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Abstract 

Located in the vertebral column, the human spine is responsible for 

regulating body movements and receiving sensory input about pain and touch. 

Currently, few treatments for neurological diseases and spinal cord injuries exist, 

partly because we know little about how a fully functioning spinal cord is 

constructed. As such, studying spinal cord development, specifically neuronal 

specification and patterning, should be useful for developing better treatments for 

people with spinal cord injuries and diseases. Zebrafish are a prime model 

organism for studying neuronal specification because their transparent embryos 

develop outside the mother, allowing us to easily examine gene expression, cell 

movements and cell morphology during development . Furthermore, the zebrafish 

spinal cord has few types of interneurons compared to mammals, and each 

interneuron type can be recognized by its distinct morphology. 

 I focused on V1 cells, which form in the ventral spinal cord and are 

functionally similar in all vertebrates. In zebrafish, V1 cells develop into CiAs, or 

Cicumferential Ascending interneurons, which control movement and sensory 

gating. Several transcription factors are expressed consistently in all vertebrate V1 

cells, and my research focused on Lhx1a, Lhx1b and Lhx5. As a result of findings 

in mice, I predicted that knocking down these transcription factors would result in 

neurotransmitter deficits and potentially compromise movement ability. 

Additionally, a main focus of my project became assaying various experimental 

strategies for knocking-down Lhx1a, Lhx1b and Lhx5. These included injecting 
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reagents into 1-4 cell stage embryos and taking advantage of a lhx1b mutant fish 

line. For the injections, I used morpholinos (MOs), antisense agents that either 

interfere with RNA transcription to protein or with RNA splicing. I also used 

RNA constructs which should act as either dominant activators or dominant 

repressors. Using in situ hybridization, I then tried to assess the impact on 

neurotransmitters throughout the spinal cord and specifically within CiAs. 

 I successfully identified a PCR and restriction enzyme digest method for 

identifying lhx1b mutants. This was exciting as it was a completely novel method 

for identifying these fish. Furthermore, my results demonstrated that homozygous 

lhx1b mutants are viable which was previously unknown. My injection results 

demonstrate that lhx1b and lhx5 splice-blocking MOs are also an effective tool for 

knocking-down the function of these two genes. In contrast, the lhx1a MOs that I 

tried were not effective. My RNA injection results were inconclusive and I 

determined that a higher concentration was probably needed to impact Lhx1 and 

Lhx5 function.  
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Introduction  

Located in the vertebral column, the human spine is responsible for 

controlling many bodily functions that healthy individuals take for granted. In 

addition to regulating standard body movements and organ operations, the spinal 

cord receives sensory input about pain and touch from the rest of the body. 

Various neurological conditions including neuro-degeneration as well as spinal 

cord injuries result in deficits in these functions. These types of ailments are 

particularly common. A recent survey estimated that 183,000-230,000 people in 

the United States alone suffer from spinal cord injuries (NIH Medline Plus). 

Furthermore, approximately 11,000 new cases of spinal cord injury present each 

year in the United States (NIH Medline Plus). Oftentimes these injuries are the 

result of accidents, violence, and sports-related injuries and happen to people in 

the prime of their life (NIH Medline Plus). Currently, there are few treatments for 

these conditions, partly because we know very little about how a fully functioning 

spinal cord is constructed. As such, studying spinal cord development, 

specifically neuronal specification and patterning, can ultimately be useful for 

developing better treatments for people with spinal cord injuries and diseases.      
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Zebrafish are a powerful 

model organism in which to 

study neuronal specification for 

a number of reasons. For 

example, zebrafish are a 

relatively inexpensive choice 

when compared to other 

vertebrates and a large 

quantity of embryos can 

be easily obtained from 

adult fish without harming the parents. In addition, zebrafish have transparent 

embryos that grow rapidly outside of the mother (figure 1). These characteristics 

allow us to examine central nervous system (CNS) development, including spinal 

cord development, in 

live embryos.  In some 

instances, being able to 

visually examine CNS 

development in live 

embryos becomes 

particularly 

imperative. For 

instance, some mutations cause characteristic morphological phenotypes that can 

Figure 1. Depicting rapid development of a zebrafish 

embryo. Blue arrow indicates cells in early embryo. Red 

arrows indicate chorion which surrounds embryo 

during early development. Orange arrow indicates yolk 

which provides nutrients to embryo during early 

development. Yellow arrow indicates zebrafish head. 

Based on figure by Dr. Lewis. 

Figure 2. Absence of mid-brain hindbrain boundary in noi 

mutants at 28 hours post-fertilization. Red arrows shows 

midbrain/hindbrain boundary (or absence in H).  Figure 

taken from Molina et al. (2007). 
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be readily viewed during embryonic development. The transparency of zebrafish 

embryos enables us to identify mutants and separate them from wild-type 

embryos. An example of this is noi (no-isthmus) mutants, in which the mid-brain 

hindbrain boundary does not form. As shown in figure 2, the mutants can readily 

be identified because of their characteristic lack of this boundary.  

Zebrafish are also a useful model organism because interneuron 

morphology can be examined in live embryos. This can be accomplished by 

labeling 

specific cell 

types with 

fluorescent 

proteins such 

as GFP. It is 

difficult to 

observe 

embryonic 

interneurons in 

some vertebrate, 

particularly 

mammals. This 

is because mammalian embryos develop inside the mother and are not transparent. 

It is easier to study interneurons and identify them as a particular cell type with a 

specific function in zebrafish. This is because, in addition to being able to 

Figure 3. Schematic showing the unique morphologies and 

neurotransmitter fates of zebrafish interneurons. Anterior is to 

the left. Dotted line= contralateral axons. Solid line= ipsiliateral 

axons. Figure based on a figure from Lewis and Eisen (2003) and 

information from Higashijima (2004).  
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visualize individual interneurons in the externally-developing transparent 

zebrafish embryos, the zebrafish spinal cord has relatively few different types of 

interneurons in comparison to mammals. Furthermore, each interneuron type can 

be easily recognized by its particular morphology, as seen in figure 3. For 

example, the interneuron type I studied, Circumferential Ascending (CiA) 

interneurons, have a distinct interneuron shape which distinguishes them from the 

others as seen in figure 3.  In addition to the unique morphologies, each 

interneuron type has a distinct neurotransmitter fate.  Neurotransmitters are the 

chemicals within the central nervous system that help neurons to communicate. 

Finally, it is easy to knock down individual gene functions with mutants and other 

methods in zebrafish which was particularly important for my project. A primary 

method used in this project was injections into 1-2 cell stage embryos, where I 

injected various reagents into an embryo via a thin needle. The transparency and 

rapid development of zebrafish embryos enables this experimental technique to be 

utilized relatively easily. 

This project focused on V1 neurons which form in the ventral spinal cord. 

During spinal cord development, cells originate in distinct dorsal-ventral  
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progenitor domains and migrate laterally to specific dorsal-ventral post-mitotic 

domains (figure 5). In both regions, individual cells take on a particular identity 

depending on their dorsal-ventral location in the spinal cord. This dorsal-ventral 

identity then leads cells to develop into distinct interneuron types with unique 

characteristics functions. For instance, distinct ventral interneurons control 

different aspects of movement as indicated in figure 4.  

In zebrafish, V1 cells, which regulate/enable fast movement, develop into 

CiAs or Circumferential Ascending interneurons (Goulding, 2009). CiAs have 

several functions including motor control and sensory gating. Sensory gating is 

the ability to screen for irrelevant sensory input and prevent it from interfering 

with other neurological processes (Burgess and Granato, 2007). Various projects 

have already been conducted with V1 cells in other organisms such as frogs and 

mice. Results from tadpoles demonstrated that the cells correlating to CiAs and 

V1 cells, called aINs in frogs, are implicated in swimming behaviors and sensory 

Cell Population Function 

V0 Control side-to-side motion during 

movement 

V1 Regulate/enable fast movements 

 V2 Alternation during rapid movement, 

rhythm generation 

V3 Rhythm during locomotion 

Figure 4. Table listing the different functions of ventral cell populations. Figure 

created based on information in Goulding (2009).  
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gating (Li, et al., 2004). Similarly, V1 cells in mice are required for fast 

movements. When V1 cells were ablated, mice had difficulty moving at faster 

speeds although movement was still possible (Gosgnach et al., 2006). The CiA 

cells in zebrafish are functionally similar to the V1 cells seen in mammals 

(Higashijima, 2004), which makes them an appropriate choice for study 

considering my goal of aiding in the treatment of spinal cord injuries in humans.  

