Syracuse University

SURFACE

Syracuse University Honors Program Capstone Syracuse University Honors Program Capstone
Projects Projects

Spring 5-1-2014

The Purification and Characterization of the Drosophila
melanogaster Trithorax Protein and its Implications in the Studies
of the SET domain Family of Proteins

Kelsey Monteith

Follow this and additional works at: https://surface.syr.edu/honors_capstone

0 Part of the Biochemistry Commons

Recommended Citation

Monteith, Kelsey, "The Purification and Characterization of the Drosophila melanogaster Trithorax Protein
and its Implications in the Studies of the SET domain Family of Proteins" (2014). Syracuse University
Honors Program Capstone Projects. 768.

https://surface.syr.edu/honors_capstone/768

This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program
Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone
Projects by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.


https://surface.syr.edu/
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstone?utm_source=surface.syr.edu%2Fhonors_capstone%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=surface.syr.edu%2Fhonors_capstone%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/honors_capstone/768?utm_source=surface.syr.edu%2Fhonors_capstone%2F768&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

The Purification and Characterization of the Drosophila
melanogaster Trithorax Protein and its Implications in
the Studies of the SET domain Family of Proteins

A Capstone Project Submitted in Partial Fulfillment of the
Requirements of the Renée Crown University Honors Program at
Syracuse University

Kelsey Monteith
Candidate for B. S. Degree
and Renée Crown University Honors
May 2014

Honors Capstone Project in Hmc:hcym:;a
o )

. §
Capstone Project Advisor: : £ %{-&M

Dr. Michael Cofgrove

Capstone Project Reader:; -~ - ———
Dr. Stephen Dorus

Honors Director:

stephen Kuusisto, Director

Drate: April 23, 2014

Abstract



Methylation at histone H3 lysine 4 (H3K4) is a post-translational modification
often associated with transcriptional regulation through altering the structural
state of chromatin. The human mixed lineage leukemia protein-1 protein (MLL1)
is a known histone methyltransferase that catalyzes the transfer of methyl groups
to H3K4. MLL1 works in a core complex with other essential components,
proteins WDRS, RbBPS5, Ash2L., DPY-30 (WRAD), which is required for H3K4
dimethylation. Trithorax (TRX) protein is the Drosophila melanogaster ortholog
to human MLL1, and although structurally similar is unable to perform
dimethylation when in complex with the human components. The goal of this
study is to understand the structural basis for this difference. We systematically
mutated 20 amino acids in TRX the equivalent amino acid in human MLL1 and
tested for a gain-of-function H3K4 dimethylation activity. We found 20 amino
acid positions in TRX that were highly conserved among intertebrates but were
different in vertebrates. Out of the 20 amino acids mutated, 5 showed a gain of
dimethylation activity. All of the mutations that showed a gain of dimethylation
activity localized to a common SET domain surface. The identified mutations on
the common surface identify a location of the dimethyltransferase active site on

MLLI.
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Introduction

In eukaryotes, gene expression is regulated by structural alterations of
chromatin states. Although most cells in a multi-cellular organism contain
equivalent genetic information, differential gene expression programs allow for
each cell to have its own identity®™or Reference sourcenot found. ‘44,0 ooneg are
regulated and inherited without changes to the DNA sequence is studied through
the field of epigenetics. Epigenetics could explain how through development each
cell-type maintains a distinct and lasting gene expression profile®™or! Reference source
notfound. ‘Tpe mechanisms of gene regulation alter the structure of chromatin, a
molecule composed of DNA and histone and non-histone proteins.

Chromatin is composed of repeating nucleosome subunits®. The subunits
contain a histone octamer consisting of two copies of each histone (H2A, H2B,
H3 and H4) around which ~147 base pairs of DNA are wrapped”. Histones are
small, conserved globular proteins that contain basic flexible histone “tails” which
extend outward from the histone octamer. The mobile position of nucleosomes on
the DNA helix allows the chromatin to assume a higher order of organization’.
Alterations or modifications to the nucleosomal subunits cause the chromatin
structure to alternate between two chromatin states, heterochromatin and
euchromatin. Heterochromatin, associated with gene repression, is condensed and
compact, making the DNA inaccessible to transcription factors and proteins for
processing. In contrast, loosely packed chromatin, euchromatin, allows the DNA

to be more open and accessible which is generally correlated with gene

activation®’.



The regulation of chromatin states between active and repressive gene
expression is maintained by a variety of post-translational modifications on the
histone proteins of the nucleosome’. Identified and studied histone modifications
include methylation, acetylation, phosphorylation, ubiquitylation and more®.
Histone methylation involves the transfer of methyl groups from the methyl donor
S-adenosylmethionine to positively charged amino acids lysine and arginine9. Due
to the positively charged amino group on the lysine side chain, lysine residues can

accept up to three methyl groups (mono-, di-, and trimethylation). (Figure 1).
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Figure 1. Basic amino acid lysine can have varying degrees of methylation on the
positively charged amino group of the ‘R’ side-chain

Different post-translational modifications to histones at various residues

10 The “histone code” refers the

has been suggested to constitute a “histone code
fact that different histone modifications can be recognized by different effector
proteins that signal a specific cellular response. In order to regulate gene
expression, eukaryotic cells have evolved a series of enzyme complexes that

modify the histones post-translationally, thereby regulating the chromatin

structure with transcriptional implications'".



Maintaining gene expression through histone modification
In multicellular organisms, the regulation of genomic transcription is essential for
body segmentation, cell division, cell patterning and tissue homeostasis.
Epigenetic mechanisms regulate these processes by modulating chromatin
structure by the action of two main groups of proteins, the Trithorax group (TrxG)
and the Polycomb group (PcG)'. TrxG proteins maintain active transcription
while the PcG proteins maintain transcriptional repressionn’13 .

The first determined gene member of the TrxG was the Trithorax (TRX)
gene initially discovered in Drosophila melanogaster*. The TRX gene was
initially identified through observations of mutations resulting in homeotic

. 15,16
transformations'>

. Homeotic transformations are mutations in which a region of
the body changes into the likeness of another, such as extra sets of wings or legs
in anatomical positions where they do not naturally occur'’. Homeotic phenotypes
result from the misexpression of a group of genes called Homeotic (HOX) genes.
HOX genes are essential in directing regional body patterning and segment
orientation'®. The #rx gene encodes a gene product, the trithorax (TRX) protein,
which regulates the expression of homeotic geneslg’zo’zl. Although the regulation
mechanisms are not well understood, a trx gene mutation has given insight into
possible mechanisms of regulation.

