-05
5 Rastrigin 103.5 155.93 0.001601
5 Ackley 88.867 169.93 0.013319
5 DeJong1 89.233 117.6 9.54E-07
5 Easom 49 49 0
5 Schwefel 80.933 145 3.9501
7 Rastrigin 99.633 162.27 0.1389
7 Ackley 88.467 178.3 0.049274
7 DeJong1 88.033 125.7 1.13E-05
7 Easom 49 49 0
7 Schwefel 81.233 153.83 0.036333
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Table 4.15: Detection of Convergence in a PSO – Various dimensions – Population Size 150

Dim Function Gen Conv ∆
3 Rastrigin 100.93 127.37 4.17E-07
3 Ackley 94 156.03 0.00092
3 DeJong1 93.667 98.8 2.21E-09
3 Easom 69.267 69.267 0
3 Schwefel 83.633 125.97 2.46E-05
5 Rastrigin 104.4 154.47 0.034096
5 Ackley 89.3 166.8 0.007991
5 DeJong1 89.5 114.33 5.28E-07
5 Easom 49 49 0
5 Schwefel 80.2 141.47 3.9495
7 Rastrigin 103.93 168.43 0.26655
7 Ackley 88.267 174.8 0.0298
7 DeJong1 88.333 124.3 4.24E-06
7 Easom 49 49 0
7 Schwefel 80.9 152.2 0.042434

Table 4.16: Euclidean Networks in a PSO – Frequency Distribution of ∆ – Over all parameters:
Dimensions 3− 7, Population sizes 50− 150, Distance Threshold, δ = 0.01, 0.05, 0.1

Bins Frequency Cumulative %
1.0E-07 148 32.89%
1.0E-05 63 46.89%
1.0E-03 70 62.44%

0.1 117 88.44%
1 40 97.33%

10 12 100.00%
More 0 100.00%

Fig. 4.10: Euclidean Networks in a PSO – Frequency Distribution of ∆ – Over all parameters
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The observations of low ∆ values are further strengthened by looking at the summarized results

when performed over all the different experimental values of population size, edge threshold and

problem dimensionality. Table 4.16 shows the distribution of ∆ values, i.e., the cost of stopping

the PSO early over all these parameters and they show most values as being negligibly small.

4.7 Summary

The preceding sections demonstrate the applicability and uses of Euclidean networks in GAs and

PSOs. Networks provide additional information regarding the performance of the evolutionary

algorithm, and this information has been used to develop convergence detection and reseeding

algorithms.

We have observed that in the case of convergence detection, very little is sacrificed by stopping

early. In other words, after a certain point in the EA, there is very little to gain from the evolutionary

processes, since the later generations of the EA are mainly over-exploiting. Expensive genetic

operators such as crossover or mutation in a GA, or position and velocity updates in a PSO, are not

essential.

However, there could be many situations where these methods of convergence detection would

not necessarily be an ideal choice. For example, if there are deceptive problems which mainly

require a very long search process, early detection based purely on component formation might

be too aggressive, i.e., the recommended stop time may be too soon. Also, in the case of mostly

flat landscapes, it might be more prudent to use the movement of the component as well as the

component formation and convergence.

Also, some issues with convex hull volume computations are their increasing complexity in

higher dimensions. We have described a greedy and computationally less intensive way here by

observing large component formation and not performing such hull volume computations for re-

seeding, since we are satisfied with a very early indicator of impending convergence in order to

reseed. However, a reasonable approximation with much lesser computation cost is to use ellip-



86

soids instead of the convex hull.

Thus far, we have studied two forms of EAs, viz., GAs and PSOs, in the context of a Euclidean

network in this chapter. In the next chapter, we construct another form of network, based on shared

genetic material and ancestry. Since this is based on ancestry and PSOs do not have this feature,

ancestral networks are applicable only to GAs and not to PSOs.
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CHAPTER 5

NETWORKS FORMED FROM ANCESTRAL

CONNECTIONS

In this chapter, networks are defined not based on distance between individuals in the Euclidean

space, but based on the genetic material that individuals share between them, i.e., based on ances-

try.

Here, we define an ancestral network, G =< V,E > as follows:

• V: All n individuals in the population are vertices or nodes.

• E: Two individuals have an edge between them if they share at least one parent, i.e. if they

are at least half-siblings.

These are similar to the networks based on shared parents which are studied at multiple levels

[76], although the main focus of that study is genetic drift. An example of edges based on parents

in the previous generation is shown in Figure 5.1.

The advantage of using this kind of network definition is that the edges are “hard”, i.e., we do

not require any additional information or need to set thresholds (as in the previous chapter), since

the ancestral connections are very clear as the nodes and edges are a direct consequence of the

genetic processes that led to the formation of the current generation.
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Fig. 5.1: Edges in the network, based on parents in the previous generation

The motivation to use an ancestral network as described, is that two nodes will share a link

because they are likely to contain some common genetic material. Common genetic material

would imply a form of “similarity” amongst individuals which we exploit by creating an edge and

observing formations of components. The existence of many “similar” individuals would imply the

identification of a region of interest, which in the problem at hand would be the possible location

of the global optimum. Translating the above into the context of the optimization problem and

strings/real-valued representations, the nodes that share an edge will contain a common bit-string

or the corresponding real-valued number.

There are many implications of such a network. For instance, the formation of a large com-

ponent means that a few individuals may have become “super-individuals” with very high fitness

(viz., low function values). This would lead to a much higher probability of them getting selected

for reproduction. This eventually leads to numerous individuals sharing an edge because of the

above-mentioned common parent(s). In certain situations such as a very flat surface (where there

are equally fit individuals, i.e., individuals having similar function values), where all are equally

likely to be selected, we could see many different kinds of edge sets. This is because there are no

super-individuals as described. But since most surfaces in real-life problems are uneven, this kind

of occurrence is unlikely. An example of a largely flat surface that can lead to such a phenomenon
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is the Easom’s function [23].

