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ABSTRACT 

Bacterial adhesion to surfaces and subsequent formation of microcolonies play 

important roles in biofilm formation, which is a major cause of chronic infections and 

persistent biofouling. Despite the significance, mechanistic understanding of biofilm 

formation is still hindered by the structural heterogeneity in biofilms; and effective 

control of biofilm formation remains challenging. Biofilm formation is a dynamic process 

that involves numerous changes in bacterial gene and protein expression. These changes 

are highly sensitive to environmental factors such as surface chemistry, topography, 

charge, and hydrophobicity. To better control biofilm morphology and specifically 

investigate the effects of these factors, a platform was developed in this study to obtain 

patterned biofilm formation using surfaces with well-defined patterns of chemistry and 

topography. 

By modifying surfaces with systematically varied square patterns of self-

assembled monolayers (SAMs) of functional alkanthiols, the size of cell clusters and 

inter-cluster distance were well controlled. By following biofilm formation of 

Escherichia coli on these surfaces, it was found that multicellular connections were 

formed between adjacent cell clusters when the clusters were within a threshold distance 

(10 µm); and such connections were influenced by the size of interacting cell clusters. It 

was also found that the connections were formed by active interactions of cell clusters, 

rather than nonspecific binding of planktonic cells on the bioinert background. 

Interestingly, the mutants of luxS and motB exhibited major defects in interaction 

between cell clusters. The phenotype of the luxS mutant was successfully restored by 

both complementing the luxS gene on a plasmid and by adding the precursor of 



autoinducer-2 (AI-2) signal in the culture. These results suggest that AI-2 mediated 

quorum sensing and motility are involved in the interaction among cell clusters. Based on 

these findings, a model was proposed to explain the intrinsic heterogeneity in biofilm 

structures. Consistently, cells attached between interacting clusters were found to be 

more sensitive to the antibiotic ampicillin.  

Besides surfaces with patterns of surface chemistry, poly(dimethylsiloxane) 

(PDMS) surfaces with microtopographic patterns of different shapes, dimensions and 

inter-pattern distances were used to understand the effects of surface topography on 

bacteria-surface interactions and biofilm formation. E. coli was found to preferentially 

attach and form biofilms in the valleys between square shaped plateaus. In addition, there 

appeared to be a threshold dimension of a plateau to allow bacterial attachment and 

biofilm formation on top of the plateaus. The threshold was found to be 40 µm × 40 µm 

for inverted patterns used in this study. Inspired by this finding, we created PDMS 

surfaces with hexagon shaped patterns and found that the ones with 15 µm side width and 

2 µm inter-pattern distance can reduce biofilm formation by 7-fold compared to flat 

PDMS surfaces.  

These results were integrated with additional tests to better understand the 

resistance of biofilm cells to antibiotics. Specifically, the biofilm formation of 

fluorescently labeled donors and recipients on PDMS surfaces with square shaped 

microtopographic patterns was followed to investigate the effects of cell density on 

bacterial conjugation. PDMS surfaces with microtopogrpahic patterns were found to 

promote both biofilm formation and bacterial conjugation. This result was found to be 

due to the aggregation of biofilm cells on the side of plateaus, providing “hot spots” for 



bacterial conjugation. Bacterial motility was also found to play an important role in 

biofilm formation and bacterial conjugation. Collectively, these results are helpful for 

understanding the mechanism of biofilm formation and associated drug resistance, as 

well as the design of nonfouling surfaces.  

 

Keywords: Patterned biofilm, bacterial-surface interaction, biofilm heterogeneity, high 

drug resistance, conjugation, surface chemistry, surface topography. 
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CHAPTER 1 

 

MOTIVATION, RATIONALE, RESEARCH HYPOTHESIS, AND 

OBJECTIVES 
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1.1 MOTIVATION  

Microbes are well known to grow on both biotic and abiotic surfaces and develop 

multicellular communities embedded in extracellular polymeric matrix secreted by these 

attached cells1. These complex structures, known as biofilms2, cause contamination, 

corrosion and biofouling in virtually every industrial water-based process, and chronic 

infections in humans with high motility3,4. Biofilm cells are up to 1000 times more 

tolerant to antimicrobial treatment than their planktonic counterparts5. Thus, biofilm-

associated problems put a heavy burden on the health care system and economy; e.g., 

biofilms are responsible for 65% of bacterial infections in humans and treatment of 

biofilm-based infections cost more than $1 billion annually in united states6. The 

significance of biofilm has stimulated increasing interests in understanding the 

mechanisms of biofilm formation and development of more effective techniques for 

biofilm prevention and removal6-8. However, despite some exciting progresses in 

fundamental research, the factors that govern biofilm formation are still poorly 

understood at the molecular and genetic levels, hindered by the heterogeneity in biofilm 

structure and associated spatial variation in gene expression9-11.  

Biofilm formation is a dynamic process that involves initial attachment, 

microcolony formation, maturation and dispersion12. These processes are influenced by 

many factors such as the surface structure of bacterial cells (e.g., flagella, curli and 

fimbriae), material characters of the surfaces that biofilms are formed on (e.g., surface 

chemistry, topography, charge and hydrophobicity) and environmental conditions (e.g., 

flow condition, medium composition, and temperature)2,13-16. Consequently, a typical 

biofilm in currently available experimental systems has significant heterogeneity in its 
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structure, e.g., uneven coverage of the surface with cell clusters of various sizes and 

shapes. This grand challenge causes difficulties to comparing findings from different 

systems in different laboratories17, leading to inconsistent results15,17,18 which hinders the 

mechanistic understanding of biofilm formation9,10 especially with the roles of 

flagella15,17,19, motility15,19,20, stress response21,22, and quorum sensing17,23. Meanwhile, 

biofilm heterogeneity is also one of the causes of biofilm resistance to antibiotics, since 

the biofilm environment is ideal for bacterial conjugation and the formation of slow-

growing cells6,10,24. A thorough mechanistic understanding of biofilm heterogeneity 

requires the biofilm morphology to be controlled to allow a direct characterization of 

interaction between cell clusters. To achieve this goal, it is necessary to precisely control 

the size and shape of cell clusters and the distance between them, which cannot be 

achieved by using conventional system with regular surfaces.   

Recent developments in materials science and engineering have brought an 

exciting opportunity to address the above challenges in biofilm control (Table 1-1). 

Recently, Ren lab has developed a platform using patterned surface chemistry and 

topography to control the size and shape of bacterial colonies and the distance between 

colonies25-27.   These well-defined surfaces can direct bacterial initial attachment and 

allow us to quantitatively investigate bacterial surface and bacterial cell-cell interaction. 

These results motivated us to further investigate bacterial biofilm formation at the genetic 

level and develop new biofilm control methods.  
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1.2 RATIONALE 

1.2.1 Heterogeneity in biofilm structure 

It is well recognized that biofilms are multicellular structures with heterogeneity 

in both the structure and gene expression of biofilm cells1,7,11,28. Physiological status of 

each biofilm cell is decided by its local environment including pH, concentration of 

nutrients and wastes, flow condition, and interaction with neighboring cells; all are 

affected by the biofilm structure and associated heterogeneity10,11. Thus, individual cells 

in a common biofilm could be different from each other in gene expression, metabolism, 

and other cellular activities9. Due to the technical limits, traditional biofilm research has 

been focused on studying the collective behavior and biochemistry of the entire biofilm 

populations, which overlooks the differences between individual cells in biofilm and 

leads to inconsistent results reported from different laboratories9. For example, synthesis 

of the signal autoinducer 2 (AI-2) by luxS has been found important for flagellar 

synthesis, motility, and chemotaxis in E. coli29, 30-34. However, deletion of luxS in E. coli 

W3110 has no effects on cell growth, motility, and biofilm formation compared to the 

wild-type E. coli W311035. Such discrepancy may be caused by the differences between 

the experimental system and associated biofilm structures, which hinders the mechanistic 

understanding of biofilm formation.  While the effects of biofilm structure on bacterial 

physiology is understudied, even less is known about the mechanism of such structural 

heterogeneity in biofilms due to the lack of techniques that can control biofilm 

morphology.  

In this thesis research, the density and location of cell clusters on gold surfaces 

were controlled by rigorously tailoring surface chemistry with square-shaped patterns of 
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self-assembled monolayers (SAMs) of long-chain alkanethiols presenting functional 

groups. Both the size of patterns and inter-pattern distance were systematically varied. 

These well-defined surfaces provide a useful platform to obtain important information 

about bacterial cell-surface and cell-cell interactions as well as the spatial organization 

during biofilm formation, which cannot be obtained using methods with uncontrolled 

surfaces.  

1.2.2 Biofilm resistance to antibiotics 

Biofilm cells are less susceptible to antibiotics compared to planktonic cells with 

the same genetic makeup, which makes biofilms hard to eradicate leading to chronic 

infections in humans36 and biofouling of industrial settings37. The significance of biofilm 

resistance to antimicrobial agents has stimulated increasing interests in understanding the 

mechanisms of biofilm resistance to antibiotics. The reduced antibiotic susceptibility of 

biofilm cells is thought to be a consequence of multiple factors, including the formation 

of slow-growing biofilm cells, protection of the extracellular matrix, activities of efflux 

pumps, and the spread of antibiotic resistance genes by conjugation24. Slow-growing cells 

can contribute to biofilm resistance against antibiotics because essentially all antibiotics 

are more effective in killing rapidly growing cells and less effective against slow-growing 

cells6. The formation of slow-growing biofilm cells is probably due to general stress 

response or chemical (nutrients, waste products, and signaling factors) gradient 

developed as a result of biofilm heterogeneity6,10,24,38. A systematic study using the well-

defined surfaces can shed new light on the formation of slow-growing cells during 

biofilm formation and reveal their roles in the development of biofilm resistance to 

antibiotics.    
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Another important but less studied mechanism of biofilm-associated antibiotic 

resistance is conjugation38. Bacterial conjugation occurs when the mobile genetic 

materials such as conjugative plasmids are transferred from donor to recipient cells 

through directly cell-to-cell interaction using sex pili39. The adaptive traits such as 

antibiotic resistance gene encoded by the mobile plasmid can allow the survival of 

transconjugants in harsh environments and commonly lead to the resistance of biofilm 

cells to antibiotics39.  Biofilms may provide an ideal environment for bacterial 

conjugation due to the high density and close proximity of the sessile biofilm cells38. 

However, how biofilm formation promotes conjugation is still unknown. In this work, the 

well-defined surfaces are able to control biofilm morphology in defined locations were 

used with fluorescent reporter strains to study bacterial conjugation in real time. 

1.2.3 Effects of surface topography on biofilm formation 

In addition to surface chemistry, surface topography has also been well known to 

affect biofilm formation15,18,27,40-44. For instance, Chung et al.44 reported that the shark 

skin-inspired PDMS surfaces with micron scale ribs organized in parallel diamond 

sharped patterns can reduce the surface coverage of Staphylococcus aureus by 47% 

compared to smooth PDMS surfaces 14 days after inoculation. Friedlander et al.41 

observed that the biomass of E. coli biofilms on PDMS surfaces with an array of 

hexagonal features was approximately 1.3 times higher than the biomass on smooth 

PDMS surfaces after 2 h of incubation. In addition to the shape of topographic features, 

the length scale of topography, including the size, height, and inter-pattern distance, can 

also affect biofilm formation by altering surface wettability45.  
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Understanding how surface topography influences bacteria-surface interaction is 

critical to the development of antiadhesive surfaces or materials. This information is also 

important to the understanding of biofilm formation in natural environment, because most 

surfaces in nature are not smooth. To systematically exam the effects of surface 

topography on cell adhesion and biofilm formation, PDMS surfaces with topographic 

features of different shapes, sizes, heights, and inter-pattern distances were designed and 

fabricated. Specifically, we were interested in how surface topography affects E. coli 

adhesion, biofilm formation, and conjugation, as well as the roles of bacterial 

extracellular structures, such as flagella and pili, during these processes. The obtained 

information can be used to guide the engineering of antifouling surfaces.    

 

1.3 CENTRAL HYPOTHESIS AND RESEARCH OBJECTIVES 

The overall goal of this study is to improve the mechanistic understanding of 

biofilm heterogeneity and biofilm resistance to antibiotics. As described above, well-

defined surfaces with chemical and topographical patterns can be obtained via soft 

lithography and microcontact printing. We hypothesize that interaction among cell 

clusters is important to biofilm heterogeneity and biofilm resistance to antibiotics. To test 

this hypothesis, we created a series of surfaces with various pattern sizes and inter-pattern 

distances; and used these surfaces to obtain new insights in bacterial cell-surface and cell-

cell interaction. This study has the following objectives: 

Objective 1. To investigate the effects of cell cluster size and the distance between cell 

clusters on the interaction among cell clusters and biofilm morphology, 
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Surfaces with chemical and topographical patterns were used to form 

biofilms. 

Objective 2. To study the roles of key genes that are involved in the cell-surface and cell-

cell interaction during interaction, including representative genes of 

bacterial chemotaxis, motility, and cell-to-cell signaling.  

Objective 3. To corroborate the results by investigating the roles of bacterial outer 

membrane apertures such as the bacterial flagella, curli and fimbriae in the 

interaction between cell clusters. 

Objective 4. To understand biofilm associated antibiotic resistance using patterned 

surfaces. First, the tolerance of biofilm cells to ampicillin was examined and 

the effects of metabolic activities were investigated. Second, bacterial 

conjugation on PDMS surfaces modified with microtopographic patterns 

was studied using fluorescently labeled donors and recipients. 
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This chapter presents an overview of the topics related to my project. Since some 

of following chapters are from published journal articles and some chapters are written 

for journal submission, they also carry their own introductions with more details about 

specific topics. Sections, 2.1, 2.5, and 2.6 of this chapter have been published in an 

invited review article as Huan Gu and Dacheng Ren. 2014. Material and surface 

engineering to control bacterial adhesion and biofilm formation a review of recent 

advances. Frontiers of Chemical Science and Engineering. 8(1): 20-33. Reproduced by 

permission of Springer. 
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2.1 BIOFILM FORMATION 

Bacteria have developed complex mechanisms to attach to surfaces and form 

sessile communities, known as biofilms, as a strategy to survive in adverse environmental 

conditions and to establish infections1. Commonly, biofilms are ubiquitous in aqueous 

environments and biofilm cells are highly tolerant to antibiotics compared to their 

planktonic counterparts. The high-level drug tolerance of biofilm cells leads to chronic 

infections in humans1 and biofouling of industrial settings2, which contribute to the 

raising health care costs and economic loss. For example, a typical treatment of medical 

device associated biofilm infection involves surgical replacement of the contaminated 

device and intensive antibiotic therapy, which is often associated with high health care 

cost and long period of post-surgical recovery. Unfortunately, even with aggressive 

therapy, mortality of such infections remains high and biofilm formation also facilitates 

the development of antibiotic resistant strains3. The significance of biofilms has 

stimulated research efforts to understand the mechanism of biofilm formation and to 

engineer more efficient antimicrobial surfaces. 

Biofilm formation is a dynamic process comprising of five stages including 

reversible attachment, irreversible attachment, microcolony formation, maturation and 

dispersion4-7. During the first stage of biofilm formation, free-living bacteria are brought 

to the solid surface by fluid stream or bacterial motility8. Extracellular organelles, such as 

flagella, curli, fimbriae (or pili), and outer membrane proteins, have been shown to help 

bacteria sense and interact with surfaces8-11. Such interactions can help bacterial cells to 

overcome long-range repulsive forces along the surface. This process is critical for 

bacterial adhesion and is influenced by the properties of both bacterial cells and the 
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substrate surface (e.g. charge, hydrophobicity, and stiffness)12. At this stage, bacterial 

cells still show Brownian motion and can be relatively easily removed by shear force13. 

After the initial attachment is made, flagellar arrest and the attached cells start the 

production of extracellular polymeric substance (EPS) consisting of polysaccharides, and 

in some strains, DNA, proteins, and lipids14. These processes promote the transition of 

bacterial attachment from reversible to irreversible11,15. Permanently attached bacterial 

cells are hard to detach because these cells are attached using extracellular adhesive 

organelles, such as EPS, curli, and fimbriae (or pili)11. The secretion of EPS is stimulated 

by the chemical communication between cells in clusters, which are typically tens to 

hundreds of micrometers in size. Quorum sensing (QS) is the best-characterized cell-to-

cell communication system and is known to regulate a variety of cellular functions 

besides the production of EPS such as motility and production of secondary 

metabolites15-17. The components of EPS vary between species and growth conditions. As 

cells replicate and the EPS accumulates, these micrometer communities grow into three-

dimensional (3D) structures of mature biofilms. In a mature biofilm, adhesive EPS acts as 

“glue” between embedded bacterial cells to support the 3D structure of biofilm, allowing 

the transport of nutrients and removal of wastes. Triggered by some intrinsic cues, such 

as cell death and autolysis in Pseudomonas aeruginosa biofilms, cells in some mature 

biofilms can also detach and return to the bulk flow18. These released cells may reattach 

to surface and form biofilms in a new environmental niche.  Biofilm dispersion is 

believed to be crucial for the propagation and self-renewal of bacterial communities15.  



20 

 

2.2 GENES INVOLVED IN BIOFILM FORMATION 

Apparently, the initial adhesion of bacteria onto a surface involves multiple 

extracellular structures, such as flagellum, pili and curli. For obtaining these functions at 

the proper time and in a right order, the expression of related genes needs to be 

coordinated in response to the signals from the surface, host cells, and environment at the 

proper time. Many studies have been conducted attempting to understand the mechanism 

of such regulation and identify the key biofilm genes. E. coli have been intensively used 

as a model organism to study biofilm formation. Here, we review the current knowledge 

of genes and pathways involved in its biofilm formation, as well as the regulation of these 

elements (Table 2-1).  

The reversible attachment step of biofilm formation often requires bacterial 

flagella, which allow the planktonic cells to swim toward a solid surface. During this 

stage, the expression of other cell surface organelles such as fimbriae and curli is 

repressed8 . Over 40 flagella genes have been identified to date. These genes cluster in 

three regions in E. coli genome chromosome and control the assembly, structure, and 

function of flagella19.   Among these genes, flhDC encodes a master regulator of the class 

II flagella genes involved in flagllar assembly (e.g., fliC, encoding flagellar filaments), 

motor assembly (e.g., motAB, encoding the flagellar rotary motor), and chemotaxis (e.g., 

cheA-Z, controlling bacterial chemotaxis) in E. coli19. Therefore, FlhDC is the central 

regulator and plays a critical role in the initial stage of biofilm formation when bacterial 

cells are approaching a solid surface. The expression level of flhDC is sensitive to 

environmental factors such as temperature20,21, pH22,23, osmolarity24,25, availability of 

carbon sources26, and the presence of certain small molecules25,27-33. At the genetic level, 
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the complex of H-NS (histone-like nucleoid-structuring protein)34 and CRP (cyclic 

adenosine monophosphate (cAMP) catabolite activator protein or cAMP receptor 

protein)35  control flagellar motility by repressing or activating the expression of flhDC. 

Involving CRP allows bacteria to form biofilm in response to changes in nutrient 

concentration in the environment. Biofilm formation can also been affected by changes in 

environmental osmolarity. The phosphorylated OmpR represses the expression of flagella 

by activating the csgD promoter, which promotes the switch from planktonic cells to 

biofilm formation by repressing bacterial motility and promoting cell-cell and cell-

surface interactions36. In addition to the above systems, LrhA induces the transition from 

planktonic cells to biofilm formation by repressing numerous genes involved in 

flagellation, motility and chemotaxis37. Meanwhile, phosphorylated RcsB facilitates the 

settlement of bacteria by activating cell division and colanic acid synthesis, and at the 

same time inhibiting virulence, and flagella motility38. The above and other results 

revealed that flagella gene expression is reversely regulated with the biofilm matrix 

synthesis, which is commonly observed not only in E. coli but also in other bacterial 

species. For example, in P. aeruginosa, the central regulator of flagella genes, FleQ, is 

indirectly inhibited by the alternative sigma factor AlgT, which is a positive regulator of 

biofilm mantrix synthesis39. When Vibrio cholerae was mutated to lose flagellar 

filaments, it synthesized biofilm matrix even without a surface40. Thus, the arrest of 

flagella can promote the transition from reversible attachment to irreversible 

attachment11.  

Among the surface organelles, Type I fimbriae or pili that are approximately 1 

μm long and 7 nm wide, rod-shaped adhesive structures, are important for bacterial 
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adhesion to mannose-containing receptors and causing urinary tract infections41-43. The 

expression of fim gene cluster (fimABCDEFGH) is regulated by the promoter of fimbriae 

subunit fimA8,44. The activation of fimA is controlled by an upstream reversible switch 

that is a two-component system, fimE and fimB. FimE can turn off the expression of fim 

genes cluster, while FimB can either turn on or turn off the expression of fim gene cluster. 

This two-component system is subject to tight environment control, mediated by at least 

five global regulators (LrpA45,46, IHF45, 47, H-NS48, LrhA49, and EnvZ/OmpR50). Among 

those regulators, LrhA , a repressor of flagellar, motility, and chemotaxis genes, can turn 

off the expression of fimbriae by activating the expression of protein FimE and suppress 

biofilm formation49,51. The integration host factor (IHF) and leucine-responsive 

regulatory protein (LrpA) affect the expression of type I fimbriae by controlling the 

production of both recombinases (FimE and FimB)45, while H-NS controls only the 

FimB-mediated inversion and has an overall positive effect on the expression of the fim 

genes. In addition, the two-component system EnvZ/OmpR has a negative effect on the 

fim operon expression50.  

Curli are another type of surface structures that can facilitate bacterial cell-

surface and cell-cell interactions and is highly expressed during bacterial adhesion to 

solid surfaces52. The environmental factors that can influence the curli expression include 

temperature53,54, oxygen tension54,55, starvation56,57, osmalarity52,57,58, iron58 , and pH58. 

The curli genes are clustered into two divergent operons, csgDEFG and csgBA59. To date, 

at least seven regulators have been found to affect curli expression including 

EnvZ/OmpR60, RcsBCD61,62, CpxAR36,63, CRP64, H-NS48,57, MlrA65, and FlhDC66. In 

addition to its roles in flagella control, the two-component system EnvZ/ompR is also 
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involved in the expression of curili genes. However, unlike the flagellar system, in which 

the reduction of csgD represses flagella, the expression of curili genes is positively 

regulated by csgD (through the induction of fllhDC). The RcsB/CD two component 

system is also known to promote biofilm formation by repressing flagellar synthesis, 

inducing curli formatting, and increasing the synthesis of colanic acid62. The 

phosphorylated CpxAR has a similar function as phosphorylated RcsB through 

controlling the expression of csgA.  

In summary, the regulators of bacterial outer membrane structures, FlhDC67, 

EnvZ/OmpR68, and RcsCDB69 control the expression of the majority of genes involved in 

E. coli biofilm formation, especially those with functions in the synthesis of flagella, 

curli, and type I fimbriae. FlhDC regulates the expression of flagellar genes during the 

very early phase of biofilm formation when bacterial cells approach a solid surface. 

Following this, the two component system, EnvZ/OmpR, can facilitate the formation of 

reversible attachment of bacteria through the repression of flagella genes and induction of 

adhesive surface structures, primarily curli and type I fimbriae (pili). The transition 

between free-swimming bacteria and sessile life style occurs when the extracellular 

matrix composed of colanic acids is produced, which promotes irreversible adhesion and 

the formation of biofilm with multiple layers of cells. These processes are influenced by 

signaling molecules and environmental factors44. For example, the second messengers 

cAMP can interact with CRP, which activates the biogenesis of flagella and curli35,64,70. 

The phosphorylation of OmpR71 and RcsB by acetyl phosphate controls the biosynthesis 

of flagella, curli, type I fimbriae, and capsules24,31,38,50,62,72.     
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2.3 BIOFILM HETEROGENEITY 

It is well known that biofilm formation is a dynamic process involving numerous 

factors, which contribute to the heterogeneity in biofilm structure73 (Fig. 2-1). During the 

past three decades, biofilm structures have been extensively studied thanks to new 

technologies such as advanced microscopy [e.g., electron microscopy including 

transmission electron microscopy (TEM) and scanning electron microscopy (SEM), 

atomic force microscopy, and confocal laser scanning microscopy (CLSM)], 

microelectrodes (e.g., microelectrode for measuring nitrous oxide, oxygen, H2S, and pH), 

and more powerful molecular methods [e.g., in situ hybridization with 16S or 23S rRNA-

directed oligonucleotide probes and fluorescence in situ hybridization (FISH)]74. These 

studies have revolutionized our view of biofilm structure from planar74 to homogeneous 

film75 to appreciate the complexity of heterogeneous structures with mushroom shape 

colonies and water channels between cell clusters6,74. The composition of biofilm matrix 

is also well studied.   