The trx*"’ mutation leads to homeotic transformations resulting from a
single amino acid change in the SET (SU(VAR)3-9, E(z), and Trx) domain found

22,23

at its C-terminus . The SET domain is a conserved structural motif that is

involved in chromatin regulation and protein-protein interaction. The trx!!



mutation has been suggested to strongly reduce the capability of the SET domain
to bind to histones, negatively affecting the regulative capabilities of the TRX
protein24. Indeed the Cosgrove lab has shown that the TRX*'" mutation is

catalytically inactive®.

SET domain and the core complex family of proteins

The majority of the SET domain containing proteins have been shown to catalyze
histone lysine methylation, which as discussed previously play significant roles in
transcription, the cell cycle and cell differentiation. The gene orthologous to
Trithorax in humans is called human Trithorax (HRX) or the Mixed Lineage
Leukemia (MLL) gene. Although many of the SET domain proteins are able to
catalyze histone methylation alone, many require interaction with other proteins

for optimal enzymatic activity”’*

. MLL family members interact with conserved
group of proteins called WRAD (WDRS5, RbBP5, Ash2LL and DPY-30), which is
required for mono- and dimethylation of H3K4. MLL1 when in complex with
WRAD is called the MLL1 core complex. The complex is conserved throughout

eukaryotic evolution. In budding yeast it is called COMPASS, which catalyzes

mono-, di-, and trimethylation.

Mixed lineage leukemia protein-1 and leukemia
Alterations, mutations and misregulations of the MLLI gene have been correlated
with aggressive leukemias®. Like TRX in D. melanogaster, the human MLL1

protein is responsible for regulation of HOX genes throughout vertebrate



development. In adults and throughout embryonic development, MLL1 is widely
expressed throughout the body, as well as in myeloid and lymphoid cells®.
Myeloid and lymphoid cells are hematopoietic stem cells that divide to give red
and white blood cells. Alterations of the MLLI gene lead to an abnormal increase
of immature white blood cells, which crowd out the healthy white and red blood
cells ultimately leading to death.

As seen in Figure 2, the MLLI gene contains the SET domain, the domain
responsible for its histone methyltransferase activity, which specifically
methylates H3K4*'. As described previously, lysine residues can accept up to
three methyl groups. Unmodified and mono-methylated H3K4 is associated with
gene repression while di- and tri-methylated H3K4 is associated with gene
transcription30.

Break Point Region Taspase Site
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Figure 2. Gene structure of the MLLI gene. The schematic includes a few of the
other important domains as well as the Win and SET domains. The figure is
adapted from Dharmarajan et al. (2012).

Previous studies by the Cosgrove lab have shown MLL1 forms a core
complex with WRAD through the Win (WDRS Interaction) motif*%. The Win
motif is defined as a core motif in the interaction between MLL1 and WDRS
containing a conserved arginine residue that is essential for allowing the complex
to form (Figure 3)*’. In the absence of WRAD, MLLI is only able to transfer one
methyl group, while the MLL1-WRAD core complex can transfer two methyl

groups to H3K4%'. Previous studies as well as a crystal structure of MLLI with a



histone H3 peptide and methyl donor S-adenosylmethionine (SAM) have
identified the location of the active site for the first methyl group transfer’>. The
active site location and mechanism for the second methyl group transfer remains
relatively unknown. While there are varied theories, our current experimental
results suggest a portion of MLLI1 is required for formation of the second active
site, but its location remains unknown. To develop a greater understanding of the
biological mechanism of MLL1 histone methyltransferase activity in the core

complex, we turned to the TRX ortholog of D. melanogaster.
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Figure 3. Proposed structure (not to scale) of the MLL1 core complex with the
Win motif of MLLI required for complex formation. Previous studies have
identified a first active site labeled 1, where monomethylation occurs. Preliminary
studies done by the Cosgrove lab have suggested there is a second active site on
MLL1 where dimethylation occurs. The exact location of the second active site is
unknown (signified by “?”’) Adapted from Patel et al.(2009).

Trithorax can form a hybrid core complex
Although TRX and MLLI1 are orthologous, by primary structure examination it is

clear that there have been evolutionary changes over time. To visualize these



differences, we created a primary sequence alignment of twenty-six different
MLL1 orthologs, highlighting conserved residues. A section of the alignment is

seen in Figure 4 (See Appendix for full alignment).