We use the above observations to develop an algorithm in the next section. This algorithm

determines a time instant to reseed.

5.1 Reseeding Algorithm

We begin by formalizing our observations below, and then develop it into an algorithm.

Observation 5 The EA approaches convergence when its population is “largely” connected. Once

a component emerges, certain fit individuals begin contributing a lot of their genetic material to

newer individuals, leading to similar individuals as before, which implies very little change. We hy-

pothesize that this would be an instant in time to retain a majority of the population for the search

results it has already produced, and also to reseed a small fraction, thus giving the algorithm some

more exploration opportunities.

We use the ideas in the proposition above to generate Algorithm 7.

Algorithm 7 A Reseeding Policy Based on Early Detection of Convergence
Initialize the population;
n← Population Size;
α← Threshold fraction of population in order to identify a large component;
repeat Perform recombinations and mutations to obtain next generation of GA

if number of individuals in the largest component ≥ α.n (i.e., a likely convergence zone)
then

Reseed a fraction, β, of the population in the search space and include them in the mating
pool.

Retain the remaining representative fraction, (1− β) of the component, which will be a
representation of the work done by the GA so far.

end if
until Convergence criteria are met, i.e., difference between best/mean function values is less
than a prespecified threshold, or the maximum number of generations is reached.

Algorithm 7 takes into account multiple ideas: component formation, identification of the time

instant when convergence is likely to occur, reseeding a fraction to continue exploring, and retain-

ing the rest. We now discuss the results of running this algorithm.
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We pick a difficult test-bed function that is used widely by researchers, the Schwefel function

[62], which has distant local optima. We test our approach by experimenting with various popu-

lation sizes, different dimensions (or number of variables), and different values of representative

fractions to retain and reseed.1

We record and examine the results of running these experiments at Generations 10, 30, 50, 70,

and 90, of a total of 100 generations each. The results are shown in Table 5.1, depicting function

values late in evolution, i.e., Generation 90, at around the point of convergence. A more detailed

version of Table 5.1 is shown in Table 5.2, which contains other experimental parameters of α and

β. Results reported in these tables are all combinations of the above parameters, and are averaged

over 30 runs.

A pictorial depiction of the above for a population size of 50 is shown in Figure 5.2. Comparing

the original GA performances against the modified versions as seen in Table 5.1 as well, the algo-

rithm shows improvements in terms of better (lower) function values (since we are minimizing),

with occasional exceptions.

It is of interest to note the high values of standard deviation, occurring because there are signif-

icant numbers of optimally converged values as well as a significant number of premature conver-

gences. In this scenario, a better mean implies having better function values as well as the fact that

the algorithm got trapped fewer times in local optima (due to reseeding). The Schwefel function

(global optimum = 0) has many distant optima, which lead to the observation above.

We also study the variation in function values with changing population sizes (Figure 5.3) for

select values of α and β, as well as percentages of improvement over regular GA with changing

problem dimension (Figure 5.4). From these, we observe that reseeding at prespecified instances

does help, but it is clearly better to depend on component formation in order to determine when to

reseed.
1We also ran the experiments with the other benchmark functions which we have been testing on thus far, viz.,

Rastrigin’s function [60], Ackley’s path function [1], DeJong’s first function [19], and Easom’s function [23] as well.
Since these are simpler problems, we found that they did not require reseeding as these were not much prone to
premature convergence, although reseeding did not hamper the results.
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Fig. 5.2: Function values for various dimensions, and parameters α and β

Table 5.3 shows the range of values of α and β for which the function values are relatively

good, for a high-dimensional Schwefel problem (7 dimensions), and large population (Pop. size

= 150). The values in bold indicate the recommended parameters, viz., the best is to replace just

a small fraction since we do not want to lose the results of the GA run thus far. If larger fractions

need to be replaced, it is advisable to consider the size of the large component – waiting for too

high a component size implies minimal reseeding, and too low implies very frequent reseeding.

Results obtained are relative unaffected by the precise choice of parameter values, e.g., as shown

in Figure 5.2, what fraction determines a large component, or how much to reseed, as long as

the parameter values are within the described bounds. This shows that the algorithm is not too

sensitive to changes in the parameters, which is helpful from a practitioner’s point of view. We

would, however, recommend the values of α and β to be among the ones for which the function

values are in bold.

In order to highlight the effects of reseeding based on component generation, we also try re-

seeding at predetermined instances (labeled ‘Reseed_50_gens’) at every 50th generation. This can
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Table 5.1: Results: Function values for different dimensions and population sizes, at Generation
90. Best values in bold. Average of 30 runs. Standard Deviations in brackets.

