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Abstract 

Hemoparasites, or parasites of the blood transmitted by arthropod vectors, are 

commonly found in domestic animals and wildlife. Although they can cause 

serious illness in domestic species, they often persist at low levels in wildlife 

without compromising health. Current reports on wildlife parasitemia, specifically 

in lions (Panthera leo) are obtained from zoological parks and managed game 

reserves. However, few studies have examined parasitic burdens of free ranging 

lions. This study aims to semi quantitatively evaluate the presence of four 

hemoparasites including Babesia sp., Theileria sp., Cytauxzoon sp., and 

Hepatozoon sp in free ranging lions of South Africa. DNA from 39 lions in the 

Kruger National Park, South Africa were analyzed for the presence of these four 

piroplasms by polymerase chain reaction. Total amplification of hemoparasite 

DNA was quantified using a standard DNA Mass ladder and AplaImager IS-2200. 

Results were examined for patterns of infection based on age, sex, locality, and 

habitat or land system. Male lions carried higher parasite burdens compared to 

females at all six localities and in both land systems. Furthermore, trends of 

infection were not found for age or land system. The findings suggest that gender 

is the only factor that affects disease susceptibility in lions. It can be conclude that 

monitoring parasitic burdens of free ranging lions is an effective strategy for 

maintaining the health of lion populations and assessing the threat they pose to 

domestic species. Understanding the factors that contribute to infection is 

necessary for the enlightened management of hemoparasite propagation in the 

Kruger National Park, South Africa.  
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Introduction 

Most reports of African Lion (Panthera leo) parisitemia originate from zoological 

parks and managed game reserves without consideration of the lion’s origins, 

diets, and natural habitats. Few studies have investigated parasite loads, 

specifically hemoparasites, of free ranging lions, (Bjork et al. 2000). 

Hemoparasites are typically hemoflagellates or filarid worms found in animal 

blood. The following hemoparasites, Babesia, Theileria, Cytauxzoon, and 

Hepatozoons, are the most common piroplasms observed in free ranging lions in 

sub-Saharan Africa (Munson et al. 2008). In isolation these piroplasms do not 

appear to cause serious illness, however when combined with other infections, or 

found in immuno-compromised individuals clinical symptoms can appear 

(Sherding 1994). In 1990, Averbeck et al found that the prevalence of parasitic 

infection of free ranging lions in the Ngorongoro Crater and Serengeti National 

Park, Tanzania varied significantly based on habitat, but not with sex or age.  

  

Babesia, family Babesidae, is a tick-borne, family Ixodidae, hemoparasite that 

was first described by Babes in 1892 in cattle (Brown et al. 1991). This discovery 

was the first demonstration of the transmission of a protozoan parasite by an 

arthropod intermediate host. Today, Babesia is a widely distributed disease 

occurring from the tropics to the Arctic Circle. It is an intraerythrocytic sporozon 

parasite that reproduces by binary fission in the red blood cells of mammalian 

hosts. Ticks are capable of transovarial transmission of the parasite through the 

ova to subsequent generations. Sporozites are located in the salivary glands of the 



 

 

2 

 

 

arthropod host from where they are injected into the vertebrate host upon 

attachment. Once in the blood stream, the piroplasms invade and destroy red 

blood cells resulting in the release of hemoglobin. Babesia is not a serious disease 

in most wild species, however, it can cause problems when it spreads from 

wildlife to domestic animals (Howe 1971). This hemoparasite often infects lions 

at low levels without compromising their health (Munson et al. 2008). There are 

currently no reports of clinical babesiosis in free ranging lions in South Africa. 