Each interneuron type expresses a distinct combination of transcription 

factors (figure 5). Transcription factors are proteins that bind to DNA and either 

promote or inhibit transcription of other genes. Therefore, understanding the roles 

of 

transcription factors is key to better understanding how neuronal characteristics 

Figure 5. Each cell population in the spinal cord expresses unique transcription 

factors. (A) represents the spinal cord during early development when cell 

populations are still in the progenitor domains.  (B)  indicates spinal cord when cells 

have migrated to their post-mitotic domains. The post-mitotic transcription factors 

listed beside (B) are only a subset of the transcription factors expressed.  Dl= dorsal 

interneuron. V= ventral interneuron. MN= motoneuron. Figure kindly provided by 

Dr. Lewis. 
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are genetically specified. Several transcription factors are expressed consistently 

in all vertebrate V1 cells and my research focused on a few of these, namely 

Lhx1a, Lhx1b, and Lhx5 (referred to here as Lhx1a/Lhx1b/Lhx5). 

A unique characteristic of Lhx transcription factors is that they are LIM-

homeodomain (LIM-HD) proteins. Similar to other homeodomain proteins, the 

LIM-HD transcription factors have been “well preserved throughout evolution” 

(Hobert and Westphal, 2000). LIM-HD proteins are also quite similar to one 

another, suggesting a shared ancestor. LIM-HD proteins can be categorized into 

smaller groups based on common ancestors and the Lhx1/5 transcription factors I 

study fall into the Lin-11 group (Hobert and Westphal, 2000). Found in both 

vertebrates and invertebrates, LIM-HD proteins are characterized by LIM 

domains, that have a 

zinc-finger formation, 

which are protein 

binding domains 

located upstream of 

the homeodomain as shown in figure 6 (Hobert and Westphal, 2000). These zinc 

fingers allow the proteins to bind to other transcription factors in different 

combinations and might, therefore, enable the LIM-HD proteins to help 

orchestrate a variety of developmental phenomena (Hobert and Westphal, 2000). 

Although other Lhx family members exist as shown in figure 7, my project 

focused on Lhx1/5. Lhx1/5 are probably more closely related to one another than 

to other Lhx family members because they share a more recent ancestor (Hobert 

Figure 6. LIM-HD Protein Structure (Hobert and Westphal, 

2000). 
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and Westphal, 2000). Furthermore, in the zebrafish embryonic spinal cord they 

are co-expressed in the same cells, suggesting that they might act redundantly 

(Cerda-Moya, 2011). 
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Figure 7. An evolutionary tree of the LIM-HD proteins. The red box indicates where 

Lhx1/5 are located in the Lin-11 group. Other Lhx genes are located in other more 

distant groups. Lhx1 and Lhx5 used to be called Lim1 and Lim5. Lhx1b used to be 

called Lim6. (Hobert and Westphal, 2000). 
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Experiments investigating the functions of the Lhx1/5 transcription factors 

have been conducted in mouse. In these experiments, gene expression in mutant 

mice lacking Lhx1 and Lhx5 was compared to WT mice in order to assess the 

effects of knocking-down Lhx1/5 in the mouse spinal cord (Pillai et. a, 2007).  

Pillai and colleagues found that Lhx1 and Lhx5 were co-expressed early in 

neurogenesis. However, these expression patterns diverged over time (Pillai et. al, 

2007). One reason for the early identical expression might be that Lhx1 and Lhx5 

act redundantly initially, but then develop independent roles. In terms of their 

specific functions, Lhx1/5 help to maintain inhibitory neurotransmitter fates in 

mouse, but these transcription factors are not required to initially specify 

inhibitory fates. Furthermore, in the absence of Lhx1/5, the cells do not adopt an 

excitatory neurotransmitter identity. Additionally, Lhx1/5 are required to maintain 

Pax2 expression in dorsal inhibitory interneurons, which is important because 

Pax2 is also known to be required for inhibitory neurotransmitter fates (Pillai et 

al., 2007; Batista and Lewis, 2008). The fact that Lhx1/5 are required to maintain 

Pax2 expression suggests that Lhx1/5 are upstream of Pax2 and that both are 

required to specify the inhibitory neurotransmitter fate. This shows that different 

families of transcription factors interact in the specification of neurotransmitter 

fates (Pillai et al., 2007).  

The fact that transcription factor families might interact in interneuron 

specification is relevant to my project because it means that Lhx1/5 might interact 

closely with another group of transcription factors. Therefore, the absence of Lhx 

could potentially impact that secondary group and vice versa. For instance, the 
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phenotype of mice that lack Lhx1 and Lhx5 resembles that of mice that lack Pax2 

and also that of pax2a/pax2b/pax8 triple knockdown zebrafish embryos (Pillai et 

al., 2007; Batista and Lewis, 2008). Previous work in the Lewis Lab showed that 

Pax2/8 are redundantly required for the glycinergic and GABAergic phenotypes 

of both CiAs and other neurons that express these Pax2/8 proteins (Batista and 

Lewis, 2008). Furthermore, although Pax2/8 are required to specify inhibitory 

neurotransmitter fates, their absence does not result in neurons becoming 

excitatory (Batista and Lewis, 2008). 

Recent work by Gustavo Cerda-Moya in the Lewis Lab at University of 

Cambridge, UK demonstrated that lhx1a (used to be called Lim1), lhx1b (used to 

be called Lim6), and lhx5 (used to be called Lim5) are co-expressed in cells in the 

zebrafish spinal cord (Cerda-Moya, 2011). As these transcription factors have 

very similar sequences, this co-expression suggests that these transcription factors 

might act redundantly in these cells. Therefore, it might be necessary to 

knockdown all three Lhx1/5 genes in order to investigate their function. 

As mentioned before, the loss of Lhx1/5 in mouse and the loss of Pax2 in 

mouse or Pax2/8 in zebrafish procedures a similar spinal cord phenotype which 

suggests that these transcription factors might act together to specify inhibitory 

neurotransmitter fates. However, the exact details of this mechanism of 

neurotransmitter fate specification are unknown. It was also unknown what the 

effects of eliminating the Lhx1/5 transcription factors would be on zebrafish 

embryonic spinal cord, as this had never been tested. As discussed above, Lhx 

(Lim homeodomain) transcription factors are involved in the regulation of 
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inhibitory neurotransmitters in the dorsal spinal cord in mice (Pillai et al., 2007). 

Therefore, I predicted that they would have a similar function in zebrafish. I 

hypothesized that knocking-down the functions of these transcription factors 

would result in neurotransmitter deficits and potentially compromise movement 

ability. Moreover, Pax2 is also thought to maintain Lhx1/5 expression in mouse, 

suggesting that the Lhx1/5 and Pax2/8 might act in a reciprocal fashion to 

maintain each other’s expression (Burrill et al., 1997; Cheng et al., 2005; Gross et 

al., 2002; Morales and Hatten, 2006; Pillai et al., 2007; Zhao et al., 2000; Batista 

and Lewis, 2008). As such, another aim of my research was to investigate the 

connections between Lhx1/5 transcription factor function and Pax2a, Pax2b and 

Pax8 expression. 

Therefore, the main questions for my research were as follows:  

1. Can we identify lhx1b mutants by genotyping? Is the lhx1b mutation 

embryonic lethal? 

2. What are the best reagents to test Lhx1a/1b/5 function in zebrafish? 

3. What is/are the function/s of Lhx1a/1b/5 in the zebrafish spinal cord? 

4. How are the Lhx and Pax families of transcription factors related? Do they 

maintain one another? 

. 

 

 



18 

 

Materials and Methods: 

 The methods utilized for my research can be summarized as follows:  

 

Figure 8. Outline of Utilized Methods. 

As depicted in figure 8, I used three distinct tools to investigate the function of 

the Lhx1/5transcription factors: mutant fish, RNA fusion constructs, and MOs.  