Dim Pop size Original GA Reseed_50_gens Alpha=0.7, Beta=0.3
2 50 15.432 (47.659) 23.339 (21.263) 4.4467 (53.879)
3 50 200.06 (139.12) 163.75 (97.146) 137.46 (115.5)
4 50 251.94 (140.91) 184.94 (103.71) 171.86 (132.29)
5 50 402.59 (180.44) 291.1 (154.09) 260.98 (154.93)
6 50 417.84 (171.5) 360.65 (144.93) 331.23 (183.76)
7 50 496.65 (232.46) 529.72 (210.43) 493.43 (198.35)
2 75 7.896 (29.544) 4.1002 (1.8E-10) 2.55E-05 (3.39E-21)
3 75 126.73 (102.97) 128.43 (117.43) 120.96 (85.483)
4 75 133.06 (127.56) 149.84 (85.882) 110.23 (112.8)
5 75 167.63 (128.48) 186.46 (117.55) 174.05 (135.14)
6 75 235.98 (120.24) 262.53 (161.7) 225.09 (120.46)
7 75 407.96 (142.95) 293.84 (150.56) 304.51 (134.87)
2 100 2.55E-05 (3.39E-21) 4.1863 (4.34E-08) 2.55E-05 (3.39E-21)
3 100 113.62 (95.535) 77.18 (82.826) 71.98 (80.42)
4 100 117.02 (107.43) 106.19 (91.643) 76.249 (99.749)
5 100 142.46 (125.4) 121.59 (102.08) 131.03 (122.28)
6 100 225.24 (132.08) 194.39 (134.6) 171.64 (128.18)
7 100 291.71 (147.98) 237.16 (145.19) 278.23 (121.27)
2 125 3.948 (21.261) 3.948 (3.39E-21) 2.55E-05 (3.39E-21)
3 125 63.249 (83.255) 44.414 (65.466) 51.524 (64.307)
4 125 78.323 (99.981) 91.262 (73.982) 73.775 (69.153)
5 125 111.05 (96.667) 103.44 (91.177) 94.238 (114.47)
6 125 126.15 (94.034) 146.34 (157.51) 149.78 (112.98)
7 125 230.39 (145.58) 197.35 (129.19) 170.09 (136.15)
2 150 2.55E-05 (3.39E-21) 2.55E-05 (3.39E-21) 2.55E-05 (3.39E-21)
3 150 65.965 (86.725) 55.293 (57.774) 45.14 (66.515)
4 150 71.357 (78.779) 87.762 (59.728) 46.316 (66.744)
5 150 113.93 (99.133) 104.55 (69.005) 82.249 (105.29)
6 150 94.242 (112.89) 128.23 (119.24) 119.18 (108.88)
7 150 166.95 (131.59) 159.59 (105.73) 133.77 (107.91)
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Table 5.2: Expanded version of Table 5.1 with different values of α and β

Alpha=0.7 Alpha=0.8
Dim Pop size Original GA Reseed_50_gens Beta=0.3 Beta=0.4 Beta=0.3 Beta=0.4

2 50 15.432 23.339 4.4467 4.0057 7.898 15.818
3 50 200.06 163.75 137.46 124.35 133.25 140.19
4 50 251.94 184.94 171.86 174.52 179.38 210.99
5 50 402.59 291.1 260.98 290.74 306.45 233.9
6 50 417.84 360.65 331.23 326.89 277.09 348.67
7 50 496.65 529.72 493.43 497.14 446.2 489.03
2 75 7.896 4.1002 2.55E-05 3.53E-05 2.55E-05 3.948
3 75 126.73 128.43 120.96 80.093 73.59 71.153
4 75 133.06 149.84 110.23 107.91 145.98 115.7
5 75 167.63 186.46 174.05 171.28 185.94 145.46
6 75 235.98 262.53 225.09 232.99 229.57 234.02
7 75 407.96 293.84 304.51 363.85 290.99 269.84
2 100 2.55E-05 4.1863 2.55E-05 2.55E-05 3.948 2.55E-05
3 100 113.62 77.18 71.98 52.277 61.403 79.634
4 100 117.02 106.19 76.249 77.656 110.91 113.79
5 100 142.46 121.59 131.03 105.32 119.62 153.55
6 100 225.24 194.39 171.64 138.73 151.07 156.89
7 100 291.71 237.16 278.23 202.4 213.61 212.17
2 125 3.948 3.948 2.55E-05 2.55E-05 2.55E-05 0.0024077
3 125 63.249 44.414 51.524 58.346 77.264 47.73
4 125 78.323 91.262 73.775 82.639 78.734 75.672
5 125 111.05 103.44 94.238 104.11 102.24 89.059
6 125 126.15 146.34 149.78 135.29 135.99 148.9
7 125 230.39 197.35 170.09 234.58 186.13 167.08
2 150 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05
3 150 65.965 55.293 45.14 42.77 44.17 27.866
4 150 71.357 87.762 46.316 48.461 52.24 34.286
5 150 113.93 104.55 82.249 78.868 99.907 85.323
6 150 94.242 128.23 119.18 115.33 145.14 111.52
7 150 166.95 159.59 133.77 147.74 147.26 166.3

Table 5.3: Function values obtained by varying α and β for Population size 150, and 7 Dimensions.
Bold values represent recommended parameters of α and β

HHH
HHHβ
α

0.6 0.7 0.8 0.9

0.1 48.879 56.05 37.277 50.617
0.2 668.14 795.24 1121.3 1228.1
0.3 1153.3 133.77 147.26 1291.6
0.4 1416.4 147.74 166.3 1273.3
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Fig. 5.3: Variation in function values with Population Size

Fig. 5.4: Percent improvement over Regular GA with Problem Dimension
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also help, however it is better to estimate convergence and then reseed because choosing an instant

based on impending convergence leads to better values. Also, this method of choosing when to

reseed is data driven, whereas it is difficult to decide generation numbers beforehand for different

problems where we do not know in advance how many generations are needed to converge.

In a few instances, the unmodified GA is better, perhaps because the reseeding was too aggres-

sive when a very good solution was already observed.

From the perspective of time complexity, there is a little overhead due to the reseeds, when

compared with the predetermined reseeding option. A single predetermined run for n = 2, popu-

lation size= 50 took 1.63 seconds whereas with the component occurrence based reseeding took

1.80 seconds, for an overhead of 10.4% which is the time taken to perform the extra reseeds.

Another observation we make is that reseeds typically begin occurring at about Generations 15

to 25 or so. The frequency of reseeds depends on the fraction of population being reseeded, size

of the component that is required to be formed, etc.

In the next section, we describe another way to use the ancestral network to modify the algo-

rithm.

5.2 Modifying Fitness Values Based on Centrality

We performed experiments to modify the fitness value using a linear combination of node centrality

and the function value. In the process of linearly combining the two, we wish to achieve both of

the following:

• increase diversity by penalizing highly central nodes2, and

• retain the results of the function values obtained so far, and reward the fit nodes.