JEE] 3E41
MLL] (Homo sapicns) CTHENIDAGEMWVI CHVIRS IQTOEREXY YOS KEIGCYNFRIDDSE
Gorilla gorilla (westerrn gorilla) CHENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Fan troglodytes [chimpanzee) CERMIDAGEMVIEYAGHVIRS IOTDEREXY YDSKGIGCYMFRIDDSE
Callithrix Jacclhus (white-tufted-car marmosct) CHRENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Otolemas garnettii (small-carcd galago) CHRENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Macaca_mulatta (Rhezuz monkey) CHENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Fongo abelii (Sumatran orangltarn) CERMIDAGEMVIEYAGHVIRS IOTDEREXY YDSKGIGCYMFRIDDSE
Nomascus leccogenys [(Morthesn white-checked gibborn) CHRENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Sarcophilus harxisii (Tasmarian dewil) CHRNIDAGEMVIEYAGNVIRS IQTDEREXY YESKGIGCYMFRIDDSE
Mus muscualus (house modszc) CHENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Rattus norvegicus [dorway rat) CERMIDAGEMVIEYAGHVIRS IOTDEREXY YDSKGIGCYMFRIDDSE
Hoeterocephalus glaber [(raked mole-rat) CHRENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Cricetulus griscus (Chirese hamster) CHRENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Cavia porcellus [Domestic guiveca pig) CHENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Monodelphis domestica [gray short_tailed opossum) CERMIDAGEMVIEYAGHVIRS IOTDEREXY YESKGIGCYMFRIDDSE
Canis lupus familiaxisz (dog) CHRENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Ailuropoda melarvolecea (giact panda) CHRENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Loxodonta africana (African savanra eclephant) CHENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
sus scrofa (pig) CERMIDAGEMVIEYAGHVIRS IOTDEREXY YDSKGIGCYMFRIDDSE
Bos taurus (cattle) CHRENIDAGEMVIEYAGNVIRS IQTDEREXY YDSKGIGCYMFRIDDSE
Xenopus [(Silurara) tropicalis (westerr clawed frog) CRENIDAGEMVIEYSGNVIRS ILTDEREXY YDCKGIGCYMFRIDDSE
Aroliz careclirversis [grecr anole) CHENIDAGEMVIEYAGNVIRS ILTDEREXY YDSKDIGCYMFRIDDAE
Danio rerio [zebrafish) CREMIEFGEMVIEYSGNVIRSVLTDEREXY YDDKGIGCYMFRIDDYE
Orcochromis niloticues [Mile tilapia) CHRNIEAGEMVIEYAGIVIRSVLTDEREXY YDCKGIGCYMFRIDDED
Takifuvge =abripes [Fuga rebripes) CHETIEAGEMVIEYSGNVIRSVLTDEREXY YDCKGIGCYMFRIDDYE
Galluz gallus [chicker) CHRENIDAGEMVIEYSGNVIRS ILTDEREXY YDSKGIGCYMFRIDDSE
Meleagris gallopavo [tazkey) CHENIDAGEMVIEYSGNVIRS ILTDEREXY YDSKGIGCYMFRIDDSE
Tacriopygia guttata [zebra Linch CERMIDAGEMVIEYSGNVIRS ILTDEREXY YDSKGIGCYMFRIDDSE
Apiz mellifera {honey bee) CLEDIEAGEMVIEYACEVIRASLTDEREXY YDSKNIGCYMFKIDDHL
Moegackhile rotundata [alfalfa leafcutting beo) CLEDIEAGEMVIEYAGEVIRASLTDEREXY YDSKNIGCYMFKIDDHL
Camporotus [loridanus (Florida carpenter ant) CLEDICAGEMVIEYAGEVIRSSLTDEREXY YDSKNIGCYMFKIDDHL
Solenopsiz invicta (red fire ant) CLEDIEFGEMVIEYAGEVIRSSLTDEREXY YDSKNIGCYMFKIDDHL
Acromyrmex cclhirvatior [FParamarian leafevtter ant) CLEDIEFGEMVIEYAGEVIRSSLTDEREXY YDSKNIGCYMFKIDDHL
Ixodes zcapilaris [black-legged tick) CHENIDGGEMIIEYACEVIRAALTDEREXY YESKGIGCYMFRIDDHE
Triboplivm castarcim [(fed [lour beetle) CLEDFEAGEMVIEYSGEVIRSVLTDEREXY YMSKGIGCYMFRIDDNL
Aropheles gambiac CHRDIEAGEMVIEYAGCELIRSTLTDERERY YDSRGIGCYMFKIDENF
Drozophila grimshawi CTXDIEAGEMVIEYAGELIRSTLTDERERY YDSRGIGCYMFKIDDNL
Drozophila ananassac CTXDIEAGEMVIEYAGELIRSTLTDKRERY YDSRGIGCYMFKIDDONL
Drosophila melarogaster (fruit ly) CTY¥DIEAGEMVIEYAGELIRSTLTDERERY YDSROIGCYMFKIDDNL
EwaE e ea EEELEAE A A WE e EHENE e EHe o EHEREF N .

Figure 4. Sample of a ClustalW multiple sequence alignment showing the
conserved residues (green) and residues (yellow) proposed to be essential for
dimethylation activity of MLL1, among vertebrates and invertebrates. The
residues proposed as essential for dimethylation activity were chosen based on
their differences among the vertebrate and invertebrate categories, shown by the
blue dotted line. (Full alignment in Appendix).

Upon observing the conserved residues in the alignment, we recognized a
high degree of conservation, including complete conservation of the arginine
residue in the Win motif region (Appendix). We hypothesized that due to the
conserved arginine residue, we would be able to form a hybrid core complex with
TRX and human WRAD (hWRAD). We performed a qualitative GST-pull-down

assay and observed that the complex formed. This means that the mechanisms for

complex formation have been conserved through ~780 million years of evolution.



With successful formation of the hybrid TRX core complex, we then
hypothesized it would display similar enzymatic activity as the MLL1 core
complex. However, using our quantitative mass spectrometry time course assay,
we were surprised to find differing activity. Like the MLL1 core complex, the
hybrid complex performed H3K4 monomethylation. However, the results showed
that the hybrid TRX core complex was unable to perform H3K4 dimethylation.
With these new results to consider, we returned to the sequence alignment to
determine the factors responsible for the differences in activity. We hypothesized
that the difference in activity must be due to amino acids that are not conserved
between TRX and MLLI.

Upon further examination of alignment, we identified a unique
conservation pattern at twenty positions in the alignment when vertebrates and
invertebrates are divided into separate groups (Figure 4). At these locations, there
is a noticeable evolutionary switch where the residue in vertebrates is relatively
conserved amongst all vertebrates, but is a different conserved residue in
invertebrates. We theorized that over the course of evolution, at one of these
locations, a residue was altered that changed the activity of MLL1 and TRX. We
hypothesized that if we mutate the residue at one of these twenty locations in the
primary structure of TRX to the residue found at the equivalent location in MLL1,
we would be able to observe a gain of dimethylation activity. In this study, we
have mutated each of the twenty identified residues and identified several that

confer a gain of dimethylation activity at H3K4.



Our results provide great insight into the structural arrangement of MLL1
core complex subunits. In addition, these results suggest a putative location for
the missing active site that confers H3K4 dimethylation. As the interactions
among the proteins in the MLL1 core complex are not well understood, a greater
understanding of the regulation of MLL1 enzymatic activity could lead to

innovative strategies to manipulate gene expression patterns in leukemic cells.
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Methods and Materials

Site-directed mutagenesis and protein expression

DNA for Drosophila Melanogaster constructs of TRX 2976-3726 (TRX76-3726y
and TRX 3475-3726 (TRX“*") pGEX vectors as GST fusion were obtained as
gifts from Dr. Peter Harte at Case Western Reserve University. To prepare the
mutants, the shorter GST-TRX“®' construct was subjected to site-directed
mutagenesis (QuickChange II) using manually designed primers ordered from
Integrated DNA Technologies.