  

Theileria, genus Theileria and Cytauxzoon, genus Cytauxzoon are non-contagious 

infectious diseases found in a wide variety of animals, but most prevalent in 

ruminants. The family Theirleriidae was first described in 1907 in members of the 

deer family. These piroplasms occur most frequently in east, central and south 

Africa, but can also be seen in parts of Europe, Russia, Japan, India, Australia, 

and the United States. Disease propagation requires an arthropod as an 

intermediate host such as ticks. Therefore, Theileria and Cytauxzoon are most 

common where in climates favorable to large tick populations (Howe 1971). In 

South Africa, Rhipicephalus appendiculatus is the primary vector. Theileria and 

Cytauxzoon differ based on the location where asexual reproduction occurs. In 

Theileria, binary fission of the sporozytes occurs in the lymphocytes as opposed 

to the histiocytes, which is demonstrated by Cytauxzoon (Simpson et al. 1985). 

Clinical disease is characterized by high fever, leukopenia, anemia, and diarrhea. 

For both of these hemoparasites, transovarial transmission does not occur. There 
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have been few reports of clinical signs of these hemoparasites in wildlife 

including free ranging lions in South Africa (Howe 1971).  

  

Hepatozoons, family Hepatozoidae, are protozoa first described in 1908 by G. 

Miller. There are over 300 species of intraerythrocytic parasites that are found in a 

wide range of vertebrates and arthropods. Cases have been reported primarily in 

the Middle East and Africa, however the disease has also been seen in parts of 

Europe and the United States. Arthropods, or ticks, are the primary vector of this 

disease. Sexual reproduction occurs in the haemocoel, a fluid filled cavity, of the 

invertebrate host. This disease is unique because it is results in infection from 

direct transmission. The vector must be ingested by the vertebrate host at which 

point sporozites are taken up by the blood stream and invade the erythrocytes. 

Sporozites are not located in the salivary glands and are therefore not transmitted 

by tick bites. Most Hepatozoon infections do not cause serious illness, however, 

hosts with concurrent disease such as babesiosis or compromised immune systems 

can demonstrate signs of serious disease (Sherding 1994). 

 

Babesia, Theileria, Cytauxzoon, and Hepatozoon  have all been observed in the 

blood smears of free ranging lions in South Africa. The Kruger National Park, 

South Africa, is home to approximately 1,600 free ranging lions (Funston and 

Ferreira 2006). Although it is believed that most hemoparasites can be seen 

dynamically across lion populations within the park, it has not been scientifically 

confirmed. The purpose of this study is to report hemoparasite burdens of free 
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ranging lions in various localities of the Kruger National Park. The four 

piroplasms that will be investigated in this study include, Babesia sp., Theileria 

sp., Cytauxzoon sp., and Hepatozoon sp. The hemoparasite DNA values obtained 

will be used to detect trends in parasitic infection according to age, sex, locality, 

and land system or habitat. 

 

Diseases caused by hemoparasites are best controlled by eliminating the 

intermediate host, however more attention is normally given to the spread of the 

disease from wildlife to domestic animals. It is important to understand 

hemoparasite burdens in wildlife, including free ranging lions, for the general 

health of these animals and to determine the threat their infections pose for 

domestic species. Enlightened wildlife managers coupled with thorough wildlife 

disease investigations would be beneficial to resolve epizootiologic problems 

early and to prevent the needless sacrifice of wildlife populations in emergency 

situations.  

 

For this study  blood samples were collected from 39 free ranging lions in 2006 

across six localities in the Kruger National Park, South Africa. DNA was 

extracted from the blood samples and quantified using spectrophotometry. Gene-

specific  primers were used to amplify hemoparasite DNA by Polymerase Chain 

Reaction, which was later semi-quantitatively quantified using name of the 

software to asses parasitic burdens. These results were finally analyzed for basic 

trends in habitat, sex, and age. 
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Materials and Methods 

Study Site 

In order to assess hemoparasite burdens a total of 39 lion blood samples were 

collected from six sites within the Kruger National Park, South Africa from 

August to September 2007. The Kruger National Park is one of the largest game 

reserves in Africa, covering 18,989 km
2
 (Mabunda et al. 2003). Thirty-two of the 

samples were collected from five localities in the Crocodile Bridge section 

located in the southern region of the park. These localities included, Crocodile 

Bridge, Duke Windmill, Gomondwani, Mpanamane, and Nlangenzwane Dam. 