Zebrafish lines 

Zebrafish (D. rerio) embryos were obtained from mating crosses of wild-

type (AB or TL) adults (Picker et al., 2002). Embryos were staged according to 

hours post-fertilization at 28.5°C and/or morphological criteria as elucidated in 

Kimmel et al. (1995).  The Lewis lab was already in possession of a lhx1b mutant 

allele fishline from the Sanger institute. Mutants are useful because it means that 

fewer potentially toxic substances must be introduced into the embryos in order to 

knock down potentially redundant genes. Morpholinos (MOs) and RNA 

constructs can have nonspecific effects, meaning that they have the potential to 

yield phenotypes unrelated to the gene knockdown. Furthermore, in some 
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instances, the concentration necessary to fully knock down a transcription factor 

might be too high to inject either individually or when combined with other 

knock-down reagents. If all of the embryos die before they can be studied, then it 

is impossible to understand the effects of a knock down. The lhx1b mutant was 

useful because it eliminated the need to inject the lhx1b morpholino. However, the 

homozygous or heterozygous mutants had to first be identified using a fin-clip 

genotyping procedure. 

The lhx1b mutation is a nucleotide change from a T to an A, resulting in 

an amino acid change from a tyrosine (TAT) to an ochre (TAA) stop codon. As 

seen in figure 9, the mutation (indicated by the highlighted “Y”) alters amino acid 

110. The total sequence for this gene is 402 amino acids, meaning that the last 

292 amino acids are lost when this mutation occurs. The LIM domain is 

unaffected by this mutation because it consists of amino acids 3-54 (as shown in 

figure 9); however, the homeodomain is lost as a result of this mutation as it 

consists of amino acids 178-240. The LIM domain is responsible for binding to 

proteins whereas the homeodomain binds to DNA. As such, it is possible that if a 

truncated protein is produced in this mutant line it may act as a dominant negative 

because it would bind partner proteins, but would be unable to bind to Lhx1/5 

DNA target sites. In this way, it could titrate out WT binding partners.  
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MVHCAGCERPILDRFLLSVLDRAWHAKCVQCCDCKCSLT

DRCFSREGRLYCKNDFFRRYGKCGGCAQGISPSDLVRKARSKVFHL

NCFTCIMCNKQLSTGEELYILDEYKFVCKEDYLNSNGKDTNLLSITTCSDP

SLSPESQDPQDDYKDSESGPMSDKETCNNENDEQNLGGKRRGRTTIK

AKQLETLKAAFAATPKPTRHIREQLAQETGLNMRVIQ

VWFQNRRSKERRMKQLSLGARRHMFFRSPRRMRALGDRMEPG

ELMANGHFSFYGDYQSEYYGPGSNYDYFPQGPPSQAHTPGDLGFMPSSG

PAGTPLGNMDPHHGAHHPSNDTQCFSEMISHHPGDSPSPEPSAPSIHSISTD

MCDSTPPFTSLNSLSANGYSNQLSSEMNEGTVW  

Figure 9. Sequence of Lhx1b LIM and Homeodomains in a WT. The larger italicized 

print indicates the amino acids of the LIM domain. The larger underlined print 

indicates the amino acids of the homeodomain. The red letters indicate the beginning 

of each new exon. Black lettering indicates the first exon with the subsequent blue 

lettering indicating the start of the second exon, and so forth. The yellow highlighted 

“Y” refers to the amino acid tyrosine and is the amino acid that is changed as a result 

of this mutation. 

Genotyping Lhx1b Mutant Fish 

To genotype the lhx1b fish line, I cut off (“clipped”) the caudal fins of 

individual fish and used them to prepare DNA. Two small glass beakers with 70% 

ethanol and distilled water were prepared to sterilize the scissors and tweezers. 

300 mL of 0.016% Tricaine solution diluted with water was put into a clean tank. 

Fish were transferred to Tricaine solution using a net, with no more than 2-4 fish 

anesthetized at one time. As soon as the fish stop swimming, they were collected 

onto a plastic spoon. Using thumb and index finger, the fish was secured on the 

spoon with the tail exposed over the edge of the spoon. One half to two thirds of 

the caudal fin was removed using the sterilized scissors. The piece of fin was then 

placed in a microcentrifuge tube containing 100 µL of the DNA extraction buffer. 

DNA extraction buffer was made the day of the fin-clip. The extraction buffer 

was made in a volume of 3.0 mL with 100µLof the buffer needed per fin clip. The 
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3.0 mL consisted of 30µL10 mM Tris (pH 8.2), 60 µL 10 mM EDTA, 600 µL 200 

mM NaCl, 75 µL 0.5% SDS, 60µL200µg/µL proteinase K, and 2175µL ddH2O. 

The fish was then placed in an individual tank containing fresh fish water which 

rinsed off the Tricaine solution. Fish were kept separate or in pairs of 1 male and 

1 female so that they could be readily identified and correlated with their 

respective DNA. Fish were kept separate until they were genotyped. These steps 

were repeated until all fish had been fin-clipped. Scissors and forceps were 

sterilized between fish by washing them in the aforementioned ethanol and water. 

 After the fin-clips, the DNA was extracted. The microcentrifuge tubes, 

each containing individual fin-clipped samples in DNA extraction buffer, were 

vortexed thoroughly and incubated for 2-3 hours at 55°C. Tubes were vortexed 

periodically during this 2-3 hour span in order to mix contents. Proteinase K was 

inactivated by incubating for 10 minutes at 100°C in a hot block. Tubes were then 

centrifuged for 20 minutes at 13000 rpm at room temperature. This spun down 

cell debris. The supernatant was then removed and transferred to clean, sterile 

microcentrifuge tubes. The genomic DNA was precipitated by adding 200µL of 

100% ice-cold RNAse-free EtOH. Tubes were mixed or briefly centrifuged and 

then placed at -20°C for at least 1 hour. Genomic DNA was then precipitated by 

centrifuging for 20 minutes at 13000 rpm at 4°C. Next, ethanol supernatant was 

carefully removed and the pellet was washed with 500µL of fresh 70% EtOH. 

Tubes were centrifuged for an additional 3 minutes at 13000 rpm at 4°C and 

supernatant was again removed. The resulting pellets were air-dried for 5 minutes 
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at room temperature before being re-suspended in 100µL of H2O. The re-

suspended DNA was then stored at -20°C.   

Forward primer: GCGAAGAACTGTACATCCTAGATGAATT 

Reverse primer: TTGGCGGGTCTTTATGAAAATATATGAC 

For PCR the following reactions were assembled: 

[Stock]  [Final]  Volume 

Nuclease-free H2O      5.351 µl 

NEB Thermo Pol Reaction Buffer 10x  1x  1.0 µl 

dNTPs                        10 mM each    209 µM            0.209 µl 

NEB Taq polymerase      0.04 µl 

Forward primer   10 µM  0.2 µM  0.2 µl 

Reverse primer   10 µM  0.2 µM  0.2 µl 

Genomic DNA  variable variable 3.0 µl 

Total Volume       10 µl 

 

The samples were subjected to the following PCR conditions: 

94°C 180 sec 

 

92°C 20 sec  

65°C 30 sec 18 cycles 

72°C 60 sec 

 

92°C 20 sec  

56°C 30 sec  15 cycles 

72°C 60 sec 
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72°C 180 sec 

16.0
o
C held until samples removed 

  

Following the PCR, a digest reaction was performed. The following digest 

reaction was assembled in a 20µL volume: 5.875µL Nuclease-free water, 2.0µL 

NEBuffer 4, 2.0µL Acetylated BSA, 0.125µL DraI, 10.0µL PCR reaction 

product. The reaction was incubated for 2 hours at 37°. While the digests were 

incubating, a 2.5% TBE agarose gel was prepared. 4µL DNA loading dye was 

added to each of the digest reactions (giving a total volume of 24 ul). Then 10-

15µL of each sample was loaded into a different individual well on a 2.0% TBE 

agarose gel. The gel was run at 130 volts for 40 minutes. This was a change from 

the usual protocol because I found that running a TBE gel for a long period of 

time at a slower voltage resulted in a clearer demarcation of DNA sizes. 

Injections into zebrafish embryos 

A Sutter Instrument Company glass-puller (model P-2000; program #8) 

and glass capillary tubes (10 cm length, O.D 1.2 mm, I.D. 0.94 mm) were used to 

make the injection needles.  Injection plates were made using a specific mold that 

creates grooves in a 1% agarose gel in which the embryos rest. The plates 

themselves were made in standard 100 mm petri dishes using 1% agarose in 

embryo medium. 3L of a 60x stock solution of embryo medium requires 51.6g 

5mM NaCl, 2.3g 0.17mM KCl, 8.7g 0.33 CaCl2.2H2O, and 14.7g 0.33 mM 

MgSO4.7H2O. Next, embryo medium is buffered to pH 7.8 with hepes (1g for 
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approximately 100 mL of 60x stock solution). Then 166 

mLs of 60x stock solution with hepes is diluted with 20 

mL 0.01% Methylene Blue in dH2O to make 10L.  Molds 

did not touch the base of the petri dish, but were deep 

enough so that embryos were not touching the surface of 

the liquid as seen in figure 10. Once the agarose set, the 

molds were removed using forceps and the 

dishes were filled with embryo medium to 

keep them moist. Adult fish were set up the night before in tanks with dividers 

separating males from females to ensure that the embryos were laid only once 

everything was set up for the experiment. 