Each GST-TRX“*! mutant DNA was expressed individually in competent
Escherichia coli DHS5alpha cells on Lysogeny Broth (LB) agar plates containing
50pg/mL carbenicillin antibiotic at 37°C overnight. Single bacterial colonies were
selected and grown in a SmL solution of LB at 50pg/mL for 18h. Crude bacterial
solution was pelleted and subjected to the Wizard® Plus SV Minipreps DNA
Purification System (Promega). The purified plasmids were then expressed in
Escherichia coli (Rosetta I, Novagen), grown on 50pg/mL carbenicillin and
20pg/mL chloramphenicol containing LB agar plates at 37°C overnight. Single
colonies of cells were then grown at 30°C in a SmL solution of Terrific Broth II
media (TBII) with 50pg/mL of carbenicillin and 20pg/mL chloramphenicol for
18h. 250uL of these cells were then grown in TBII in the presence of 50pg/mL of
carbenicillin at 37°C until the optical density reached approximately 0.80. The
cells were then chilled at 4°C for 1h. The cells were then induced with 500uM

isopropyl-1-thio-p-D-galactopyranoside (IPTG) for 18h (later optimized for



induction with 1mM IPTG for 24h). The cultures are then centrifuged at

11

5000xRPM for 30 minutes at 4°C. Cells were obtained and resuspended in a lysis

buffer (50 mM Tris, pH=7.3, 150 mM NaCl, 10% Glycerol, 3 mM dithiothreitol,

0.1 mM phenylmethylsulfonyl fluoride, Deoxyribonuclease I (10mg/mL), and 1x

Bug Buster) lysed for 4h at 4°C on a rocker, and further define by centrifugation.

The supernatants of the mutants were collected and frozen at -80°C.

Initial expression of the protein by use of IPTG was observed with a longer

wild-type GST-TRX*"*3"% construct (amino acids 2976-3726 at the C-terminal

end) at approximately 120kDa in molecular weight (Figure S).

Loading volume
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Figure 5. Optimization protein expression with isopropyl-1-thio-p-D-
galactopyranoside (IPTG). Varying levels of IPTG were added to induce
expression of the GST-Trx*"%7% construct to observe optimal levels of
expression.

1.0 mM
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The initial optimal concentration of IPTG for induction was decided at
500uM due to minimal variability in expression level above 5S00uM. Later during
large scale expression the induction concentration was increased to ImM to
maximize protein expression.

Assays to maximize the solubility of the protein were conducted with the
identified induction concentration. Although the expression tests were performed
with GST-TRX*7"% we had difficulties solubilizing the protein. We continued
the remaining experimental assays with the shorter ~54kDa GST-TRX“®!
construct. Although no expression tests were performed for optimization, we
assumed the conditions used for GST-TRX>7637%¢, Wild-type GST-TRX*!
expressed at 500uM was used for these assays, but was expressed at 1mM in the
large scale purification. Varying concentrations of NaCl salt and Sarkosyl
detergent in lysis buffer (50 mM Tris, pH=7.3, 10% Glycerol, 3 mM

dithiothreitol, 0.1 mM phenylmethylsulfonyl fluoride) were tested (Figure 6).
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Figure 6. Optimizing the solubility conditions of the GST-TRX*! wild-type
protein. Varying conditions included sodium chloride (NaCl) concentrations and
the addition of Sarkosyl (Skyl) detergent. GST-TRX“*" is expected to run at

approximately ~54kDa. The solubilized protein would be expected in the
supernatant sample and insoluble fraction would remain in the cell pellet.

The results from this assay indicate S0mM NaCl and 1.5% Sarkosyl
detergent optimal for maximum solubility. However, later large-scale
purifications suggested that the SO0mM NaCl was possibly interfering with the
GST tag efficiency and the 1.5% Sarkosyl was disturbing the integrity of the
GST-TRX“®! protein, thus the Sarkosyl was removed and the salt concentration
was raised to 150mM to meet the minimum recommended condition for GST

activity.
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Small-scale purification of GST-Trx“*"

mutants by Glutathione S-
transferase (GST) pull-down assay
To clarify positive results found in the preliminary radioactive assays with crude
protein, small-scale purification procedures by use of glutathione agarose beads
(Pierce Glutathione Agarose). The glutathione agarose beads are beads of agarose
that have been cross-linked to glutathione and stored in a water and sodium
chloride slurry solution. The GST-tag on the protein of interest is able to bind to
the glutathione attached to the beads and thus removed from the crude E. coli
mixture. After a series of washes, the GST-tagged protein of interest can be eluted
from the beads by incubation with an eluting buffer containing a competing
concentration of glutathione. Small-scale purifications were conducted to obtain a
sufficient amount of protein to perform confirmation activity assays. Once
confirmed, positive mutants for dimethylation activity would be purified on a
large scale.

100pL of glutathione bead slurry was decanted into fresh and chilled
1.5mL centrifuge tubes, centrifuged (4000xG, 4°C, 3 minutes) and then washed
three times. The beads were washed with column buffer (50 mM Tris, pH=7.3,
150 mM NaCl, 10% Glycerol, 3 mM dithiothreitol, 1uM ZnCl,), with a
centrifugation step (4000xG, 4°C, 3 minutes) following each wash. 200uL of
crude E. coli lysate of GST-TRX“*' fusion proteins were incubated at 4°C,
rocking for 4h with 100uL of glutathione bead slurry that had been pre-washed
and had the supernatant removed as previously described. After incubation, the

agarose bead solution was centrifuged and washed three times with buffer A as
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described above. Upon the removal of the supernatant of the final wash, 200uL of
eluting buffer B (50 mM Tris, pH=8.0, 150 mM NaCl, 10% Glycerol, 3 mM
dithiothreitol, 1uM ZnCl,, 10mM glutathione) was added to the beads and
incubated for 1h with rocking, at 4°C. After incubation, the beads were then
centrifuged and washed again with the eluting buffer B three times. Each
supernatant after incubation and the end beads were run on a Tris-glycine SDS
(sodium dodecyl sulfate) gel for analysis. We expect to see purified protein in the

supernatant right after the eluting step (Figure 7).

GST-TRXWT GST-TRXD3678N GST-TRX H3596P
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Figure 7. Small-scale purification by use of Glutathione Agarose pull-down. The
SDS-PAGE gel shows successful purification with the wild-type and mutant
proteins.