The remaining seven samples were collected from Dzuweni Spruit in the Punda 

Maria section of the far northern region of the park. Each locality was classified 

into land systems based on geology, soils, topography, vegetation, and rainfall.  

  

Crocodile Bridge, Duke Windmill, Mpanamane, and Nlangenzwane Dam are all 

located in the Satara land system. The Satara land system is characterized by 

mafic volcanic rocks, or basalts known for being nutrient rich soils. The flat 

plains observed in this system are typically covered in lush grasses and fine-

leaved trees such as acacias. Satara occupies approximately 14.2% of the park’s 

area and receives between 500-650 mm of rainfall per year (Venter et al. 2003).  

  

Gomondwani is part of the Vutome land system, which is classified by two 

groups of Karoo sedimentary rocks, either sandstone or shale. Sandstone soils 

support mostly broad-leaved bushveld such as silver clusterleaf (Terminalia 
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sericea) whereas shale soils are dominated by fine-leaved woodlands, or acacias. 

These sodic soils are nutrient poor and characterized into flat or slightly 

undulating plains. The average annual rainfall in the Vutome systems is 

approximately 500-650 mm per year (Venter et al. 2003).  

  

Dzuweni Spruit is located in the Bulweni land system, which is very similar to the 

Vutome land system. The flat to moderately undulating plains of the Bulweni land 

system are made up of Karoo and Soutpansberg sedimentary rocks, both 

sandstone and shale. Sandstone regions are occupied by broad leaved bushveld 

whereas the shale soils are dominated by broad-leaved woodlands, or mopanis. 

Like Vutome, these sodic soils are nutrient poor and only receive around 450-500 

mm of rainfall per year (Venter et al. 2003). The relative locations of each locality 

within the Kruger National Park are classified into the corresponding land 

systems in Figure 1. 
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Figure 1. Localities and land systems of the Kruger National Park 
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Due to the high degree of similarity between the Vutome and Bulweni land 

systems, for the purpose of this study, these systems were classified together as 

nutrient poor soils. In contrast, the Satara land system was classified as nutrient 

rich.  

 

Study Species 

The African lion, is a carnivorous member of the Felidae family found in sub-

Saharan Africa. Lions are the most social of the cats and on average live in prides 

ranging from 4-6 adults. In Kruger National Park, the average lion pride consists 

of about 13 lions (1.7 adult males, 4.5 adult females, 3.8 sub adults, and 2.8 

juveniles). Large prides may never actually assemble in one place and are often 

found in smaller groups of 3-5 lions, especially when hunting (Schaller 1972). 

Lions tend to live at higher densities than most other felids, but with a wide 

variation from 1.5 adults per 100 km² in southern African semi-desert to 55/100 

km² in some parts of the Serengeti (Sunquist and Sunquist 2002). Home range 

size depends on prey density and can vary from 13 km² to 248 km².  Medium to 

large ungulates, like antelopes, zebras, and wildebeests make up the bulk of their 

prey, however, scavenging is also considered to be an important food source for 

most prides. Savannas and plains are the most common habitats for the African 

lion due to the high density of prey in these areas (Estes 1999). African lions are 

categorized as vulnerable on the red list of endangered species (Bauer et al. 

2008). Major threats to the species include indiscriminate killing, trophy hunting, 

and disease (Bauer 2008, Packer et al. 2006, Ray et al. 2005).  
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DNA Extraction 

DNA was extracted from lion blood using a Qiagen DNeasy® Blood and Tissue 

Kit (Qiagen Sciences, Maryland, USA). Two hundred microliters of non-

nucleated blood were added to a 1.5 mL microcentrifuge tube containing 20 µL of 

proteinase K, and the volume was adjusted to 220 µL with 1X Phosphate 

Buffered Saline. To this 200 µL of Buffer AL was added, and the contents were 

mixed thoroughly by inversion followed by incubation for 10 minutes at 56°C. 