In biofilms, bacterial cells aggregate together with adhesive EPS acting as “glue”.  

The high cell density and presence of EPS within biofilms arrest the flow of water and 

retard the diffusion of solutes, leading to the formation of gradients of nutrients and other 

substances (e.g., antibiotics) across the biofilm structure73,76. With the application of 

microelectrodes, the microscale concentration profiles of a number of solutes (e.g., 

nitrate, nitrate ammonium, and pH) have been determined74. Moreover, to quantitatively 

assess the chemical environment surrounding small bacterial colonies, the advances 

techniques such as scanning electrochemical microscopy (SECM), imaging mass 

spectrometry (IMS), nanoSIMS, desorption electrospray ionization (DESI) mass 
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spectrometry, and matrix-assisted laser desorption-ionization (MALDI) – mass 

spectrometry have all been applied to biofilm research. These studies provide new 

insights into the micron environment within biofilms77. It is now recognized that the 

microscale heterogeneity in the chemical environment in biofilms can cause 

corresponding heterogeneity in the biological activity among biofilm cells including 

growth, gene expression, and stress response73. Such heterogeneity has been 

demonstrated by measuring respiratory activity of biofilm cells using 5-cyano-2,3-ditolyl 

tetrazolium chloride (CTC) staining; by characterizing membrane permeability using 

differential membrane permeability staining; by monitoring extracellular product 

formation; and by directly following gene expression and DNA synthesis using reporter 

strains73. These techniques help answer the fundamental question about how chemical 

heterogeneity affects microbial physiology in biofilm; however, there are still many 

unanswered questions and the development of the spatial heterogeneity in biofilm 

structure itself is still not fully understood.  

Besides chemical gradients, biofilm structure can also be affected by bacterial 

cell-cell signaling78-82 (e.g., quorum sensing) and physical interactions between cells 

(e.g., those through colanic acids83 and pili84). However, the role of cell-cell interaction 

during the development of heterogeneity in biofilm structure is not fully understood. 

   

2.4 BIOFILM-ASSOCIATED ANTIBIOTIC RESISTANCE 

A primary concern about biofilms is the high level resistance to antibiotics. The 

mechanisms of such antibiotic resistance include the reduced penetration of antibiotic 

molecules, slow growth of biofilm cells, general stress response, enhanced extrusion of 
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antibiotics from biofilm cells, and the spread of antibiotic resistance gene due to close 

contact between biofilm cells85,86.  Among these mechanisms, the biofilm structure and 

associated heterogeneity are the leading factors to the failure of some antibiotics to 

penetrate biofilms, slow growth of biofilm cells, and general stress. Due to the high 

density of biofilm cells and the presence of EPS, the diffusion rate of antibiotics into 

biofilm is significantly reduced, e.g. the diffusion coefficient of solutes in biofilm matrix 

is 60% lower than that in water76,85. In addition, the absorption of antibiotics by the outer 

layer biofilm cells could contribute to the reduced availability of antibiotics to cells in the 

center of biofilm76. Moreover, slow growth rate of biofilm cells has been observed in 

biofilms in response to nutrient limitation85,86. The slow growth rate of biofilm cells lead 

to significant resistance to antibiotics because almost all antibiotics kill bacteria by 

targeting growth-related activities such as the synthesis of DNA, protein, and cell wall86. 

Furthermore, general stress response is governed by central regulators and is induced by 

high cell density in biofilms through quorum sensing. Such response can protect cells 

from various environmental stresses including antimicrobial agents85.  

Other than the mechanisms mentioned above, biofilm formation also provides an 

ideal environment for spreading antibiotic resistance genes through bacterial conjugation 

due to the spatial stability and proximity of bacteria in biofilms87. Bacterial conjugation is 

a well-documented phenomenon in which mobile genetic materials such as plasmids are 

transferred from donor to recipient cells through direct cell-cell contact involving sex pili. 

The resulting transconjugants can obtain new functions based on the genetic traits carried 

by the mobile plasmids, which commonly lead to antibiotic resistance87. Furthermore, 

conjugative plasmids have also been found to facilitate biofilm formation84,87,88. Recently, 
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with the application of fluorescently tagged plasmids and bacterial cells, the localization 

and distribution of transconjugants within biofilms have been studied89-92. In a system of 

Pseudomonas putida, more transconjugants were found on top of the recipient 

microcolonies and did not spread in biofilm, which indicates that new transconjugants 

rarely become donors90,93. Transconjugants was also observed inside biofilms formed in 

flow cells, suggesting that donor cells are able to penetrate the outer layer of a biofilm87. 

Moreover, the 3D imaging analysis of bacterial conjugation in Sphingomonas sp. 

biofilms revealed that most transconjugants are formed in the interior part of cell clusters, 

which was thought to be a result of open channels and pores that enable more frequent 

cell-cell contact87. Collectively, these results indicate that the spatial structure of biofilm 

plays an important role in bacterial conjugation. The frequency of conjugation in biofilm 

was also found to be affected by the availability of cell-cell contact between donors and 

recipients, time of biofilm growth, and biofilm structure, but not by the concentration of 

nutrients88,90.  

 

2.5 MATERIALS USED IN TRADITIONAL BIOFILM STUDIES 

  Traditional biofilm research has been based on biofilms formed on conventional 

materials, such as metal94, plastic80,95 or glass80,96-98 surfaces in test tubes80, 96-well 

plates81,84,99-103, or flow cells18,81,98,104,105. As discussed above, biofilm formation can be 

affected by multiple factors (e.g., bacterial surface structures, physiochemical properties 

of the surface that a biofilm is formed on, and environmental conditions)8,12,15,106-108. 

Thus, a typical biofilm formed on a conventional surface has substantial heterogeneity in 

its spatial organization, with uneven surface coverage and cell clusters of varying size, 
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shape and cell density. Even on the same surface, individual cells in such heterogeneous 

biofilms could be different from each other in gene expression, metabolism, and other 

cellular activities73,74. Such heterogeneity hinders the mechanistic understanding of 

biofilm formation 73,109 and can lead to different results in different experimental 

system11,104,110,111, regarding the roles of flagella110-112, motility95,110,112, stress 

response112,113, and cell-to-cell signaling108,111,114,115. To understand the physiology of 

biofilm cells and the underlying mechanism, novel techniques and materials that can 

rigorously control the density and spacing of biofilm cells need to be developed.  

 

2.6 NEW TECHNIQUES TO CONTROL CELL DENSITY AND CREATE 

PATTERNED CELL CLUSTERS  

Interactions between bacterial cells and cell clusters are crucial to the 

development of multicellular biofilm structures. Such interactions are difficult to study 

due to the intrinsic heterogeneity in biofilm structures. Thus, new techniques that can 

control the location of biofilm cells, spacing between cell clusters, and the cell density in 

these clusters are needed to decouple the biological factors, chemical factors, and 

physical structure of biofilms. Two strategies have been applied to control cell density 

including surface guided pattern formation and cell trapping. A number of new methods 

have also been developed to deposit bacterial cells on surfaces with designed patterns. In 

this section, we will briefly introduce the principle of these methods and their 

applications in studying bacterial cell-to-cell communication, antibiotic resistance, and 

biofilm formation.  
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2.6.1 Lipid-silica structures 

Porous lipid-silica structures formed by evaporation-induced self-assembly116,117 

(Fig. 2-2A), an aerosol-assisted approach using dihexanoylphosphatidylcholine117,118 

(Fig. 2-2B), and pre-formed lipid-templated silica films117 can be used to trap single cells 

or small groups of cells. Upon evaporation of the solvent, individual cells or small groups 

of cells are encapsulated in 3D lipid-silica structures. Such confinement of cells in a 

fairly small volume can be used to trap single cells or to create high density cell clusters, 

e.g. 109 to 1012 cells / mL77, providing an ideal system for studying cell density associated 

phenotypes such as quorum sensing.  In a study by Carnes et al.119, a single 

Staphylococcus aureus cell was trapped in an endosome-like lipid vesicle within a 

lipid/silica droplet on glass surface.  It was found that single S. aureus cells start the 

production of QS signals after 10 h of incubation at 37 ºC without growth and the QS 

signals were found to accumulate over time inside the diffusion-limited lipid silica 

structures (Fig. 2-2B). 

2.6.2 Microwells  

Another approach to trap single bacterial cells is using surfaces modified with 

arrays of microwells120-126. In this approach, surfaces are patterned with microwells that 

have defined shape and size. To trap single cells, wells are designed to be just enough to 

house individual cells. In some cases, the surfaces can be directly seeded with a cell 

suspension to allow the spontaneous deposition of single cells into wells121,123,125,126 (Fig. 

2-3A). Kim et al.124 trapped E. coli cells with positive dielectrophoresis into microwells, 

each with a diameter of 3 µm. Although the purpose of this study was to lyse the trapped 

single bacterial cells by applying concentrated electric potential on cell membrane, this 
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system can also be used to separate cells from a mixed population if the cells have 

different sizes. Trapping cells can also be used to follow cell growth in a confined 

geometry with controlled flow of media and stimuli. For example, Takeuchi et al.122 

successfully trapped single E. coli cells in agarose microchambers by placing a flat and 

flexible slab of agarose or PDMS on top of microchambers (1.5-2.5 µm deep and 2-20 

µm wide). These microchambers were prepared via replica molding against a master 

plate that contained features derived from photolithography or soft lithography77,109,120. 

With the growth medium contained in agarose gel and the presence of cephalexin, 

circular-shaped filamentous E. coli cells were obtained by confining them in donut-

shaped microchambers. The shape of these cells was retained after being released from 

the microchambers into solution (Fig. 2-3B). By controlling cell shape, this method can 

be used to study stress response of bacterial cells as well.  

2.6.3 Microfluidic devices 

Poly(dimethylsiloxane) (PDMS) based microfluidics have been applied to 

confine single bacterial cells in channels127-129, wells130, or droplets131-136 (Fig. 2-4). 

These microfluidic devices are fabricated via photolithography and soft 

lithography77,109,120. Microfluidic devices with the bottom surface modified with 1.5 µm 

long and 0.5 µm wide grooves were used to immobilize individual E. coli cells and study 

the relationship between bacterial metabolic activity and their persistence phenotype129. 

Heterogeneity in growth rate was observed among individual cells under the same growth 

condition, which was linked to the persister phenotype since slow-growing cells showed 

higher resistance to the β-lactam antibiotic ampicillin. In another study, Boedicker et 

al.130  created an array of approximately100 fL droplets with different cell densities by 
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introducing air bubbles over the wells made with biocompatible137 resin SU-8 

(photoresist)138. P. aeruginosa cells were inoculated by passing a low-density cell culture 

through PDMS channels on top of resin wells. Bacterial cell density in the droplets was 

controlled by adjusting the time for settlement of bacteria in PDMS channels. This 

strategy allows the cell density in each droplet to be controlled varying from single cell to 

1010~1011 cells/mL. In addition to QS in bacterial populations with high cell density, the 

expression of QS-controlled gene lasB was also observed in droplets with single cells137. 

Another approach of confining single cells or small groups of cells in microfluidic 

systems involves droplet-based microfluidic systems. Droplets in microfluidic systems 

can be generated using a T-junction139 or a flow-focusing microfluidic device134, in which 

the droplet size can be controlled by adjusting the flow of immiscible liquids136. Droplets 

are detected based on the fluorescence marker carried by cells 140 and can be sorted using 

fluorescence-activated droplet sorter (FADS)141. To investigate the effects of signal 

diffusion and cell confinement on QS, Bai et al.134 confined single bacterial cells using a 

droplet-based microfluidic system. In this approach, droplets of surfactant monolayers are 

created in a microfluidic device. The droplets are organized in pairs with one containing a 

trapped individual E. coli cell and the other containing either a single cell or specific 

signaling molecules. This system is useful for studying bacteria at single cell level. By 

continuously monitoring the communication between bacteria, QS was observed at the 

single cell level when E. coli was exposed to a droplet containing either the autoinducer 

N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) or another E. coli cell. This result 

indicates that the confinement of individual cells by droplets led to restricted diffusion of 

signaling molecules and the buildup of its concentration beyond the threshold for 
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triggering bacterial QS in the droplets, which was found to be 1 µM in that study134.  In 

addition to this application, the advances in droplet microfluidics also enabled many 

other high-throughput studies at single cell level77,132, such as bacterial antibiotic 

resistance131,136, comparative genomics77,142, and cell isolation from natural 

populations133.   

2.6.4 Direct printing 

Weibel et al.143 directly printed Vibrio fischeri cells on agar plates, glass slides, 

and nylon membranes using micropatterned agarose stamps prepared by molding against 

PDMS masters (Fig. 2-5). Recently, inkjet printing, including variations of drop-on-

demand technology employing thermal printing and piezoelectric actuation, has been 

used to deposit bacterial cells in cellular microarrays144-147. Merrin145 and Choi147 et al. 

used a piezoelectric drop-on-demand inkjet printer to print E. coli cells onto flat surface 

with up to 98.5% cells remained viable. The center-to-center drop spacing ranged from 5 

µm to 2 mm. The advantage of this methodology is its capability of controlling cell 

density in each droplet as well as the distance between droplets on surfaces.  

2.6.5 Hydrogels 

With permeability to small hydrophobic molecules, hydrogels can be created 

with desired mass transfer properties to mimic the environment in natural biofilms. 

Hence, hydrogels have been used for immobilizing bacterial cells in semi-solid media 

and studying bacterial physiology in biofilms82,148-152. Multiphoton lithography (MPL) 

has been used to produce stimuli responsive lobster traps with walls composed of 

crosslinked proteins to confine bacterial cells149 (Fig. 2-6A). Various proteins can be used 

to fabricate these microchambers, including bovine serum albumin (BSA), avidin, 
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lysozyme, and cytochrome c153,154.  Since these microchambers are protein-based 

structures, the geometry and size of the microchambers can be altered by manipulating 

environmental conditions such as pH, temperature, osmolarity, and light intensity149,155. 

Moreover, the porous walls of these microchambers composed of proteins enable the 

diffusion of nutrients and waste products. By fabricating mcirochambers on coverslips in 

flow cells, cellular activities in microchambers can be followed in real time. Using this 

approach, Connell et al.149 demonstrated that bacterial communication via QS is 

influenced not only by cell density but also by population size and mass transfer rate of 

QS signals. Cells in the lobster traps also exhibited high resistance to antibiotics; 

interestingly, it cannot be explained by growth rate because the cells in traps did not show 

different growth rate compared with cells grown in laboratory flasks156. To further study 

bacterial QS and bacterial resistance to antibiotics, Connell et al.150 expanded the lobster 

traps fabricated with MPL to a microscopic 3D printing strategy that can organize 

multiple populations of bacteria into any 3D geometry (Fig. 2-6B). Microstrucures with 

define geometry were fabricated via laser induced focal cross-linking of polypeptide 

molecules. Bacteria were suspended in the mixture of gelatin and BSA at 37ºC. By 

lowering temperature to 18-22 ºC, bacteria were immobilized in a gel and localized 

within sealed cavities formed by crosslinked gelatin. Gelatin is a highly porous material 

that not only can support the rapid growth of enclosed bacteria but also allow the 

diffusion of polypeptides, antibiotics, and QS signals. Using this approach, Connell et 

al.150 demonstrated that a small population of S. aureus enclosed in a shell of P. 

aeruginosa cells was not killed by ampicillin.  This result suggests that the shell of P. 

aeruginosa cells (2 cells/pL) can effectively degrade ampicillin as it diffuses toward S. 
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aureus cells. Since hydrogels are permeable to QS signals, Flickinger et al. 82 examined 

the diffusion of homoserine lactones (HSLs), QS signals used by Gram-negative bacteria, 

between small colonies of P. aeruginosa confined in arrays of 1.5 mm wide chambers 

embossed in a layer of poly(ethylene glycol) diacrylate (PEGDA) (Fig. 2-6C). These 

hydrogel walls were used to study chemical communication between biofilm cells since 

they are permeable to small molecules such as QS signals, but prohibit physical cell-cell 

interactions in biofilms. Experiments using this platform showed that, during static 

growth, HSLs produced by P. aeruginosa biofilms formed a gradient in hydrogel and was 

detected by biofilm cells up to 8 mm away. HSLs that have no effect on cell growth in 

liquid culture promoted the growth of biofilm cells within 3 mm. These results 

corroborate those obtained by embedding QS strain in a narrow agar lane157 and reveal 

new information about signaling over distance.  

2.6.6 Chemical modification using microcontact printing 

Microcontact printing has been widely used to chemically modify surfaces by 

transferring biomolecules from the surface of a topographically patterned polymer 

stamp109. Recently, this method has been successfully used to control the pattern, shape, 

spacing, and orientation between colonies of different bacteria. Various biomolecules, 

chemicals, proteins, and polyelectrolytes can be used as ‘ink’ to modify a surface using 

mcirocontact printing143,158-160. Several groups covalently patterned antibodies to 

immobilize bacteria161-164. For example, Sun et al.165 patterned polydopamine (PDA) on 

poly (ethylene glycol) (PEG) using microcontact printing to direct the adhesion of E. coli 

and S. epidermidis cells. Among all the chemicals used to immobilize bacterial cells, 

alkanthiols are a particularly useful group of chemicals for tailoring surfaces with specific 
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chemistry166. To immobilize small groups of E. coli cells, methyl-terminated n-

alkanethiol (hydrophobic) that promotes bacterial adhesion was used by Rowan et al.167 

to modify the bottom of 3D corrals, whereas the walls of these 3D corrals consisted of 

hydrophilic poly (acrylic acid) / PEG layered nanocomposites that inhibit adhesion. The 

3D corrals were fabricated on gold, titanium, or silicon surfaces through a four-step 

microcontact printing mediated soft lithography. The size of corrals ranged from 12 to 63 

µm2. Using this approach, small groups of E. coli cells were successfully confined in 

corrals (Fig. 2-7). Rozhok et al.168 immobilized E. coli K12 cells in patterns of lines and 

circles using anti-lipopolysaccharide antibodies or poly-L-lysine, which were bound to 

16-Mercaptohexadecanoic acid (MHA) (introduced by using patterned PDMS stamps). 

The bioinert SAM presenting (11-mercaptoundecyl-penta-(ethylene glycol) (PEG-SH) or 

11-mercapto-1-undecanol (MOU)) was used as background to create 2 µm wide lines 

with 2 µm distance between lines, as well as 3 µm holes with 3 µm spacing. SAM 

surfaces can also be used to create synthetic biofilms with patterned geometry. Hou et 

al.160,169 directed the adhesion of E. coli RP437 cells in square patterns of non-inert 

methyl-terminated SAM (CH3-SAM) surrounded by bioinert tri(ethylene glycol)-

terminated SAM (TEG-SAM). Using such patterned biofilms in this thesis research, it 

was found that the size of cell clusters and distance between adjacent clusters are 

important to cell-cell interactions in biofilms. Also, quorum sensing and motility were 

found to play a role in such interactions (more details in Chapter 3)170.   
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2.7 PYSICAL SURFACE MODIFICATION FOR BIOFILM CONTROL 

Biofilm formation is a dynamic process that involves hundreds of proteins and 

genes. The expression of these genes and protein is very sensitive to the physical and 

chemical properties of the solid surface that a biofilm is formed on171,172. Recently, the 

topographic features of surfaces were intensively studied as an environmental factor that 

can potentially influence biofilm formation. The surface structure can be represent by the 

roughness (2-dimensional measurement based on the mean distance between peak and 

valley) and topography (3-dimensional measurement) For example, Taylor et al.173 

reported that the attachment of P. aeruginosa and S. epidermidis to poly(methyl 

methacrylate (PMMA) increased significantly with a relatively small increase in surface 

roughness value Ra from 0.04μm to1.24μm. However, when the roughness Ra increased 

from 1.86 to 7.89 μm, bacterial adhesion decreased, suggesting an optimal Ra exists for 

cell attachment in this experimental system. In comparison, Hilbert et al.174 reported that 

changing the surface roughness (Ra) from 0.9 to 0.01μm has no effects on the adherence 

of Pseudomonas sp., Listeria monocytogenes and Candida lipolytica to stainless steel 

surfaces. The different effects of surface roughness on bacterial adhesion could be caused 

by the differences in the property of surfaces and the intrinsic characteristics of biofilms 

formed by different bacterial strains. 

Whitehead et al.175 reported that bacterial adhesion on surfaces with 

microtopographic features depends on the scale of topography. The scale of topography 

can also affect the retention of mciroorganisms on the surface if the scale of topographic 

features is comparable to that of mciroorganisms. When the size of features becomes 

nanoscale, the surface can significantly affect bacterial behavior. Machado et al.176 
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demonstrated that the nanoscale roughness on poly(vinyl chloride) (PVC) introduced via 

chemical etching can alter surface energy and reduce bacterial adhesion. Another surface 

topography that can reduce bacterial adhesion is the Sharklet AF surfaces. These are 

PDMS surfaces with 2 μm-wide and 3 μm-tall rod-shaped topographic features organized 

in a diamond geometry with 2 μm spacing between adjacent features (Fig. 2-8). The 

biofilm colonization of S. aureus on such modified surfaces was significantly inhibited 

for 21 days177.  

It is important to note that surfaces with topographic features or increased 

roughness do not always reduce biofilm formation compared to smooth surfaces. For 

example, certain roughness and topography were found to promote bacterial adhesion by 

providing extra space for bacterial adhesion171,178. For instance, Mitik- Dineva179 and 

Satrianoa180 et al. reported that nanoscale topgraphy on glass and 

poly(hydroxymethylsiloxane) (PHMS) surfaces can promote bacterial adhesion with 

increase in EPS production and change in cell morphology. Friedlander et al.178 

demonstrated, while topography (hexagon, 3 μm in diameter and 2.7 μm in height) on 

PDMS surfaces can reduce bacterial adhesion due to the Cassie-Baxter wetting 

state181,182, the resistance was lost after 2 h incubation with E. coli cells with even more 

cells attached than the flat surfaces. Thus, the effects of topography dependents on the 

size and shape of such features as well as the species of bacteria183,175.  

The mechanism by which bacteria sense the surface and make a decision between 

adhesion and planktonic growth is still unknown. The impact of surface roughness and 

topography on the adhesion of mammalian cells is partially due to the flexibility of 

mammalian cells that allows these cells to spread on features. In comparison, bacterial 
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cells are a lot smaller. In addition, by measuring the stiffness of bacterial cells, it is found 

out that bacterial cells are more rigid than mammalian cells and the cells in biofilms are 

even stiffer than planktonic cells184. The differences in cell size and stiffness may 

contribute to the different effects of surface roughness and topography on cell adhesion. 

Although bacterial cells are less flexible than mammalian cells, E. coli and Proteus 

microbilis have been shown to alter their surface morphology such as flagella density, 

cell density, flexibility and adhesion potential on rough surfaces185. This suggested that 

bacterial flagella may play a role in surface adhesion. However, no direct evidence has 

been reported regarding bacterial flagella as a sensor of environment and surface 

condition. Using SEM, Friedlander et al.178 reported that flagella of E. coli cells reach the 

micrometer scale valleys between 2, 3 µm-tall topographic pattern. Although these 

studies provided invaluable insights, the mechanism of biofilm formation and how 

bacteria sense the environment are still not fully understood. To obtain a better 

understanding of biofilm formation, especially the roles of bacterial surface structures, 

experimental systems with well-defined surfaces and imaging capabilities at nanoscale 

are needed.   
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2.8 FIGURE CAPTIONS 

Figure 2-1. Representative images of 24, 48, and 72 h E. coli RP437 biofilms on glass, 

gold (without chemical modification), and stainless steel surfaces. 

Figure 2-2. Cell confinement using lipid-silica structures. (A) Schematic description of 

the cell-directed integration of microbes in lipid templated silica films. The 

insert image (a5) is an atomic force microscopy (AFM) image of a 

Saccharomyces cerevisiae cell encapsulated in a lipid-silica shell. 

Reproduced with permission from Ref. [117]. Copyright 2010 American 

Chemical Society. (B) Single S. aureus cells in lipid-silica droplets on glass 

surfaces. (b1) Schematic description of a cell incorporated in an endosome-

like lipid vesicle within a lipid-silica droplet on glass surface. (b2) Scanning 

electron microscopy (SEM) image of the lipid-silica structure. (b3) and (b4) 

Left: plan-view optical image of individual cells in droplets. Right top: 

different interference contract (DIC) image of the confined cells. Right 

center: red fluorescence image of a stained cell. Right bottom: green 

fluorescence image of lipid on cell surface labeled with 7-nitro-2, 1, 3-

benzoxadiazol-4-yl (NBD) (b3); image of localized pH labeled with oregon 

green pH-sensitive dye (Bar = 5 µm). Reproduced with permission from Ref. 