Although there was successful purification of the wild-type and mutant

protein seen in Figure 7, quantitative examination of concentration proved to be

inconclusive. There was not sufficient protein to read concentration to use for
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experimental assays, thus large-scale purification by affinity column was used for

C251
X

wild-type and mutant GST-TR proteins.

Large-scale protein purification
GST-TRX“®! proteins were grown large-scale and were expressed in Escherichia
coli (Rosetta 11, Novagen) by growing cells with the plasmids at 37°C in a one-
liter solution of Terrific Broth media with 50pug/mL of carbenicillin. The cells
were then induced at 15°C with 1mM isopropyl-1-thio-B-D-galactopyranoside for
24h. Cells were obtained and resuspended in a lysis buffer (50 mM Tris, pH=7.3,
150 mM NacCl, 10% Glycerol, 3 mM dithiothreitol, 0.1 mM phenylmethylsulfonyl
fluoride, and EDTA- free protease inhibitor mixture (Roche Applied Science)),
lysed by microfluidizer machine, and further clarified by centrifugation. The
supernatants of the GST-TRX and GST-MLLI1 proteins were collected and passed
over a glutathione-sepharose column (GSTrapTM FF column, GE-Healthcare),
and eluted with reduced glutathione (Figure 8). The fractions containing GST
fusion protein were combined and dialyzed with three changes of lysis buffer
(without the protease inhibitors)?”*.

Full-length human WDRS, RbBP5, Ash2L and DPY-30 proteins were
each expressed in E. coli (Rosetta II, Novagen) and then purified by passing over
a nickel affinity column, GST- TEV cleavage during dialysis, a second pass over

the nickel affinity column followed by gel filtration chromatography27’3 2
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Figure 8. GST-TRX“®" wild-type purification by GST affinity column. a)
Chromatogram of the first run of the crude protein lysate over the GSTrap SmL
column b) Corresponding fractions from peak seen on chromatogram on gel.
Fractions A8-C11 were combined for dialysis.
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Glutathione S-Transferase (GST) Pull-Down Assay

GST-pull-down assays were conducted by incubating 100uL. GST fusion protein
to 100uL of pre-washed (three times with buffer containing 50 mM Tris, pH=7.3,
150 mM NaCl, 10% Glycerol, 3 mM dithiothreitol, 1uM ZnCl,, centrifuged at
4000xG for 3 minutes) glutathione-agarose beads for 3h at 4°C. Then the beads
were washed again with the same wash buffer three times, then 200uL of eluting
buffer (50 mM Tris, pH=8.0, 150 mM NaCl, 10% Glycerol, 3 mM dithiothreitol,
1uM ZnCl,, 10mM glutathione) was added to the beads and incubated for 1h at
4°C. The beads were then centrifuged and washed again with the same wash
buffer three times. Each supernatant after incubation and the end beads were run

on a Tris-glycine SDS gel for analysis.

MALDI-TOF Mass Spectrometry Methyltransferase Assays

MALDI-TOF (Matrix-assisted Laser Desorption/Ionization-Time of Flight)
assays were conducted with incubating 7.56pM GST-TRX*" with 250uM S-
adenosylmethionine and 10uM histone H3 1-20 residue peptide at 16°C in 1x
assay buffer (50 mM Tris, pH=8.5, 200 mM NaCl, 3 mM dithiothreitol, 5 mM
MgCl,, 5% glycerol). The reactions were quenched at nine different time points
with 0.5% trifluoroacetic acid. The quenched samples were then mixed with a-
cyano-4-hydroxycinnamic acid. The mass/charge intensity was measured by
MALDI-TOF mass spectrometry for each time point at State University of New
York-Environmental Science and Forestry, Syracuse, NY. mMass was used to
integrate peak areas and to define relative amounts of unmodified, mono-, di- and

trimethylated peptides. The total percent methylation represented by mass/charge
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over time was plotted using Microsoft Excel. Samples at the 24 hour time point

were plotted for comparison using SigmaPlot.

Radioactive screen for dimethylation activity

TRX mutants and controls were incubated with *H S-adenosylmethionine and
250uM unmethylated or monomethylated histone H3 1- 20 residue peptide, 4uM
human WRAD at 15°C in 1x assay buffer (50 mM Tris, pH=8.5, 200 mM NaCl, 3
mM dithiothreitol, 5 mM MgCl2, 5% glycerol) and an EDTA-free protease
inhibitor mixture for 8h. Reactions were quenched with 1x SDS buffer. Reaction
mixtures were then loaded into a pre-cast Nu- PAGE BisTris Gel and run at 200
Volts for 30 minutes. The gel was then stained, destained and a picture was taken.
The gel was then soaked in enhancer fluid, dried and then exposed to Kodak

Biomax film.
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Results

MLL1 is highly conserved among Vertebrates and Invertebrates

A ClustalW multiple sequence alignment was performed to identify the conserved
residues among the orthologs of MLLI in a variety of vertebrates and
invertebrates (Figure 4 and Appendix). As shown in the alignment, the
conserved residues are highlighted to represent the high level of conservation
amongst the orthologous organisms of MLL1. The majority of the conservation
was seen in the SET/post-SET domain, as well as in the Win (WDRS Interaction)
motif, previously identified as a core motif in the interaction between MLL1 and
WDR5%. A conserved critical arginine residue found in the Win motif that is
essential for the complex to form is completely conserved throughout the
organisms in the alignmentSl.