The morning of injections, a needle holder jar containing a small amount 

of distilled water in the bottom (to stop the needles from drying out) was used to 

hold loaded 

needles. Needles 

were loaded 

using a P2 or 

P20 pipette and 

filtered tips. 

Phenol red was mixed with the 

MOs or RNA so that injected 

liquid was visible in the embryo. If injection plates were made the night before, 

Figure 10.  Injection mold set up. Based 

on figure by Dr. Lewis. 

Figure 11. Injection of 1-cell embryo. Kindly 

provided by Dr. Lewis. 
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they were warmed to room temperature so as not to temperature shock the 

embryos. Once laid, embryos were collected from tanks and transferred to 

injection plates using plastic or glass pipettes. Forceps were used to guide 

embryos into the appropriate grooves in the plates. A General Valve Corporation 

picospritzer model II was used for the injections. Needles were secured into the 

picospritzer which forced compressed air down the capillary tube and controlled 

how much of the injected material was released. As illustrated in figure 11, 1-cell 

stage embryos were injected in the yolk region of the embryo. After injecting, 

embryos were inspected to ascertain that none were visibly harmed during 

injections. Damaged embryos were removed. Embryos were placed into a 28.5°C 

incubator. Wild-type uninjected controls were maintained for each pair of fish that 

laid embryos. 

Several hours later, injected embryos were inspected. If phenol red 

remained in the yolk, these embryos were separated or discarded as the injected 

material had not fully permeated the embryo. Infertile embryos were also 

removed at this stage. The rest of the embryos were removed from the injection 

plates and pipetted into clean petri dishes with fresh embryo medium. These 

dishes were then placed back in the 28.5°C incubator overnight. Embryos were 

fixed at 24-27 hours depending on the nature of the experiment. Staging was 

performed based on a staging chart, pigmentation, and somite numbers. Embryos 

were fixed in 4% paraformaldehyde in phosphate-saline buffer (PBS) and put 

overnight at 4.0°C.  

RNA fusion construct injections 
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RNA fusion constructs were injected in order to determine the function of 

the Lhx1/5transcription factors. Four different RNA constructs were injected: 

Lhx5VP16, Lhx5GFP, Lhx5EnR (Lewis Lab), and Lhx5EnR (Westerfield Lab).  

Each of these constructs contained the first 738 nucleotides of the Lhx5 sequence 

which includes 2 LIM domains and the homeobox (figure 12). Additionally, these 

constructs each had either a Vp16, a GFP, or a EnR sequence attached after the 

Lhx5 coding sequence (figure 12). The Lhx5VP16 was expected to be a dominant 

active version of the desired protein while Lhx5EnR was hypothesized to be a 

dominant negative version of the desired protein based on research using a 

Lhx5EnR construct in the Westerfield lab (Peng and Westerfield, 2006). In order 

to prepare the RNA, plasmid DNA was linearized with SacII. The reaction was 

assembled in a 20µLvolume consisting of 2µLrestriction enzyme, 1 ug of DNA, 

Figure 12. Diagram of RNA Constructs and protein domains that they encode for. The 

first 738 nucleotides of the lhx5 sequence were used. The yellow box represents the 

first exon (494 nucleotides) in the lhx5 sequence. The blue box represents the second 

exon (224 nucleotides) in the lhx5 sequence. The orange box is the portion of the third 

exon (20 nucleotides) that was included from the lhx5 sequence. The green box 

represents where the EGFP,Vp16, or EnR sequence was attached. The first LIM domain 

is encoded by nucleotides 3-61 and the second LIM domain is encoded by nucleotides 

62-125, both fall within exon 1. The homeobox domain is encoded by nucleotides 180-

239 and falls within exon 2. 
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0.5µLrestriction enzyme buffer, and the rest was dH2O. The reaction was placed 

at 37°C for 2 hours. DNA was run on a 1% TAE gel to make sure it was cut. If 

cut,1µL of proteinase K was added and the reaction was placed at 37°C for 30 

minutes. DNA was then extracted using phenol/chloroform and chloroform.  

Finally, DNA was precipitated by adding 1µL glycogen (as an inert carrier), 1/10 

volume of 4M NaCl, and 2x volume of EtOH and placing at -20°C overnight. 

After spinning the reaction at 13,500 rpm, the supernatant was removed and the 

pellet was washed with 80% cold EtOH. Then the DNA was re-suspended in 

14µLdH2O. RNA was then made using an sp6 Ambion mMessage mMachine kit. 

Splice-Blocking Morpholino injections and controls 

Morpholinos (MOs) are antisense oligonucleotides that interfere with 

RNA transcription to protein or RNA splicing. Although they are synthetic 

molecules, MOs mimic the design of actual nucleic acids and bind to the usual 

complementary sequences (Gene Tools). Both 

types of MOs, ATG and splice-blocking (S-B) 

MOs, were utilized. ATG MOs are 

oligonucleotides that bind to the 5’-

untranslated region of mRNA and therefore 

interfere with movement of the ribosomal 

initiation complex. The initiation complex 

never reaches the start codon and 

consequently translation can never take place. 

Figure 13. Schematic of how ATG 

MOs work. Figure kindly provided 

by Dr. Lewis. 
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Because translation never occurs and the protein is absent (or reduced) as 

demonstrated in figure 13, we can determine the function of the unmade protein 

(Gene Tools). Splice-blocking MOs prohibit the removal of introns so that the 

translated product no longer codes for the same protein (Gene Tools). Splice-

blocking MOs were primarily used because the effectiveness of these MOs can be 

checked by reverse transcription polymerase chain reaction (RT-PCR) to check if 

the RNA has been correctly spliced. Generally speaking, by inhibiting or reducing 

protein production, MOs enable us to determine the function that each gene is 

necessary or required for.  

MOs were injected into 1-2 cell stage embryos from a cross of wild-type 

AB fish. The original ATG and S-B MOs had been used in a pilot experiment in a 

previous Lewis lab study. Another MO was used successfully in Peng and 

Westerfield (2006). Sequences (Cerda-Moya, 2011) were as follows: 

Lewis lhx1a S-B: TGCAAGCTGTAACTGAATAGGGAAA 

Lewis lhx1a ATG: AGCCCGCACAGTGGACCATCGTCTT 

Lewis lhx1b S-B: TGCAGGTGGTAACTGTAAAAAAGCA 

Lewis lhx1b ATG: TCTCGCATCCAGCACAGTGGACCAT 

Lewis lhx5 S-B:  CGACACTGTGGTATGATAAAGAACC 

Lewis lhx5 ATG: TGCACCATCATTCCGCCCTGGAGGG 

Peng and Westerfield lhx5: GTGCGTTGTTCTCACCTGAATCACC. 

Lewis ATG MOs were injected at 2.1µg/µL, 3.02µg/µL and 3.32µg/µL. 

These concentrations were chosen based on previous work in the Lewis lab. p53 

MO was also injected in a mix with the other MOs at 4.0µg/µL to inhibit any 
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nonspecific apoptosis effects. p53 reduces the possibility that the phenotypes 

observed in the MO injections are the result of non-specific toxicity or apoptosis 

(Robu et al., 2007). Lewis S-B MOs were originally injected at 1µg/µL and 

2µg/µL each. It appeared that there was an effect with these concentrations only 

on Lhx5 splicing (see results section). However, Lhx1a and Lhx1b splicing did 

not seem affected by these concentrations. Concentrations of all three MOs were 

increased several 

times to 2.5µg/µL, 

3.0µg/µL, 3.5µg/µL, 

and 4.5µg/µL. No 

visible knock-down 

of RNA splicing was apparent at any of these concentrations by PCR assay. 

Although Lhx5 had originally shown an effect at the 1 µg/µL and 2 µg/µL 

concentrations, it was later shown via RT-PCR that this result was anomalous (see 

results). 