After incubation, 200 µL of 96% ethanol was added and the samples were mixed 

again by inversion. Samples were then pipetted into the DNeasy Mini spin 

column placed in a 2 mL collection tube and centrifuged at 8,000 rpm for 1 

minute. The DNeasy Mini spin column was then placed in a new 2 mL collection 

tube followed by the addition of 500 µL of Buffer AW2, and centrifuged for 3 

minutes at 12,000 rpm. The DNeasy Mini spin column was removed and placed 

on the bench to dry overnight while the flow-through and collection tube were 

discarded. Buffer AE was preheated to 55°C and 400 µL was transferred to the 

DNeasy Mini spin column and placed in a new 2 mL collection tube. DNA was 

finally eluted into the collection tube by 1 minute of centrifugation at 8,000 rpm. 

The collection tube containing DNA was placed in the freezer until further 

processing and the DNeasy Mini spin column was discarded.  

 

 Spectrophotometry 

DNA concentration was determined using a Biorad SmartSpec Plus 

spectrophotometer (Biorad, Hercules CA, USA). DNA samples were diluted 20-
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fold(5 µL DNA in 95 µL ddH20). After the machine was turned on and the 

program for double stranded DNA was selected, the cuvette was washed 2 times 

with 100 µL of ddH20. The machine was then blanked by loading the cuvette with 

100 µL of ddH20 and the absorbance was measured at 260 nm. After blanking, 

100 µL of each sample was individually pipetted into the cuvette and the 

absorbance was recorded. In between the processing of each sample, the cuvette 

was washed with 100 µL of ddH20 to prevent cross-contamination.  

 

Determining DNA Concentration and Dilution 

The concentration of the total extracted DNA was determined based on 

spectrophotometry results using equation 1. This DNA was subsequently diluted 

to a concentration of 1 ng/µl. The dilution factor used in this experiment was 20. 

 

Equation 1.  DNA concentration (ng/µl) = (OD at 260nm) x (50ng/µl) x (dilution 

factor) 

 

Polymerase Chain Reaction 

Semi-quantitative Polymerase Chain Reaction (PCR) was used to quantify the 

total hemoparasite DNA present in each sample.  The PCR amplifications were 

carried out using RedTaq polymerase (Sigma, St Louis, MO, USA). PCR 

reactions were performed in a total volume of 17 µL containing: 11.05 µL of 

double distilled H20, 1.50 µL of PCR buffer (10mM Tris-HCl, pH 8.3, 50mM 

KCl, 1.5 mM MgCl2), 0.75 µL of 2.50 mM dNTPs, 0.75 µL of 2 mM of each 

primer, 0.20 µL of 2U of DNA polymerases, and 2.00 ng of template DNA (2 
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µL). Due to the high morphological and genotypic similarity between 

hemoparasites, distinct species have been difficult to identify on a molecular level 

(Penzhorn et al. 2001). For this reason, gene-specific PCR primers (BabN1: 5’ 

GGG GCA TTC GTA TTT AAC TGT CAG 3’ and BabN2: 5’ AGA CTT TGA 

TTT CTC TCA AGG TGC TG 3’) were designed to amplify a 223 bp fragment of 

the 18 s rRNA gene in known Babesia sp., Theileria sp., Cytauxzoon sp., and 

Hepatozoan sp. PCR amplifications were carried out in PTC-225 thermocycler 

(MJ Research, Waltham, MA, USA). The PCR program included five minutes of 

initial denaturation at 94°C, followed by 31 cycles composed of 30 seconds of 

denaturing at 94°C, 30 seconds of annealing at 61°C, and 30 seconds of extension 

at 72°C. The PCR program was terminated by doing a final extension for 5 

minutes at 72°C and then held at 10°C until further processing. All samples were 

run in duplicate and averaged.  