We normalize both the centrality as well as function value to equal ranges of [0,1]. The hy-

pothesis is that the change should be most noticeable if the algorithm were to get trapped in local

2Similar to nodes with highest centrality as shown earlier: shaded green in Figures 3.1a-3.1f
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Table 5.4: Linear combination - Function values close to convergence for Population Size 50

Dim Test Function Original GA Modified
2 Rastrigin 0.29849 0.21889
2 Ackley 3.042 3.0864
2 Dejong 9.72E-11 1.17E-10
2 Easom 0.37998 0.31998
2 Schwefel 27.895 14.283
3 Rastrigin 1.3532 1.8506
3 Ackley 3.1535 3.1375
3 Dejong 1.30E-09 2.19E-09
3 Easom 0.99387 0.99405
3 Schwefel 189.84 174.4
4 Rastrigin 1.7711 2.1491
4 Ackley 3.0989 3.1191
4 Dejong 2.43E-07 1.44E-06
4 Easom 0.66 0.60004
4 Schwefel 244.45 245.48
5 Rastrigin 2.5675 1.5526
5 Ackley 3.1313 3.0964
5 Dejong 2.42E-05 8.13E-06
5 Easom 0.99838 0.99874
5 Schwefel 370.68 335.62
6 Rastrigin 2.1997 1.4685
6 Ackley 3.1221 3.1026
6 Dejong 0.000116 0.000147
6 Easom 0.98 0.94001
6 Schwefel 447.48 447.61
7 Rastrigin 2.5613 1.8356
7 Ackley 3.1805 3.1566
7 Dejong 0.001127 0.000909
7 Easom 1 0.99982
7 Schwefel 658.06 559.25
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Table 5.5: Linear combination - Function values close to convergence for Population Size 75

Dim Test Function Original GA Modified
2 Rastrigin 0.079597 0.079597
2 Ackley 3.0262 3.0016
2 Dejong 9.10E-11 6.46E-11
2 Easom 0.29999 0.21999
2 Schwefel 0.010906 2.4282
3 Rastrigin 0.59697 0.85566
3 Ackley 3.0865 3.0546
3 Dejong 1.02E-09 9.08E-10
3 Easom 0.99423 0.99351
3 Schwefel 146.81 112.8
4 Rastrigin 0.71637 0.61688
4 Ackley 3.0621 3.0967
4 Dejong 6.43E-08 8.63E-08
4 Easom 0.44 0.5
4 Schwefel 183.91 163.36
5 Rastrigin 0.75644 1.3534
5 Ackley 3.0311 3.0698
5 Dejong 4.54E-06 2.73E-06
5 Easom 0.99784 0.99802
5 Schwefel 227.03 192.87
6 Rastrigin 0.74045 1.1983
6 Ackley 3.0651 3.0535
6 Dejong 5.05E-05 3.41E-05
6 Easom 0.98 0.96005
6 Schwefel 291.76 274.17
7 Rastrigin 1.3098 1.735
7 Ackley 3.0653 3.0614
7 Dejong 0.00033 0.000185
7 Easom 1 0.99982
7 Schwefel 410.24 422.2
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Table 5.6: Linear combination - Function values close to convergence for Population Size 100

Dim Test Function Original GA Modified
2 Rastrigin 0.019899 0.019899
2 Ackley 3.0316 2.9858
2 Dejong 5.22E-11 5.17E-11
2 Easom 0.23999 0.21999
2 Schwefel 4.7376 2.3689
3 Rastrigin 0.39798 0.49748
3 Ackley 3.0472 3.0223
3 Dejong 7.47E-10 7.36E-10
3 Easom 0.99351 0.99243
3 Schwefel 112.15 83.871
4 Rastrigin 0.47759 0.45768
4 Ackley 3.0515 3.025
4 Dejong 1.50E-08 2.73E-08
4 Easom 0.6 0.48
4 Schwefel 126.1 113.49
5 Rastrigin 0.67676 0.71654
5 Ackley 3.0332 3.0144
5 Dejong 1.27E-06 7.46E-07
5 Easom 0.99838 0.9982
5 Schwefel 155.48 195.39
6 Rastrigin 0.66167 1.0173
6 Ackley 3.0345 3.0393
6 Dejong 1.78E-05 2.22E-05
6 Easom 0.90013 0.96
6 Schwefel 274.29 265.56
7 Rastrigin 0.74575 0.77871
7 Ackley 3.0438 3.0196
7 Dejong 0.000144 0.000131
7 Easom 1 1
7 Schwefel 321.49 336.55
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Fig. 5.5: Linear combination based fitness - Function values for various populations and dimen-
sions - Schwefel function

optima. This is because the most central node (likely to have contributed genes to many children)

is penalized for its high centrality, and this improves diversity.

Fitness(x) = αCentrality(x)normalized + βFunction V aluenormalized (5.1)

Here, we use α = β = 1.

We examine the performance (averaged over 30 runs) of GAs with population sizes 50, 75, 100

for multiple functions and dimensions in Tables 5.4-5.6. We notice a better value in 60% of the

cases, and worse in 40% of them. However, if we add up the differences of function values between

the old and the new, the sum of differences is −250.69 indicating that the biggest improvements

are in cases where the algorithm was likely headed towards a premature convergence. We compare

the largest differences, viz., in the Schwefel function in Figure 5.5. From the figure, we observe

that the linear combination in Equation 5.1 results in many better function values.
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5.3 Summary

In this chapter, we have studied two different ways to use an ancestral network in a GA. One

involved reseeding based on large component formation. The second improvement was to increase

diversity by including a penalty component to an individual’s fitness which is done by increasing

the function value if the degree centrality of the vertex is high. These two different ways to use

the information provided by the population networks continue to support our initial thesis that

networks provide a good way to analyze, enhance and improve our understanding of EAs.

In the next chapter, we move on to discuss the applicability of networks to another form of

EAs, viz., LCSs, by creating networks of rules.
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CHAPTER 6

NETWORKS IN LEARNING CLASSIFIER

SYSTEMS

Thus far, the individuals we have been considering have been real-valued vectors. We now consider

another class of algorithms which uses a GA, but has other operations involved in creating the next

generation. This chapter addresses networks in Learning Classifier Systems with the following

features:

• We work with XCS, which uses ternary representations (consisting of 0, 1, and #).