To examine whether the absence of a knock-down was the result of an 

ineffective MO, a second lhx5 MO was injected that had been used successfully 

by Peng and Westerfield (2006). Based on the concentrations suggested by Peng 

and Westerfield (2006), the new lhx5 MO was injected originally at 4.0µg/µL, 

5.0µg/µL, and 6.0µg/µL. The concentrations were subsequently increased to 

6.5µg/µL, 7.5µg/µL, and 8.3 µg/µL. In this case, there appeared to be an effect on 

RNA splicing (see results). 

Figure 14. RT-PCR Protocol Illustrated. Figure based on 

Qiagen One-Step RT-PCR Kit. 
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Wild-type embryos obtained from each pair of zebrafish that laid were 

compared to injected embryos from that same pair to ensure that morphological 

changes were in fact the result of injections. Furthermore, these control embryos 

were also used in the subsequent RT-PCR experiments to maintain a precise 

control throughout.  

 

RT-PCR  

After injecting splice-blocking MOs, I performed a reverse transcription 

polymerase chain reaction (RT-PCR). RT-PCR was utilized to see if the splice-

blocking MOs had fully blocked RNA splicing. To prepare for the RT-PCR, 25 

injected embryos were collected per tube. All of the liquid (embryo medium) was 

removed and the RNA was extracted using 250µLAmbion TRI Reagent®. Next, 

the procedures for homogenization, RNA extraction, RNA precipitation and wash, 

and RNA solubilization were performed according to the protocol listed in the 

Qiagen One-Step RT-PCR kit (figure 14). RNA was re-suspended in 20µLof 

water. 2.4µLof DNAase Buffer (RNase-free DNase) and 2µLof DNase were 

added and the reaction was incubated for 15 minutes at 37°C and then for 10 

minutes at 65°C. 0.5µL RNAsin was then added and the RNA was stored at -

20°C.  

The RT-PCR procedure and reagent volumes were performed according to 

the Qiagen OneStep RT-PCR kit. Primers used were as follows: 

lhx1a rtpcr SB2-3FW TGATGTGTAACAAGCAGCTTTC 

lhx1a rtpcr SB2-3RV AATAACTCGCATGTTGAGTCC 

PCR product= spliced 395bp versus un-spliced 985bp 
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lhx1b rtpcr SB2-3FW ACGTTATGGCACTAAATGTGG 

lhx1b rtpcr SB2-3RV CTGCTTGGCTTTGATTGTAGT 

PCR product= spliced 397bp versus un-spliced 691bp 

 

lhx5 rtpcr SB2-3FW GTTTCATCTCAACTGTTTCACG 

lhx5 rtpcr SB2-3RV ATGTTAAGGCCTGTCTCCTG 

PCR product= spliced 411bp versus un-spliced 3010bp 

The following program was set up on the PCR machine: 

30min 50°C 

15min 95°C 

35X  [30sec 94°C 

45sec 57°C 

60sec 72°C] 

10min 72°C 

 Samples were then run on a 2% TBE agarose gel at 120 volts for 40 minutes. 

 

in situ 

in situ hybridization was performed as described in Concordet et al. 

(1996). To determine neurotransmitter phenotypes, I focused on genes 

corresponding to proteins which transfer or produce specific neurotransmitters 

(Batista and Lewis, 2008; Higashijima, 2004). I used the following probes: glyt2a, 

glyt2b, and pax2.1. glyt2a and glyt2b were used to test whether the knock-down 

of Lhx5 resulted in a change in neurotransmitter fate in these cells. glyt2a and 

glyt2b are markers  of glycinergic cells which would enable me to see whether the 

CiAs retained their inhibitory neurotransmitter fate in the absence of Lhx. pax2.1 

was used because of previous work conducted in mice which suggested a 

relationship between the Lhx and Pax families of transcription factors (Pillai, ). I 
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also decided to use pax2.1 because it was one of my probes that had worked the 

best in previous in situ experiments. 
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Results 

Genotyping lhx1b Mutants 

Developing a method to identify lhx1b mutants was important to my 

project because it not only was more cost effective and time efficient than sending 

fish to sequencing, but also eliminated the number of constructs I had to inject in 

order to knock-down all three Lhx1/5 genes. After examining the sequence of the 

mutation, I determined that there was no restriction enzyme site created or 

removed by the mutation; however, by creating PCR primers that amplified the 

region around the mutation and altered one nucleotide, I was able to introduce a 

restriction enzyme site so that an enzyme would cut in the WT but not in the 

mutant DNA. Creating a primer that did not end on a “T” nucleotide was 

important because it would have been less stringent. Furthermore, I did not want 

the last nucleotide to be the one that changed. The enzymes DraI and PsiI both 

had the potential for introducing their cutting site into the WT DNA. Both PCR 

primers that introduced a nucleotide change were designed to be 28 base pairs in 

length. The G/C ratio and melting and annealing temperature were also 

comparable between both. Therefore, I tested both options. By introducing a 

restriction enzyme site, I eliminated the need to send the DNA from the PCR to be 

sequenced. Instead, I could do a restriction enzyme digest on PCR products and 

run the DNA on a gel. This method is much cheaper and faster than sending the 

DNA to sequence from each lhx1b mutant fish.  
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Table 1. Primer sequences (compared to wild-type) used to identify Lhx1b 

mutants. 

Name  Sequence 

Wild-

type 

GGCGAAGAACTGTACATCCTAGATGAATATAAATTTGTCTGCAAG

GAGGATACTTGAATAACAGCAATGGAAAAGACACAAACCTTCTGT

CAAgtaagtcggtgattttgggccttgtgggcctacatgagataaaatatttacattagacactgaggatacaa

tcaagagtattagtttttcccatctccgtgttcgttaactgcaggcaattggcgggtctttatgaaaatatatgac 

PsiI GGCGAAGAACTGTACATCCTAGATGATTATAAATTTGTCTGCAAG

GAGGATTACTTGAATAACAGCAATGGAAAAGACACAAACCTTCTG

TCAAgtaagtcggtgattttgggccttgtgggcctacatgagataaaatatttacattagacacatgaggatac

aatcaagagtattagtttttcccatctccgtgttcgttaactgcaggcaattggcgggtctttatgaaaatatatgac

actatttattaaaatgtattagtgatacaaaatgcgttgtctgtgtagaatggcattgcatttcgatagacaataggc

ctacatgataatttacgcatgatatttaagtggcctacataacagcttctaaatgtgcttttttacag    

DraI GGCGAAGAACTGTACATCCTAGATGAATTTAAATTTGTCTGCAAG

GAGGATTACTTGAATAACAGCAATGGAAAAGACACAAACCTTCTG

TCAAgtaagtcggtgattttgggccttgtgggcctacatgagataaaatatttacattagacacatgaggatac

aatcaagagtattagtttttcccatctccgtgttcgttaactgcaggcaattggcgggtctttatgaaaatatatgac

actatttattaaaatgtattagtgatacaaaatgcgttgtctgtgtagaatggcattgcatttcgatagacaataggc

ctacatgataatttacgcatgatatttaagtggcctacataacagcttctaaatgtgcttttttacag     

Reverse 

primer 

sequence 

gtaagtcggtgattttgggccttgtgggcctacatgagataaaatatttacattagacacatgaggatacaatcaa

gagtattagtttttcccatctccgtgttcgttaactgcaggcaattggcgggtctttatgaaaatatatgacactattt

attaaaatgtattagtgatacaaaatgcgttgtctgtgtagaatggcattgcatttcgatagacaataggcctacat

gataatttacgcatgatatttaagtggcctacataacagcttctaaatgtgcttttttacag    

* Primer sequence is underlined. Red indicates mutation site. Italics indicates 

nucleotide change site. WT=T; mutant=A. Fragment should be 241 bp.  
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All primers were custom DNA oligos from Integrated DNA Technologies. 

In order to see which 5’ primer was more effective at introducing a restriction 

enzyme site, both possible 

combinations of primers were tested 

on wild-type genomic DNA. The 

enzymes were tested on wild-type 

genomic DNA because the restriction 

enzyme site introduced meant that the 

enzyme would cut in the wild-type 

and not in the mutant. DraI was determined to be the better enzyme because the 

differences between the cut and uncut DNA on an agarose electrophoresis gel, 

while subtle, were more apparent than the DNA cut with PsiI. Based on the results 

from wild-type tests, it was determined that DraI was the better enzyme to 

identify the lhx1b mutants (figure 15). The experiment was then repeated using 

DraI and the fin-clipped DNA. Initially, 4 genotyped fish were also sent to 

sequencing at Cornell University to confirm that the method could correctly 

identify heterozygous and homozygous mutants. 