[119]. Copyright 2010 Nature Publishing Group. 

Figure 2-3. Individual cells trapped in microwells or microchambers. (A) Comparison of 

P. aeruginosa adhesion on flat and modified surfaces. (a1) Top: 

fluorescence image of bacterial adhesion on flat surfaces. Bottom: 

fluorescence image of bacterial adhesion on a periodically structured epoxy 
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surface. SYTOX® green nucleic acid stain was used to label cells (Bar = 10 

µm). a2 and a3) Cross-sectional SEM image of P. aeruginosa PA14 cells on 

flat (a2) and structured surfaces (a3) (Bar = 1 µm). Reproduced with 

permission from Ref. [123]. Copyright 2010 American Chemical Society. 

(B) Controlling the shape of filamentous E. coli cells in microchambers 

fabricated in agarose containing growth media. (b1) Schematic description 

of the microchambers. (b2) A single E. coli cell confined in a 

microchamber. (b3) Growth of a filamentous cell in the presence of 

cephalexin. (b4) Cell is released into solution. (b5) and (b6) Phase-contrast 

microscopy images of donut-shaped microchambers with cells before (b5) 

and after (b6) the growth of filamentous E. coli cells (Bar = 50 µm). (b7) 

Phase-contrast image of spiral, filamentous E. coli cells in solution (Bar = 

10 µm). Reproduced with permission from Ref. [122]. Copyright 2005 

American Chemical Society. 

Figure 2-4. Schematic description of the techniques of soft lithography: (a). replica 

moulding; (b). micromoulding in capillaries; (c). microfluidics; d. 

microcontact printing. Reproduced with permission from Ref. [109]. 

Copyright 2007 Nature Publishing Group. 

Figure 2-5. Bacterial microcontact-printing. (A-E) Schematic description of the process. 

(F)  Image of an agarose stamp (Bar = 10 mm). (G) Circle-shaped patterns 

of V. fischeri colonies (Bar = 2 mm). (H) Checkerboard patterns of V. 

fischeri colonies (Bar = 2 mm). (I) Honeycomb patterns V. fischeri clonies 
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(Bar = 250 µm).  Reproduced with permission from Ref. [143]. Copyright 

2005 American Chemical Society. 

Figure 2-6. Small groups of bacterial cells confined in hydrogel microchambers or 

microstructures. (A) The confinement of P. aeruginosa cells in lobster traps 

with walls consisted of various proteins. (a1) Schematic description of the 

optical setup. (a2) Heart-shaped, 2-picoliter traps with (left and right) and 

without (middle) P. aeruginosa cells (Bar = 5 µm).  (a3) Confocal images of 

traps with P. aeruginosa cells after 2 h gentamicin treatment at the minimal 

inhibitory concentration (MIC). Reproduced with permission from Ref. 

[149]. Copyright 2010 American Society for Microbiology. B) P. 

aeruginosa microcolonies in 3D gelatin structures. (b1) Confocal images of 

P. aeruginosa microcolonies in a surface-anchored 2-pL pyramid (top) and 

an untethered 3-pL torus (bottom). (b2) Confocal images of six physically 

segregated P. aeruginosa populations in 3D spheroid cavities tethered to the 

glass substrate. (b3) Three connected spheroid cavities tethered to the glass 

surface by cylindrical posts. The top-down DIC image (left), side-on  

confocal image (center) and top-down confocal image (right) are shown. 

Reproduced with permission from Ref. [150]. Copyright 2013 National 

Academy of Sciences. (C) Diffusion of HSL between P. aeruginosa biofilm 

cell clusters confined in hydrogel chambers. Reproduced with permission 

from Ref. [82]. Copyright 2011 American Chemical Society. 

Figure 2-7. A corral array of trapped E. coli cells (Bar = 20 µm). Reproduced with 

permission from Ref. [167], Copyright 2012 American Chemical Society.  
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Figure 2-8. Representative SEM images of S. aureus biofilm formation on smooth (left 

column) and Sharklet AF (right column) PDMS surfaces. (A) and (B) day 0, 

(C) and (D) Day 2, (E) and (F) Day 7, (G) and (H) Day 14, and (I) and (J) 

Day 21. Reproduced with permission from Ref. [177]. Copyright 2007 

Springer. 
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2.9 FIGURES 
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Figure 2-3 
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Figure 2-6 
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Figure 2-7 
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3.1 ABSTRACT 

Bacterial biofilms are ubiquitous and are the major cause of chronic infections in 

humans and persistence biofouling in industry. Despite the significance of bacterial 

biofilms, the mechanism of biofilm formation and associated drug tolerance is still not 

fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in 

biofilm structure, which leads to temporal and spatial variation in cell density and gene 

expression. To understand and control such structural heterogeneity, surfaces with 

patterned functional alkanthiols were used in this study to obtain E. coli cell clusters with 

systematically varied cluster size and distance between clusters. The results from 

quantitative imaging analysis revealed an interesting phenomenon that multicellular 

connections can be formed between cell clusters depending on the size of interacting 

clusters and the distance between them. In addition, significant differences in patterned 

biofilm formation were observed between the wild-type E. coli RP437 and some of its 

isogenic mutants, indicating that certain cellular and genetic factors are involved in 

interactions among cell clusters. In particular, autoinducer-2 mediated quorum sensing 

was found to be important.  

Inspired by these results, antibiotic treatment of E. coli biofilm cells during 

biofilm formation was monitored to understand the development of biofilm related 

resistance to antibiotics during biofilm formation. The results reveled that the antibiotic 

susceptibility of biofilm cells increased in the first two hours and then gradually 

decreased to the level of overnight planktonic cultures. This finding suggests that the 

metabolic activity of biofilm cells changes over time. In addition, E. coli RP437 cells 

between square patterns were found more sensitive to ampicillin compared to the cells in 
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the square pattern. This supports the finding that active interaction between all clusters is 

involved during biofilm formation. Collectively, these results provide missing 

information that links cell-to-cell signaling and interaction among cell clusters to the 

structural organization of bacterial biofilms.  
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3.2 INTRODUCTION 

Biofilms are surface-attached complex bacterial communities encased in the self-

produced extracellular polymeric matrix1,2. Biofilms have unique structural 

characteristics with phenotypic and biochemical properties that are distinct from its free 

swimming counterparts3. One of the best-known biofilm-specific properties is the high 

antibiotic resistance of biofilm cells that can be up to 1,000-fold higher than planktonic 

cells4. The high resistance of biofilms against antimicrobial agents makes them hard to be 

eradicated in medical and industrial settings and causes serious problems such as chronic 

infections and persistent biofouling5-8. Although exciting progress has been made in 

identifying biofilm genes9-11, mechanistic understanding of biofilm formation and 

biofilm-associated high resistance to antibiotics is still hindered by some unmet 

challenges especially the heterogeneity in biofilm structure and associated spatial 

variation in cell density and gene expression. 

As stated in Motivation section (Page 2), biofilm formation is a dynamic process 

influenced by many environmental factors such as bacterial surface structures, the 

property of the surface that biofilms are formed, and environmental conditions. 

Therefore, biofilms has significant heterogeneity in its structure (Fig. 3-1A). The 

heterogeneity in biofilm structure also plays an important role in the development of high 

antibiotic resistance in biofilms. For example, the diffusion rate of antibiotics and solutes 

such as nutrients and metabolic products depends on the size, shape, and cell density of 

biofilm cell clusters9,12. Such concentration gradients of solutes can lead to the formation 

of slow-growing cells that are more resistant to antibiotics9,12,13. However, the role of 
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biofilm heterogeneity during the development of biofilm associated high resistance to 

antibiotics is still not fully understood.  

Besides the above challenges presented by biofilm structural heterogeneity, the 

mechanism of such spatial organization of cell clusters in biofilms itself is also an 

interesting but largely unanswered question. To reveal the underlying mechanism, it is 

necessary to study with rigorously controlled size and shape of cell clusters as well as the 

distance between them, which cannot be achieved by using conventional systems.   

Recently, we reported that biofilm morphology can be controlled by tailoring 

surface chemistry with specific patterns of self-assembled monolayers (SAMs) of long-

chain alkanethiols presenting functional groups14,15. These well-defined surfaces provide 

a useful platform to obtain unique information about interactions among bacterial cell 

clusters during biofilm formation. 

 In this study, we investigated adhesion and early stage biofilm formation of E. 

coli on chemically patterned surfaces (Fig. 3-1B) with systematically varied pattern size 

and distance between adjacent square patterns. The results demonstrate that interactions 

among cell clusters play an important role in biofilm structural organization and cell-to-

cell signaling is involved in such interactions. To understand if such interactions can lead 

to different metabolic levels and subsequent antibiotic resistance among cell at different 

locations, we also characterized the antibiotic susceptibility of cells in and between the 

square shaped patterns.  
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3.3 MATERIALS AND METHODS  

3.3.1 Bacterial strains and growth media  

Bacterial strains, plasmids, and associated genotypes are summarized in Table 3-

1. E. coli RP43716, one of the model strains for biofilm formation14,17-20 and its five 

isogenic mutants [motB (strains with point mutation and deletion mutation were both 

tested), cheY, tap, and luxS; see Table 3-1 for details] were used to investigate bacteria-

surface interactions. E. coli HM2221 was used to study the development of biofilm 

resistance in biofilm formation. E. coli wild-type strain RP437 and its mutants were 

routinely grown at 37ºC with shaking at 200 rpm in Lysogeny Broth (LB) containing 10 

g/L tryptone, 5 g/L yeast extract and 10 g/L sodium chloride22. E. coli RP437/pRSH109, 

E. coli KX1485/pDsRed, E. coli RP3087/pDsRed, and the E. coli KX1485/pRHG01 were 

grown at 37ºC with shaking at 200 rpm in LB medium supplemented with 100 μg/mL 

ampicillin. E. coli HM22 was grown 37ºC with shaking at 200 rpm in LB medium 

supplemented with 25 μg/mL of diaminopimelic acid (DPA).  

3.3.2 Genetic complementation of the luxS mutant 

The luxS mutant was complemented with pCR®2.1 TOPO®  (Fig. 3-2A) from 

TOPO TA cloning® kit (Life Technologies Inc., Carlsbad, CA, USA). The luxS gene and 

its native promoter were amplified with the primers: 5’ TGCTTCGAATTCCCCGATCT 

GACTTTC 3’ (forward primer) and 5’ GGCGGAAAGCTTCTTGCGCACTAAGTACA 

A 3’ (reverse primer) (Fig. 3-2B). The 991 bp PCR product was inserted in the vector 

between the two EcoRI restriction sites (Fig. 3-2C). 
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3.3.3 Chemicals  

Alkanethiols of HS(CH2)14CH3 and HS(CH2)11(OCH2CH2)3OH were purchased 

from Sigma-Aldrich Co. (St. Louis, MO, USA). The alkanethiols were dissolved in 

ethanol (200 proof) to 2 mM and stored at 4ºC. SYLGARD®184 Silicone Elastomer kit 

(Dow Corning Co., Midland, MI, USA) was used to prepare polydimethylsiloxane 

(PDMS) stamps for micro-contact printing as described previously23. 

3.3.4 Preparation of the surfaces  

To prepare the surfaces with square patterns of CH3-SAM and background of 

tri(ethylene glycol) (TEG)-SAM, the techniques of photolithography and micro-contact 

printing were used by following previously reported procedures24,25 (Fig. 3-3). The 

dimension of the square patterns and the distance between adjacent patterns were 

systematically varied using the software L-Edit (Tanner Research, Monrovia, CA, USA). 

The side width (W) of the square patterns was set to be 5, 10, 20, 30, 40, or 50 µm and 

the distance (D) between adjacent patterns was set to be 2, 5, 10, 15, 20, 30, 40, or 50 µm 

(Fig. 3-4). A silicon master mold was fabricated first to obtain topographic patterns (10 

µm deep) with above designs, which was performed at the Cornell NanoScale Science & 

Technology and Facility at Cornell University (Ithaca, NY, USA). More details are listed 

in the protocol in APPENDIX. I. Then, a PDMS stamp was prepared by casting 

SYLGARD®184 Silicone Elastomer against the master mode to obtain complementary 

patterns. The stamp was then dipped in 2 mM of HS(CH2)14CH3 and inked on a bare gold 

surface (coated with 0.7 nm titanium and 2.8 nm gold or 0.5 nm titanium and 0.5 nm 

gold) for 15 s. Thus, CH3-SAM was formed only in the pattern area contacted with the 

stamps. The slide was immediately washed with ethanol (190 proof) and soaked in 2 mM 
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solution of HS(CH2)11(OCH2CH2)3OH in ethanol (200 proof) overnight to form the 

background with TEG-SAM. The slide with chemical patterns was cleaned with ethanol 

(190 proof), dried with a sterile air stream, and stored in a sterile petri dish at room 

temperature until use (more details are available in APPENDIX. II). 

To study the antibiotic susceptibility of biofilm cells in biofilms formed on 

surfaces without well-controlled surface chemistry, glass wool (Corning Inc., Corning, 

NY, USA; 8 μm in diameter, 0.25 g in each petri dish) was used to form biofilms. It was 

sterilized by autoclaving and stored in a sterile petri dish until inoculation.  

3.3.5 Biofilm formation 

To study biofilm formation on well-defined surfaces with chemical patterns, 

overnight cultures of the wild-type strain E. coli RP437 and its isogenic mutants were 

used to inoculate LB medium to an optical density at 600 nm (OD600) of 0.05. Biofilm 

growth was conducted at 37 °C for 24 h. To monitor the interaction between cell clusters 

in batch cultures, study the antibiotic susceptibility of bacterial cells in and between cell 

clusters, and investigate the role of bacterial outer membrane structures during interaction 

using scanning electronic microscope (SEM), patterned biofilms were gently washed 

three times in 0.85% NaCl (wt/vol) solution after 2 h incubation and then transferred into 

fresh LB medium for further biofilm growth.  

The chemical complementation of the luxS mutant was achieved by 

supplementing its biofilm cultures with 1, 10, 50, or 100 μM (S)-4,5-Dihydroxy-2,3-

pentanedione (DPD). The cultures were incubated at 37ºC without shaking for 24 h.  

The co-culture biofilms were inoculated with overnight cultures of E. coli 

RP437/pRSH109 and E. coli KX1485 (ΔluxS) /pDsRed with 4:1, 1:1, and 1:4 ratios to 
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OD600 of 0.05. The biofilms of co-cultures were grown under room temperature without 

shaking for 48 h. 

To study the antibiotic resistance of bacterial cells in early stage biofilm 

formation, biofilms of E. coli HM22 biofilms on glass wool were formed in LB media. 

To initiate the biofilm growth, overnight cultures of E. coli HM22 was used to inoculate 

20 mL LB medium to an OD600 of 0.05.  Biofilm growth was conducted at 37 ºC without 

shaking. 

3.3.6 Fluorescence microscopy  

To visualize the biofilms formed on patterned surfaces, LIVE/DEAD BacLight 

Bacterial Viability Kit (Life Technologies Inc., Carlsbad, CA, USA) was used to stain 

biofilm cells of the wild-type strain E. coli RP437 and its isogenic mutants. After 

incubation, the surfaces with E. coli biofilms were transferred from cultures to 0.85% 

NaCl solution and gently washed three times to remove planktonic cells. Then the 

biofilms were stained in 0.85% NaCl containing 0.15% (vol/vol) component A and 

0.15% (vol/vol) component B of the Live/Dead staining kit for 15 min in the dark. All 

biofilms were visualized using an Axio Imager M1 fluorescence microscope (Carl Zeiss 

Inc., Berlin, Germany). Five spots were randomly selected and imaged for each pattern. 

The biofilm surface coverage was then calculated using the COMSTAT software written 

on a Matlab platform26. 

3.3.7 Definition of Cell Cluster Interaction Index (CII)  

The total surface coverage of a biofilm (TB; unit: μm2) formed on a CH3-

SAM/TEG-SAM patterned surface is attributed by three factors: specific adhesion on 

CH3-SAM patterns, nonspecific adhesion on TEG-SAM background, and surface 
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coverage on TEG-SAM (EB; unit: μm2) due to interaction between cell clusters. Hence, 

EB can be calculated using equation (1):  

EB  AB  ABTB TEGTEGMethylMethyl +×+×=                                          (1)    

where BMethyl is biofilm surface coverage on pure CH3-SAM (unit: %); BTEG is biofilm 

surface coverage on pure TEG-SAM (unit: %); AMethyl is the area of CH3-SAM on the 

patterned surface (unit: μm2); and ATEG is the area of TEG-SAM background on the 

patterned surface (unit: μm2). TB, BMethyl, and BTEG were obtained from imaging analysis 

using COMSTAT26. AMethyl and ATEG were calculated based on the pattern design. 

To quantitatively evaluate the interactions between adjacent cell clusters, a 

unitless term named “Cell Cluster Interaction Index (CII)” was defined as equation (2): 

          
C

A
AB-AB-TB
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TEG
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TEG

×
××

=×=
                        (2) 

where C is a constant to proportionally adjust the value of CIIs to be between 0 and 10 

for the convenience of comparison (C =2.2 was used for this study). Thus, CII represents 

the relative surface coverage on bio-inert TEG-SAM due to interaction between all 

clusters. 

3.3.8 Differentiating seeding cells from those formed during biofilm growth  

Cells from an overnight culture of the wild-type strain E. coli RP437 were stained 

with Alexa Fluor 555 carboxylic acid succinimidyl ester from Life Technologies 

(Carlsbad, CA, USA) as described by Turner et al.27 An overnight culture of the wild-

type E. coli RP437 was used to inoculate 10 mL LB to OD600 of 0.4 and then washed 

three times at room temperature by centrifugation (5000 ×g, 10 min) and resuspended in 

10 mL of motility buffer (0.01 M KPO4, 0.067 M NaCl, 10-4 M EDTA, pH 7.0) 27. 
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Finally the cells were resuspended in 0.5 mL motility buffer to concentrate the cells by 20 

times. Alexa Fluor 555 (stored as 5 mg/mL in anhydrous dimethyl sulfoxide) was added 

into the 0.5 mL bacterial suspension to a working concentration of 200 µg/mL along with 

25 µL 1 M sodium bicarbonate to adjust the pH to 7.8. Cells were stained for 1 h at room 

temperature with shaking at 100 rpm, washed three times under room temperature by 

centrifugation (5000 × g, 10 min), and resuspended in 0.5 mL motility buffer. These cells 

were used to inoculate 20 mL LB medium to an OD600 of 0.5 for biofilm growth on gold 

surfaces modified with 20 µm × 20 µm square patterns. The modified gold surfaces were 

incubated at 37 ˚C for 2.5 h to allow cells to attach and then were gently washed three 

times with 0.85% NaCl before they were transferred to petri dishes containing 20 mL 

fresh LB medium in each for biofilm formation. Samples were taken every hour and 

stained with green-fluorescent SYTO® 9 dye from the LIVE/DEAD BacLight Bacterial 

Viability Kit before they were imaged with an Axio Imager M1 fluorescence microscopy.  

3.3.9 Flow cell experiment 

An overnight culture of the wild-type strain E. coli RP437 was used to inoculate 

LB medium in a petri dish to OD600 of 0.05 to form biofilm on a standard microscope 

slide coated with gold and modified with 20 µm × 20 µm square patterns of CH3-SAM. 

The gold surface was incubated at 37 ˚C for 2.5 h, gently washed three times with 0.85% 

NaCl, and then used to assemble a flow chamber (BST model FC81; Biosurface 

Technologies Corp., Bozeman, MT, USA) that consists of a modified gold surface with 

attached cells (2.5 h after inoculation) and a standard glass coverslip on the other side. 

The windows for observation on both sides are 47.5 mm by 12.7 mm rectangular, with a 

1.6 mm gap between them. LB medium was supplied at a flow rate of 10 mL/ h. Images 
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were taken by using an Axio Imager M1 fluorescence microscope every 30 min. To 

follow the cell growth in biofilm, a representative spot (D = 10 µm) was chosen for 

imaging over 24 h.  

3.3.10 Long-term biofilm experiment 

Glass surfaces, gold surfaces, and 316L stainless steel coupons (0.6 in. by 0.3 in., 

with a thickness of 0.02 in.) were sterilized in ethanol (190 proof) for 30 min and dried 

with a sterile air stream. To form biofilms, LB medium in petri dishes containing sterile 

surfaces was inoculated with an overnight culture of the wild-type strain E. coli RP437 to 

an initial OD600 of 0.05. The medium with planktonic cells was replaced with sterile LB 

medium at 24 and 48 h after inoculation to provide sufficient nutrients for biofilm 

growth. Samples were taken at 24, 48 and 72 h after inoculation. The surfaces were 

washed three times with 0.85% NaCl before using an Axio Imager M1 fluorescence 

microscope. Gold surfaces modified with 100 µm × 100 µm patterns were prepared as 

described before14 and were used to test 72 h biofilm growth of the wild-type E. coli 

RP437 following the same procedure. 

3.3.11 Antibiotic treatment 

Overnight cultures of E. coli HM22 were washed three times with 0.85%  NaCl 

solution (change to fresh solution every time) and then dosed with 200 μg/mL ampicillin 

and incubated with 200 rpm shaking for 3 h at 37 ºC before the cells were harvested by 

centrifugation (10,000 ×g, 1 min) at room temperature and washed with 0.85% NaCl 

solution. A drop plate assay of CFU as described previously28 was used to evaluate the 

viability of cells with and without antibiotic treatment. Briefly, 96 well-plates were pre-

filled with 180 µL 0.85% NaCl solution. Six 20 µL samples with and without antibiotic 
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treatment were loaded in the first column of a sterile 96-well plate using a pipette. A 

series of 10-fold dilutions was made into the subsequent columns of the same 96-well 

plate using a multichannel pipette. CFUs were counted after loading 10 µL of each 

sample on LB agar plate supplemented with 25 μg/mL of DPA and incubated overnight 

at 37 ºC. Drops that showed 10 to 50 CFU per 10 µL of diluted sample were counted to 

calculate the number of viable cells in the original sample. Each sample was counted with 

at least 9 replicates.  

To study the antibiotic resistance of biofilm cells during the biofilm formation, 

E. coli HM22 biofilms formed on glass wool were harvested every 30 min after 

inoculation and then gently washed with 0.85% NaCl solution three times to remove 

planktonic cells. The washed biofilm was then transferred to sterile test tubes each 

containing 3 mL of 0.85% NaCl solution. To release biofilm cells from the surface of 

coupons and glass wool and count a CFU, test tubes with coupon or glass wool soaked in 

0.85% NaCl solution were sonicated for 2.5 min and vortexed for 30s. The solution with 

biofilm cells was transferred to a new test tube and vortexed for another 30s before being 

divided into 2- aliquots in microcentrifuge tubes. One microcentrifuge tube containing 

1.5 mL solution was dosed with 200 μg/mL ampicillin and incubated with 200 rpm 

shaking for 3 h at 37 ºC. The treated biofilm cells were collected using the AcroPrepTM 

96-well filter plate (350 μL with filter pore size 0.2 μm in diameter) and vacuum 

manifold (PALL Corporation, Port Washington, NY, USA). The cells were then washed 

three times with 100 μL 0.85% NaCl solution and suspended in 20 μL 0.85% NaCl 

solution. The number of CFU of biofilm cells with and without antibiotic treatment was 

counted in the same way as described above.  
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3.3.12 Antibiotic susceptibility of biofilm cells on patterned surfaces 

To understand if biofilm structure and location of biofilm cells play a role in 

antibiotic resistance, patterned E coli RP437 biofilms were harvested at 2, 4 and 6h after 

incubation and gently washed three times in 0.85% NaCl solution (change to fresh 

solution every time) to remove planktonic cells.  Then, the surface with biofilms was 

transferred to 3 mL 200 μg/mL ampicillin solution and incubated for 1 h at 37 ºC. 

Patterned biofilms were gently washed three times in fresh 0.85% NaCl solution before 

the Live/Dead staining to remove extra antibiotics. To visually determine the viability of 

E. coli RP437 cells in patterned biofilms, LIVE/DEAD® BackLightTM Bacteria Viability 

Kit (Life Technologies Inc., Carlsbad, CA, USA) was used to stain biofilms of the wild-

type strain as described above after antibiotic treatment. Biofilms were stained for 15 min 

in dark and visualized using an Axio Imager M1 fluorescence microscope. Five spots 

were randomly selected and imaged for each pattern. The biofilm surface coverage of the 

live and dead biofilm cells was calculated using the COMSTAT software written on a 

Matlab platform26. Each sample has at least three replicates. 