• There is a GA running at the center of the LCS.

• This is an online learning system, i.e., new points come in from the environment every

generation.

6.1 Test problems

One of the most common benchmark problems for an LCS is a multiplexer problem [79]. This is

a bitwise representation of the typical functioning of a multiplexer with the following details:



102

• A condition string of length

CL = k + 2k, where k ∈ I+ (6.1)

In the above equation, k represents the number of select lines of the multiplexer, and 2k

refers to the possible binary strings input to the multiplexer.

• An action bit – This is the output of the multiplexer given the inputs and the select lines.

This function is popular because of many reasons:

• The complexity of the problem can be increased or decreased easily by varying k. For

example, if k = 2, we have a 6-bit multiplexer problem, k = 3 yields a 11-bit problem, and

so on, based on Equation 6.1. Typical test functions involve k = 2, 3, 4 for problem sizes

6, 11, 20, respectively. We focus mostly on the 20-bit problem.

• While the problem can be as complex as possible, we do not depend on large datasets since

the functioning of a multiplexer is very well understood, i.e., the bit-value in the input as in-

dicated by the select lines is the output (action). So, for example, an input string of 01#10#

is broken into 01,#10# which implies that the address of the output bit is 01 or the first bit

(in a zero-indexed system), which is the bit 1 of #10#, and hence the output is 1.

• It is very well suited for online learning, where each point can be presented with minimal

effort, i.e., a string can be generated at random, and the correct output (for the purposes of

supervised or reinforcement learning) can be computed easily and independently.

An example of a perfect solution (rule-set) is described in [79] and is shown below. Here, the

set of rules required to have a perfectly evolved 6-mux system is listed.
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000### : 0

001### : 1

01#0## : 0

01#1## : 1

10##0# : 0

10##1# : 1

11###0 : 0

11###1 : 1 (6.2)

The first rule indicates that if the select input is 00, then the first of the remaining four bits is

the only one that matters, and the action is the same as that bit. Hence, there are 8 cases: One rule

for an input value of 0 and another for an input of 1, for each of the four select line combinations

00, 01, 10, 11.

6.2 XCS Evaluation

Thus far, in the GA and the PSO, we could evaluate the function value of the best individual

and compare its evolution with the dynamics of the network properties. However, we cannot do

the same here since we are solving a prediction problem using rule-sets. Hence, we describe the

measures used to evaluate the performance of an XCS.

Two measures are typically used for evaluating an XCS [79]:

• Accuracy (or Performance): The fraction of the last 50 trials that were correctly predicted.

• System Error: Absolute difference between system prediction and external payoff normal-

ized over the total payoff range (here, 1000), averaged over the last 50 trials.
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Hence, the goal is to improve accuracy while reducing system error. Performance analysis of

an LCS is also discussed in detail in [11] and [22].

We will compare these XCS evaluation parameters with the network parameters that we will

describe next. These network parameters are used to detect rule-set convergence from a network

perspective. An alternate view of rule-set convergence based on parent-trees of rules has been

studied in [35].

6.3 Similarity Measure

Since the genotypes of the rules have bit-string representations, a similarity measure based on the

Hamming distance can be applied, as in [34]. We define the similarity between two rules in a way

similar to the Hamming distance, i.e., we consider bitwise comparisons. But these rules contain

“don’t cares” (#), therefore we not only consider the number of differences, but also by how much.

In other words, we define similarity between pairs of individuals in a ternary system involving a

don’t care as:

• Similarity between 1 and 1 or 0 and 0 is 1.

• Similarity between 1 and # as well as that between 0 and # is 0.5. This is because in each

of these cases, there can be two values for each don’t care (0 or 1) where one of the values is

a perfect match having a similarity of 1, and the other is a mismatch, an exact opposite with

a similarity of 0. Hence, we use the average value which is 0.5.

• Similarity between # and # is 0.5. This is because there are four combinations here: If both

are the same (both 0 or 1), then there is a perfect match with a similarity of 1. Else, they are

negations of each other, implying complete dissimilarity.

The more similar the rules are, the stronger the edge. We compare only the condition part of the

rules. The action bit is not considered in this computation, since each incoming point is matched

only with the condition string to trigger a rule.
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6.4 Network Construction

We create networks in two different ways:

1. A weighted network: An edge is assigned a weight proportional to the similarity between

the two vertices. Hence, the edge strengths can vary from 0 (i.e., no edge), to CL, i.e., an

exact match.

2. An unweighted network: This network has a similarity threshold for two rules. In other

words, two nodes are connected by an edge if the edge strength is greater than a threshold.

Hence, all nodes are not connected to each other, unlike the previous case. In this context,

we perform a degree-based analysis.

We examine convergence indicators from both of these methods.

6.5 Experiments and Results

The Weighted Network

In the first network, we have a completely connected network, but with varying edge weights.

Network measures as well as XCS measures are plotted in a dual Y-axis against Generation (1 −

50, 000) on the X-axis in Figure 6.1. We observe that there is a rise and fall of the average edge

weight per rule, akin to the component structures seen in a GA and a PSO, and their collapse. If

a function is monotonically increasing or decreasing, without knowledge of the distribution, it is

hard to determine when it will stabilize. But by having a rise and fall structure, we have a baseline

to work with.

Further, we note the strong correlation between the average edge weight per rule (and also the

same measure per microclassifier1), and the XCS evaluation measures of Accuracy and System

1A microclassifier is a term given to each individual classifier that a rule (or a macroclassifier) represents. The
number of microclassifiers that each macroclassifier represents is recorded in the “Numerosity” of the rule.
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Error. These graphs are plotted for every 50th generation, and the values are averages over the

most recent 50 generations.