Upon further observation of the sequence alignment (Figure 4 and
Appendix) 20 residues were identified to have high conservation among
vertebrates and differential high conservation among invertebrates at the same
position exemplifying an interesting evolutionary switch. These identified amino
acids, shown in the sequence alignment, have been mapped onto the TRX
homology model based on the human MLLI crystal structure (shown in yellow

and marine blue in Figure 9).
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SET-I Iobe

Histone H3
SET-N region

L3690M

Figure 9. Crystal structure homology model of TRX based on the known crystal
structure of MLL1. Methyl donor end-product S-adenosylhomocysteine
(magenta) and histone H3 peptide (blue) are labeled in the known first active site.
The surface of MLLI1 (grey) has conserved residues (green), evolutionary switch
mutants (yellow) and identified gain-of-function mutants (marine blue) mapped
on the surface.
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The mutants that appeared positive for dimethylation in the radioactive
screen have been mapped onto the homology model using PyMOL, shown in
Figure 9. It is important to note that the suspect mutants appear to cluster on the
backside of the SET-N region. Other research in the Cosgrove lab concerns
mutations in MLL?2 that are related to Kabuki Syndrome, a rare disorder
characterized by a spectra of physical abnormalities and intellectual disabilities™.
However, the Kabuki mutations cluster on the back of the SET-I helix, opposite to
the area of the identified dimethylation mutants”. While unexpected, there is a
visible crevice in the region of the dimethylation mutations, possibly indicating
the active site of dimethylation. In order to confirm the positive mutations, the
mutant proteins were grown, purified and will be tested for dimethylation both
qualitatively and quantitatively. Identification of the sites for dimethylation
activation in MLL1 could lead for possible targets for treatment as well as a
greater understanding of enzymatic mechanisms of MLL1. The residues shown to
be conserved in the Drosophila melanogaster ortholog of human MLL1 also may
indicate the necessary residues needed to interact with the components of the

human complex, WDRS, RbB5, Ash2L and DPY-30.

GST-TRX“* Interacts with human WDRS5 and the human WRAD Complex
As observed in the sequence alignment, the TRX protein contains the essential
residues present in MLL1 responsible for binding to the WRAD complex. As
previously discussed, the Win motif and the conserved arginine residue of MLL1

are significant for the binding interaction. MLL1 binds to the WRAD complex
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primarily through the arginine residue and WDRS, which is bound to the other
three components”. Due to the conservation of the arginine residue amongst the
orthologs and TRX proteins, we hypothesized the TRX protein would be capable
of binding to the human WRAD (hWRAD) complex.

A GST-pull-down assay was conducted to compare binding of TRX®!
and MLL1 to hWRAD with the hWRAD pull-down control lane (lane 7) (Figure

10).

Ash2L
RbBP5
GST-TRX/MLL1

DPY-30

2 3

Figure 10. GST-tagged TRX"" with WDRS5, RbBP5, Ash2L and DPY-30
(WRAD) showing positive complex formation.

In comparison to the lane containing the input of GST-TRX“*!, the lane
containing the end beads after having been incubated with GST-TRX“*! and

hWRAD and washed contains bands at 68kDa, 60kDa, 37kDa, and 20kDa,
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representing Ash2L, RbBP5, WDRS, and DPY-30, respectively, as well as a band
at 54kDa representative of GST-TRX®". In contrast, very little hWRAD is
pulled down in the absence of GST-TRX“®! or GST-MLL1 (lane 7). The
presence of these bands leads to the conclusion that TRX“*! has the necessary

conserved residues in order to bind to the hWRAD complex.

TRX*! has different enzymatic activity than MLL1 in presence of hWRAD
The human MLL1 protein catalyzes H3K4 monomethylation in the presence of
methyl donor SAM, optimal buffer conditions and unmodified histone H3 1-20
peptide. In the core complex with hWRAD, the complex performs
dimethylation32. Due to the highly conserved primary structure between MLL1
and TRX and the observed binding of TRX“®' to hWRAD, it was hypothesized
TRX“*! would have similar dimethylation activity as MLL1 and hWRAD.
MALDI-TOF mass spectrometry time course assays were performed with
GST-TRX“*" in the presence and absence of hFWRAD in order to observe the

methylation activity of TRX“*!

(Figure 11). There is little observable difference
between the results of the assays with MLL1 and GST-TRX“*! without hWRAD
(Figure 11b,f). The monomethylation activity of MLLI is detected stronger using
the more sensitive radioactive assays, which are shown in the following results
section. It is important to note that previous studies showed there was no apparent
difference in enzymatic activity observed between GST-MLLI1 and untagged

C251

MLL1, suggesting there would be no alteration in activity of GST-TRX~"" and a

cleaved GST-TRX®*'.



25

24 hours
400 100 ese—e * + .
a Un-madifiad b MLL1 WT
i Mono- — 80
300 1 . ' = »
= | | Di- = —*— Unmodified
@ : | ! _ c
S : ' | : fri- 2 60 Co % Monamethylation
= | i ! ' o ) )
= |' : . ' g a0 ———*—-- Dimethylation
i ! | ] i}
wo! | i : =
il ! ; : 20
'rl'v' J: i : I
0 ) T ] 0 0 * * *
2659 260 | 2670 7680 26%0! 2700
250 : : ! ;
c | ! ' ! 100 1o P el -+
i ! 5 ' N - MLL1WT-hWRAD
200 - E E E E w0 o "!
> ! : ! ! 8% LS
F 150 - : ! ! - o
% f : : : § %0 LS —+— Unmaodified
. . ! : ! g " [ ,'t‘ ** - Monomethylation
5 i i £ : '.' n -=--+--- Dimethylation
i i [5}] . -
' i o -
; : =5 |y .
| A K 1 .
: i, ¢
0 e . s * *
100 go—e * \
&
> = GST-Trx¥T
@ = &0
< °
@ = —— Unmodified
= =
= 240 © ¥ Monormethylation
© ---#--- Dimethylation
= 20 ’
- ¥
\ I + —+
5 i 100 h DTS S A +
| : - GST-TrxWT-hWRAD
| : a0 .
i H ' ——
| | | s v
= | ! ! = A
B | | | i ' —— Unmodified
& | ! ; T : -+ -4 - - Monomethylation
E o : : | a0 | N .
! ' ' < R imethylation
50 : : . = 20 y
o N 'M.IL T skl o ||4.L]‘..JII.'.‘.II-]| I !IJ 0 II: ——— + b .
2850 2880 2670 2880 2600 2700
ol 5 10 15 20 25
Mass/charge (m/z) Time (hours)

Figure 11. MALDI-TOF spectrometry time course assays. Spectra (left) show
methylation present at 24 hours and graphs (right) show unmodified,
monomethylation and dimethylation activity as a function of time. a,b) MLL1
wild-type showing no methylation activity ¢,d) MLL1 wild-type with human
WRAD (hWRAD) showing some monomethylation and stimulated dimethylation
e,f) GST-TRX wild-type showing some monomethylation at 24 hours g,h) GST-
TRX with human WRAD showing stimulated monomethylation, but no
dimethylation.
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In the assay of GST-TRX“®' in the presence of hWRAD, a peak level of
monomethylation was observed at 10 hours (Figure 11h). In comparison, wild-
type MLL1 with hWRAD shows monomethylation peaking at three and a half
hours followed by dimethylation, which plateaus at twelve and a half hours
(Figure 11d). While evidence of dimethylation is weak and inconclusive, it could

251

be that dimethylation activity has a slow rate of activity or that TRX""" does not

have the necessary residues to be enzymatically active with the hWRAD complex.