 

DNA fractionation by Gel Electrophoresis 

One percent agarose gels were made by dissolving agarose in SB buffer (20X 

stock - 8 g NaOH, 45 g boric acid in 1 L water) in a conical flask and applying 

heat in a microwave for 1 minute. The agarose was then allowed to cool for 

several minutes on the bench.  Upon cooling, 4 µL of ethidium bromide (0.5 

mg/mL) were added per 100 mL of buffer.  The solution was then poured into a 

gel cast tray fitted with combs to create wells, and allowed to solidify for 10-20 

minutes.   
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Three-hundred and fifty milliliters of SB buffer were added to a gel box in order 

to completely cover the surface of the gel. The PCR products were loaded into the 

gel along with 3 µL of a low mass ladder (Invitrogen, Carlsbad, CA, USA) and 

run at 135 volts for 15 minutes. The gel was then removed, visualized with UV 

light and photographed using a Gel Documentation System (Alpha Innotech, San 

Leandro CA, USA).   

 

DNA Quantization 

Hemoparasite DNA was quantitated with the software package, AplaImager IS-

2200 (Alpha Innotech, San Leandro CA, USA).The Spot Denso tool was used to 

create a calibration curve, which functions to allow the quantization of the bands 

on a gel based on a set of standards. The standards were obtained from the low 

mass ladder (Invitrogen, Carlsbad, CA, USA) and consisted of 5 bands 

corresponding to 50 ng, 30 ng, 20 ng, 10 ng, 5 ng, and 2.5 ng respectively. After 

the values of the standard bands were entered, values of the unknown bands were 

automatically calculated and outputted to an excel file. This quantization process, 

including calibration of the standard curve, was repeated for each individual 17-

well electrophoresis gel. 

 

Data Analysis 

The average hemoparasite burdens measured from the PCR amplifications were 

logarithmically transformed in order to normalize the data and then analyzed 

using SAS version 9 (SAS Institute Inc., Cary, NC, USA). The alpha value was 
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set to 0.1 due to the small number of lions sampled at each locality, which 

therefore lacked the power to detect significant differences and also control for 

variation among prides. A linear ANOVA model was used to detect trends of 

infection according to age, sex, and land system. Another linear ANOVA was 

used to detect significant trends based on age, sex, and locality. A Fisher’s LSD 

(least significant difference) was used as a post hoc analysis to test for significant 

differences between means associated with particular sex, age, soil type, or 

locality classes.  
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Results 

 

Total DNA Quantization 

In order to determine the amount of DNA that was extracted from whole blood 

samples, DNA extracts were analyzed by spectrophotometry. Optical Densities, 

absorbance at 260 nm, and corresponding DNA concentrations of all 39 samples 

are reported in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

15 

 

 

  

 

 

 

Table 1. Summary of lion DNA samples including corresponding spectrophotometry 

and hemoparasite amplification results.  

Locality represents the pride’s location within the Kruger National Park and soil type 

(rich or poor) is used as an indicator of land system. 

Lane
Lion ID 

Number

Optical 

Density

Total DNA 

Concentration 

(µg/ml)

Hemoparasite 

DNA 

Amplification 

(ng)

Locality (pride)
Land System          

(soil type)
Sex

Age 

(yrs)