The average cell viability in cell clusters of each image was calculated by circling 

out two representative cell clusters from each image. The surface coverage of live or dead 

cells in the area between cell clusters was calculated using following equation (3):  

                   
TEG

Methyl)Methyl(L/DTotalTotal(L/D)
TEG(L/D) A

AB-A B
B

××
=                             (3) 

where BTEG(L/D) is the surface coverage of the cell population of interest (live, dead or 

total); BTotal(L/D) is the total surface coverage by that population, which was directly 

calculated using COMSTAT; ATotal is the total area of each image; BMethyl(L/D) is surface 

coverage in pattern area by that population; AMethyl is the area of CH3-SAM (for cell 
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cluster formation), which was calculated based on pattern design; and ATEG is the area 

between CH3-SAM patterns (interaction between cell clusters), which was also calculated 

based on pattern design.  

3.3.13 Sample preparation for scanning electron microscopy (SEM) 

To study the role of bacterial outer membrane structures during interaction among 

cell clusters using SEM, patterned E. coli RP437 biofilm growth medium was incubated 

at 37ºC without shaking for 2 h for cells to attach. Then, the gold surfaces were gently 

washed three times in 0.85% NaCl solution (change to fresh solution every time) and 

transferred to 20 mL fresh LB for another 2 and 4 h biofilm growth at 37ºC. After 

washing, the patterned biofilms were immediately transferred into 2.5% glutaradehyde in 

1 M phosphate buffered saline (PBS) buffer to fix the cells at room temperature until 

dehydration. Then, the patterned biofilms incubated for another 2 and 4 h attachment (4 h 

and 6 h after the initial inoculation) were harvested and soaked in 2.5% glutaradehyde in 

1 M PBS buffer at room temperature to fix the cells until dehydration. Next, the 2.5% 

glutaradehyde in 1 M PBS buffer was removed and 1% osmium tetroxide in 25 mM 

phosphate buffer was used to stain lipid for 30 min. Then, the 1% osmium tetroxide in 25 

mM phosphate buffer was replaced by a graded series of ethanol washes [25%, 50%, 

75%, 90%, 95%, and 100% (×3); 30 min each] to dehydrate samples. Finally, the 

patterned biofilms were dried using Tousimis PVT-3B critical point dryer (Tousimis, 

Rockville, MD) or tetramethylsilane (Sigma-Aldrich Co., St. Louis, MO, USA). 

Specimens were coated with platinum with DESK II (Denton vacuum Inc., Moorestown, 

NJ, USA) and observed with a JEOL 5800LV scanning electron microscope (N.C. Brown 
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Center, Syracuse, NY) or LEO 1550 FESEM (Keck SEM, Cornell Center for Material 

Research (CCMR), Ithaca, NY, USA). 

3.3.14 Statistics 

One-way and two-way ANOVA analyses Tukey tests, and correlation analysis 

were applied to understand the effects of surface patterns on biofilm formation. All 

statistical analyses were performed by using SAS 9.1.3, Windows version (SAS, Cary, 

NC, USA). Results with p < 0.05 were considered statistically significant.  

 

3.4 RESULTS  

3.4.1 Patterned biofilm formation revealed interaction among cell clusters 

To get new insights in the mechanism of bacteria-surface interactions, the gold-

coated glass surfaces were modified with square patterns of CH3-SAM for cell adhesion 

and background with bioinert triethylene glycol-SAM (TEG-SAM) (Fig. 3-4). 

Representative fluorescence images of E. coli RP437 biofilms on 20 µm × 20 µm 

patterns with 2, 5, 10, or 15 µm distance between adjacent patterns are shown in Fig. 3-5. 

Although all patterns are 20 µm × 20 µm squares, clear patterns of E. coli RP437 

biofilms were only observed on surfaces with patterns separated by 10 µm or more of 

TEG-terminated SAM. On the surfaces with 2 µm or 5 µm between patterns, the cells 

covered the TEG-SAM areas between adjacent patterns substantially (Fig. 3-5A&B). 

Because the E. coli RP437 cells used in this study are 2.4  ± 0.5 µm long on average and 

the threshold distance for pattern integrity (sufficient separation between adjacent 

patterns) is 10 µm, the connection between adjacent patterns when D < D* is unlikely to 

be caused solely by single cells nonspecifically attached to TEG between two adjacent 
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square patterns. Consistently, we observed interesting multicellular connections between 

patterns with 2 or 5 µm distance (Fig. 3-6A). When the distance between cell clusters 

reached 10 µm, connections between cell clusters were only occasionally observed with 

cells in a single line (Fig. 3-6B). These results suggest that multicellular structures are 

involved in interaction between cell clusters during biofilm formation. A critical distance 

(D*, Fig. 3-6C) between adjacent patterns appears to exist, beyond which the cell clusters 

cannot interact efficiently (seen as clearly separated patterns).   

3.4.2 Pattern size and inter-pattern distance affected interactions among cell clusters 

To further confirm the existence of a critical distance for interaction among cell 

clusters, the CII values were calculated to quantitatively compare the surface coverage on 

bioinert TEG-SAM background due to specific interaction between cell clusters (the 

higher the CII value, the more connection between cell clusters; see Experimental 

Methods for more details). As shown in Fig. 3-7, for all the pattern sizes studied, the CII 

value decreased drastically when the distance between patterns increased from 2 µm to 

10 µm and then exhibited little change when the distance further increased beyond 10 

µm. For example, for the 10 µm × 10 µm patterns, the CII values are 0.86 ± 0.14, 0.49 ± 

0.12, 0.10 ± 0.03, 0.10 ± 0.03, 0.06 ± 0.02, 0.06 ± 0.02, 0.06 ± 0.02, and 0.05 ± 0.02 for 

the patterns with distance of 2, 5, 10, 15, 20, 30, 40, and 50 µm, respectively.  

A two-way analysis of variance (ANOVA) adjusted by Tukey test showed that, 

for patterns with side length of 5, 10, 15 or 20 µm, the CII values of different inter-

pattern distances for a given pattern size followed a trend of: CII2 µm > CII5 µm > CII10 µm ≈ 

CII15 µm ≈ CII20 µm ≈ CII30 µm ≈ CII40 µm ≈ CII50 µm. For patterns with a side length of 30, 

40 or 50 µm, the CII values also decreased with inter-pattern distance (D) significantly 
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when D increased from 2 to 5 and 10 µm. Although CII continued to decrease with 

increase in D when D > 10 µm, the changes were fairly small compared to those when D 

< 10 µm. For example, for 40 µm × 40 µm patterns, the CII valued decreased from 2.34 ± 

0.33 to 0.39 ± 0.05 when D increased from 2 to 10 µm; while it only decreased to 0.16 ± 

0.03 when D further increased to 50 µm. Thus, 10 µm appeared to be the critical distance 

(D*) for significant interaction among cell clusters during early stage biofilm formation 

of E. coli RP437 under our experimental condition. 

In addition to the effects of inter-pattern distance on CII, it was interesting to find 

that the size of interacting patterns also has a significant impact on CII. As shown in Fig. 

3-8, the CII values increased with pattern size for patterns larger than 20 µm × 20 µm 

regardless of the distance between adjacent patterns; while no clear trend was found for 

patterns smaller than 20 µm × 20 µm. This finding is corroborated by a Pearson 

correlation analysis which showed no strong correlation between CII and pattern size for 

the patterns smaller than 20 µm × 20 µm regardless of the distance between adjacent 

patterns (Table 3-2). However, a strong positive correlation was observed for all patterns 

with a side length of 20, 30, 40, or 50 µm (r > 0.93 for all patterns studied, p < 0.0001) 

(Table 3-2). Thus, 20 µm appears to be a critical dimension (W*) of square patterns to 

establish fruitful inter-cluster connections. The size of 20 µm × 20 µm patterns is about 

200 times bigger than the footprint of individual cells used in this study, suggesting that 

multicellular interactions within cell clusters also influences the interaction between 

clusters. 
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3.4.3 Interactions between cell clusters are involved in biofilm structural 

organization  

Several observations indicate that the connections between cell clusters were 

formed because of active interaction and formation of “bridges” between clusters, rather 

than non-specific binding of E. coli cells on the bioinert TEG-SAM. First, the formation 

of connections between cell clusters depends on the distance between adjacent patterns. 

The surface coverage (per unit area) on TEG-SAM background of 20 µm × 20 µm 

pattern surfaces was found to be significantly larger than that on pattern-free TEG-SAM 

surfaces (Fig. 3-9). Also, the coverage of TEG-SAM increased substantially as the 

patterns of CH3-SAM got closer to each other especially when the distance was smaller 

than 10 µm, which indicates that the surface coverage between patterns was not due to 

non-specific binding or biofilm growth out of patterns (biofilm remained square shape 

when the CH3-SAM patterns were sufficiently separately). 

To obtain further evidence of direct interaction between cell clusters, the 

connection between adjacent E. coli cell clusters was monitored in real time in a batch 

culture. By labeling the seeding cells with Alexa Fluor 555 and all the cells in the formed 

biofilm with SYTO® 9, cells added at inoculation (with both strong orange and green 

fluorescence) and those formed during biofilm growth (with green fluorescence and weak 

or no orange florescence due to dilution by cell division) can be differentiated. As shown 

in Fig. 3-10, the cells in the patterns had both strong green and orange colors right after 

inoculation. After the connection between patterns was established; however, the cells 

between adjacent clusters were found to be mostly green without significant orange 
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fluorescence, indicating that these cells were formed during biofilm growth rather than 

non-specific binding of seeding cells.  

This finding was further corroborated by a flow cell experiment to follow the 

formation of connection between cell clusters in real time. As shown in Fig. 3-11, it was 

found that as the cells in two adjacent patterns separated by 10 µm grew and divided over 

time, the clusters expanded across bioinert TEG-SAM toward each other. Cell dispersion 

and absorption at the inter-pattern area were not observed. Overall, the above results 

confirmed that the interaction among adjacent cell clusters was due to the growth and 

division of cells from clusters that were close to each other rather than nonspecific 

binding of planktonic cells settling from suspension on the TEG-SAM background. 

Besides, the interaction was preferentially formed over the shortest distance between two 

close cell clusters (Fig. 3-12). 

It is interesting to notice that the interaction among cell clusters is affected by the 

size of cell clusters and distance between them. Although interaction between adjacent 

cell clusters can lead to significant coverage of the TEG-SAM background, the cell 

clusters that are far away from other clusters remained their specific square shape (Fig. 3-

5). This finding suggests that bacterial cells may be able to sense the size of their clusters 

and distance from other clusters within a range and interact for development toward a 

mature biofilm.  

3.4.4 Imaging cell surface structures with scanning electron microscopy (SEM) 

Interestingly, we found that E.coli cells can interact between cell clusters within 

10 µm. This threshold distance is larger than the size of E.coli cells used in this study. 

This led to our hypothesis that surface structures, such as flegalla, may be involved in 
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such interactions. To test hypothesis, it is important to visualize cells on patterned 

surfaces with high resolution. SEM has been widely used to study the assembly and 

function of flagella 29-31, curli31-35, and fimbriae36-38. To study the roles of cell surface 

structures that can allow bacteria to adhere and move along a solid surface during the 

interaction, the 24 h of patterned E. coli RP437 biofilm formed on gold surfaces modified 

with size 20 µm × 20 µm SAM patterns were imaged with JEOL 5800LV SEM with 15 

kV scanning voltage (Fig. 3-13). This is encouraging although there were not much 

extracellular structures observed in 24 h of patterned E. coli RP437, which was probably 

due to the decrease in expression of bacterial flagella, curli, and fimbriae in 24 h biofilms.  

Hence, instead of imaging 24 h patterned biofilms, we imaged 2, 4, and 6 h 

biofilms with SEM in the second experiment. To highlight the cell surface structures 

under SEM, we used the osmium tetroxide staining to label the lipid molecules in cell 

membrane or membrane structures39. By lowering the scanning voltage to 5 kV and 

bringing the stage closer to detector, extracellular structures were observed (Fig. 3-14A). 

However, due to sample preparation using critical point drier, cell membrane of some 

biofilm cells was damaged (Fig. 3-14B). We further modified the protocol to address this 

issue. Instead of using critical point drier to finish the dehydration of samples, we used a 

chemical tetramethylsilane (TMS) that was reported to give better results when it was 

used to process mammalian cells40. The results showed that there were extracellular 

structures on the outer membrane of E. coli cells in patterned biofilms (Fig. 3-15). 

Meanwhile, high resolution analytical SEM were applied in some microbiological 

studies, which has led to the discovery of nanotubes as a new type of surface structures in 

E. coli41. This study inspired us to image patterned biofilms using a LEO 1550 FESEM 
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(field emission scanning electron microscope) with resolution up to 1 nm at 20 kV and 

2.5 nm at 5 kV for compatible specimen. The images obtained by this SEM revealed 

more detailed information about the E.coli cells in our biofilm samples and the fine 

structures can be visualized (Fig. 3-16). These extracellular existed between cells in and 

between cell clusters, which suggests that they may play a role during cell-cell 

interaction. Their role during the formation of interaction need further studied. 

3.4.5 Mutation of key genes affected interaction among cell clusters 

To understand whether there is any genetic basis for the interactions among cell 

clusters, selected isogenic mutants of E. coli RP437 (Table 3-1) were also characterized 

to compare their biofilm formation on 20 µm × 20 µm patterns with varied distance 

between patterns. As shown in Fig. 3-17A and Table 3-3, the wild-type E. coli RP437 

fully covered the CH3-SAM patterns and formed substantial connections between cell 

clusters (no clear patterns were seen) when the distance D was 2 or 5 µm, less than the 

threshold D* (10 µm). In comparison, RP3525 (Δtap) did not form cell clusters on CH3-

SAM patterns and showed CII values close to zero. RP4979 (ΔcheY) also exhibited major 

defects in adhesion and cell cluster formation. Interestingly, KX1485 (ΔluxS) and 

RP3087 (with a point mutation in motB) formed relatively normal cell clusters on CH3-

SAM patterns, but the levels of interactions between cell clusters were lower than that of 

the wild-type E. coli RP437. For example, on the surfaces with 5 µm of inter-pattern 

distance, strong interactions between cell clusters were observed for the wild-type E. coli 

RP437 but not for KX1485 (ΔluxS) and RP3087. Overall, the interactions among cell 

clusters as represented by CII values were found to be wild-type (RP437) > motB mutant 

(RP3087) > ΔluxS (KX1485) > ΔcheY (RP4979) ≈ Δtap (RP3525) (Fig. 3-17B). The 
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mutation in RP3087 led to a malfunctioned MotB protein, which rendered the cells 

unable to interact between clusters (Fig. 3-17) 42. In comparison, deletion of the motB 

gene showed a stronger impact since BL-19 (ΔmotB) even failed to attach on CH3-SAM 

(Fig. 3-18).  

3.4.6 Interaction among cell clusters involves quorum sensing 

To confirm if the defects in the luxS mutant (KX1485) as described above was not 

due to any polar effects, we complemented the mutation with plasmid pRHG01 carrying 

luxS under its native promoter. As shown in Fig. 3-19A (images) and Fig. 3-19B (CII 

values), the defects of KX1485 in interaction among cell clusters were fully rescued by 

this complementation. 

The luxS gene is best known for its function in bacterial quorum sensing (QS), a 

system of bacterial gene regulation by sensing and responding to cell density43. LuxS 

protein is responsible for the synthesis of QS signaling molecule autoinducer 2 (AI-2), 

which is involved in QS in both Gram-positive and Gram-negative bacteria. In addition to 

QS, luxS has also been shown to regulate other phenotypes such as cell growth, biofilm 

formation, motility, virulence and resistance to antimicrobial agents44,45. To specifically 

test whether AI-2-mediated QS is involved in cell cluster interactions, the biofilm culture 

of KX1485 was supplemented with different concentrations of the AI-2 precursor DPD 

(1, 10, 50, and 100 μM), which can spontaneously transform to AI-2 in aqueous 

environment44.  The interactions between cell clusters of the luxS mutant was fully 

restored when DPD was supplemented to cultures at 50 or 100 μM (Fig. 3-20A&B). This 

experiment provided important evidence that QS via AI-2 is involved in interactions 

among E. coli cell clusters. 
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Relatively high concentrations of DPD were required to restore the phenotype of 

KX1485, suggesting that luxS may also control some other phenotypes involved in 

interactions among cell clusters. To test this hypothesis, we conducted a further 

experiment of patterned biofilm formation of co-cultures of the E. coli RP437 (WT) and 

KX1485 (ΔluxS). To allow a direct comparison of bacterial distribution in the biofilms 

formed by those two strains, the RP437 cells were labeled with constitutively expressed 

green fluorescent protein (GFP, encoded by the plasmid pRSH109) and the KX1485 cells 

were labeled with constitutively expressed red fluorescent protein (RFP, encoded by the 

plasmid pDsRed). It was interesting to find that, although KX1485 is in contact with AI-2 

signals produced by the wild-type E. coli RP437, the wild-type RP437 cells still 

dominated the co-culture biofilms (Fig. 3-21) except for the patterns separated by more 

than 10 µm with inoculation ratio of wild-type : ΔluxS = 1: 4. Collectively, these results 

indicate that QS via AI-2 is important to the interaction among cell clusters; while other 

factors controlled by luxS are also involved in biofilm growth in a competitive 

environment.  

3.4.7 E. coli cells exhibited changes in antibiotic susceptibility during the early stage 

biofilm formation 

To determine the susceptibility of biofilm cells to antibiotic treatment during the 

early stage of biofilm formation, the effects of ampicillin on E. coli HM22 cells on glass 

wool surfaces during the first 5 h of biofilm formation was investigated. This condition 

was chosen because it is commonly used to isolated pesister cells of E. coli HM2246. It 

was found that during the first 2h of biofilm growth, the percentage of biofilm cells that 

survived the 3 h ampicillin (200 µg/mL) treatment decreased with the time (Pearson 
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correlation analysis; r < -0.94 for all samples studied, P < 0.0001), suggesting that the 

cells were metabolically active (Fig. 3-22). For example, the percentage of 2 h biofilm 

cells that survived the treatment was about 3-fold lower than the cell in overnight cultures 

used for inoculation. Interestingly, when the biofilm was inoculated for more than 2 h, 

the percentage of survival increased with time and returned to the original level after 5h 

(r > 0.94 for all samples studied, P < 0.0001). These results suggest that the metabolic 

activities in biofilm cells change dynamically during biofilm formation. The finding that 

2h is a turning point with the maximum killing is interesting. Further study is necessary 

to help understand the underlying mechanism.  

3.4.8 Location of biofilm cells and antibiotic susceptibility 

The finding that E. coli cells actively interact between cell clusters led to our 

hypothesis that the cells in clusters and between clusters may have different levels of 

antibiotic susceptibility. To test this hypothesis, patterned E. coli RP 437 biofilms were 

treated with 200 µg/mL ampicillin for 1 h and the viability of biofilm cells was 

determined using LIVE/DEAD staining and fluorescence microscopy. As shown in Fig.3-

23, for 2, 4, and 6 h E. coli RP437 biofilms, cells in clusters were more resistant to 

ampicillin than the cells between clusters. For example, the percentage of viable cells in 

cell clusters in 2, 4, and 6 h patterned biofilms with 10 µm between clusters was 54.8 ± 

7.5%, 79.5 ± 2.4%, and 91.6 ± 1.8%; while the percentage of viable cells between 

clusters in the same biofilms was 7.4 ± 13.1%, 52.0 ± 6.8%, and 85.0 ± 1.8%, 

respectively. The resistance of cells in 6 h biofilms is similar to that in 24 h biofilms 

respectively. This result indicates that cells between cell clusters during early stage 

biofilm formation were more susceptible to the antibiotic ampicillin. The susceptibility 



90 

 

decreased over time during biofilm formation for all the tested cells. Since ampicillin is 

more effective against metabolically active cells, these findings support the hypothesis 

that the cells between clusters are more active and the metabolism of biofilm cells 

decrease over time. In addition to time, the distance between patterns did not appear to 

play a role, except for the 2 h biofilms.  

 

3.5 DISCUSSION 

Structural heterogeneity is an important challenge to biofilm research and hinders 

mechanistic understanding of biofilm formation11,47,48. By rigorously controlling surface 

chemistry, the morphology of biofilms is better controlled. The patterned biofilm 

formation described in this study offered a new opportunity to systematically study the 

interaction among cell clusters at the genetic level with controlled size and shape of cell 

clusters.   

By comparing the CII values of patterned biofilms, the results indicate that 

interactions among cell clusters are specific and are influenced by the size of cell clusters 

and the distance between them. Both the threshold distance (10 μm) and pattern size (20 

μm × 20 μm) are significantly larger than the size of individual E. coli cells used in this 

study, which indicates that multicellular interaction is essential for establishing 

connection between cell clusters. Interestingly, we recently found that E. coli adhesion on 

the top of protruding patterns of PDMS is significant only if the dimension of protruding 

square patterns is 20 μm × 20 μm or larger23. Collectively, these data suggest that a 

threshold dimension may be required for establishing a stable cell cluster and interaction 

with other clusters. Although the nature of such interactions and their effects on bacterial 

physiology are unknown, following the early stage biofilm formation on patterns over 
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time provided evidence that E. coli cells from adjacent clusters can grow toward each 

other and form “bridge-like” connections. Besides, bacterial extracellular structures seem 

to play a role during this process. Since pattern size and inter-pattern distance have 

significant impacts on CII, interactions between cell clusters appear to involve active 

sensing of local environment by bacteria and decision making in response to related 

stimuli. The finding that QS via AI-2 is involved in such interactions provided promising 

evidence.  

Based on the results of study, we propose the following model to explain the 

heterogeneity in biofilms. As shown in the schematic in Fig. 3-24, when bacterial cells 

approach a surface through reversible adhesion, the cells need to opt for adhesion or 

detachment. On surfaces without well-controlled surface chemistry (in most natural and 

experimental conditions), the initial adhesion is heterogeneous. This leads to unevenly 

distributed small colonies (Fig. 3-24). The findings of this study demonstrate that the cell 

clusters close to each other (D ≤ D*) can interact and grow into a bigger colony, while 

the cell clusters that are far away from each other (D ≥ D*) will remain as individual 

colonies if the surrounding environment, e.g., surface chemistry, does not allow them to 

grow big enough to interact with other colonies. For example, Hou et al.49 showed 

recently that biofilms can be confined in specific patterns for a month. Further 

development of the colonies with multiple layers of cells creates more heterogeneity due 

to differences in nutrient transfer, waste removal, and cell-to-cell signaling caused by the 

existing differences in colony size and shape. Attachment of planktonic cells and 

dispersion of cell clusters are additional factors causing structural heterogeneity. This 
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model is consistent with experimental observations of heterogeneous biofilms as shown 

in Fig. 3-1A, and emphasizes the importance of surface condition to biofilm formation.  

Ampicillin is a β-lactam antibiotic, which inhibits the synthesis of bacterial cell 

wall in cell division leading to bacterial death50. Hence, it is well known that ampicillin is 

only effective in killing fast-growing cells and not effective in killing slow-growing 

cells51. The finding that ampicillin was effective in killing 2 h biofilm cells on glass wool 

and the cells between cell clusters on patterned surfaces suggests that these cells are 

metabolically active. 

These results demonstrate that important missing information can be obtained by 

decoupling the structural heterogeneity and other chemical or physical factors. Further 

studies on the role of key genes can help understand the genetic basin of observed 

phenomenon. The effects of structural organization on cellular processes are also 

important to study. For example, ampicillin treatment has been reported by to reduce 

flagellar synthesis52. The study on the role of flagellar assembly during the development 

of biofilm high drug resistance is part of our ongoing work.  
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3.7 FIGURE CAPTIONS  

Figure 3-1. Representative images of E. coli RP437 biofilms. (A) Heterogeneous 

biofilms formation on glass, gold (without chemical modification), and 

stainless steel surfaces (Bar = 50 µm). (B) Patterned biofilms formed on gold 

surfaces modified with self-assembled monolayers (SAMs) presenting 

functional groups (Bar = 50 µm).  

Figure 3-2. Genetic complementation of the luxS mutant. (A) Map of the pCR®2.1 

TOPO® vector. (B) The gel image indicating the luxS gene and its promoter 

were obtained. (C) PCR product of the luxS gene amplified from the cloned 

plasmid. 