Table 6.1: XCS Evaluation measures: Accuracy, System Error compared with Edge weight per
microclassifier and Edge weight per rule

Generation Accuracy System Error Edge weight per
microclassifier

Edge weight per rule

5000 0.6 467.658 13.564 541.320
10000 0.6 425.089 8.570 260.379
15000 0.78 303.681 5.934 244.428
20000 0.96 174.084 3.696 164.941
25000 1 61.981 2.422 118.396
30000 1 28.587 2.648 144.453
35000 1 12.024 2.345 98.749
40000 1 55.630 2.884 84.737
45000 1 6.185 2.128 72.584
50000 1 5.182 2.323 241.563
60000 1 10.316 2.311 52.768
70000 1 18.228 1.858 55.337
80000 1 5.059 1.974 54.883
90000 1 6.127 2.435 222.440

In Table 6.1, we list the observations at various generations. We also compute two measures of

correlations over all data from the experiments:

1. Correlation between the System Error and the Average edge weight per microclassifier is

0.848, and

2. Correlation between the System Error and the Average edge weight per rule is 0.857.

Both correlations have p-values < 0.001, which are indicative of strong correlations between

the XCS evaluation measures and the corresponding network measures.

The Unweighted Network

In the second network described above, we set a threshold of half the maximum similarity possible

as the criterion for the existence of an edge. Creating the network thus, this time we plot the distri-

butions of degrees (after normalization to the range [0, 1]). We align boxplots of these distributions
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and the XCS measures, and plot them against the Generation (1 − 50, 000) on the X-axis as seen

in Figure 6.2. Here, too, except the degree distributions (which are plotted at those instants), all

values are averaged over the past 50 runs.

Table 6.2: XCS Evaluation measures: Accuracy, System Error compared with Average Rule De-
gree and its Standard Deviation

Generation Accuracy System Error Avg. Rule Degree Rule Std. Dev.
5000 0.66 445.507 0.399 0.166

10000 0.7 414.770 0.380 0.183
15000 0.86 312.837 0.582 0.211
20000 0.92 292.491 0.825 0.139
25000 0.94 168.776 0.905 0.119
30000 0.98 59.863 1 0
35000 1 45.090 1 0
40000 1 23.420 0.974 0.051
45000 1 6.714 1 0
50000 1 9.198 1 0
60000 1 7.546 1 0
70000 1 20.975 1 0
80000 1 13.618 1 0
90000 1 8.356 1 0

From Table 6.2 and Figure 6.2, we observe that once the boxplots stabilize, there is negligible

change in the System Error. We let the experiment run for about 100, 000 generations and note

that in the second half, there is very little improvement as is noticed from the various properties.

In other words, if we had observed the run purely from the network theoretic standpoint, we could

have stopped the run reasonably with very little accuracy sacrificed by Generation 30, 000.

We also observe from Figure 6.2 that the degree distribution is well aligned with the accu-

racy/system error plots. This is yet another indication of network measures being well synchro-

nized with EA measures.

6.6 Summary

In a bit-string system as seen in an LCS, the similarities between rules are high (which is de-

pendent on the problem being solved and the input points at each generation) when we compare
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Fig. 6.2: Accuracy, System Error compared with Degree Distributions in XCS for the 20-mux
problem
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bit-positions. The weight threshold (to determine when an edge exists in the network) can be

modified for the problem at hand. More importantly, we notice a strong correlation between the

edge weights and node degree distributions and the corresponding convergence criteria in the XCS

algorithm (high accuracy as well as low system error).

Although it is hard to determine when the system error will reach 0, if at all, it is easier to

observe the network measures which clearly converge, which is noticed far more easily in the

case of degree distributions. For the same parameters, we continued running the XCS for another

50, 000 generations, but the graph was a continuation of the values seen from about 30, 000 −

50, 000 and are hence not plotted.

Through these experiments, we observe that although we examine the LCS, which is a com-

pletely different EA system (that involves ternary strings, has many other processes alongside a

GA, and involves multi-layered individuals – macroclassifiers and microclassifiers), we are still

able to identify and draw parallels with the interrelationships that they share in space. Strong

correlations between the network measures and the LCS evaluation measures suggest that the net-

works and the EA are in synchrony, i.e., the dynamical changes in network and EA measures are

very well synchronized.

We also wish to note that these observations can lead to enhancements in the LCS as we have

done for GAs and PSOs. However, the translation from those EAs into LCSs is unclear because of

the following reasons:

• The convex hull property as noticed before does not apply here because each rule could

represent varying numbers of points in space, depending on the number of don’t-cares (#).

• This is an online learning system which is another difference when compared with GAs and

PSOs. That is, new points are being input to the system at each generation. This leads

to rule-sets evolving continuously until the rule-set yielding the exact match is evolved as

shown in the example rule-set for 6-mux in (6.2). As the problem complexity increases, the

rule-set may or may not evolve to the exact solution for the chosen parameters. This leads to

the rule-set constantly evolving, and can represent varying positions in space. Hence, since
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the position of the rules may not be nearby, the convex hull collapse equivalent is not yet

clear.

Nevertheless, the similarity between rules in an XCS and the distance threshold between in-

dividuals in a GA or a PSO have similar characteristics and would hence promises to be fruitful.

This is a subject for future work.

Having examined different varieties of EAs and different kinds of networks, we now begin a

summary of the dissertation by discussing our observations in the next chapter.
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CHAPTER 7

DISCUSSION

In this dissertation, we have shown that the application of EAs for difficult optimization problems

in multiple dimensions can be assisted significantly by the use of network theoretic abstractions.

Two key questions faced by a practitioner involve identifying whether (premature) convergence

has occurred, and timing the initiation of random restarts, i.e., reseeding the population to trigger

exploitation of new regions of the search space. Results in this work have shown that rather than

detect convergence after it has occurred, we can predict convergence very early, using network-

theoretic analysis, thereby saving large amounts of computational effort. Indeed, most evolutionary

algorithms spend much greater computational effort in (exploiting) a very small region of the

search space, whereas significantly better results could be obtained by shifting the balance towards

exploration of other regions. Whereas other researchers have relied on inferences drawn from the

slowing down of improvements obtained by a GA, we rely on rapid analysis of the underlying

network, well before such slowing down has occurred.