1 49354D1067 0.056 56 2.45 Mpanamane rich Male

2 434C656B6B 0.076 76 1.72 Mpanamane rich Female

3 494A36140A 0.06 60 1.90 Mpanamane rich Male 1

4 492E73601B 0.043 43 2.26 Mpanamane rich Female 1

5 4959717807 0.062 62 1.88 Mpanamane rich Male 1

6 492A10157F 0.042 42 4.10 Mpanamane rich Male 1

7 49301C174B 0.092 92 2.19 Mpanamane rich Male 1

8 434E630268 0.045 45 4.96 Mpanamane rich Female 10

9 44155D142B 0.088 88 3.06 Gomondwani poor Female 4

10 442E1B4D0F 0.059 59 4.08 Gomondwani poor Female 8

11 49482E0022 0.043 43 1.97 Gomondwani poor Male 1.67

12 441547114E 0.044 44 7.31 Gomondwani poor Female 10

13 4930794722 0.052 52 3.13 Gomondwani poor Male 7

14 494748583B 0.055 55 3.56 Gomondwani poor Female 9

15 451F726223 0.053 53 2.25 Crocodile Bridge rich Male 3

16 454A696521 0.06 60 2.46 Crocodile Bridge rich Female 3

17 Ladder Ladder

18 456A62761F 0.045 45 4.38 Crocodile Bridge rich Female 1

19 4542767511 0.03 30 19.34 Crocodile Bridge rich Female 4

20 4536256D07 0.06 60 2.49 Crocodile Bridge rich Female 6

21 456E016973 0.055 55 2.95 Crocodile Bridge rich Female 1.5

22 456B0D3468 0.099 99 8.19 Crocodile Bridge rich Female 1.5

23 494A2A7564 0.049 49 14.47 Crocodile Bridge rich Male 1.5

24 494A1B6278 0.051 51 3.65 Dzuweni Spruit poor Male 8

25 492D150E07 0.028 28 3.62 Dzuweni Spruit poor Male 2

26 4932190F1C 0.052 52 16.76 Dzuweni Spruit poor Male 3

27 49302A521B 0.103 103 2.36 Dzuweni Spruit poor Female 4

28 4948211C28 0.164 164 2.83 Dzuweni Spruit poor Female 5

29 49494C5264 0.062 62 13.44 Dzuweni Spruit poor Female 1.5

30 434D092D75 0.125 125 8.93 Duke Windmill rich Male 3

31 49492B451E 0.057 57 4.31 Duke Windmill rich Female 8

32 456B2A755A 0.05 50 1.64 Duke Windmill rich Female 1.5

33 49297D0A60 0.149 149 2.35 Mpanamane rich Female 4

34 Ladder Ladder

35 492A562508 0.062 62 2.40 Mpanamane rich Male 4

36 4115092830 0.072 72 4.03 Mpanamane rich Female 8

37 441850741E 0.049 49 4.73 Nlangenzwane Dam rich Female 7

38 494A185A30 0.067 67 6.05 Nlangenzwane Dam rich Female 9

39 494A247E14 0.301 301 2.14 Nlangenzwane Dam rich Female 1.5

40 442D287135 0.051 51 1.27 Nlangenzwane Dam rich Male 1.5

41 4958633932 0.121 121 1.81 Nlangenzwane Dam rich Female 3

42 Ladder Ladder  
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Hemoparasite DNA Quantization 

Following amplification, PCR products were visualized by gel electrophoresis 

under UV light. Hemoparasite DNA was quantified by comparing band intensity 

to a standard mass ladder. Amplification of the 223-bp fragment of hemoparasite 

DNA can be seen in Figure 2. The numerical values representing relative 

hemoparasite burdens are presented in Table 1. 
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Figure 2. Gel electrophoresis results representing PCR amplification of total 

hemoparasite DNA in selected lion samples. 

Lion identification numbers and quantified hemoparasite burdens are presented according 

to gel electrophoresis lane in Table 1. The Low Mass Ladder (LML) in lanes 17, 34, and 

42 is defined by: band 1, 50 ng, band 2, 30 ng, band 3, 20 ng, band 4, 10 ng, band 5, 5 ng, 

band 6, 2.5 ng.  
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Trends of infection according to age, sex, and land system 

There was evidence of a significant trend of infection according to lion gender in 

which males reported higher hemoparasite burdens than females (F(1)= 2.65, p = 

0.1). Figure 3 demonstrates that males had higher parasite loads in both land 

systems, independent of soil quality. No trends of infection were found to be 

significant according to age (F(1)= 0.14, p = 0.7) or land system (F(1)= 0.10, p = 

0.8). When investigating interactions between subjects, land system and gender 

(F(1)= 0.65, p = 0.4) or land system and age (F(1)= 0.41, p = 0.5), again no 

significant trends of infection were observed. The main effect of the model also 

proved to be insignificant (F(5)= 0.73, p = 0.6), therefore, gender was the only 

subject which affected disease prevalence. 
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Figure 3: The relationship between male and female hemoparasite burdens 

based on soil type as an indicator of land system.  