Figure 3-3. Schematic presentation of the pattern generation through photolithograph, 

soft lithography and microcontact printing. 

Figure 3-4. Schematic presentation of gold surfaces modified with square patterns of 

CH3-SAM and background of TEG-SAM. 

Figure 3-5. Representative fluorescence images of 24 h E. coli RP437 biofilms on 20 µm 

× 20 µm patterns with inter-pattern distance of 2 (A), 5 (B), 10 (C), or 15 (D) 

µm (Bar = 50 µm).  

Figure 3-6. Interaction between E. coli cell clusters: representative cell clusters with 5 

(A) or 10 (B) µm distance; and schematic illustration of interaction between 

adjacent cell clusters (C) (Bar = 10 µm). 

Figure 3-7. Effects of inter-pattern distance on CII values of E. coli RP437 biofilms. N=3 

biological repeats averaged; at least 15 images were analyzed for each data 

point. 
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Figure 3-8. Effects of pattern size on CII values. N=3 biological repeats averaged; at 

least 15 images were analyzed for each data point.  

Figure 3-9. Ratios of surface coverage on TEG-SAM (EB) of 20µm×20µm pattern 

surfaces (with varying inter-pattern distance) to that on pattern-free TEG-

SAM surfaces. N=3 biological repeats averaged; at least 15 images were 

analyzed for each data point. 

Figure 3-10. Connections between cell clusters (W = 20 µm; D = 10 µm) were formed 

due to growth of cells from adjacent clusters rather than settlement of 

seeding cells. Representative cell clusters after 3 h of initial attachment (A) 

and 7 h of growth (B) are shown (Bar = 10 µm).   

Figure 3-11. Representative images of cell growth during early stage of patterned biofilm 

formation in a flow cell (Bar = 10 µm). 

Figure 3-12. Representative images of cell growth in early stage of patterned biofilm 

formation in batch culture (Bar = 10 µm). 

Figure 3-13. SEM images of E. coli RP437 cells in 24 h biofilms formed on a gold 

surface modified with size 20 µm × 20 µm patterns. Images were taken by 

using a JEOL 5800LV SEM. 

Figure 3-14. SEM images of E. coli RP437 cells in 2h (A) and 4h (B) biofilms formed on 

a gold surface modified with size 20 µm × 20 µm patterns. Images were 

obtained using JEOL 5800LV SEM. 

Figure 3-15. SEM images of E. coli RP437 cells in a 4 h biofilm formed on a gold 

surface modified with size 20 µm × 20 µm patterns. Samples were 
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dehydrated with tetramethylsilane (TMS) as the last step of dehydration. 

Images were obtained using JEOL 5800LV SEM. 

Figure 3-16. SEM images of E. coli RP437 cells in a 4 h biofilm formed on a gold 

surface modified with size 20 µm × 20 µm patterns. Images were obtained 

using LEO 1550 FESEM. 

Figure 3-17. Patterned biofilm formation of the wild-type E. coli RP437 and its four 

isogenic mutants. (A) Representative fluorescence images of biofilms 

formed on surfaces modified with 20 µm × 20 µm CH3-SAM patterns with 

varying inter-pattern distance (Bar = 50 µm). (B) CII values of biofilms 

shown in Figure 3-17A. N=3 biological repeats averaged for this graph; at 

least 15 images were analyzed for each data point. 

Figure 3-18. Attachment of E. coli BL-19 (RP437 ∆motB) on a surface with 20 µm × 20 

µm SAM patterns after 24 h of incubation (Bar = 50 µm). 

Figure 3-19. Genetic complementation of the luxS mutant. (A) Representative 

fluorescence images of patterned biofilms of E. coli RP437, its luxS mutant 

KX1485, and the complemented luxS mutant KX1485/pRHG01 (Bar = 50 

µm). (B) CII values of biofilms shown in Figure 3-19A.  N=3 biological 

repeats averaged for this graph; at least 15 images were analyzed for each 

data point. 

Figure 3-20. Chemical complementation of the luxS mutant with AI-2 precursor DPD. 

(A) Representative fluorescence images of patterned biofilms of E. coli 

RP437, its luxS mutant KX1485, and KX1485 supplemented with 50 or 100 
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μM DPD (Bar = 50 µm). (D) CII values of biofilms shown in Figure 3-20A. 

N=3 biological repeats averaged for this graph; at least 15 images were 

analyzed for each data point. 

Figure 3-21. Co-culture biofilms on 20 µm × 20 µm patterns. (A) Representative 

fluorescence images of 48 h biofilms with E. coli RP437/pRSH109 and 

KX1485/pDsRed inoculated as 4:1, 1:1, and 1:4 ratios (Bar = 50 µm). (B) 

Relative surface coverage of the above co-culture biofilms. 

Figure 3-22. Viability of biofilm cells after treatment with 200 µg/ml ampicillin for 3h E. 

coli HM22 biofilms were formed on glass wool. The CFU of untreated cells 

for each condition was normalized as 100%. N=3 biological repeats 

averaged for this graph. 

Figure 3-23. Ampicillin susceptibility of E. coli RP437 cells in patterned biofilms. (A) 

Representative images of the patterned E. coli RP437 biofilms (2, 4, 6, and 

24 h inoculation) on gold surfaces modified with 20 µm × 20 µm square 

shaped patterns with 15 µm inter-pattern distance. The biofilms were treated 

with 200 µg/mL ampicillin for 1 h and labeled with LIVE/DEAD® 

BackLightTM Bacteria Viability Kit before imaging (Bar = 10 µm). (B) 

Viability of cells in patterned E. coli RP437 biofilms (2, 4, 6, and 24 h) 

analyzed using COMSTAT.  

Figure 3-24. Schematic description of early stage bacterial biofilm formation on 

uncontrolled surfaces (A) and well-defined surfaces (B). 
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3.8 FIGURES 

 

Figure 3-1 



99 

 

 

Figure 3-2 



100 

 

 

Figure 3-3



101 

 

 

Figure 3-4



102 

 

 

                                                                

Figure 3-5 



103 

 

 

Figure 3-6 

 

 

 

 

 

 



104 

 

 

 

Figure 3-7 



105 

 

 

Figure 3-8 

 



106 

 

 

Figure 3-9



107 

 

 

Figure 3-10 



108 

 

 

Figure 3-11 



109 

 

 

Figure 3-12 



110 

 

 

Figure 3-13 



111 

 

 

Figure 3-14 

A 

B 



112 

 

 

Figure 3-15

A 

B 



113 

 

 

Figure 3-16

A 

C 

B 

D 



114 

 

 

Figure 3-17 



115 

 

 

Figure 3-18



116 

 

 

Figure 3-19 



117 

 

 

Figure 3-20 



118 

 

 

Figure 3-21 (Generated by Chanokpon Yongyat and Suzanne De Tore) 
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3.9 TABLES 

Table 3-1. List of E. coli strains and plasmids used in this study. 

 Genotype Characteristics Source/References 

Strains 

RP437 Wild type Wild type strain for biofilm 

study 

16 

RP3087 (motB)580 Motility mutant 53 

RP4979 eda+Δm43-10(cheY) Chemotaxis mutant 54,55 

RP3525 
RP437 ∆tap-365-4  

∆(lac)U169 thr+ leu+  
Chemotaxis mutant 56,57 

KX1485 luxS::Cmr 
Quorum sensing mutant, 

unable to synthesize AI-2 
58,59 

HM22 
AT984 zde-

264::Tn10 hipA7 
hipA mutant of E. coli AT984 21 

Plasmids    

pRSH109 Ampr, gfp 
Label cells with constitutive 

GFP 
This study 

pDsRed Ampr, rfp 
Label cells with constitutive 

RFP 

Life Technologies 

Inc., Carlsbad, CA, 

USA 

pRHG01 luxS+, Ampr pCR2.1®-TOPO® with luxS 

gene and its native promoter 
This study 
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Table 3-2. Pearson correlation coefficients between Cell Cluster Interaction Index (CII) 

and pattern size. 

Distance (D, µm) Pattern Size (W, µm) Correlation Coefficient (r) 

 

10 

≤ 20 µm × 20 µm -0.45** 

>20 µm × 20 µm 0.93** 

15 
≤ 20 µm × 20 µm -0.23* 

>20 µm × 20 µm 0.94** 

20 
≤ 20 µm × 20 µm -0.20 

>20 µm × 20 µm 0.93** 

30 
≤ 20 µm × 20 µm -0.20 

>20 µm × 20 µm 0.93** 

40 
≤ 20 µm × 20 µm -0.25* 

>20 µm × 20 µm 0.92** 

50 
≤ 20 µm × 20 µm -0.47** 

>20 µm × 20 µm 0.95** 

* P < 0.05. 

** P < 0.0001. 
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Table 3-3. Biofilm formation of E coli RP437 and its isogenic mutants on patterned 
surfaces. 

Genotype Attachment on patterns Interaction among cell 
clusters 

Wild-type Fully covered patterns Normal interaction 

ΔcheY Barely covered No interaction 

Δtap Barely covered No interaction 

motB point mutant 
Relatively normal cell clusters 
(slightly less coverage than the 

wild type) 

Significantly reduced 
interaction 

ΔmotB Barely covered No interaction 

ΔluxS 
Relatively normal cell clusters 
(slightly less coverage than the 

wild type) 

Significantly reduced 
interaction 
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CHAPTER 4 

 

MICROTOPOGRAPHIC PATTERNS AFFECT ESCHERICHIA COLI BIOFILM 

FORMATION ON POLY(DIMETHYLSILOXANE) SURFACES 
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and Dacheng Ren. 2011. Patterned biofilm formation reveals a mechanism for structural 

heterogeneity in bacterial biofilms. Langmuir. 27 (6): 2686–2691. Reproduced by 

permission of American Chemical Society Publication. Shuyu Hou initiated this study.  
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4.1 ABSTRACT 

Biofilm cells are highly resistant to antibiotics and biofilms are involved in 80% 

of human bacterial infections. To better understand the mechanism of bacteria-surface 

interaction and biofilm formation, a series of poly(dimethylsiloxane) (PDMS) surfaces 

with microtopographic patterns were created to systematically vary the pattern size and 

inter-pattern distance. E. coli biofilm formation on these surfaces was studied to 

understand the effects of surface topography on bacterial adhesion and subsequent 

biofilm formation. In a previous study in Ren lab1, E. coli RP437/pRSH103 with 

constitutive expression of red fluorescence protein was found to preferentially attach and 

form biofilms in the valleys on upright PDMS surfaces regardless the size of protruding 

features and inter-pattern distance. In addition, significant biofilm formation on the top of 

plateaus was only found when the plateaus were larger than 20 μm × 20 μm. In this study, 

the biofilm formation on inverted patterned surfaces was investigated to specifically 

study bacterial adhesion without gravity driven settlement. It was found that E. coli cells 

also prefer to attach and form biofilms in valleys. A threshold dimension was also found 

for biofilm formation on top of plateaus, although it is 40 µm × 40 µm for inverted 

surface. This finding suggests that a critical dimension of a flat surface is required for 

biofilm formation without physical confinement. Inspired by these results, we prepared 

PDMS surfaces with hexagon shaped microtopographic patterns smaller than the critical 

dimension with 2 μm inter-pattern distance. Biofilm formation on these surfaces was 

significantly reduced compared to the flat PDMS surfaces.  
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4.2 INTRODUCTION 

Biofilms are sessile communities of microorganisms attached to solid surfaces 

and encased in self-produced extracellular polymeric substrate (EPS)2-5. Biofilm 

formation is a dynamic process that includes initial attachment, microcolony formation, 

maturation, and dispersion6-9. The process of biofilm formation involves numerous 

changes in gene and protein expression, which are highly sensitive to environmental 

conditions such as surface chemistry and topography10,11. Surface topography can be 

described using surface roughness (two-dimensional) and configuration (three-

dimensional). Surface roughness, Ra, is the arithmetical mean deviation of the distance 

between the peak and valley12. Surface roughness has been reported to influence bacterial 

adhesion.  For example, Taylor et al.13 reported that the attachment of P. aeruginosa and 

S. epidermidis on polymethyl methacrylate (PMMA) increased significantly when Ra 

increased from 0.04 to 1.24 μm and bacterial adhesion decreased when Ra increased from 

1.86 to 7.89 μm. In comparison, Hilbert et al.12 reported that the increase of Ra from 0.01 

to 0.9 μm has no effects on the adhesion of P. sp., L. monocytogenes, and C. lipolytica 

onstainless steel surfaces. The different effects of surface roughness on bacterial adhesion 

reported to date could be due to the differences in the property of surfaces and the 

intrinsic characteristics of biofilm formed by different bacterial strains. Although these 

studies provide valuable information about the correlation between surface roughness and 

cell adhesion, these studies examined surfaces that were randomly roughened and they 

did not examine surfaces with specific features. 

To better describe the topographic features in three dimensions, a well-defined 

surface configuration is needed. Thanks to the development of microtechnology, soft 
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materials with well-defined micro-structures can be generated and used to study the 

effects of surface topography on bacterial adhesion and biofilm formation14. Surface 

topography was reported to be able to influence bacterial adhesion and subsequent 

biofilm formation15-19. Recently, surface topography was also used in the engineering of 

anti-adhesive surfaces as an important environmental factor. For example, Chung et al.19 

used engineered poly (dimethylsiloxane) elastomer (PDMSe) surfaces with 

microtopograhy (2 μm tall, 4 μm to 6 μm long rod-shaped microstructures with 2 μm 

inter-pattern distance) to disrupt the colonization and biofilm formation of S. aureus for 

up to 21 days. Despite the increasing number of studies on the overall attachment of 

bacteria on surfaces with repeating geometric topographic patterns, the mechanism of the 

observed effects is still not well understood.  

Recently, a former student (Shuyun Hou) in Ren lab used poly(dimethylsiloxane) 

PDMS surfaces with systematically varied microtopographic patterns to study the effects 

of surface microtopography on bacterial adhesion and biofilm formation. The shape and 

size of topographic patterns and the inter-pattern distance were systematically varied. 

Hou et al.1 reported that E. coli preferentially attach and form biofilms in the valleys on 

these surfaces and a threshold of 20 µm × 20 µm was found for significant biofilm 

formation on top of the square shaped plateaus. In this study, we further investigated the 

effects using inverted pattern and designed new surfaces for antifouling activities. 
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4.3 MATERIALS AND METHOD 

4.3.1 Bacterial strains and medium  

E. coli RP43720, a chemotaxis wild-type strain that is commonly used in biofilm 

study, and its motility mutant RP308721 tagged with constitutive rfp on plasmid 

pRSH1031,22 were used to investigate bacteria-surface interactions. The wild-type E. coli 

and its motility mutant were routinely grown at 37 ºC with 200 rpm shaking in Lysogeny 

Broth (LB) containing 10 g/L trypton, 5 g/L yeast extract, and 10 g/L sodium chloride23. 

Tetracycline (30 µg/mL) was supplemented in the growth medium to maintain the 

plasmid pRSH103.   

4.3.2 PDMS surfaces preparation 

The PDMS surfaces with microtopographic patterns used in this study were 

obtained by transferring the complementary 10 μm deep (H) negative topographies from 

the silicon wafers etched via photolithography as reported previoulsy1,24. Both square 

shaped and hexagon shaped topographic patterns were designed. The side width (W) of 

square shaped protruding features was set to be 2, 5, 10, 15, 20, 30, 40, 50, or 100 μm 

and the inter-pattern distance (D) was systematically varied (2, 5, 10, 15, 20, 30, 40, 50, 

or 100 μm). The side width (W) of hexagon shaped topographic patterns and the inter-

pattern distance were also systematically varied as 2, 5, 10, 15, or 20 μm and all 

combination were tested.   

4.3.3 Biofilm formation and imaging analysis 

To study the effects of surface topography on bacterial cell-surface interactions 

and biofilm foramtion, the biofilms of E. coli RP437/pRSH103 were formed on PDMS 

surfaces modified with microtopographic patterns. The PDMS surfaces were sterilized by 
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soaking in 190 proof ethanol for 30 min, dried in a 50ºC oven for 40 min, and transferred 

to a sterile petri dish containing 20 mL LB medium supplemented with 30 µg/mL 

tetracycline. An overnight culture of E. coli RP437/pRSH103 was used to inoculate 20 

mL LB medium into optical density at 600 nm (OD600) of 0.05. Biofilms were grown at 

37 ºC for 24 h.  

In addition to the wild-type strain, biofilm formation of the motility mutant E. coli 

RP3087/pRSH103 on the PDMS surfaces with 100 µm × 100 µm square shaped 

microtopographic patterns was also studied by following the procedure described above 

to understand the role of motility during bacterial cell-surface attachment.  

Biofilms of the wild-type strain were also grown on inverted PDMS surfaces to 

study in the absence of gravity driven settlement. The PDMS surfaces and two pieces of 

small microscopic glass slides were sterilized as described above. The sterilized PDMS 

surfaces were put on the bottom of a petri dish with microtopopgraphic patterns facing 

down and supported with two sterilized microscope slides to create a 1 mm gap between 

the PDMS surface and the bottom of the dish. The pertri dish was incubated at 37ºC for 

24 h.  

After incubation, the PDMS surfaces were gently washed three times with 0.85% 

NaCl solution (change to fresh solution every time) and visualized with a Zeiss Imager 

M1 fluorescence microscope (Carl Zeiss Inc., Berlin, Germany). The surface coverage 

and biomass of biofilms were quantified using the COMSTAT software written on a 

Matlab platform25. At least five spots were randomly picked and imaged from each 

surface. Each sample had at least three biological replicates and consistent results were 

obtained.  
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4.4 RESULTS 

4.4.1 Effects of surface topography on bacterial cell-surface interaction 

To study the effects of surface topography on bacterial adhesion and biofilm 

formation, PDMS surfaces with systematically varied microtopographic patterns were 

prepared (Fig. 4-1). By challenging these PDMS surfaces with E. coli RP437/pRSH103 

for 24 h, it is found previously that E. coli cells prefer to attach and form biofilms in the 

valleys between close topographic patterns (Fig. 4-2A&B). Besides, there appeared to be 

a threshold dimension of protruding features to allow significant bacterial adhesion and 

biofilm formation on top of upright protruding features (Fig. 4-2C). The threshold 

dimension was 20 µm × 20 µm in this experimental system.  

To understand if the higher cell density in the valleys between close topographic 

patterns was due to gravity-driven settlement or because bacterial cells can actively 

choose where to attach, E. coli RP437/pRSH103 biofilm was also formed on inverted 

PDMS surfaces with systematically varied microtopography in this study. The surface 

coverage of E. coli RP437/pRSH103 biofilm cells on inverted PDMS surfaces were 

significantly lower compared to that on upright PDMS surfaces. For example, the surface 

coverage on flat upright PDMS surface was 11.6 ± 1.0% but the surface coverage on 

inverted PDMS surface was 2.6 ± 0.3%. Consistent with the results obtained from upright 

PDMS surfaces1, E. coli cells also preferred to attach to the valleys than on the top of 

topographic patterns. A threshold dimension for significant bacterial adhesion on the top 

of topographic patterns was also observed for inverted PDMS surfaces (Fig. 4-3). 

However, instead of 20 µm × 20 µm for upright pattern, the threshold dimension of 
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protruding patterns for bacterial adhesion and biofilm formation was 40 µm × 40 µm on 

inverted PDMS surfaces (Fig. 4-4).  

To further corroborate the results that the influence of surface topography on 

bacterial adhesion was not simply due to gravity-driven settlement, we also test the 

bacterial adhesion and biofilm formation of an isogenic nonmotile mutant, E. coli 

RP3087/pRSH103, on both upright and inverted PDMS surfaces with 100 µm × 100 µm 

topographic patterns. The surface coverage of the mutant on upright 100 µm × 100 µm 

patterns was lower than that of the wild-type strain. For example, the surface coverage 

was 3.2 ± 0.5% (Fig. 4-5A&B) and 10.2 ± 1.7% (Fig. 4-2) for the nonmotile mutant and 

the wide-type strain, respectively. The defects of this mutant in adhesion were also 

observed for inverted PDMS surfaces because the mutant cells barely attached to either 

the valleys or the top of topographic patterns (Fig. 4-5C).  

4.4.2 Reducing biofouling by changing surface topography 

As described above, we observed that there is a threshold dimension of protruding 

patterns that can allow bacteria to attach to the top of the topographic patterns. Bacteria 

barely attached to the top of topographic patterns with size smaller than the threshold 

dimension. This suggests that bacterial adhesion on a flat surface requires a minimum 

surface area, which is 200 times of the foot print of each individual of each individual 

cell in our study. This finding inspired us to design antifouling surfaces by engineering 

specific topographic features with a size smaller than the threshold dimension and inter-

pattern distance less than the length of a single bacterial cell. We expect that the biomass 

on these surfaces can be significantly reduced. By testing the biofilm formation of E. coli 

RP437/pRSH103 on PDMS surfaces with hexagon patterns, we found that the biomass of 
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biofilms formed on PDMS surfaces with hexagon patterns was smaller than that on flat 

PDMS surfaces (Fig. 4-6). For example, when the side width of the hexagon shaped 

pattern was 15 µm and the inter-pattern distance was 2 µm, the biomass of the biofilms 

was 0.1 ± 0.04 µm3/µm2 that was 7-fold lower than the biomass of the biofilms formed 

on the flat PDMS surfaces (0.8 ± 0.2 µm3/µm2) (Fig. 4-7A). Consistent with the results 

obtained using PDMS surfaces with square shaped microtopographic patterns, E. coli 

RP437/pRSH103 cells also preferred to attach to the valleys between hexagon features. 

To understand if the shape of protruding features also plays a role, we compared the 

biomass of the biofilms formed on PDMS surfaces with hexagon and square shaped 

topographic patterns of similar size (Fig. 4-7B). The biomass of biofilms formed on 

PDMS surfaces with 15 µm × 15 µm square shaped topographic patterns (225 μm2) was 

similar to that on PDMS surfaces with hexagon shaped topographic patterns with side 

width of 10 µm (259 μm2). They were all smaller than the biomass of biofilms formed on 

flat PDMS surfaces. 

More interestingly, there appeared to be a dimension of hexagon shaped patterns 

that can efficiently reduce bacterial adhesion and biofilm formation when the inter-

pattern distance was 2 µm (Fig. 4-7A). The lowest biomass of biofilms on PDMS 

surfaces was obtained when the side width of hexagon shaped patterns was 15 µm. For 

example, the biomass of biofilms formed on PDMS surfaces with hexagon patterns was 

0.6 ± 0.08, 0.3 ± 0.05, 0.2 ± 0.06, 0.1 ± 0.04, and 0.3 ± 0.04µm3/µm2, when the side 

width was set to be 2, 5, 10, 15, and 20 µm (all with 2 µm inter-pattern distance), 

respectively.  
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To test if the observed phenomenon was due to gravity-driven settlement, we also 

tested the biofilm formation of E. coli RP437/pRSH103 on inverted PDMS surfaces with 

microtopographic patterns. The results showed that E. coli RP437/pRSH103 cells still 

preferred to attach to the valleys between topographic patterns but the cell density in 

biofilms on inverted PDMS surfaces was significantly reduced (Fig. 4-8). Therefore, 

instead of the biomass of biofilms, cell numbers in the biofilms formed on the inverted 

PDMS surfaces were used to evaluate the bacterial adhesion (Fig. 4-9). There was still a 

threshold dimension of hexagon-shaped patterns that can efficiently reduce bacterial 

adhesion and biofilm formation, except that the lowest cell number was observed when 

the side width of the hexagon shaped patterns was 10 µm instead of 15 µm for upright 

surfaces (Fig. 4-9).  

 

4.5 DISCUSSION 

To study the effects of surface topography on bacterial adhesion, E. coli 

RP437/pRSH103 biofilms were formed on PDMS surfaces with systematically varied 

microtopographic patterns. Cells were found to prefer to attach to the valleys, which is 

consistent with the attachment of mammalian cells to 1 µm deep and 0.5-10  µm wide 

groove and the attachment of zoospores on the grooved floor of the surfaces with 

protruding ridges and pillars26,27.  