In the context of reseeding, the well-known stability-plasticity dilemma applies in this context:

too much replacement leads to loss of much useful information, and too little replacement may be

ineffectual, especially since the selection process may immediately eliminate randomly generated

individuals that are likely to be poorer in quality than individuals in well-explored (though sub-

optimal) regions of search space. This is the reason we attempted a few different combinations
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of fractions of populations to retain and reseed. But we assume that a majority must be retained,

because if we reseed the majority, that would mean that the work done by the EA would have been

mostly undone.

At a high level, this research illustrates that many dynamical systems can be understood by

first representing the system as a network, then identifying the most relevant network-theoretic

properties that influence, mirror, or predict observable EA system behavior, and finally executing

systemic modifications based on the network model in order to yield desirable behavior such as

more optimal function values or better learning.

In the next three sections, we point out three topics of interest that require some discussion

– the kinds of networks that form in different types of EAs, highlight the role of reseeding, and

finally compare networks and clusters in an EA.

7.1 Comparison of Network Formations in Different EAs

Apart from the many benefits of networks, we wish to look at the differences in network formations

in each of these EAs.

In GAs, looking at Tables 4.2, 4.3, and 4.4, we find that the number of generations required

to determine convergence varies considerably based on the characteristics of the function being

optimized. That is, when the values are compared with that required for a PSO as seen in Tables

4.13, 4.14 and 4.15, where the number of generations required to detect imminent convergence are

somewhat in between the large varying corresponding values seen in a GA. The tables we compare

are for three different population sizes – 50, 100, and 150.

Arguably, this is because a GA is more “greedy” than a PSO in the sense that there could be

wild jumps in the position of new individuals in a GA, since the new position depends on the

crossover and mutation alone, and not on other features as in a PSO, such as inertia and local

best which render its movement more “measured” and “steady”. In other words, the new position

in a GA is dependent only on the fitness of points selected for reproductive operations which is
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comparable to the effect of the global best in a PSO.

This difference becomes clearer when we divide the test problems into its characteristic features

determining its complexity, i.e., the modality of the problem and the regularity of the surface. For

instance, De Jong’s first function is the easiest of the lot where a greedy approach is likely to be

very successful, where the networks in a GA identify the sufficient number of generations to be

around 40 − 60 whereas the components in a PSO recommend around 80 − 90. For Schwefel’s

function, however, the GA required in many cases 120−150 generations, when compared with the

PSO requiring about 80− 90 generations. One reason for this could be that the inertial component

as well as the personal best components of the PSO (which are both lacking in the GA) contribute

to a steadier movement of each point across the search space since they emphasize the current

position, best position, and velocity of the point, as opposed to those in a GA which could involve

larger jumps due to crossover between points far away from each other.

From the perspective of edge weights, the rise and fall of edge weight per rule in an LCS are

similar to the corresponding rise and fall of the components seen in a GA or a PSO. In other words,

there is a rise in the average edge weight early on, and then a drop, which is similar to the properties

observed in the convex hull volume in a GA. Since we retain these rules as ternary strings and do

not convert them to real values, the convex hull and component/community definitions are much

less useful. For this reason, edge weighted networks are more appropriate in LCSs. Monotonicity

makes it hard to predict when the measure stabilizes, as described in the system error plot, however,

an appropriate algorithm may use the top of a rise as a baseline and consequently stop the run

similar to the termination criteria used for GAs and PSOs.

7.2 Reseeding

Reseeding plays a very important role, especially in a GA, where the population may ignore many

potential basins of attraction and converge. Observing the rise and fall of the component size

establishes clear time instants where reseeding may help in setting a fraction of the population
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loose to explore other regions, and yet retain another fraction to preserve the work done by the

GA.

We have explored various ways of reseeding as described previously, and observe the roles that

networks and communities play in determining time instants to reseed. Essentially, it is a tradeoff

between exploration and exploitation. In our experiments, the main indicator that the networks

have provided towards this process is the determination of when to reseed, as opposed to how

to reseed. However, many other pieces of information inherent in networks may provide better

reseeding solutions.

7.3 Comparison: Network formation vs. Clusters

Distance based networks have some similarities with clusters, although ancestral networks do not.

We now address one potential question that might arise, viz., why not use clusters in place of

distance-based networks? We explain below with examples of cluster formation as well as a com-

plexity analysis argument that there are differences between the two.

Network creation is preferred to clustering for analyzing the population structure in EAs be-

cause of the following reasons:

1. Clustering methods such as k-means clustering require the knowledge of k, the number of

clusters, which can be difficult to determine in such evolving populations. Such methods also

assume that clusters are symmetric (spherical, ellipsoidal, etc.), preventing the discovery of

asymmetric structures in data.

2. In the case of clustering techniques such as hierarchical clustering where this is not an issue

(since a hierarchical tree or dendrogram is created), the following concerns arise:

(a) The tree is suitable to be pruned at any level which requires an input such as the num-

ber of clusters, or a threshold to determine natural divisions within the data (e.g., tree

depth).
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(b) The complexity exceeds that of creating a network. This form of clustering has O(n3)

complexity for an agglomerative clustering [18], whereas network creation needs only

O(n2) steps, since only pairwise distances need to be computed. In fact, distance

computations between all pairs of nodes is the first step in the hierarchical clustering

process, before the creation of the tree structure and the pruning process.

3. Finally, there is also the requirement in clustering that the intra-cluster distances have to be

low, and inter-cluster distances must be high. This is a strict requirement that we believe is

not necessary in order to solve optimization problems. Long chains, spirals, or other form

of irregular structures are acceptable, as long as they are connected. We also presented an

example (in Figure 3.1b) of such structures.1

The clustering approach that most resembles the network approach is single linkage clustering

[67] (similar to Kruskal’s minimum spanning tree algorithm [38]). This form of network creation

stops at the first step of this algorithm, i.e., determining pairwise distances. Although this form

of clustering requires only O(n2) effort, since only the relative distances are of interest for our

problem, we cannot determine the difference between tree structures that are generated early in

evolution and those generated late in evolution as seen in Figures 7.1a-7.1k.