Five mutations confer gain-of-function dimethylation activity in TRX*!

As discussed previously in the context of the MALDI-TOF assay, wild-type TRX
protein by itself is unable to catalyze dimethylation, catalyzes robust
monomethylation activity in the presence of hWRAD. The human MLLI1 protein
catalyzes H3K4 monomethylation on its own while in the context of hWRAD,
catalyzes dimethylation.

To understand their difference, we conducted an assay with monomethylated
H3K4 peptide, tWRAD and *H-SAM, to identify TRX mutants with a gain of
dimethylation activity. Gain of function mutations would be detected by an
additional radioactive methyl group transferred to the peptide. After screening 20
mutations with the H3K4 monomethylated peptide, we found five TRX mutants
that were positive for an increase in dimethylation compared to the wild-type

TRX protein (Figure 9).
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Figure 12. Radioactive gels and X-ray film for screen for dimethylation activity.
a,b) Gels and films showing uninduced and induced TRX controls and mutants
with human WRAD and monomethylated peptide. c) Gel and X-Ray film
showing MLL1YT, uninduced / induced GST-TRX“®! and three mutants. The )
indicates a reaction including an unmodified histone peptide while the (+)
indicates a reaction where a monomethylated peptide was added. All reactions
were in the presence of human WRAD.

TRX mutants L3690M, S3715N, and Y3603F (lanes 6, 8 and 11
respectively, Figure 12a), TRX mutant V3694Y (lane 8, Figure 12b), and
H3596P (lane 11, Figure 12¢), show an increase in dimethylation compared to
the induced wild-type TRX control with a monomethylated peptide.

However, it is possible that the variability of radioactive signal strength

seen in the reactions could be due to expression variability. In future studies to
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control for expression level a western blot will be used to normalize the amount of
each mutant in the assay.

The positive results from the radioactive assay with the gain-of-function
mutants will be optimized with the addition of more controls, the use of affinity
column purified protein. We will also probe for gain-of-function activity

quantitatively by use of MALDI-TOF assays.
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Discussion

Throughout this study, the TRX®! protein was successfully purified and partially
characterized in a core complex with human WRAD as a GST fusion protein.
Although we were able to perform a variety of assays and experiments to
characterize TRX, there are many optimizations to be addressed for purification.
The expression assays were performed using the longer GST-TRX>76-37%
construct, thus to be sure of the correct conditions for GST-TRX®*!' we must
conduct another expression test. Another purification step to address is cleavage
of the GST tag from the fusion GST-TRX*! protein. Although we are able to
perform many experiments with the uncleaved tagged protein, the cleaved protein
is more similar to what would be found in nature. Preliminary data shows that
although we are able to clave the TRX®®! protein from the GST tag, the TRX®!
precipitates out of solution and becomes undetectable. One possible method to be
used is to incubate the GST-TRX“®' with hWRAD to form a core complex and

X“?! is more stable in the context of hWRAD.

then cleave, assuming TR
In the future we plan to return to the longer construct to characterize a
construct of TRX with a greater number of residues. However the next steps are to
optimize the purification and cleavage conditions to increase protein yield and to
obtain cleaved TRX protein.
We have shown that MLL1 and that mechanisms for interaction are

conserved through billions of years of evolution. The D. melanogaster TRX

protein is able to form a hybrid core complex with hWRAD. Although TRX is
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able to form a hybrid core complex with hWRAD, only stimulation of
monomethylation is conserved. This result could be because TRX requires the D.
melanogaster WRAD (dWRAD) for stimulation of dimethylation activity. The
loss of dimethylation stimulation in the hybrid complex may reflect TRX activity
in vivo, but we do not know its activity without dWRAD. It is possible that the
WRAD components in D. melanogaster have compensating mutations to retain
dimethylation activity seen with the human proteins, which we plan to examine in
future investigations. Another possibility is TRX has lost dimethylation activity
through the course of evolution. It is also possible MLL1 has evolved to gain
dimethylation activity. These questions will be answered through the
characterization of the mutants described before as well as by expression and
purification of the dWRAD.

The screen for dimethylation activity has produced five possible sites that
are required for H3K4 dimethylation activity: H3596P, Y3603F, L3690M,
V3694Y and S3715N. We have successfully purified the positive mutants and
plan to conduct confirmation assays both qualitatively and quantitatively as
described in the results section. Further assays and studies will be conducted to

continue to test the enzymatic capabilities of TRX>'

and to gain a further
understanding of which structural components of MLL1 are required for activity.
A greater understanding of the essential structural components of MLL1
enzymatic activity would give us invaluable insight in gene expression

mechanisms, leading to the development of innovative therapeutic strategies to

manipulate leukemic cells.
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Appendix
d change from TRX to MLL1.

follows human MLL1 numbering, while each mutant is labeled in TRX
mino aci

differences among the vertebrate and invertebrate categories, shown by the blue dotted
line. The binding Win motif is highlighted (purple). Sequence numbering above the

residues (green), proposed evolutionary switch mutants (yellow), and positive gain-of-
alignment is

As shown in Figure 4. ClustalW multiple sequence alignment showing the conserved
function mutants (marine blue). The proposed mutants were chosen based on their

numbering (*), showing the a
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Summary of Capstone Project

Deoxyribonucleic acid (DNA), and the genes contained therein, contains the
entirety of the information the cells in the body require. Although most cells in a
multi-cellular organism contain equivalent genetic information, different cells
express distinct patterns of these genes allowing each to have their own identity.
The differential expression of genetic information is regulated by mechanisms
that alter the shape and position of the DNA as opposed to directly altering the
genetic information. How the genetic expression profiles are controlled
throughout cell division and development is studied in the field of epigenetics, the
study of heritable gene expression. Epigenetics could explain how through
development each cell-type maintains a distinct and lasting expression profile.