To test whether the observed phenomenon was simply a gravity-driven 

settlement, biofilm formation of E. coli RP437/pRSH103 on inverted PDMS surfaces 

with the same patterns was investigated. Similar results were obtained except that surface 

coverage on the inverted PDMS surfaces was lower than that on upright PDMS surfaces 
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and the threshold dimension increased to 40 µm × 40 µm. These results indicate that 

gravity does facilitate cell adhesion but threshold dimensions are intrinsic factors for 

biofilm formation, rather than simply the results of gravity. To corroborate this result, the 

biofilm formation of a nonmotile mutant, E. coli RP3087/pRSH103, on both upright and 

inverted PDMS surfaces was studied by following the same protocol. The results suggest 

that motility is critical to bacterial adhesion and the higher cell density in the valleys is 

not only due to gravity-driven settlement. Interestingly, there appeared to be a threshold 

dimension of protruding features that can allow significant bacterial adhesion on top of 

the topographic patterns. The threshold dimensions 20 µm × 20 µm (for upright square 

patterns) and 40 µm × 40 µm (for invented square patterns) are significantly larger than 

the size of a single E. coli cell, which suggests that cell-cell interactions are essential for 

the formation of multicellular structures. Previously, by tailoring surface chemistry with 

self-assembled monolayers (SAMs) of alkanethiol presenting different functional groups, 

we observed that more interactions are formed between cell clusters when patterns are 

larger than 20 µm × 20 µm.  This is similar to the threshold dimensions found in this 

study. Further study is needed to understand the mechanism of such thresholds.  

Recently, surface topography has been used as a critical parameter in engineering 

antifouling surfaces19. The above finding of threshold also inspired us to design new 

surfaces to reduce bacterial adhesion. By quantifying the biomass of biofilms formed on 

PDMS surfaces with hexagon shaped topographic patterns, we found that PDMS surfaces 

with 10 µm tall hexagon shaped topographic features can reduce the total biomass of 

biofilms, especially when the inter-pattern distance was set to be 2 µm. The shape of 

topographic features does not appear to be important. However, the fluorescence images 
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of the E. coli RP437/pRSH103 biofilms on PDMS surfaces, especially on inverted PDMS 

surfaces (Fig. 4-8), suggests that the reduction of total biomass of the biofilms formed 

PDMS surfaces modified with hexagon shaped patterns with 2 µm inter-patterned was 

partially due to the interruption of cell-cell interaction. While the hexagon shape does not 

affect the adhesion on the top of these features, it appeared that this design prevents 

strong cell-cell interaction. Further studies are necessary to understand the mechanism 

behind this phenomenon.  

While our 10 µm tall hexagon patterns can reduce biofilm formation, Frielander et 

al.17 reported that PDMS surfaces with 2.7 µm tall hexagon shape patterns with 3 µm 

diameter can promote biofilm formation of E. coli ZK2686. The differences between this 

study and that by Frielander et al.17 could be due to the difference in the heights of 

patterns and inter-pattern distance used, which are known to influence the hydrophobicity 

of a surface28. The difference in the heights of pattern may also lead to results with 

regards to the activities of flagella. Besides, the lowest biomass in our study was 

observed when the side width of upright hexagon patterns was 15 µm and inter-pattern 

was 2 µm. The mechanism behind this phenomenon is worth of being further studied to 

provide better guidance for designing non-fouling surfaces.  
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4.7 FIGURE CAPTIONS 

Figure 4-1. SEM picture of a representative patterned PDMS surface with size 50 µm × 

50 µm patterns and 30 µm inter-pattern distance (Bar = 20 µm).  

Figure 4-2. Biofilm formation of E. coli RP437/pRSH103 on upright PDMS surfaces 

with square shaped microtopographic patterns. (A) Three dimensional view 

of biofilm formation on a PDMS surface with 100 µm (W) ×100 µm (W) × 

10 µm (H) patterns and 20 µm inter-pattern distance. (B) Representative 

fluorescence images of E. coli RP437/pRSH103 biofilms on upright PDMS 

surfaces with systematically varied topographies (D =10 µm) (B1-B6) and on 

smooth PDMS surface (B7) (Bar = 10 µm). (C) The surface coverage (mean 

± one standard error) of E. coli RP437/pRSH103 biofilms formed on top of 

face-up protruding patterns. The side width of square features (W) tested was 

5, 10, 15, 20, 30, 40, 50, or 100 μm. The surface coverage was calculated 

using COMSTAT software25.  

Figure 4-3. Representative fluorescence images of E. coli RP437/pRSH103 biofilms on 

inverted PDMS surfaces with systematically varied microtopography (D = 10 

μm) (A-G) and on inverted smooth PDMS surface (H) (Bar =10 μm).  

Figure 4-4. Surface coverage (mean ± one standard error) of E. coli RP437/pRSH103 

biofilms formed on top of inverted protruding patterns. The side width of 

square features (W) tested was 5, 10, 15, 20, 30, 40, 50, or 100 μm and the 

inter-pattern distance was 5, 10, 15, or 20 μm. The surface coverage was 

calculated using COMSTAT software25. N=3 biological repeats averaged; at 

least 15 images were analyzed for each data point. 
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Figure 4-5. Biofilm formation of E. coli RP3087/pRSH103 on PDMS surfaces with 100 

µm × 100 µm topographic patterns. (A) Representative fluorescence image of 

E. coli RP3087/pRSH103 on upright PDMS surfaces (Bar = 20 µm). (B) The 

surface coverage (mean ± one standard deviation) of E. coli 

RP3087/pRSH103 biofilms formed on top of upright protruding patterns. The 

distance was set to be 5, 10, 15, or 20 µm. The surface coverage was 

calculated using COMSTAT software25. (C) Representative fluorescence 

images of E. coli RP3087/pRSH103 on inverted PDMS surfaces. N=3 

biological repeats averaged; at least 15 images were analyzed for each data 

point. 

Figure 4-6. Representative fluorescence images of E. coli RP437/pRSH103 biofilms on 

upright PDMS surfaces modified with hexagon shaped topographic features 

with different size but the same 2 µm inter-pattern distance (A-E) and on 

smooth PDMS surfaces (F) (Bar = 10 µm).  

Figure 4-7. Biofilm formation of E. coli RP437/pRSH103 on upright PDMS surfaces 

with microtopographic patterns. (A) The biomass (mean ± one standard 

deviation) of E. coli RP437/pRSH103 biofilms formed on PDMS surfaces 

with hexagon shaped topographic patterns. The width of hexagon shaped 

features (W) was set to be 2, 5, 10, 15, or 20 µm and inter-pattern distance 

(D) was set to be 2, 5, 10, 15, or 20 µm. All combinations were tested. 

Biomass was calculated using COMSTAT software25. N=3 biological repeats 

averaged; at least 15 images were analyzed for each data point. (B) 

Comparison between the biomass (mean ± one standard deviation) of 
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biofilms formed on PDMS surfaces with 15 µm × 15 µm square shaped 

topographic patterns (225 µm2) and on PDMS surfaces with hexagon shaped 

topographic patterns with side width of 10 µm (259 µm2). Biomass was 

calculated using COMSTAT software25. N=3 biological repeats averaged; at 

least 15 images were analyzed for each data point. 

Figure 4-8. Representative fluorescence images of E. coli RP437/pRSH103 biofilms on 

inverted PDMS surfaces modified with hexagon shaped patterns with side 

width of 20 µm and different inter-pattern distance (A-E) (Bar = 10 µm). 

Figure 4-9. The number per unit area (mean ± one standard error) of E. coli 

RP437/pRSH103 cells on inverted PDMS surfaces with systematically varied 

hexagon shaped microtopographic patterns. The side width (W) of the 

hexagon patterns was set to be 2, 5, 10, 15, or 20 µm and inter-pattern 

distance (D) was set to be 2, 5, 10, 15, or 20 µm. All combinations were 

tested. N=3 biological repeats averaged; at least 15 images were analyzed for 

each data point. 
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4.8 FIGURES 
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Figure 4-2 (Generated by Shuyu Hou) 
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Figure 4-3 
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CONJUGATION IN ESCHERCHIA COLI BIOFILMS ON 

POLY(DIMETHYLSILOXINE) SURFACES WITH 

MICROTOPOGRAPHIC PATTERNS 
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5.1ABSTRACT 

Bacterial biofilms are less susceptible to antimicrobials and play an important role 

in the spread of antibiotic resistance due to close cell-to-cell contact. As an important 

surface character, topography has been shown to affect bacterial-surface interactions and 

biofilm formation. To understand if surface topography can also affect horizontal gene 

transfer in biofilms, we prepared (poly)dimenthylsiloxane (PDMS) surfaces with 20 μm 

by 20 μm, 50 μm by 50 μm, and 100 μm by 100 μm protruding square-shaped patterns. 

Biofilm formation and associated conjugation on these surfaces were studied using 

fluorescently labeled donor and recipient strains of Escherichia coli. The results 

demonstrate that surface topography with inter-pattern distances larger than the length of 

a single E. coli cell can promote biofilm formation and conjugation frequency. 

Furthermore, motility mutant of E. coli exhibited defects in biofilm formation and 

conjugation. 
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5.2 INTRODUCTION 

Microbes are capable of adhering to both biotic and abiotic surfaces and develop 

biofilms, which are multicellular communities embedded in an extracellular polymeric 

matrix (EPS) secreted by the attached cells1. Biofilm cells are up to 1,000 times more 

resistant to antibiotics compared to their planktonic counterparts2. Such high resistance 

plays an important role in chronic infections in human as well as biofouling and 

biocorrosion in industrial settings, which adversely affected human health, economy and 

the environment3,4,5,6. The ubiquity and significance of biofilm-associated high-level drug 

resistance have stimulated growing interests in understanding the mechanisms of biofilm 

formation and developing more effective strategies for biofilm control.  

Several important intrinsic mechanisms are involved in biofilm-associated 

antibiotic resistance including reduced penetration of antimicrobials, slow growth of 

biofilm cells, and enhanced extrusion of antibiotics from biofilm cells7,8.  In addition to 

the intrinsic resistance, biofilms also play an important role in acquired resistance 

because biofilm cells are sessile and close to each other. This provides a favorable 

condition for horizontal gene transfer, a process named conjugation9,10,11. Bacterial 

conjugation occurs when the mobile genetic materials such as conjugal plasmids are 

transferred from donor to recipient cells through sex pili7,12. The resulting transconjugants 

will acquire the phenotypes encoded by the mobile plasmid, which commonly lead to 

antibiotic resistance12. For example, bacterial conjugation is found to be responsible for 

the emergence of penicillin resistance in the pathogenic Streptococcus pneumonia and 

gentamicin resistance in S. aureus13,14. Some conjugative plasmids have also been shown 

to promote biofilm formation and stabilize biofilm structure7,12.  
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Biofilm formation is a dynamic process, including initial attachment, microcolony 

formation, maturation and dispersion15-18. The adhesion of bacteria on a solid surface is 

affected by many factors such as surface topography, chemistry, charge, and stiffness5, 19, 

20. Among these factors, surface topography has been found to affect the retention of 

bacteria on the surfaces5,19-25. Consequently, certain topographic features have been found 

to either prevent or promote biofilm formation22,25. For example, Chung et al.25 reported 

PDMS surfaces with parallel rib patterns organized in diamond shape (inspired by shark 

skin) can reduce S. aureus adhesion by 47% compared to smooth PDMS surfaces at 14 

days after inoculation. In comparison, Friedlander et al.22 observed that the biomass of E. 

coli biofilms on PDMS surfaces with an array of hexagonal features is approximately 

30% higher than the biomass on smooth PDMS surfaces after 2 h of inoculation.  Cell 

density is known to affect conjugation12,26; however, how cell density of biofilm affects 

bacterial horizontal gene transfer in biofilm remains elusive. A major challenge to the 

mechanistic study of conjugation is the biofilm structural heterogeneity and low 

frequency of conjugation. We hypothesized that surface topography can affect bacterial 

conjugation due to its effects on biofilm formation. To test this hypothesis and understand 

what are the “hot spots” for biofilm-associated conjugation, we prepared PDMS surfaces 

with well-defined microtopographic patterns.  

Using similar patterns, we reported recently that surface topography can affect 

bacterial initial attachment and biofilm formation21. There was no significant biofilm 

formation on top of protruding square shaped patterns of PDMS if the patterns are 

smaller than 20 μm × 20 μm. Also, E. coli preferentially attach and form biofilm between 

protruding patterns. Thus, these well-defined topographic features can be used to study 
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the effects of topography on biofilm cell density as well as conjugation frequency. 

Thanks to a dual-labeling system developed recently, it is possible to study conjugation in 

real time27,28. In this study, the donor strain was tagged with gfp downstream of a 

modified lac promoter on the conjugative plasmid regulated by a chromosomally 

encoded repressor (lacIq), while the recipient strain was labeled with constitutively 

expressed rfp on the plasmid29. We chose PDMS because it is biocompatible and 

commonly used for medical devices30,31. Using PDMS and E. coli also allows us to 

compare the results with our other studies22,25.  

 

5.3 MATERIALS AND METHODS 

5.3.1 Bacterial strains and growth media 

E. coli CSH26::LacIq1/pKJK1029 with conjugative plasmid pKJK10 carrying a 

green fluorescence reporter gene (gfp) was used as the donor strain. E. coli chemotaxis 

wild-type strain RP43732 and its isogenic motility mutant RP308733 tagged with 

constitutive rfp gene on plasmid pRSH10321,34 were used as recipient in this work. Both 

strains were routinely grown overnight at 37˚C in Lysogeny Broth (LB)35 which contains 

10 g/L NaCl, 10 g/L tryptone, and 5g/L yeast extract. Tetracycline (30 µg/mL) was added 

in cultures to maintain the plasmids pKJK10 and pRSH103.  

5.3.2 PDMS surfaces    

The PDMS surfaces with microtopographic patterns (Fig. 5-1A) used in this study 

were obtained by transferring complementary patterns from the silicon wafers with 10 

µm deep (H) square holes etched via photolithography as reported previously21,36. The 

side width (W) of square-shape protruding plateaus was set to be 20, 50, or 100 μm while 
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the distance (D) between adjacent features was systematically varied (10, 15, 20, 30, 40, 

or 50 μm) (Fig. 5-1A).  

5.3.3 Biofilm formation and conjugation  

To study the effects of surface topography on E. coli conjugation, the patterned 

PDMS surfaces were used to form co-culture biofilms of E. coli CSH26/pKJK10 (donor) 

and E. coli RP437/pRSH103 (recipient) or E. coli RP3087/pRSH103 (recipient). Each 

PDMS surface was sterilized by soaking in 190 proof ethanol for 30 min, dried at 50˚C 

for 40 min, and transferred to a petri dish, each containing 20 mL LB medium 

supplemented with 30 µg/mL tetracycline. E. coli CSH26/pKJK10 (donor) and E. coli 

RP437/pRSH103 (recipient) or E. coli RP3087/pRSH103 (recipient) were used to 

inoculate the biofilm cultures with a ratio of 3:7 (donor: recipient) to a total initial optical 

density at 600 nm (OD600) of 0.05. The biofilm cultures were incubated at 37˚C for 24 h 

and then the PDMS surfaces were gently washed three times with 0.85% NaCl solution 

(change to fresh solution every time) before imaging. To quantify the amount of donor 

cells, isopropyl β-D-1-thiogalactopyranoside (IPTG) (1mM) was added in some biofilm 

cultures to visualize the donor cells in biofilms by inducing the expression of green 

fluorescence protein (Fig. 5-1B).  

To understand if the interaction between the donors and recipients affect biofilm 

formation, the biofilm formation of the recipient strains on patterned PDMS surfaces was 

also conducted. Overnight cultures of the recipient strains were used to inoculate the 

biofilm cultures to an OD600 of 0.035. The biofilm cultures were incubated at 37 ˚C for 24 

h and then the PDMS surfaces were gently washed three times with 0.85% NaCl solution 
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(change to fresh solution every time) before imaging using Axio Imager M1 (Carl Zeiss, 

Berlin, Germany). 

The biofilms of donor and recipient co-cultures were also grown on inverted 

PDMS surfaces. The PDMS surfaces and two pieces of small microscopic glass slides 

were sterilized with 190 proof ethanol21. The sterilized PDMS surfaces were put upside 

down on two microscope sides to provide a 1 mm gap between the PDMS surfaces and 

the bottom of petri dish19.  

5.3.4 Conjugation frequency 

The frequency of conjugation was determined by quantifying the number of 

transconjugants per unit biofilm area using an Axio Imager M1 fluorescence microscope. 

Since conjugation is a relatively low frequency event, the transconjugants in a cluster was 

assumed to be originated from a single conjugation event (Fig. 5-1C). Using 

COMSTAT37, the biomass on the top of topographic patterns, the side of topographic 

patterns, and the channel between adjacent topographic patterns was quantified, 

separately.  The biomass on the side of the topographic patterns was calculated using the 

following equation:  

Side

ChannelChannelTopTopTotalTotal
Side A

ABABAB
B

)**(* +−
=            (1) 

where B represents biofilm biomass; A represents area of corresponding geometric 

location. The frequency of conjugation at each geometric location was normalized by the 

total area of corresponding location first and then further normalized by the total number 

of conjugation events per unit area to minimize the effects of variation among surfaces. 
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5.4 RESUTLS  

5.4.1 Surface topography affected E. coli conjugation in biofilm 

Surface topography is known to affect bacterial initial adhesion and biofilm 

formation5,19-25. Recently, we reported that E. coli adhesion on 10 µm tall protruding 

square patterns of PDMS is only significant when the patterns are 20 µm × 20 µm or 

bigger21. Since conjugation requires close cell-to-cell contact, we expected that surface 

topography can also influence bacterial conjugation. To test this, we prepared PDMS 

surfaces with 10 µm tall 20 µm × 20 µm square shaped topographic patterns with varying 

inter-pattern distance (10, 15, 20, 30, 40, or 50 μm) (Fig. 5-1). The topographic features 

were found to promote biofilm formation since the biomass per unit area on patterned 

PDMS surfaces was significantly higher than that on flat PDMS surfaces (one way 

ANOVA, P < 0.001). For example, when the distance between adjacent patterns was 10 

µm, the biomass per unit area on patterned PDMS surfaces was 3.4 times higher than that 

on flat PDMS surfaces (Fig. 5-2). Biomass per unit area of the biofilms formed on PDMS 

surfaces with 50 µm × 50 µm and 100 µm × 100 µm topographic patterns was also 

significantly higher than that on flat PDMS surfaces (Fig. 5-2), which corroborates our 

conclusion that the topographic features can promote biofilm formation. The biomass per 

unit area decreased as the tested patterns were further separated from each other. 

Since cell density is an important factor that can influence bacterial 

conjugation7,12,38, we compared the conjugation frequency per unit area on patterned 

PDMS surfaces with that on flat PDMS surfaces. Consistent with the biomass data, the 

conjugation frequency per unit area on PDMS surfaces with 20 µm × 20 µm, 50 µm × 50 

µm, and 100 µm × 100 µm topographic patterns was significantly higher than that on flat 



165 

 

PDMS surfaces when distance between patterns increased from 10 to 50 µm (Fig. 5-3) 

(one way ANOVA, P < 0.05). For example, when distance between protruding features 

was 10 µm, the conjugation frequency per unit area on patterned PDMS surfaces was 9.5 

times higher than that on flat PDMS surfaces.  

5.4.2 Conjugation at different locations of the microtopographic patterns  

In our previous study using the same patterned surfaces, we have observed that E. 

coli cells preferentially attach to the valleys between neighboring protruding patterns on 

both upright and inverted PDMS surfaces21. This result suggests that bacteria can actively 

pursue the preferred location for adhesion and biofilm formation. It also motivated us to 

quantify the cells density at the different geometrical locations on the patterned surfaces 

and study the effects of cell density on bacterial conjugation to identify the structural 

factors that can cause “hot spot” of conjugation. 

The biofilms formed on each PDMS surface are attributed to three sources: on top 

of the plateaus, on the side of plateaus and in the channel between nearby plateaus. In our 

experimental system, the biofilm formed on the side of the plateaus appeared to have a 

higher cell density than that at any other locations. To verify this, we plotted the biomass 

at different geometric locations versus the distances between neighbor protruding 

features. The results confirmed that E. coli prefers the side of protruding patterns for 

adhesion. The biomass on the side was significantly larger than on any other locations 

(Fig. 5-4). For example, the average unit area biomass on the side of size 20 µm ×20 µm 

patterns with inter-pattern distance of 30 µm was 2.1 ± 0.1µm3/ µm2, significantly higher 

than that on top of patterns (0.5 ± 0.1 µm3/ µm2) and in the channel between patterns 

(0.5± 0.2 µm3/ µm2) (one way ANOVA, P < 0.001). Similar results were also obtained on 
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inverted PDMS surfaces with the same microtopographic patterns although the surface 

coverage is lower than that on upright patterns. This finding suggests that the 

accumulation of bacteria on the side of topographic patterns was not due to gravity (Fig. 

5-5).  

To understand if the difference in biomass leads to increased conjugation on the 

side of plateaus, we quantified the percentage of transconjugants at different geometric 

locations. The comparison of bacterial conjugation at different locations showed that the 

percentage of transconjugants among biofilm cells was significantly higher on the side of 

plateaus than that on top of the plateaus or in the valleys. For example, the percentage of 

transconjugants on the side of size 20 µm ×20 µm patterns with inter-pattern distance 30 

µm was 72.0 ± 20.9 %, which is higher than that on top of the patterns (6.1 ± 16.5 %) in 

the valleys between patterns (21.9 ± 21.5 %) (one way ANOVA, P < 0.001) (Fig. 5-6A). 

Similar results were observed on the PDMS surfaces modified with 50 µm ×50 µm and 

100 µm ×100 µm topographic patterns (Fig. 5-6B). This result suggests that surface 

topography does affect bacterial conjugation and the side of protruding features is the 

“hot spots” of conjugation. 

5.4.3 E. coli motility mutant exhibited defects in conjugation 

Our results using inverted surfaces suggest that the preference of E. coli 

attachment on the side of topographic patterns is not simply due to gravity driven 

settlement.  To better understand this phenomenon and investigate if it involves key 

genes, the biofilm formation of E. coli RP3087/pRSH103, a motility mutant of the wild-

type strain E. coli RP437/pRSH103, was studied using the same PDMS surfaces with 

microtopographic patterns. In addition, bacterial conjugation between the donors (E. coli 



167 

 

CSH26/pKJK 10) and the motility mutant strain (recipients) in co-culture biofilms was 

also tested to study the role of motility during E. coli conjugation in biofilms. By 

comparing biofilm formation of the wild-type strain and its motility mutant on PDMS 

surfaces with size 20 µm × 20 µm patterns, we noticed that motility mutant formed less 

biofilms on the side of plateaus or in the channel between plateaus (Fig. 5-7A). This 

observation is corroborated by the COMSTAT37 analysis (Fig. 5-8). For example, the 

biomass of the nonmotile mutant on the side of plateaus or in the channel between 

plateaus with 20 µm inter-pattern distance were 0.5 ± 0.01 and 0.1± 0.01 µm3/µm2 
 that 

were significantly lower than the biomass on the top of plateaus (0.9 ± 0.2 µm3/µm2 ) 

(one-way ANOVA, P < 0.001) (Fig. 5-8A) .  This is a drastic difference compared to the 

wild-type strain which formed substantial amount of biofilms at both locations (on the 

side of plateaus and in the channel between plateaus) (Fig. 5-7B). For example, the 

biomass of wild-type strain on the side of plateaus or in the channel between plateaus 

with 20 µm inter-pattern distance were 0.7 ± 0.1 and 0.8 ± 0.1 µm3/µm2
  (Fig. 5-8B)..  

Interestingly, the motility mutant preferred to form more and biofilms on the top of 

protruding features than the wild-type (Fig. 5-7A). The biomass of motility mutant on the 

top of topographic patterns with 20 µm inter-pattern distance was two times higher than 

that of wild-type strain at the same location. These results further support our finding that 

the increased adhesion on the side of plateaus was not simply due to gravity driven 

settlement or artifacts in washing steps. 

To understand the role of bacterial motility conjugation, we quantitatively studied 

the conjugation using the motility mutant, rather than the wild-type, as recipient in co-

culture biofilms formed on PDMS surfaces with 20 µm × 20 µm microtopographic 
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patterns (Fig. 5-8C). The conjugation frequency between donors and motility mutant is 

significantly low compared to the conjugation with the wild-type strain as the recipient. 

For example, the conjugation per unit area of the wild-type strain on PDMS surfaces with 

20 µm × 20 µm topographic patterns with 20 µm inter-pattern distance was 4.6 ± 0.6 but 

the conjugation per unit area of the motility mutant was 0.2 ± 0.2. This finding suggests 

that bacterial motility also plays a role in bacterial conjugation in biofilms. 