These figures display results for every 20th generation of Rastrigin’s function. The X-axis de-

notes the cluster ID, and the Y-axis denotes the function value. Joined objects imply individuals

linked together, numbers on the X-axis are population identifiers. We observe that no single cluster

is formed toward convergence although the function values get smaller, and it does not appear easy

to draw any conclusions from the structure of the clusters. This is a result of relative distances

between individuals maintaining an almost fractal-like behavior. The only change is that the abso-

lute distances between individuals and clusters themselves reduce, but this is not a factor in cluster

formation. In other words, the kinds of clusters that form do not vary in structure by much even

1The differences between clusters and networks from the structural point of view is also apparent when observing
examples of community activity in nature. A flock of geese form a V-shaped network, but not a regular cluster. A
group of ants headed towards food, form a connected component by going very close to each other in a line, but not a
regular cluster.
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Fig. 7.1: Clusters formed at Generations 0-200. Function Values vs. Cluster IDs
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Fig. 7.1: (..contd.) Clusters formed at Generations 0-200. Function Values vs. Cluster IDs
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though they are much closer to each other, or near convergence, as opposed to early phases of

evolution.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

There are many benefits to analyzing EAs as evolving networks or communities or components

as opposed to evolving individuals of a population. We have described a few ways of using net-

works through a series of observations, correlations and algorithms, but emphasize that there are

potentially many more uses of networks, and a detailed study of networks can prove to be very

useful.

In other words, while observing and imitating ideas from nature, we have barely scratched the

surface of biology or ecology, and the next step we have begun to take through these experiments is

that we imitate the interrelationships and communities formation characteristics that are observed

in the biosphere.

8.1 Contributions

The central thesis that we have pursued in this dissertation is that network models can be formu-

lated to represent inherent relationships amongst individuals in the populations of an EA, and that

there is potential benefit in studying relationships between them.

We divide the contributions in this dissertation into five main sections. We have formulated

and attempted to answer the following problems:
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1. Introduction and Exploration of Network Views of a Population-based EA

We addressed a mostly-ignored area of population-based EAs, viz., the presence of underly-

ing interrelationships among individuals of a population. Can we use such additional infor-

mation that may lie hidden in the evolving generations of individuals?

2. Convergence Detection

We then applied the network view towards identifying communities or connected compo-

nents, identifying impending convergence, and extracting information about the EA (using

the network view) in various ways. The crucial questions are: When do we believe that we

have gotten all that we can from the EA? When can we stop the EA run without sacrificing

quality?

3. Restarts or Reseeds

Given the identification of imminent convergence (above), how can we put this information

to use and identify time instants to restart, or reseed the algorithm?

4. Applicability to Other EAs

We explored swarm networks in PSOs and rule networks in LCSs. Are the networks in these

other EAs comparable to those seen in GAs? Can we generalize?

5. Mimicking Nature

Finally, continuing along the philosophy that we are mimicking natural (biological) evolu-

tion, where do we stand? How much have we managed to imitate, and what can we strive

for in the future? We discuss this now.

8.2 Open Questions

Having opened up the issue of unexplored or under-explored ideas in interrelationships between

individuals working towards an optimization goal, we continue on the same theme to identify

future directions of research.
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Fig. 8.1: Levels of Organization based on Barrett et. al. [7] - Seven transcending processes in
each of eleven levels of organization - Our focus in bold/italics
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1. We, as individuals, experience many parallel networks in our lives, such as a social net-

work of friends, a family network, a professional network of colleagues that we work with,

a school or company or city network where we live and is geography-based, and so on.

Translating this into our optimization problem, can we identify and build multiple paral-

lel networks and identify how they co-evolve in order to better understand the search and

optimization problem structure?

These could be as simple as the Euclidean and Ancestral networks generated in parallel.

It could also involve another form of network, for instance, the similarity measure as in the

LCS, when the real values are converted to bit-strings. For example, the real-numbers 32 and

48 might appear very far on the real-scale, but if we convert it into bit-strings, we notice that

they are 100000 and 110000, which is a difference in only one bit. This can be considered

roughly analogous to very minor DNA differences between humans and apes, but very large

physical differences in appearance, behavior, and intelligence.

2. The notion of partitioning and cell structures are evident in Self-Organizing or Kohonen

Maps [37], Voronoi Tessellation [74], or its dual form, Delaunay Triangulation [21], among

others. The spatial information that is contained in these techniques is evident with the

well-defined cells, neighborhoods, adjacencies, and cell partitions. The availability of such

distance and neighborhood information immediately brings to mind the likelihood of un-

derlying Euclidean networks. How would the view of individuals forming networks help in

improving the problem solving ability of these techniques?

3. Consider a hierarchical structure that is usually seen in our everyday life: workplace hierar-

chies, family hierarchies, political hierarchies, legal hierarchies, etc. This is not just a human

created concept, it is known to exist in other species as well, obviously at a more rudimentary

level, e.g., a bee colony with a queen bee, the lead goose in a flock of geese, and so on.

Observing this, we ask how best can we create such hierarchies in an EA? Could they corre-

spond to highest fit individuals having veto-like powers over the choice of parents? Or could
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it be the same at the component or community level, i.e., at the sub-population level?

These questions are interesting from many points of view: First, from the standpoint of the

breadth of ideas that we can borrow from nature, and second, the potential depth of unexplored

ideas in underlying networks, parallel communities, hierarchies, and more complex interactions

between members of a species or different species.

In the big picture, we can evolve communities with a focus on evolution, behavior, diversity,

and integration based on Barrett’s levels of organization [7], shown in Figure 8.1. The final ques-

tion is – How best can we mimic the plethora of unexplored biological ideas at the community level

and above (until the ecosphere) into evolutionary algorithms to achieve better search, optimization,

and understanding of EAs? Can we create an ecosphere in an EA?
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