As discussed in the materials and methods section, I designed a protocol to 

identify lhx1b mutants. This PCR-based genotyping procedure that used specially 

designed primers that introduced a restriction enzyme site into WT, but not 

mutant DNA, was successful in identifying lhx1b mutants. Known wild-type fish 

were used as a control to ascertain that the procedure was working. The shorter 

Figure 15. Demonstrating the effectiveness 

of PsiI vs. DraI. 
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band is the cut WT DNA (you do not see the second fragment because it is too 

small). The longer band is the uncut mutant DNA. On the gel, two bands 

corresponds to a heterozygous fish (figure 16). Heterozygous fish yield two bands 

because one band corresponds to the uncut mutant DNA (the longer one) and the 

second band corresponds to the cut WT DNA band (the shorter one). The protocol 

resulted in clearly distinguishable bands of two different sizes on the gel. This 

protocol was successful because the mutant and WT fish could be differentiated 

from one another, which was confirmed by sequencing.  

In total, 6/22 fish (27.3%) were WT, 3/22 fish (13.6%) were homozygous 

for the Lhx1b mutation, and 13/22 fish (59.1%) were heterozygous for the 

mutation. This is approximately what was expected because of Mendelian 

genetics where ¼ should be homozygous, ¼ should be wild-type, and ½ should be 

heterozygous. A chi squared test equals 1.545 with 2 degrees of freedom which 

gives a p value of 0.4618. The two-tailed P value for this data indicates that the 

Figure 16. Results of Lhx1b Genotyping. Two bands (both the long and the short) 

correspond to heterozygous fish (lane 1, 4, & 9). Lanes appearing like lane 2 were 

WT, as they only had the shorter or weaker band. This could be because of an 

incomplete digest. In this case, it is safer to assume they are WT as opposed to 

heterozygous. Lanes with only the longer band (land 7) were homozygous. 
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difference between the observed and expected percentages of WT/het/hom fish is 

not statistically significant.  

Obtaining a lhx1b homozygous mutant fish was unexpected as fish sent by 

the Sanger Institute are usually the progeny of an outcross. As explained by 

Mendelian genetics, it is impossible to obtain a homozygous mutant from an 

outcross of fish. Therefore, to be sure that the protocol really yielded a 

homozygous mutant, I confirmed the findings from this genotyping procedure by 

sequencing 4 fish at Cornell University (results in figure 16). At first, we were 

concerned that the band on the gel indicating a homozygous mutant could have 

been because 

the restriction 

enzyme did not 

cut properly. If 

this was the case, the absence of the shorter band on the gel may have been an 

experimental error as opposed to an indication that the fish was a homozygous 

mutant. The WT sequencing picture (seen farthest left in figure 17) shows 

residues corresponding to only the A nucleotide as indicated by the red arrow. 

This was what I expected given that a WT fish should be homozygous for the WT 

allele. The homozygous (hom) fish sequencing indicates a T nucleotide in this 

position, consistent with a homozygous mutation. Finally, the heterozygous fish 

has both the homozygous and wild-type nucleotide (both A and T). The 

differences between the sequences for the WT, homozygous mutant, and 

  Figure 17. Sequencing results for 3 separate fish. 
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heterozygous mutant demonstrate that these fish were indeed heterozygous and 

homozygous lhx1b mutants. 

Identifying a homozygous mutant adult fish was a major result because it 

shows that the mutant is homozygous viable. Prior to my work, it was unknown 

whether a lhx1b homozygous mutant fish would be viable. Initially, we were 

concerned that perhaps this mutation did kill some of the fish because the number 

of identified homozygous mutants was lower than the expected number (13.6% 

rather than 25.0%). However, a chi square test comparing homozygous mutants to 

the rest of genotyped fish equals 1.515 with 1 degree of freedom which gives a p 

value of 0.2184. The two-tailed P value for this data indicates that the difference 

between the observed and expected percentages of mutants versus non-

homozygous-mutant siblings is not statistically significant. Moreover, the chi 

square test comparing all mutants (both heterozygous and homozygous) and wild-

type fish equals 0.061 with 1 degree of freedom which gives a p value of 0.8055 

which is not statistically significant so this low frequency of homozygous mutants 

could be due to chance. To test this, I would need to identify more fish and 

increase the numbers. This p value indicates that the difference between the 

observed and expected percentages of homozygous and heterozygous mutants 

versus wild-type is not statistically significant. Based on this data, it does not 

seem that homozygous mutants preferentially die. However, they might 

preferentially die, but I would need a larger sample size to see if the difference 

between the observed and expected numbers of lhx1b homozygous mutant fish 

becomes statistically significant. It is possible that this mutation is not 
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homozygous viable in all individuals perhaps because the mutation automatically 

triggers the DNA for degradation or because the mutation eliminates the 

homeodomain which is lethal to the embryos. 

RNA injection results 

 Three constructs were initially injected: Lhx5Vp16, Lhx5GFP, and 

Lhx5EnR.  Each of these constructs was injected several times as described in 

table 2 at different concentrations with the hopes of optimizing the results. As 

mentioned in materials and methods, I expected Lhx5EnR to act as a dominant 

active construct, Lhx5Vp16 to act as a dominant negative construct, and 

Lhx5GFP to show the endogenous expression pattern (Peng and Westerfield, 

Figure 18. Phenotypic effects of Lhx5EnR RNA Injections.  In (A and B) red boxes indicate 

morphological differences in the eyes. In (C and D), red arrows indicate misshapen tails and 

somites. 
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2006). Furthermore, since the DNA binding domains for Lhx1a, Lhx1b, and Lhx5 

are similar, I expected that these RNA construct might interfere with the activity 

of all three of these transcription factors. The major advantage of RNA constructs 

was that we thought they might affect all three Lhx activities so we could 

potentially knock down all transcription factors using just one reagent. During 

these experiments, I noticed several significant morphological phenotypic 

changes (figure 18).  In the injected embryos, the eyes were clearly less 

pronounced and not well defined. Furthermore, the midbrain/hindbrain boundary 

was not clearly differentiated. Moreover, the somites in the spinal cord of the 

embryo appeared less distinct. Finally, the tail of the embryo was more rounded 

and not as well defined as in the wild-type, un-injected embryos. All of these 

phenotypes were in comparison to a wild-type, un-injected control obtained from 

the same pair of zebrafish that laid the injected embryos. Table 2 below indicates 

the abnormalities seen in the injected embryos as compared to the wild-type 

controls. Each of the constructs appeared to result in similar morphological 

phenotypes. 
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Table 2. Injection results with the original RNA fusion constructs. 

Construct 

Injected 

Concentration 

& volume 

Number 

Injected 

Total 

Dead 

Phenotype Control 

Lhx5EnR 

Lewis 

8.42µg/µL; 

3-4 nL 

70 58.5

% 

(41) 

23 had misshapen bodies, 

distorted somites, and 

misshapen head 

structures. 5 were WT 

looking. 

1 dead; 1 with 

just head and 

yolk; rest 

look WT 

Lhx5EnR 

Lewis 

8.42µg/µL; 

3 nL 

54 48.1

% 

(26) 

17 had misshapen heads, 

bodies, and tails. Some 

tails had kink. Some tails 

were short and stubby. 

One embryo was 

cyclopic. 

8 infertile; 

some had 

small 

chorions 

Lhx5EnR 

Lewis 

8.42µg/µL; 

4 nL 

75 20.0

% 

(15) 

9 were misshapen and 

distorted. 3-4 were WT, 

though 2 had weird eyes. 

Many had small chorions, 

mushed heads, stubby 

trunks, and missing eyes. 

Some embryos had just a 

tail  

*short body phenotype 

15 infertile 

N= 20 

Lhx5EnR 

Lewis 

21.4µg/µL; 

3nL 

30 43.3

% 

(13) 

8 were misshapen, 

distorted, and mostly 

yolk. 3 were very 

misshapen with 

malformed heads. 1 had a 

larger head and no 

distinct eyes. 

3 infertile; 

otherwise 

look WT 

N= 20 

Lhx5Vp16 3.22µg/µL; 

2-3 nL 

70 38.5

% 

(27) 

20 were misshapen and 

distorted. 8 had 

malformed trunks and/or 

heads. 1 was very thin. 

Some embryos exhibited 

trunks that appeared to 

zigzag. 