 

 

20 

 

 

Trends of infection according to age, sex, and locality 

Male and female lions reported significantly different hemoparasite burdens (F(1)= 

3.53, p = 0.07), indicating a trend of infection according to gender. Figure 4 

demonstrates that males had higher disease levels at all six localities. Like the 

previous model, no significant trend of infection was found according to age 

(F(1)= 0.99, p = 0.3) or locality (F(5)= 1.61, p = 0.2). The main effect also proved 

to be insignificant (F(7)= 1.42, p = 0.2), thus indicating that gender was the only 

factor that significantly had an effect on disease prevalence. 
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Figure 4. The relationship between male and female hemoparasite burdens 

based on locality.  
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Discussion 

Contrary to previous studies which found parasitic disease prevalence to vary 

according to land system (Averbeck et al. 1990), the results of this study suggest 

that trends of infection might actually be dependent on gender. There was no 

evidence that age, land system, or locality had a significant effect on hemoparasite 

loads. More specifically, we found that male lions had greater parasite burdens 

than females (Figure 3 & Figure 4). This finding might indicate that males are 

more susceptible to disease, independent of age, land system, or locality.  

 

One possible explanation for greater disease prevalence in male lions is due to the 

gender roles in hunting and eating. In a pride, females do the majority of the 

hunting, however males will eat first. It is believed that males eat before females 

so that they can remain strong in order to protect the pride (Schaller 1972). 

Ungulate prey such as buffalo, kudu, and impala, are the primary hosts to ticks 

responsible for hemoparasitic infection in lions (Barnett and Brocklesby 1968). 

Since some of the parasites examined in this study are transmitted by direct 

ingestion of the disease vector, male lions will be the first to become infected. 

Once females eat, most, if not all of the infected ticks will have been removed 

from the prey during male feeding.  

 

Social interactions between and among males could also explain the higher 

parasite burdens observed in this study. Male lions greet each other in the wild by 

rubbing faces together. This act involves the exchange of scent markers located in 
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the corner of the mouth (Schaller 1972). The contact involved in this greeting 

could also facilitate the transfer of infected ticks between males. Additionally, 

male lions characteristically fight with each other which involves biting of the 

neck and nape area (Estes 1999). These acts of aggression facilitates the direct 

transfer of ticks from one male to another and disease transmission by ingestion 

of the vector. The social behaviors exhibited by male lions would facilitate the 

propagation of disease within the male community only, resulting in greater 

disease prevalence.  

 

There is no direct immunological evidence that male lions are more susceptible to 

disease than female lions, therefore the pride social behaviors are most likely 

responsible for the trends observed in this study.  

 

The hemoparasite burdens measured in this study were semi quantitative and 

therefore further studies will be needed to confirm the results. Lion DNA samples 

were normalized based on the total DNA measurements by spectrophotometry. 

Red blood cell counts would have produced a more accurate result. Additionally, 

PCR is a semi quantitative test and therefore analysis by real-time PCR would be 

needed. This study investigates lion hemoparasite burdens across the Kruger 

National Park in order to gain further insight into the current state of health for 

these mammals. In order to more successfully assess current parasite loads in 

lions, additional studies would be necessary. Understanding the factors that 
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contribute to infection is necessary for the enlightened management of 

hemoparasite propagation in the Kruger National Park, South Africa.  
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Summary 

Most reports of African Lion (Panthera leo) parisitemia come from zoos and 

managed game reserves without consideration of the lion’s origins, diets, and 

natural habitats. Few studies have looked at parasite loads, specifically 

hemoparasites, of free ranging lions, (Bjork et al. 2000). Hemoparasites are 

typically hemoflagellates or filarid worms found in animal blood. The following 

hemoparasites, Babesia, Theileria, Cytauxzoon, and Hepatozoons, are the most 

common parasites found in free ranging lions in sub-Saharan Africa (Munson et 

al. 2008). Alone these parasites do not seem to cause serious illness, but when 

combined with other infections, or found in immuno-compromised individuals, 

they can become sick (Sherding 1994). 