 
5.5 DISCUSSION 

Bacterial conjugation plays critical roles in biofilm-associated antibiotic resistance 

and other responses, allowing cells in biofilm to evolve and adapt to the hostile 

environments7,12,27. The effects of surface topography on bacterial adhesion and 

subsequent biofilm formation inspired our interest in investigating the effect of this 

selective pressure on the DNA exchange activities in biofilm21. In chapter 4, we 

demonstrated that the side width 20 μm is the critical dimension for E. coli to attach to 

PDMS. Thus, 20 µm × 20 µm and bigger patterns were used in this conjugation study. 

Using PDMS surfaces with square shaped microtopographic patterns of varying 

sizes (20, 50, and 100 μm) with different inter-pattern distances (10, 15, 20, 30, 40, and 

50 µm), the effects of surface topography on cell density in biofilm was investigated. The 

results revealed that the presence of topographic patterns promoted the biomass of 

biofilm. This promotion of biofilm formation on PDMS surfaces modified with 

microtopographic patterns was found to be due to the preferential attachment of both 

donors and recipients on the side of protruding patterns (Fig. 5-9 &10). The aggregation 

of bacterial cells on the side of plateaus was proved to be an intrinsic phenomenon, rather 

than simply due to gravity-driven settlement, which is consistent with the results 
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observed in Chapter 4. Besides biofilm formation, PDMS surfaces with topography 

showed higher unit area conjugation frequency compared to flat PDMS surfaces. The 

side of plateaus was found to be the “hot spots” for bacterial conjugation. The higher 

conjugation frequency on the side of plateaus was due to the higher cell density at that 

location because bacterial cell density was well known as an important factor that can 

influence bacterial conjugation14,38-40. Although cell density has been reported to be able 

to affect bacterial conjugation, to my best knowledge, this is the first time that a cell 

density related “hot spot” on surfaces with topography was revealed. This information is 

important for developing antifouling surfaces since virtually all the surfaces in natural 

environment are not smooth.  

In this study, the motility of bacteria was also found to play an important role in 

bacterial conjugation because the motB mutant showed defects in bacterial conjugation. 

Bacterial motility was well-known to be important to bacterial movement and biofilm 

formation1,41. However, the role of bacterial motility in bacteria during bacterial 

conjugation is not very well understood. The reduction of bacterial conjugation between 

donors and motility mutant recipients may be due to the decreased biofilm formation of 

the motility mutant on the side of protruding plateaus or the defects in bacterial motility. 

The role of bacterial motility in bacterial conjugation inside of biofilms deserves further 

study, which is part of our ongoing work. Overall, these results shed new lights on 

bacterial conjugation in biofilms.  
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5.6 FIGURE CAPTIONS 

Figure 5-1. Bacterial conjugation on PDMS surfaces with microtopographic patterns. (A) 

Schematic presentation of the PDMS surfaces with microtopographic 

patterns. (B) Three-dimensional image of the donors and recipients co-

culture biofilms on PDMS surfaces with 50 μm × 50 μm topographic 

patterns and 50 μm inter-pattern distance. IPTG (1mM) was used to induce 

the expression of green fluorescence protein in donors. (C) Top-down view 

of the donors and recipients co-culture biofilms on PDMS surfaces with 50 

μm × 50 μm topographic patterns and 50 μm inter-pattern distance. The 

expression of green fluorescence protein in donors was not induced. (Bar = 

20 μm) Left: the image combines green and red fluorescence channels. 

Right: the image combines Differential Interference Contrast (DIC) channel, 

green fluorescence, and red fluorescence channels. 

Figure 5-2.  The comparison between the biomass in biofilms formed on PDMS surfaces 

modified with 20 µm ×20 µm, 50 µm ×50 µm, and 100 µm ×100 µm 

microtopographic patterns with various inter-pattern distances (10, 15, 20, 

30, 40, or 50 μm) and that on flat PDMS surfaces. Standard deviations are 

presented. N=6 biological repeats averaged; at least 30 images were 

analyzed for each data point. 

Figure 5-3.  The comparison between the unit area of conjugation frequency on PDMS 

surfaces modified with size 20 µm ×20 µm, 50 µm ×50 µm, and 100 µm 

×100 µm microtopographic patterns with various inter-pattern distances (10, 

15, 20, 30, 40, or 50 μm) and that on flat PDMS surfaces. Standard errors 
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are presented. N=6 biological repeats averaged; at least 30 images were 

analyzed for each data point. 

Figure 5-4.  Biomass of E. coli CSH26/pKJK (donor) and E. coli RP437/pRSH103 

(recipient) co-culture biofilms on the side and on the top of the size 20 µm 

×20 µm, 50 µm ×50 µm, and 100 µm ×100 µm microtopographic patterns 

with various inter-pattern distances (10, 15, 20, 30, 40, or 50 μm), in the 

channel between close patterns, and on flat PDMS surfaces. Standard 

deviations are presented. N=6 biological repeats averaged; at least 30 

images were analyzed for each data point. 

Figure 5-5.  Biofilms of E. coli CSH26/pKJK (donor) and E. coli RP437/pRSH103 

(recipient) co-culture biofilms on inverted PDMS surfaces modified with 

size 20 µm ×20 µm microtopographic patterns with 10 μm inter-pattern 

distance. (A) Donor and transconjugant cell clusters on the side of 

protruding patterns. (B) Donor and recipient cells on the side of protruding 

patterns. Left: the image combines Differential Interference Contrast (DIC) 

channel, green fluorescence, and red fluorescence channels. Right: the 

image combines green and red fluorescence channels. 

Figure 5-6.  The percentage of bacterial conjugation at different geometric locations (on 

the side and top of topographic patterns and in the channel between close 

patterns) around size 20 µm × 20 µm, 50 µm × 50 µm, and 100 µm × 100 

µm microtopographic patterns with various inter-pattern distances (10, 15, 

20, 30, 40, or 50 μm). Standard errors are presented. N=6 biological repeats 

averaged; at least 30 images were analyzed for each data point. 
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Figure 5-7.  Representative fluorescence images of motility mutant biofilms (A) and 

wild-type biofilms (B) on PDMS surfaces with size 20 µm × 20 µm 

topographic patterns with 15 µm inter-pattern distance. 

Figure 5-8.  Effects of motility on biofilm formation and bacterial conjugation. (A & B) 

The biomass of motility mutant (A) and wild-type (B) biofilms at different 

geometric locations (on the side and top of plateaus and in the channel 

between close plateaus) around size 20 µm × 20 µm topographic patterns 

with various inter-pattern distances (10, 15, 20, 30, 40, or 50 μm). (C) The 

comparison between the unit area conjugation frequency of wild-type strain, 

the unit area conjugation frequency of motility mutant in co-culture biofilms 

formed on PDMS surfaces with size 20 µm × 20 µm topographic patterns 

with various inter-pattern distances (10, 15, 20, 30, 40, or 50 μm), and the 

unit area conjugation frequency of wild-type and motility mutant biofilms 

on flat PDMS surfaces. N=3 biological repeats averaged; at least 15 images 

were analyzed for each data point. 

Figure 5-9.  The biomass of donors in biofilms formed on PDMS surfaces modified with 

20 µm ×20 µm (A), 50 µm × 50 µm (B), and 100 µm × 100 µm (C) 

microtopographic patterns with various inter-pattern distances (10, 15, 20, 

30, 40, or 50 μm). N=6 biological repeats averaged; at least 30 images were 

analyzed for each data point. 

Figure 5-10. The biomass of recipients in biofilms formed on PDMS surfaces modified 

with 20 µm ×20 µm (A), 50 µm × 50 µm (B), and 100 µm × 100 µm (C) 

microtopographic patterns with various inter-pattern distances (10, 15, 20, 
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30, 40, or 50 μm). N=6 biological repeats averaged; at least 30 images were 

analyzed for each data point. 
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5.8 TABLE 

Table 5-1. Pearson correlation coefficients between percentage of transconjugation and 

inter-pattern distance; as well as biomass of recipient cells and inter-pattern distance. All 

data were acquired on PDMS surfaces with 10 µm tall 20 µm × 20 µm topographic 

patterns and varying inter-pattern distance.  

Conjugation/Biomass Location Correlation Coefficient (r) 

Percentage of conjugation  Side 0.37594** 

Biomass  Side 0.94047*** 

Percentage of conjugation  Channel -0.26608* 

Biomass  Channel -0.91413*** 

*: P < 0.5 

**: P < 0.05 

***: P < 0.001 
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WORK 
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6.1 CONCLUSIONS  

Biofilm formation is a dynamic process with vast changes in gene and protein 

expressions that are sensitive to many environmental factors such as surface chemistry, 

surface topography, and flow conditions. This dynamic process of biofilm formation and 

associated structural heterogeneity present a great challenge to study the mechanism of 

bacteria-surface interaction. In this study, we used well-defined surface chemistry and 

surface topography to control biofilm morphology and study bacteria-surface and 

bacterial cell-cell interactions. By tailoring gold surfaces with square-shaped patterns of 

CH3-SAM for cell adhesion and background with bioinert triethylene glycol-SAM (TEG-

SAM). The size of CH3-SAM patterns and inter-pattern distance were systematically 

varied. The size of CH3-SAM patterns was set to be 5, 10, 15, 20, 30, 40, or 50 µm and 

the inter-pattern distance was set to be 2, 5, 10, 15, 20, 30, 40, or 50 µm. Both the size of 

patterns and the inter-pattern distance were found to influence the interaction among cell 

clusters. In addition, critical pattern size (20 µm in this study) and inter-pattern distance 

(10 µm in this study) were found for significant interaction among cell clusters. Both the 

critical size and inter-pattern distance are larger than the size of single E. coli cell used in 

this study, which indicates that multicellular structures are involved in interaction 

between cell clusters during biofilm formation.  

The interaction among cell clusters was found to be formed by cells grown out of 

cell clusters rather than those settled by gravity. Autoinducer-2 (AI-2) mediated quorum 

sensing (QS) was involved in such interactions since the luxS mutant exhibited defects in 

this behavior, which was complemented both chemicals and genetically. Besides the luxS 

gene, the motB gene was also identified to be involved in the interaction among cell 
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clusters; In the end, cheY and tap genes were found to be important to the initial 

attachment of E. coli.  

Since the critical distance for interactions between clusters is larger than the size 

of E. coli cells, we also tested the surface structures of biofilm cells. By imaging 2, 4, and 

6 h biofilms with high resolution analytical scanning electron microscope (LEO 1550 

FESEM, Keck SEM, Cornell Center for Material Research), nanometer-diameter 

structures on the surface of biofilm cells were observed. These structures appeared 

between cells in and between cell clusters, which suggested that they might play a role in 

bacterial cell-cell interaction. The protocol developed in this study can be further applied 

in investigating the role of these surface structures during the interaction among cell 

clusters on well-defined surfaces.  

Inspired by the above findings, we also used the gold surfaces with engineered 

surface chemistry to obtain a better understanding of biofilm associated antibiotic 

resistance. Cells in bioinert areas between cell clusters are involved in interactions 

between these clusters. In 2 h patterned biofilms, these cells appeared to be more 

susceptible to 200 µg/mL ampicillin compared to the cells in cell clusters; while these 

cells gradually become more tolerant to ampicillin over time. These observations support 

the hypothesis that the cells between clusters are more active metabolically. 

In addition to SAM surfaces, poly(dimethylsiloxane) (PDMS) surfaces modified 

with 10 µm tall topographic patterns were prepared in this study to investigate the effects 

of surface topography on bacterial cell-surface interaction. Previously, a former student 

in Ren lab has observed that E. coli RP437/pRSH103 preferred to attach and form 

biofilm in the valleys between close topographic patterns and there was a critical size of 
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plateaus to allow significant bacterial adhesion and biofilm formation on the top of 

protruding plateaus. The critical size is 20 µm × 20 µm for PDMS surfaces, which is 

around 200 times larger than the size of a single E. coli cell. This conclusion indicates 

that bacterial cell-cell interaction is essential for the formation of multicellular structure 

of biofilms on those plateaus. To test whether this phenomenon was due to gravity, the 

biofilm formation of E. coil RP437/pRSH103 with constitutively expressed red 

fluorescence protein (RFP) was monitored using inverted PDMS surfaces modified with 

systematically designed microtopogrpahic patterns. According to data, it is confirmed 

that there was a critical dimension for bacterial adhesion and biofilm formation on top of 

plateaus; however, the critical size increased to 40 µm × 40 µm for inverted plateaus. 

This result indicates that gravity can facilitate biofilm formation but the critical 

dimensions are intrinsic factors for biofilm formation. To further corroborate the result 

that the adhesion on PDMS surfaces is not only due to gravity-driven settlement, the 

biofilm formation of the motility mutant strain E. coli RP3087/pRSH103 (motB mutant) 

on both upright and inverted PDMS surfaces with size 100 µm × 100 µm patterns was 

tested. The results show that bacterial motility is important to bacterial adhesion on 

surfaces with topographies.  

These results are inspiring for developing antifouling surfaces by changing 

surface topography. The total biomass of 24 h E. coli RP437/pRSH103 biofilms on 

PDMS surfaces with systematically designed microtopographic hexagon patterns was 

evaluated.  The results showed that 10 µm tall protruding hexagon features with side 

width of 15 µm and inter-pattern distance 2 µm can decrease total biomass by 70% 

compared to PDMS surfaces and the side width 15 µm was found to be a critical 
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dimension for repelling bacterial adhesion and biofilm formation on protruding hexagon 

feature. This is consistent with the finding of 20 µm and 40 µm critical dimensions for 

square pattern. 

The above results reveal that surface topography can influence cell density in 

biofilms. Hence, we applied this well-defined surface system to study bacterial 

conjugation between E. coli CSH26/pKJK10 (donor) and E. coli RP437/pRSH103 

(recipient). E. coli CSH26/pKJK10 does not express green fluorescence protein (GFP) 

unless the inducer isopropyl β-D-1-thiogalactopyranoside (IPTG) presents or when the 

plasmid pKJK10 is transferred to recipients. E. coli RP437/pRSH103 constitutively 

expresses red fluorescence protein (RFP). Thus, by using this dual-labeling system, we 

could quantitatively study bacterial conjugation in biofilms formed on PDMS surfaces 

with systematically designed microtopographic patterns. The size of topographic patterns 

were set to 20, 50, or 100 µm that are equal to or larger than the critical size identified 

above and the inter-pattern distance was set to 10, 15, 20, 30, 40, or 50 µm. The results 

suggest that surfaces with microtopographic patterns in this study can promote biofilm 

formation and bacterial conjugation. The promotion of biofilm formation was due to the 

aggregation of cells on the side of protruding features, which are also found to be the ‘hot 

spot’ for bacterial conjugation on surfaces with 10 µm tall topographic features. This 

phenomenon was not due to gravity-driven settlement of cells because the motility 

mutant of recipient formed significantly less biofilms on the side of topographic patterns. 

The unit area conjugation frequency in biofilms formed by donors and the motility 

mutant recipients was also significantly lower than that in biofilms formed by donors and 

wild-type recipients, which indicates that motility is also important in bacterial 
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conjugation. Overall, by using patterned surface, this study revealed important missing 

information regarding bacterial-surface interactions. The results are also useful for 

designing new amtifouling materials and surfaces. 

 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

6.2.1 Role of bacterial motility in the bacteria-surface, bacterial cell-cell 

interactions, and bacterial conjugation 

The motB mutant E. coli RP3087 that contains a malfunctioned MotB protein was 

found to have defects in interaction among cell clusters compared to the wild-type strain 

E. coli RP4371. However, the isogenic motB deletion mutant (E. coli BL-19) of the wild-

type strain showed major defects even in attachment. These results suggested that motB 

gene played a role in both adhesion and interaction among cell clusters. To study the role 

of motB gene in bacterial adhesion and interaction among cell clusters more specifically, 

the motB deletion mutant needs to be genetically complemented first. We recently 

obtained the plasmid pGM1 with motB gene regulated by IPTG-inducible lac promoter 

from Prof. Howard C. Berg. It can be transformed into the motB mutant E. coli BL-19 

using electroporation1-3. The biofilm formation of the wild-type strain, E. coli BL-19, and 

E. coli BL-19/pGM1 on chemically modified surfaces can be compared to study the role 

of motB gene during biofilm formation. IPTG of different concentrations can be added to 

induce the expression of motB gene and complement of the motB gene.  

Bacterial motility was also found to affect conjugation. However, how does 

motility affect conjugation is unknown. The reduced bacterial conjugation frequency 

between donors and motB mutant recipients could be due to the reduction of bacterial 
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motility or the reduction of recipients in the biofilms formed on the side of protruding 

patterns. To test if bacterial motility has direct effects on bacterial conjugation, the 

conjugation in donors and wild-type recipients co-culture biofilms and donors and motB 

mutant recipients co-culture biofilms can be tested on filters. By eliminating topography 

as one of the factors, the role of bacterial motility in bacterial conjugation can be 

revealed.  

6.2.2 Role of bacterial surface structures during interaction between cell clusters 

Some cell surface structures in 2, 4, and 6 h E. coli RP437 patterned biofilms 

were visualized using LEO 1550 FESEM. To study the dynamic roles of bacterial surface 

structures during the interaction among cell clusters, the reporter strain of flagellar, curli, 

and fimbriae genes should also be used to form patterned biofilms and followed with 

fluorescence microscopy and SEM. This will help understand what types of structures are 

involved.  

6.2.3 Effects of surface topography on bacterial cell-surface interaction and biofilm 

formation 

Although we have obtained some information about the effects of surface 

topography on bacterial cell-surface interaction, the mechanism that governs the obtained 

phenomenon still needs to be further studied. We observed decrease in the biomass of 

biofilms formed on hexagon patterns with side width 15 µm and varying inter-patterns 

distance. Interestingly, Friedlander et al.4 reported that surfaces with 2.7 µm tall hexagon 

shaped patterns with 3 µm in diameter can promote biofilm formation. We hypothesize 

that the hydrophobicity of PDMS surfaces can be altered by surface topographies with 

different heights. This pattern dimension can lead to against or coungosis effects. Another 
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factor is the role of bacterial flagella in response to surface topography with different 

heights and dimensions. To further study, PDMS surfaces with hexagon shaped 

topographic patterns of different heights (2, 5, or 10 µm), size (side width, 2, 5, 10, 15, 

20, 30, 40, or 50 µm), and inter-pattern distance (2, 5, 10, 15, or 20 µm) can be prepared. 

The hydrophobicity of these PDMS surfaces can be evaluated by measuring the contact 

angle. The biofilm formation of E. coli RP437/pRSH103 on these PDMS surfaces can be 

quantitatively studied to understand the effect of height, size, and inter-pattern distance 

on bacterial adhesion and biofilm formation. To have a mechanistic understanding of the 

obtained phenomenon at the genetic level, the comparison between biofilm formation of 

the wild-type strain and its isogenic mutants of the interested genes can be conducted. 

The role of flagella in bacterial adhesion on different surfaces can be monitored using 

FESEM.  

6.2.4 Biofilm resistance to antibiotics 

Biofilm resistance to antibiotics involves numerous factors. To further study the 

role of metabolic activity, a reporter strain of bacterial metabolic activity, E. coli MG-

1655 ASV5, can be used to follow the metabolic activity of biofilm cells in patterned 

biofilms and correlate the results with antibiotic resistance. 
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APPENDIX I. PROTOCOL FOR FABBRICATING SILICON 
WAFERS WITH MICROTOPOGRAPHIC FEATURES  

This part of work was conducted at Cornell Nanoscale Facility (CNF). 
Step I. Write micronscale patterns using Heidelberg Instrument DWL 2000 

1. Purchase mask (5 inch) from the staff in CNF. The hour of the supply center is 
Monday-Thursday from 9-9:30 am and 1-1:30 pm and Friday from 10-10:30 am 
and 1-1:30 pm.  

Converting the L-Edit file to GDSII file: 
Software: L-Edit Layout Editor v13 
1. Convert your L-Edit Layout File (.tdb) to GDSII file. Open your L-Edit file. Click 

‘File’- ‘Export Mask Data’- ‘GDSII…’. Change the name of the file you want to 
export the L-Edit Layout File into. Remember to check ‘GDSII default’ instead 
of ‘Custom’ under catalog ‘GDSII units’ and ‘Selected cell and its hierarchy’ 
instead of ‘All cells’ under catalog ‘All cells’. Then click ‘Export’. 

2. After the export is done, check to make sure ‘no error’.  
3. Reopen the .gds file that you just created in L-Edit to check whether the file only 

include your patterns in the GDSII file.  
4. After the GDSII file is checked, the GDSII file needs to be transferred to the 

‘Heidelberg DWL2000’ file on the ‘lab_xfer(\\image)(V:)’ drive.  

Converting the GDSII file into frame file: 
Equipment: Computer 1 
Software: Frame Generator 
1. Go to the computer on the left of the Heidelberg DWL2000 machine. The 

conversion of the GDSII file in this computer does not require activation of the 
Heidelberg DWL 2000. 

2. Double click on the folder ‘Lab Transfer Share’ on the desktop and right click 
on the GDSII file you just created. Choose ‘Copy To’->‘Home Folder’->‘gdsii’-> 
‘Copy Here’.   

3. Double click the ‘Frame Generator’ icon. Change the file name as 
‘frameDATENAMELX(1,2,3,….)’. Choose ‘Contact’ as ‘Target’. There is no 
‘Barcode’ for contact mode. Type in the ‘Label’ that you want to use to mark this 
mask (e.g., hexagon pattern). Then click ‘do’. There will be a row of letters on the 
bottom of the box showing that ‘Saved to 
/home/convert/gdsii/frameTodaysDateNameLX.gds’, which indicates that this 
step is finished.  

4. Close the Frame Generation application by clicking ‘X’ on the upright corner.  

Importing the GDSII file and frame file into the computer connected to Heidelberg 
DWL2000: 

Equipment: Computer 1 
Software: X-convert 
1. Double click on the ‘X-convert icon’ to start the pattern conversion software.  
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2. Click on the icon under ‘File’ to initiate the conversion sequence. ‘Set New Job’ 
window will appear. 

3. Type in ‘TodaysDateNameLX(1,2,3…)’ in the ‘Job Name’ field. Click ‘OK’.  
4. The ‘Menu’ will appear.  
5. Click ‘Add’ within the ‘Source File’ submenu. The ‘Load GDSII Design’ 

window will appear. Choose the GDSII file you saved in Heidelberg DWL2000 
file on the ‘lab_xfer(\\image)(V:)’ drive and click ‘Open’. ‘GDSII Options’ will 
appear. Choose the ‘Layer’ you want to be included and unselect the other 
‘Layers’. Click ‘Create Default’.  

6. Click ‘Add’ and then ‘GDSII’ within the ‘Source File’ submenu. ‘Load GDSII 
Design’ window will appear. Click the frame file you created before and click 
‘Open’. ‘GDSII Options’ menu will appear. Click ‘Create Default’.  

7. Under ‘HMT File’ submenu, click ‘Merge Files’ button. The ‘Merge HMT 
Files’ window will appear. Click ‘Add all’ button, both files will be added from 
‘Available Files’ portion of the menu to ‘Merge Files’ portion of menu. Click 
‘Generate’ and then ‘Add to list’.  

8. To review your pattern, click ‘openGL VIEWER’ button under ‘HMT File’ 
submenu.  

9. Click ‘Fill’ within the viewer option menu to preview your pattern. Click ‘X’ to 
exit. The patterns filled with black color are the patterns to be exposed on your 
mask.  

10. Click ‘X’ to exit ‘Plate 0’. This step is important for generating mirrored patterns 
and cannot be skipped. Click ‘Add Plate’ under ‘HMT File’ submenu to open an 
empty ‘Plate 0’. Click ‘Add Cell’ under ‘Plate 0’ submenu.  

11. Check the box to the left of ‘Mirror’. Click ‘openGL’ will allow you to view the 
mirrored data. Click ‘Complete Tasks’ and ‘Save’ to save the job file. Use the 
same naming convention as before (TodaysDateNameLX).  

12. Click ‘Complete Expose Jobs’ and ‘Prepare’ menu will appear. Click ‘Finish’ 
within ‘Prepare’ window.  

13. Close the menu by clicking the red button on the upper right corner. 
Writing mask: 

 Equipment: Heidelberg Instrument DWL2000; computer 2 
1. Log into Coral and activate Heidelberg DWL 2000 to enable the keyboard and 

mouse of the computer to be connected with the equipment.  
2. Go to computer 2 on the right of the Heidelberg DWL 2000. If the ‘Exposure 

Map’ and ‘Control Panel’ windows are not open, click the 2nd and 3rd icons 
under ‘File’ to bring up these two windows.  