DNA is wrapped around a group of eight small, positively charged
proteins called histones. The histone-DNA subunit is called a nucleosome, which
regulates the access to DNA. Throughout evolution, eukaryotic organisms have
developed mechanisms to regulate the expression of the genetic code by the use
of large protein complexes. These large protein complexes are able to add
different chemical groups to the histone proteins or onto the DNA itself. The
addition of these chemical groups to nucleosomes alters the degree of packaging
of the DNA. When tightly packaged, access by other biological molecules
responsible for replication or transcription of the genetic material is restricted, and
the DNA is therefore considered repressed. However, when loosely packaged,

replication and transcription machinery are readily able to access the DNA and
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duplicate genetic material for cell division and produce functional genetic
products, respectively.

Organisms use a specific group of proteins to transfer of chemical groups
to nucleosomes, such as methyl groups. These proteins are referred to as histone
methyltransferase and transfer a methyl group from a donor to the receiving
histone protein. For example, human Mixed Lineage Leukemia-1 (MLLI) protein
is a known histone methyltransferase that transfers methyl groups to histone H3
lysine 4 (H3K4). Lysine is a basic amino acid, a protein building block that can
accept up to three methyl groups thus has four varying stages of methylation:
unmodified, mono-, di- and tri-methylation. Importantly, different methylation
states have different roles; monomethylation of H3K4 is associated with gene
silencing, while di-/trimethylation are associated with transcription.

MLLI is part of an evolutionarily conserved family of proteins and is
involved in the regulation of homeotic genes during development through histone
methylation. Homeotic genes, or HOX genes, are primarily concerned with cell
type determination and directing the patterning of body formation during
development. The first homeotic genes were discovered in Drosophila
melanogaster (fruit fly), by the study of the effects of mutations, over expression
and under expression of certain genes. These genetic mutations led to a variety of
interesting physical mutations of misplaced body segments, thus giving these
altered genes the title of homeotic genes. The first gene identified in Drosophila
as a regulator of homeotic genes was the Trithorax (TRX) gene, the Drosophila

equivalent of the human MLLI gene.
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Both the MLL1 and TRX proteins are essential during embryonic
development. Previous work in the Cosgrove lab has shown that human MLLI is
most active in a complex with at least four other proteins: WDRS, RbBPS, Ash2LL
and DPY-30 (hWRAD), forming the core complex. Work in other labs on the
TRX protein have also shown that there are Drosophila homologs of the four
WRAD proteins, and is speculated that TRX is likely most active when in
complex with these four proteins. MLL1 and TRX share a significant number of
conserved residues, many of which make up highly conserved motifs involved in
protein binding, suggesting that they behave similar to one another in the
biological context. With the high degree of primary conservation of MLL1 and
TRX in mind, we hypothesized that TRX would be able to interact with the
hWRAD and possibly perform similar reactive abilities as MLL1 in complex with
hWRAD. However, before we could examine the capabilities of TRX in the
context of hWRAD, we needed to optimize the growth and purification of the
TRX protein to have pure material to work with.

The first aim of my project was to optimize the growing and solubility
conditions of TRX to ensure we were able to collect as much protein as possible
to work with on a reasonable scale. After enough protein was collected, we
optimized the purification procedure to establish that we were only testing the
protein of interest as opposed to extraneous cell proteins from the growth stage.
Once the purified TRX protein had been obtained, I examined the interactive
binding capabilities of TRX with hWRAD by the use of pull-down experiments.

Pull-downs are qualitative experiments that are used to observe what is binding to
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the protein of interest. Our TRX protein has GST (glutathione S-transferase) tag
attached to the protein, that can be used to selectively bind the TRX protein to a
GST-bead and wash away unwanted cell debris and contaminants. After binding
TRX protein, TRX-bead complex is exposed to hWRAD and later visualize by
gel electrophoresis what portion of the hWRAD is able to bind to the TRX-bead
complex in comparison to MLL1 and the amount of hWRAD that is able to bind
to beads. As anticipated, it was observed TRX was able to bind to hWRAD, the
formation of the hybrid core complex of human and Drosophila components
suggest that the molecular mechanisms that account for complex formation have
been conserved over 700 million years.

The next stage of the project was to observe the reactivity of TRX in the
context of hWRAD. Alone, MLL1 is able to transfer one methyl group to H3K4,
while the core complex MLL1-hWRAD is able to transfer two methyl groups. We
hypothesized due to the high conservation of TRX and MLL1 subunits, that a
complex containing hWRAD and TRX would have similar activity as MLLI.
Using a quantitative mass spectrometry experiment measuring the addition of
methyl groups to the histone overtime, I found that MLL1 and TRX in the
absence of hWRAD were able to transfer one methyl group to H3K4. However,
the hybrid TRX-hWRAD complex was unable to transfer two methyl groups.

After observing the unanticipated results of TRX with hWRAD, we
wanted to further understand the different in activity between complexes
assembled with MLL1 and TRX. I created an amino acid sequence alignment of

all the verified MLL1 homologous in other species. The sequence alignment
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allowed us to observe the similarities and differences on a primary sequence level.
We noticed a clear evolutionary switch between subunits of vertebrates versus
invertebrates. For example, at certain positions in the sequence alignment, we
noticed that in the majority of vertebrates it was one type of amino acid, whereas
in invertebrates it was a different amino acid. I located approximately twenty
instances of this evolutionary phenomenon in the alignment. We began to develop
a hypothesis suggesting that one of these positions maybe the source of the
difference in activity between the human MLL1 and Drosophila TRX proteins
with hWRAD.

I used an innovative high-throughput screen to mutate each of the twenty
amino acids in TRX to the corresponding amino acid in MLL1 to determine if we
were able to restore the dimethylation activity of the TRX-WRAD complex. I
tested the mutations using a highly sensitive radioactive assay. To our surprise, I
identified five out of the 20 mutants that have “gained” the activity of MLL1, to
varying degrees. Interestingly, I found that all five mutations cluster on a common
surface of the MLLI1 protein. We hypothesize that this surface defines the location
of the second active that is required for H3K4 dimethylation.

This uncovered knowledge has important implications in our
understanding of how the MLLI1 protein works. Because the MLLI1 protein is
involved in development and blood cell differentiation, different mutations and
misregulation of the mlll gene have been seen in many cases of leukemias, such
as acute myelogenic and lymphocytic leukemias, which are common amongst

children. With knowledge the MLL1 protein structural features that are required



for dimethylation, we could possibly develop new strategies for treatment of

leukemias.
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