  

Babesia, Theileria, Cytauxzoon, and Hepatozoon  have all been found in the 

blood of free ranging lions in South Africa. The Kruger National Park, South 

Africa, is home to approximately 1,600 free ranging lions (Funston and Ferreira 

2006). The purpose of this study is to look at hemoparasite burdens of free 

ranging lions in various parts of the Kruger National Park. The four parasties that 

will be investigated included in this study are, Babesia sp., Theileria sp., 

Cytauxzoon sp., and Hepatozoon sp. The hemoparasite DNA values obtained will 

be used to find trends in parasitic infection according to age, sex, locality, and 

land system or habitat. 
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It is important to understand hemoparasite burdens in wildlife, including free 

ranging lions, for the general health of these animals and to determine the threat 

their infections pose for domestic species. Enlightened wildlife managers coupled 

with thorough wildlife disease investigations would be beneficial to resolve 

epizootiologic problems early and to prevent the needless sacrifice of wildlife 

populations in emergency situations.  

 

For this study  blood samples were collected from 39 free ranging lions in 2006 

across six regions in the Kruger National Park, South Africa. While I was in 

South Africa, I extracted DNA from the blood samples using a specialized kit. 

The samples were stored in a freezer until they were shipped to the United States 

for processing. First I calculated the concentration of the DNA I extracted. I did 

this using spectrophotometry which transmits UV light through the sample to 

detect how much DNA is present. I used this information to dilute each sample 

with water so that they would all contain the same amount of DNA. Then I used 

Polymerase chain reaction (PCR) to quantify how much parasite DNA was 

present in each sample. PCR is a technique that can detect very specific DNA 

fragments and amplify them exponentionally so that they can be visually detected. 

The results of the amplification were photographed with on an agarose gel with 

UV light. Specialized software was used to quantify each band by comparing the 

fluorescence to a known standard. I statistically analyzed the PCR results to look 

for trends of infection.  
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Contrary to previous studies which found trends of infection according to land 

system or habitat (Averbeck et al. 1990), I found that trends of infection might 

actually be dependent on gender. There was no evidence that age, land system, or 

locality had a significant effect on hemoparasite loads. More specifically, we 

found that male lions had greater parasite burdens than females. This finding 

might indicate that males are more likely to contract a disease, independent of 

age, land system, or locality.  

 

One possible explanation for greater disease prevalence in male lions is due to the 

gender roles in hunting and eating. In a pride, females do the majority of the 

hunting, however males will eat first. It is believed that males eat before females 

so that they can remain strong in order to protect the pride (Schaller 1972). 

Ungulate prey such as buffalo, kudu, and impala, are the primary hosts to ticks 

responsible for hemoparasitic infection in lions (Barnett and Brocklesby 1968). 

Since some of the parasites examined in this study are transmitted by direct 

ingestion of the disease vector, male lions will be the first to become infected. 

Once females eat, most, if not all of the infected ticks will have been removed 

from the prey during male feeding.  

 

Social interactions between and among males could also explain the higher 

parasite burdens observed in this study. Male lions greet each other in the wild by 

rubbing faces together. This act involves the exchange of scent markers located in 

the corner of the mouth (Schaller 1972). The contact involved in this greeting 
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could also facilitate the transfer of infected ticks between males. Additionally, 

male lions characteristically fight with each other which involves biting of the 

neck and nape area (Estes 1999). These acts of aggression facilitates the direct 

transfer of ticks from one male to another and disease transmission by ingestion 

of the vector. The social behaviors exhibited by male lions would facilitate the 

propagation of disease within the male community only, resulting in greater 

disease prevalence.  

 

There is no direct evidence that male lions are more susceptible to disease than 

female lions, therefore the pride social behaviors are most likely responsible for 

the trends observed in this study.  

 

The hemoparasite burdens measured in this study were semi quantitative and 

therefore further studies will be needed to confirm the results. This study 

investigates lion hemoparasite burdens across the Kruger National Park in order 

to gain further insight into the current state of health for these mammals. In order 

to more successfully assess current parasite loads in lions, additional studies 

would be necessary. Understanding the factors that contribute to infection is 

necessary for the enlightened management of hemoparasite spread in the Kruger 

National Park, South Africa.  
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