1 dead; 1 

mush; 1 

deformed 

N= 20 
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Lhx5Vp16 3.22µg/µL; 

2-3 nL 

50 38%  

(19) 

15 were misshapen, 

distorted, and mostly 

yolk. 5 were misshapen 

with malformed heads, 

stubby tails, and no 

distinct eyes. 1 appeared 

WT.  

4 infertile; 

otherwise 

look WT 

N= 20 

Lhx5Vp16 3.22µg/µL; 

3-4 nL 

45 57.8

% 

(26) 

12 were misshapen and 

distorted and mostly yolk. 

1 was very small with a 

narrow body. 3 were 

mush. 3 were WT (but 

two moving significantly 

less so). 1 had a curly tail. 

2 had weird eyes or were 

cyclopic. 

WT looking 

N= 20 

Lhx5Vp16 3.22µg/µL; 

2-3 nL 

50 54.0

%  

(27) 

18 were misshapen and 

distorted and mostly yolk. 

1 was very misshapen and 

disturbed.  6 were WT 

looking. 

WT looking 

N= 20 

Lhx5Vp16 8.17µg/µL; 

4-5 nL 

55 65.5

% 

 (36) 

11 were misshapen and/or 

distorted and mostly yolk. 

8 were funny with some 

being very disturbed. 

Others had just unusual 

body parts. 1 had very 

strange boxy tail and odd 

somites. Finally, 1 

appeared WT. 

WT looking 

N=20  

Lhx5GFP 3.94µg/µL; 

3-5 nL 

50 42.0

% 

(21) 

Many had misshapen 

heads and exhibited 

necrosis. Some had no 

defined heads, stubby 

tails, and misshapen eyes. 

9 died (after 

removing 

infertiles). 3 

mush; 1 with 

funny head 

N= 20 

Lhx5GFP 3.94µg/µL; 

4 nL 

107 7.5

% 

(8) 

Some had weird heads. 

The tails were also either 

absent or kinked/stubby. 

9 with small 

yolks. 

N= 20 
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Lhx5GFP 3.94µg/µL; 

3 nL 

56 25.0

% 

(14) 

6 were misshapen, but 

many were WT looking. 

WT looking 

N=20 

Lhx5GFP 3.94µg/µL; 

3 nL 

76 7.9

% 

(6) 

17 had funny heads and 

several with smaller 

bodies and stubby tails. 

1mush; rest 

WT looking 

N=20 

 

After working with these RNA constructs, I discovered that the wrong 

enzyme for linearizing the template DNA, BssHI, had been entered into the 

database by a previous student. Consequently, the RNA injected into the embryos 

Figure 19. Plasmid map for Lhx5EnR. Red box indicates the sp6 RNA polymerase start 

location. The yellow box indicates approximately where a BssHII site exists within the 

Lhx5 sequence. As shown in the picture, the distance between the sp6 start location and 

the BssHII cut site is shorter than the full length of the insert and does not include the end 

of the Lhx5 coding sequence or the EnR sequence. The blue box indicates where the new 

enzyme I used, SacII, cuts.  
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did not correspond to the intended RNA fusion constructs. All three RNA 

constructs that I initially used were made as a BamHI-Lhx5-EcoRI-

EGFP/EnR/Vp16-Xhol cassette cloned into pCS2+. Only the first 738 nucleotides 

of the Lhx5 coding sequence were used which is equivalent to the first 246 amino 

acids. These 246 amino acids contain two LIM binding domains which are amino 

acids 3-61 and amino acids 62-125. The LIM homeobox is also included in these 

246 amino acids and is amino acids 180-239. Unfortunately, the BssHII site is 

present in the Lhx5 sequence used (figure 19). The BssHII site occurs at 

nucleotides 238-243 of the Lhx5 coding sequence meaning that the last 495 

nucleotides of the Lhx5 sequence in the construct as well as the EGFP/EnR/Vp16 

portions are excised when BssHII is used (figure 19). Therefore, when I was 

making sense RNA to inject, I only was only transcribing nucleotides 1-243. This 

means that I was only including the first LIM binding domain and was not 

including the second LIM domain or the LIM homeobox. As such, the resulting 

RNA I made could have been unstable because it did not include a stop codon or a 

PolyA tail in addition to missing the other aforementioned portions. Although it 

may also have acted as a dominant negative, as the remaining LIM domain may 

have still been able to bind to partner proteins.  

After discovering this mistake, I relinearized the DNA with the correct 

enzyme, which is SacII. However, after linearizing with this enzyme and injecting 

RNA made from these newly cut template DNAs, only wild-type-looking 

embryos were seen, suggesting either that there was a problem with the initial 

DNA preparation, or that the correct construct does not produce morphological 
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phenotypes. In order to distinguish between these possibilities, I performed a new 

midi-prep as per the Qiagen kit instructions from a glycerol stock to obtain a fresh 

DNA preparation. 

Following the midi-prep, I remade and injected the RNA. My initial round 

of injections yielded an apparent phenotype in that the embryos were distorted 

with misshapen heads and bodies. However, my second injection round with this 

new RNA yielded different results (table 3). The third time I repeated the 

experiment the results were the same as in round two, suggesting that either there 

was no effect or that the effect had no visible morphological phenotype. 

Table 3. New RNA injection results. 

Injection 

Round 

RNA 

concentration 

and volume 

injected 

Number 

injected 

Number 

dead 

Comments/Phenotypes Control 

#1 189.9ng/µL 

3nL injected 

 

40 40.0% 

(16) 

17 all yolk/mush; 

unable to be 

dechorionated; 7 

infertile  

7 

infertile; 

WT 

looking 

N= 20 

#2 189.9ng/µL 

3nL injected 

 

45 0.0% 

(0) 

10 were necrotic, 15 

WT-looking 

2 

infertile; 

WT 

looking 

N=20 

#3 189.9ng/µL 

3nL injected 

 

70 2.85% 

(2) 

WT-looking WT 

looking; 

N=20 

 

Using ATG Morpholinos to knock-down Lhx1a/1b/5 function 

Initially the ATG MOs were injected at two concentrations. Mix#1 

consisted of 2.1µg/µL each of Lhx1a, Lhx1b, and Lhx5 as well as 4.5µg/µL of 
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p53 MOs. Mix#2 consisted of 3.32µg/µL each of Lhx1a, Lhx1b, Lhx5 and 

3.84µg/µL p53 MO. In the initial injection round, mix #1 was not concentrated 

enough to yield an effect while mix #2 was too toxic to the embryos. In mix #2: 

the embryos were either dead or too sick to use in an in situ. However, when the 

concentration of each of the lhx1a, lhx1b, and lhx5 MOs was reduced to 

3.02µg/µL and the p53 MO was kept at 3.84µg/µL, the ATG MOs produced 

seemingly promising results in that the embryos survived and showed a 

morphological phenotype. As mentioned above, p53 MO was also added to the 

MO mix in the case of the ATG MO injections. Embryos injected with p53 as part 

of the ATG MO mixture did not appear morphologically different from those 

injected with MO in the absence of p53.  

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

Table 4. ATG Morpholino Results. 

What 

injected  

Concentration

Injected 

Mush  Dead  Funny/ 

Misshapen  

WT-

like  

Total  Control 

MO Mix#1  Lhx1a, Lhx1b, 

Lhx5 @ 

2.1µg/µL each 

and p53 @ 4.0 

µg/µL (~2nL) 

1.92% 

(1) 

3.84% 

(2) 

46.2% 

(24) 

48.1.% 

(25) 

52  WT 

looking; 

N= 20 

MO Mix#1  Lhx1a, Lhx1b, 

Lhx5 @ 

2.1µg/µL each 

and p53 @ 4.0 

µg/µL (~4 nL) 

2.63% 

(1) 

0.0% 

(0) 

47.4% 

(18) 

50.0% 

(19) 

38  WT 

looking; 

N=20 

MO Mix#2  Lhx1a, Lhx1b, 

Lhx5 @ 

3.32µg/µL 

each and p53 

@ 3.84 µg/µL 

(~3nL) 

75.6% 

(34) 

15.6% 

(7) 

8.9% 

(4) 

0.0%  

(0) 

45  WT 

looking; 

N=20 

Middle 

Concentration 

Lhx1a, Lhx1b, 

Lhx5 @ 

3.02µg/µL 

each and p53 

@ 3.84 µg/µL 

(~2nL) 

13.1% 

(14)  

19.6% 

(21) 

67.3% 

(72) 

0.0% 

(0)  

107  WT 

looking; 