3. To turn on the laser, click ‘Tools’ then ‘Laser Control’. ‘Laser Control Panel’ 
window will appear. Click ‘Turn Laser On’ and then ‘Exit’. The laser will be 
turned on and the box next to ‘Laser Status’ will become green.  

4. Click ‘Job’ in the ‘Exposure Map’ window and then ‘Design Name’ field to 
highlight contents. Right click on the ‘Design Name’ field and then click on 
‘Online’ on the pull down menu. ‘Online Conversion’ window will appear.  
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5. Double click on the pattern file you just created. You will descend into the 
directory structure of your pattern file. Click ‘Get Design’. The job menu will 
have the name of the file you chose.  

6. Click ‘Map’. Check the box next to ‘Laser Shutdown’ and then ‘(Un)Load’ to 
bring the stage to the load position.  

7. Open the door of the Heidelberg DWL 2000 by using the door switch located on 
the left hand side of the metal chamber.  

8. Lift the cover of the loading stage for mask. Make sure the sensor is not right 
above the center of stage. Then place the L-shaped mask guide in the 4th groove 
for 5 inch mask. Place your mask against to the L-shaped mask guide and turn on 
the vacuum. Remove the L-shaped mask guide and put it on the shelf directly to 
the right of the stage cover. Lower the cover of the loading stage.  

9. Close the door of the Heidelberg DWL 2000 by using the door switch.  
10. Click ‘To Center’ button in the ‘Control Panel’ menu. Check the position of the 

sensor to ensure that it has been moved to the center and then click ‘Focus’.  
11. Click the 4th icon under ‘File’. The stage will move and the sensor will try to find 

four edges of the mask. Check whether the sensor is moving to find the four edges 
of the mask.  

12. Click ‘Exposure’ in the ‘Exposure Map’ window. The exposure time will appear 
on the window. The time is not accurate because the machine cannot predict what 
pattern you will write.  

13. Do not close the software after you finished.  
14. After the writing is finished, open the door of the Heidelberg DWL 2000. Raise 

the cover of the stage, turn off the vacuum and remove your mask. Then lower the 
cover of the stage and close the door. Do not leave the door open for a long 
period of time. This will damage the sensitivity of the machine.  

15. Turn off the laser by clicking ‘Tools’ and then ‘Laser Control’. ‘Laser Control 
Panel’ window will appear. Click ‘Turn Laser Off’ and then ‘Exit’. Repeat it 
again to make sure that the laser is turned off and the box next to ‘Laser Status’ 
becomes red.  

16. Disable the machine by logging into Coral.  
Mask development and etching: 

Equipment: Hamatech-Steag Mask Processor HMP900 
1. Mount the exposed mask in the holder (Fig. 1).  
2. Develop the mask by choosing program 2 in the Hamatech-Steag Mask 

Processors and click ‘Start’.  
3. Chrome etch the mask by choosing program 1 and click ‘Start’.  
4. Be aware that the sequence cannot be reversed.  
5. Remove the etched mask from the holder.  
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Figure 1 The top-down view of mask in Hamatech-Steag Mask Processor HMP900 

Photoresist removal:  

Equipment: Resist hot strip bath 
1. Wear green gloves and face shield before operation.  
2. Load masks onto the plastic wrack. Please make sure that the plastic wrack can be 

put into A108-50 before loading the masks.  
3. Choose the right handle for the plastic wrack.  
4. Open the lid of Tank 1 (hot bath, 75 °C). Put the plastic wrack into Tank 1 for 20 

min. Avoid touching the solution in Tank 1. Lower the lid of Tank 1. Please do 
not touch anything else with green gloves except the plastic wrack and 
handle. 

5. Transfer the plastic wrack into Tank 2 (hot bath, 75 °C) and keep for 20 min.  
6. Then, transfer the plastic wrack into the tank for dump-rinse. Take off the green 

gloves and press the green button located above the tank. The dump-rinse cycle 
will start. This step is very important for the removal of photoresist.  

7. When the dump-rinse cycle is finished, the safety hood will give a signal. Press 
the green button again to stop the alarm. Take the plastic wrack out of the tank 
and remove the handle.  

8. Open A108-50 ‘Spin rinse dryer’ located on the right of the safety hood for ‘Hot 
Strip Bath’. Please kick the right side of the panel located on the bottom of the 
machine. There is a sign on the panel ‘Lower spin dryer’. The door of the ‘Spin 
rinse dryer’ will open.  

9. Load the plastic wrack into the ‘Spin rinse dryer’. Cick the same panel again to 
close the door. Press ‘Start’.  

10. When the process is finished, the machine will give a signal. Open the door of the 
‘Spin rinse dryer’ and take out the plastic wrack. Close the door.  

11.  Remove the mask and store in the mask container for future application.  

Step II. Photoresist deposition 
1. Purchase wafers (3 inch) from the staff at CNF.  
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2. Make sure the wafers are clean before the deposition of photoresist. The wafers 
purchased from the supply center are considered clean. Wafers can also be 
cleaned with ‘hot strip bath’ before the deposition of photoresist.  

3. To coat wafers in the spinner hood, please put face mask on during operation. 
Wafers are positioned in the center of a correct wafer holder and held with 
vacuum supplied from the bottom of the wafer holder. The wafer holder is chose 
based on the size of your wafer.  

4. Load the program for wafer spinning. Click the ‘Load’ button and choose the 
program for the deposition of photoresist S1813 (500g (3500 rpm), 30 sec).  

5. Clean wafers with P20 primer. Press the green ‘Start Centering’ button on the 
touch board screen. Measure 3 mL P20 primer with disposable pipette and then 
drop them in the center of the wafer. Please avoid taking P20 primer from the 
bottom and top layer of the P20 primer stock solution. Because there could be 
precipitates in the bottom layer of the stock solution and the top layer P20 primer 
stock solution could have been oxidized. Lower the lid. Allow P20 to spread and 
sit for 5 sec on the surface of the silicon wafer and then press the green ‘Start 
Process’ button. When the process is done the computer will give a signal. Press 
‘OK’ to stop.  

6. Press the green ‘Start Centering’ on the touch board before depositing photoresist. 
Measure 3 mL photoresist S1813 with disposable pipette and then drop them in 
the center of the wafer. Remember to push out the air on the tip of the pipette to 
avoid bubbles. Avoid taking the photoresist from the bottom and top layer of the 
stock solution as well. Lower the lid. Immediately start the deposition process by 
clicking the green ‘Start Process’ button. Wait until the process is done and stop 
the alarm by pressing the ‘OK’ button.  

7. Immediately transfer the wafer onto the hot plate to bake for 60 sec and then onto 
a cold plate. The temperature of the hot plate is 115 °C.  

8. Clean the photoresist residue in the spinner.  
9. Measure the thickness of the photoresist layer on the silicon wafer using the 

Rudolph FTM. Three buttons are important on Rudolph FTM. The left button 
‘nm/micron’ indicates the thickness of the photoresist you will measure. Select 
‘micron’ if you want to measure the photoresist of micron scale and vice versa. 
The middle button reflects whether film refractive index (nf) is smaller or bigger 
than your substrate index (ns). The refractive index, nf, can be found in the 
reference binder located next to the instrument. The nf of photoresist S1813 is 
smaller than ns (nf < ns). The right button needs to be adjusted to the correct nf, 
which is 1.59 for photoresist S1813. After these three buttons are set correctly, the 
thickness of the photoresist S1813 deposited on the wafer should be around 1.3 
μm.  

Step III. Transfer patterns from mask to silicon wafer 
1. Log into CORAL to enable the ABM contact aligner under the equipment list of 

‘Photolithography’.  
2. Turn on the power of the ABM contact aligner. The red ‘power’ button locates at 

the right corner of the machine.  
3. Turn on the ‘Nitrogen Flow Switch’ because you will use vacuum contact mode. 
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4. Make sure that the mask frame is not lifted. Look top-down to check whether the 
substrate chuck is in the center of the square-shaped hole in the center of mask 
frame. If it is not, adjust the knobs on the right (knob 1) and front (knob 2) of the 
stage to bring the substrate chuck to the center of the square-shaped hole (Fig. 2).  

                     
Figure 2 The top-down view of the stage of ABM contact aligner 

5. Turn on ‘Raise Mask Frame Switch’.  
6. After the mask frame is raised, mount the mask with designed patterns to the 

bottom of frame with the silver side facing up and brown side facing down. Slide 
the mask from right to left and top to bottom until you reach the bumper on the 
left and bottom of the frame. Then, turn on ‘mask vacuum switch’.  

7. Mount wafer onto Substrate Chuck with the side coated with photoresist facing up 
and turn on ‘Substrate Vacuum Switch’.  

8. Lower the Mask Holder.  
9. Bring mask to wafer by pressing and holding ‘Chuck Leveling Switch’ and 

turning ‘Chuck Motion Knob’ CCW (Fig. 2). Stop turning the Chuck Motion 
Knob when it begins slipping.  

10. For alignment, bring the ‘Alignment System Switch’ to Align. Turn the chuck 
motion CW one full turn.  

11. Turn off the ‘Substrate Vacuum Switch’ and turn on ‘Contact Vacuum Switch’ 
for Vacuum Contact Mode.  

12. Move ‘Alignment System Switch’ back to Home position.  
13. Set ‘Exposure Time’. To adjust the exposure time, the same wafer can be exposed 

for different period of time at different area with the usage of the UV light blocker 
and developed (Fig. 3). Based on the developed wafer, you can determine the 
exposure time you need to expose the photoresist deposited on the wafer. For the 
photoresist S1813, the exposure time is 8 sec.  
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Figure 3 The top-down view of the stage of ABM contact aligner with a UV light 

blocker  

14. Move ‘Light Source Switch’ to Exposure.  
15. After the exposure is finished, move the ‘Light Source Switch’ to Home position.  
16. Turn off the ‘Contact Vacuum Switch’ and turn on the ‘Substrate Vacuum 

Switch’.  
17. If you have another wafer, raise the Mask Frame and turn off the ‘Substrate 

Vacuum Switch’ to replace the wafer. Then go back to step 7.  
18. If you don’t have another wafer, turn ‘Chuck Motion knob’ CW to break the 

contact between wafer and mask. 
19. Raise Mask Frame.  
20. Turn off the Substrate Vacuum Switch’ to remove wafer.  
21. Turn off ‘Mask Vacuum Switch’ to remove mask.  
22. Lower Mask Frame.  
23. Turn off ‘Power Switch’ and ‘Nitrogen Flow Switch’.  
24. Disable the ABM contact aligner by logging into Coral.  
25. Develop the mask by using program 6 in ‘Wafer Developer 1’ (Stage HamaTech, 

HMP 900). The program 6 includes ‘726 MIF 60 sec DP’.  

Step VI. Etch silicon wafers  
1. Clean the photoresist on the edge of the wafers with Q-tips cotton swabs and 

acetone (at least 1 inch) (Fig. 4).  

 
Figure 4 A silicon wafer deposited with photoresist S1813 
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2. Log into Coral to enable the UNAXIS 770.  
3. Vent loadlock by clicking ‘Utilities’->‘Loadlock’->‘Vent’. When the system 

shows ‘ATOMOSPHERE’, open the lid and load your wafer onto load arm with 
the photoresist side facing up. Locate wafer flat facing rear.  

4. Click ‘Process’->‘Batch’->‘File’->‘Load’->‘Obtrench.bch’->‘OK’.  
5. Click ‘File’->‘Exit’.  
6. Click ‘Ready’ and ‘’Run.  
7. If there is an alarm giving by UNAXIS 770 during etching, click ‘ALARM 

SILENCE’->‘HOLD’.  
8. The depth of each loop varies everytime. Everytime when you use UNAXIS 770 

for etching, the first etching should only include three loops. Click ‘END STEP’ 
when the machine finishes the third loop.  

9. Open the lid and remove your wafer. Click ‘Utilities’->‘Landlock’->‘Pump’.  
10. Go to P10 to measure the depth etched after three loops.  
11. Disable UNAXIS 770 and enable P10 in Coral.  
12. Load your wafer in the center of the stage. Press ‘F7 LOAD/UNLOAD’ to load 

your wafer. If the monitor is not showing ‘PRECISION MODE’, press ‘F6 X-Y’. 
To position the sensor, press ‘ZOOM’->‘Z’ and then down arrow to bring the 
sensor to the surface of your wafer.  

13. After the contact is made, press ‘X-Y’ and use the left and right arrow to find 
your pattern.  

14. Once your pattern is located, press ‘ESC/MENU’-> ‘CATALOG’-‘ENTER’. Find 
your recipe for measurement. The recipe should include ‘Type: 2D; V. Range: 
300 μm; Profile:’ Then press ‘X-Y’.  

15. Press ‘F8 START’ to apply the recipe for measurement.  
16. After the measurement is finished, press ‘F10 LEVEL’. Move ‘L’ and ‘R’ to the 

same level, press ‘LEVEL’ again. Move ‘R’ to the upper level to read the height 
of the etching. Use this height to calculate height/loop and the number of loop to 
get the height you want. Then go back to step 2.  

17. Disable P10 in Coral.  
18. After the etching process is finished, press ‘Utilities’->‘Landlock’-‘Pump’-

‘STANDBY’. 
19. Disable UNAXIS 770 in Coral.  
20. Clean the photoresist on the wafers with ‘Hot Strip Bath’ and A182-39M.  
21. The depth of patterns needs to be determined and labeled on the back of wafer for 

the convenience of future usage using P10 before coating with FOTS.  
Step V. Coat silicon wafers with microtopographic features with antiadhesion 
chemical FOTS 

1. Check whether the chemical FOTS is available on MVD 100 (Line 2). If FOTS is 
not available, contact the equipment manager of MVD 100 one week before 
coating to request.  

2. Log into CORAL system and enable the tool MVD 100 under equipment list 
‘Packaging & Misc Processing’.  

3. Check the chamber pressure on the touch board screen of MVD 100. The pressure 
should be less than 0.035 Torr.  
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4. Run a dummy run of your process. A dummy run is a short run of your process 
for about 1 min or less with an empty chamber. The operation procedure is the 
same as coating a real sample. 

5. Vent the chamber and load your sample. Press ‘Routines’ button on the screen 
and then the green ‘Vent’ button. After the chamber is vented, ‘VIEW SYSTEM’ 
will show ‘Chamber Vented’. Open the lid and load your samples into the 
chamber. There is no specific loading position for your sample in the chamber. Be 
aware of the two holes in the corners of the chamber floor. They should not be 
blocked.  

6. Pumpdown the chamber. Press ‘Routines’ button on the screen and then the green 
‘Vent’ button. The status of ‘VIEW SYSTEM’ will show ‘Purge’ and then ‘Idle’ 
when the pumpndown process is finished.  

7. Load the program for your process. Specifically, the program of ‘FOTS’ needs to 
be loaded. Press ‘Sequences’ button on the touch board screen and then the arrow 
besides the process. There are three options available, including ‘Single Layer’, 
‘Double Layers’, and ‘Multiple Layers’. Press the arrow besides ‘Single Layer’ 
and the red ‘Load’ button on the upper right corner of the touch board screen. 
Chose the program ‘FOTS’ and press ‘Yes’ for loading this program. 

8. Run process. Press ‘Sequences’ button to go back to upper screen and then the 
green ‘Run’ button for the process you have programmed/verified.  

9. Abort the run. If something goes wrong, you need to abort the program. Press 
‘Abort’ button on the upper right side of the screen and then ‘Clear Fault’. Restart 
your program again.  

10. Vent the chamber. After the program is finished, the status of ‘VIEW SYSTEM’ 
will show ‘Idle’. Press ‘Routines’ button and then the green ‘Vent’ button to vent 
the chamber. When ‘Chamber Vented’ is shown, open the lid and remove your 
samples. If you have more samples, load them and go back to step 6. If you have 
finished processing your samples, go to step 11.  

11. Pumpdown the chamber. Press the ‘Routines’ button and then the green 
‘Pumpdown’ button. When the status of ‘VIEW SYSTEM’ shows ‘Idle’, the 
pumpdown process is finished.  

12. Log out. It is important to remember to disable the machine MVD 100 in CORAL 
after the pumpdown step is over.  
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APPENDIX II. PROTOCOL FOR GOLD SURFACE 
MODIFICATION 

Material: 

Gold surface, tweezers, cotton swab, PDMS pattern with micorotopographic pattern, 
microscope glass slides, cover slides, filter, air, a piece of clean paper, petri dishes 

Chemicals:  

Ethanol (200 proof), Pentadecanethiol 98% (Sigma-Aldrich, St. Louis, MO, USA; FW: 
244.5; working concentration: 2mM), Triethylene glycol mono-11-mercaptounelecyl 
ether 95% (Sigma-Aldrich, St. Louis, MO, USA; FW: 336.53; working concentration: 
2mM), 0.85%  NaCl solution. 

Procedure: 

Day 1 

1. Practice how to cut glass slides into approximately 6 mm by 12.5 mm small pieces. 
Please cut on the side of microscope slides that was not coated with gold.  

2. Put the small pieces of gold slides in petri dish with the side coated with gold facing 
up.  

3. Clean your hands with 190 proof ethanol first. (Please wear gloves) 
4. Sterilize your tweezers with ethanol and remove ethanol with flame. . (Please use 

tweezers with teeth).  
5. Pick up a piece of small gold surface with your tweezers and put it on your palm with 

the side coated with gold facing up 
6. Grab a corner of the gold slides. Wash the gold surface thoroughly with 190 proof 

ethanol.  
7. Dry the slide with a sterile air stream.  
8. Then put the gold surface on the clean paper with the side coated with gold facing up.  
9. Wash a PDMS surface with microtopographic pattern with 190 ethanol and dry it 

with a sterile air stream. 
10. Swab the PDMS surface with 2 mM CH3-SEM using cotton swab and dry the PDMS 

surface with a sterile air stream.   
11. Then gently drop the PDMS pattern onto sterilized gold surface with the 

microtopographic patterns facing down.  
12. Then count for 15 seconds.  
13. Grab the PDMS pattern firmly with tweezers and take it away from the gold surface.  
14. Wash PDMS pattern with 190 proof ethanol, dry it with air stream and store it in a 

clean petri dish for further application.  
15. Wash the gold surface with 190 proof ethanol to remove extra CH3-SAM and soak it 

in a tube with 3 mL TEG-SAM solution.  
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16. Let the gold surface sit in TEG for 24 hours at room temperature.  
17. Prepared overnight culture of your bacterial strain.  

 
Day 2 

1. Prepare a clean petri dish and a clean paper.  
2. Clean your hands and tweezers. (Please wear gloves) 
3. Take the gold surface out of TEG alkanthiol solution.  
4. Wash the gold surface with 190 proof ethanol and dry it under a sterile air stream.  
5. Put the gold surface into a clean petri dish with the side coated with gold facing up.  
6. Measure the OD600 of your overnight culture and then calculate how much you need 

to add into 20 mL LB solution to reach OD600 of 0.05.  
7. Put the petri dish in the 37˚C culture room for biofilm growth after inoculation.  
 

Day 3 

1. Take three clean petri dishes and filled them with 0.85% NaCl solution.  
2. Take the gold surface with biofilms out of the culture room and then wash the gold 

surface three times with 0.85% NaCl solution to remove planktonic cells.  
3. Then transfer the gold surface onto the micoroscope glass slides.  
4. Put the cover slips on top of the gold surfaces.  
5. Then image the sample using the microscope.  
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APPENDIX III. PROTOCOL FOR LABELING BACTERIA WITH 
ACRIDINE ORANGE 

Material: Acridine orange Powder (Sigma-Aldrich, St. Louis, MO, USA) 
Stock solution: 5 mg/mL in water (Store in dark) 

Staining solution (in 10 mL water):  

1mL of Acridine Orange stock solution 
0.5 mL of glacial acetic acid to make the staining solution to pH 3 

Staining procedure:  

1. Wash your sample three times in 0.85% NaCl solution (change to fresh solution 
every time).  

2. Transfer sample into 3 mL acridine orange staining solution.  

3. Let the sample stain for 2 min. Then image the sample with fluorescence 
microscope.  
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APPENDIX IV. PROTOCOL FOR THIN LAYER GOLD 
DEPOSITION ON COVERSLIPS 

1. Clean the coverslips using the Piranha Cleaning. Load coverslips in a clean glass 
container with glass lid first. Fill the glass container with a mixture of 98% sulfuric 
acid and hydrogen peroxide with volume ratio (7:3). Then, the glass container will be 
brought to a hot plate until the temperature of the mixtures reaches 80°C. Maintain 
the temperature at 80°C for 45 min. Next, allow the temperature of mixture to 
decrease to room temperature. Remove the mixture and wash the coverslips with 
distill water, methanol, and ethanol. Dry the coverslips with nitrogen.  

2. Coat the cleaned coverslips using the Odd Hour Evaporator in CNF.  
3. Load the cleaned coverslips on the sample holder.  
4. Enable the Odd Hour Evaporator in Coral.  
5. Turn off the Ion Gauge.  
6. Press ‘Stop’ button on the AVC 485 and wait until you hear the gate valve close. 

Then press the vent button on the AVC 485.  
7. Wait until the green ‘Vented’ light comes on and the red ‘Vacuum’ button goes off.  
8. Once the bell jar is vented, hold the switch ‘UP’ to raise the bell jar and press the 

‘Stop’ button on the AVC 485 to turn off the nitrogen vent.  
9. Flip the shutter switch to the right to open the shutter and the green light on ‘OPEN’ 

will come on.  
10. Quickly load your samples. Face the surface of your sample downtowards the source.  
11. Flip the shutter switch to the left to close the shutter and the red light on ‘CLOSED’ 

will come one.  
12. Loading the titanium and gold on position ‘1’ and ‘2’.  
13. Check the crystal monitor life on the Operate Screen. If the reading is over 20%, the 

quartz crystal needs to be changed. To change, pull off the crystal holder cap and 
replace the old crystal with a new crystal. The reading should become 0%.  

14. Hold the switch ‘DOWN’ to bring down the bell jar until the bell jar stop moving.  
15. Press the ‘Start’ button on the AVC 485 to start the vacuum. The red vacuum light 

should come back on.  
16. Turn on the ion gauge when the AVC 485 switches from roughing mode to high 

vacuum. Wait until the pressure reaches about 2.0 × 106 Torr before evaporating. The 
shorter you leave the jar open, the shorter it will take to bring down the pressure.  

17. Unlock the selection switch and select ‘EB Gun’.  
18. Re-lock the selection switch and the red light should come back on.  
19. Make sure the ion gauge is on.  
20. From left to right, turn on the four switches on the right hand side of the evaporator.  
21. Press one of the yellow ‘Reset’ buttons on the high voltage controller.  
22. Press the red ‘Source’ button and the red ‘High voltage’ button.  
23. Hold the up arrow to increase the power for the evaporation of the material that you 

want to deposit. Bring up the power to 3.5% slowly and adjust the speed by looking 
through the view port.  

24. Adjust the location of the electron beam by adjusting the two knobs for controlling 
the vertical and horizontal motion of the electron beam to make sure the electron 
beam slowly sweep inside the center of the crucible and over the entire source.  
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25. Increase the power 3% per minute until the desire power threshold and deposition 
rate is reached.  

26. To start depositing material, flip the shutter switch to the right to open the shutter and 
press the ‘Zero’ button on the XTC/2 to zero the crystal monitor.  

27. When the thickness reaches the desired number, flip the shutter switch to the left to 
close the shutter.  

28. Slowly decrease the power back to zero.  
29. Let the material sit for a while to cool down and then change to the second material 

by press the ‘2’ button. Then go back to step 23.  
30. After you finish the deposition, press the green ‘Off’ button on the high voltage 

control panel.  
31. Press the green ‘Off’ button on the source.  
32. From right to left, turn off the four switches on the right hand side of the evaporator.  
33. Turn off the ion gauge and press ‘Stop’ button on the AVC 485. Wait until you hear 

the gate valve is closed.  
34. Press ‘Vent’ button on the AVC 485 and wait until the green ‘Vented’ light comes 

on.  
35. Hold the switch ‘UP’ to raise the bell jar.  
36. Press the ‘Stop’ button on the AVC 485 to turn off the nitrogen vent.  
37. Remove the sample holder and source materials. Clean the whole system with 

vacuum.  
38. Hold the switch ‘DOWN’ to bring down the bell jar until the bell jar stop moving. 
39. Press ‘Start’ button on the AVC 485 to start the vacuum. The red vacuum light 

should come on. Wait until the vacuum switch from roughing to high-vacuum before 
leaving the tool.  

40. Disable the Odd Hour Evaporator in Coral.  
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