N=20 

Middle 

Concentration  

Lhx1a, Lhx1b, 

Lhx5 @ 

3.02µg/µL 

each and p53 

@ 3.84 µg/µL 

(~4nL) 

27.5% 

(11) 

22.5% 

(9)  

50.0% 

(20) 

0.0% 

(0) 

40  WT 

looking; 

N=20 
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Determining whether splice-blocking MOs completely eliminate RNA splicing 

Initially S-B MOs were injected at 1.0µg/µL and 2.0µg/µL. The initial 

concentrations were chosen based on injections conducted previously in the Lewis 

lab with the same constructs.  I injected the S-B MOs into 1-4 cell stage embryos, 

incubated them until they were ~24 hpf, removed their chorions, and put them in 

TRI Reagent®. Next, I followed the RT-PCR protocol detailed in the materials 

and methods section and depicted in figure 13. After extracting the RNA, I 

performed an RT-PCR reaction using specific primer sets. The primers were also 

used on WT cDNA to test that they were working. Furthermore, for each sample, 

two different sets of primers were used: the correct primer set to test for the 

blocking of RNA splicing and a second primer set to test that the RNA was 

viable. For example, if I injected lhx5 S-B MO I extracted the RNA from this 

sample and ran an RT-PCR with two tubes of this sample. In one of the tubes, I 

used lhx5 primers and in the other I used either lhx1a or lhx1b primers. If the 

RNA was viable, the lhx1a or lhx1b primers should always yield a band because 

that transcription factor gene should have been unaffected by the injections. By 

testing the primers in this way, I was checking that the template RNA was viable.  
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The initial results shown in figure 20 indicate that the embryos injected 

with1µg/µL of lhx1b S-B MOs did not produce a band with the lhx1b primers. 

The absence of a band could suggest that splicing has been blocked and the RNA 

is unstable. However, an alternative possibility is that the cDNA synthesis did not 

work possibly due to contamination with RNases during the RNA prep or cDNA 

synthesis.  Both samples injected with 1µg/µL of lhx1b demonstrated similar 

problems as neither the control nor the experimental showed up on the gel. This 

suggests that the lack of bands was indeed due to a problem in the cDNA 

synthesis. In samples from embryos injected with 2µg/µL of lhx1a and lhx1b MOs 

there was also no significant blocking of RNA splicing. However, this conclusion 

was made only by comparing the bands from samples of differing concentrations 

to one another because in these cases the controls did not show up on the gel. This 

may be due to the PCR conditions used. Finally, the samples from embryos 

Figure 20. RT-PCR #1 Lewis S-B MOs. Each lane is labeled with the S-B MO injected and 

the primers used. Example: lane 2 is lhx1b primers on WT DNA. Lanes 1-3 were run to 

check that primers were working as this was the first time they had been used. Lanes 

5, 7, 9, 11, 13, and 15 are controls for lanes 4, 6, 8, 10, 12, 14, respectively.  
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Figure 21. RT-PCR for injection round two with Lewis S-B MOs. Each lane is marked with the 

primers that were used and which sample type they were used on. For example, lane 2 is 

lhx1a primers on lhx1a S-B MO cDNA. Lanes 1, 6, and 11 are genomic controls for lhx1a, 

lhx1b, and lhx5, respectively. Genomic samples did not show up for lhx1a or lhx5 (lanes 1 

and 11).  This may be due to the PCR conditions used. 

injected with 1µg/µL and 2µg/µL of lhx5 MO suggested that the RNA from this 

gene might not be being completely spliced. This was because when the lhx1a 

primers were used on both samples, the bands were clear which indicated that the 

cDNA synthesis had worked and the primers were working. However, in 

comparison, the lhx5 primers yielded weaker bands, with the 2µg/µL band 

appearing weaker than the 1µg/µL band. This trend suggested that as the 

concentration was increased the splice blocking became more severe. 

The same injection concentrations were repeated for Lhx5 to confirm the 

blocking of splicing. The concentrations injected were also increased for all genes 
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because I had not seen a complete knock-down in any case (figure 20). I hoped 

that the results (figure 21) would confirm the original results and that a higher 

concentration might result in a more complete knock-down of Lhx5. Additionally, 

a genomic control was added where primers were run on fin-clipped genomic 

DNA samples as opposed to WT cDNA. This control tested for whether the PCR 

conditions were able to generate a product of the size of the unspliced RNA 

product as well as whether there was genomic contamination in the samples. The 

gel suggested that some splice-blocking might have occurred with the lhx1a MO 

2.5µg/µL and 3µg/µL injections. A second band started to appear that was the 

same size as the un-spliced genomic control. However, there were also similar 

second bands in the controls with lhx1b primers suggesting that the secondary 

bands seen in both the experimental and control might be the result of genomic 

contamination. Genomic contamination can occur when preparing the RNA 

before performing the RT-PCR. In this case, some genomic DNA might have 

been carried through to the final RNA extraction and then used in the RT-PCR. 

As such, a secondary band corresponding to the unspliced genomic control would 

appear. With regards to the Lhx1b samples, secondary bands appeared in both the 

1.0µg/µL and 2.5µg/µL injected cDNA samples. Since the control samples 

appeared normal (did not have bands at the size of the genomic DNA), this 

suggested splicing was being impacted in the samples injected with 1.0µg/µL and 

2.5µg/µL of lhx1b MOs. The Lhx5 genomic control was not visible on the gel, 

suggesting my PCR conditions were not correct to a get a band at the correct 

length for the genomic DNA. Most importantly, the Lhx5 samples did not show 
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the same reduction in band strength as was seen in the initial injection. This 

suggested that either the original results or these results were incorrect perhaps 

because of a difference in injection size, an error in extracting the RNA for the 

RT-PCR, or a problem with the RT-PCR itself in either the first or second round 

of injections. 

Therefore, I performed a third injection experiment to see if increasing the 

concentration of lhx1a MO would result in a more significant knock-down and to 

test which of the different results from injecting lhx5 MO was more likely. The 

results are depicted in figure 22. By increasing the extension time, the lhx1a 

genomic control band became stronger. Unlike in the second experiment, the 

lhx1a injected samples did not demonstrate any knock-down. In this round of RT-

PCR, the Lhx5 genomic control was visible. However, the spliced versus genomic 

Figure 22. Third and final injection results with Lewis MOs. Lanes 1, 6, and 11 indicate 

genomic controls. Lanes 3 and 5 indicate control lanes for lanes 2 and 4, respectively. 

This is because lane 3 is lhx5 primers on lhx1a S-B MO injected which essentially tests 

the viability of the cDNA. Lanes 7 and 9 are control lanes for lanes 8 and 10, 

respectively.  
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unspliced bands were almost identical in size which would make it hard to tell 

whether splicing had been blocked in an experimental sample. Finally, the results 

of the Lhx5 injections were consistent with what had been seen in the second 

experiment, namely that no significant knock-down was visible. Lhx1b injections 

were omitted in this round because the lhx1b mutant was successfully genotyped 

around this same time, eliminating the need to knock-down the transcription 

factor via injections.  

As I hypothesized that Lhx1a/Lhx1b/Lhx5 might act redundantly and I 

might need to knock down all 3 genes to see a phenotype, I injected lhx5 and 

lhx1a S-B MOs together to test whether the combination of the two at their 

highest previously injected concentrations would be lethal to the embryos. Since I 

had not seen a loss of splicing at these concentrations, I knew that I would have to 

increase the concentrations of each of these MOs individually; however, if the 

embryos died when the MOs were combined at their current concentrations then 

there was no point in continuing to increase the dosage. This is because I wanted 

to ultimately inject the MOs together to see a complete knock-down of Lhx1/5. In 

these injections (done twice) 95.0-100.0% of embryos died (see table 5). 
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Table 5. Injection results when lhx1a and lhx5 MOs were injected together. 

MO Injected Concentration Number Injected Number Dead 

lhx1a and lhx5 lhx1a: 4.5µg/µL 

lhx5: 3.5µg/µL 

3 nl injected 

35 100% (35) 

lhx1a and lhx5 lhx1a: 4.5µg/µL 

lhx5: 3.5µg/µL 

3 nl injected 

40 95.0% (38) 

 

Because those injections killed the embryos, I tried a new lhx5 

morpholino. This was a MO that had previously been used by Peng and 

Westerfield (2006). They found that when this lhx5 S-B MO was injected the 

embryos did not have rostral head structures and had misshapen posterior head 

Figure 23. Initial injection results with Westerfield lhx5 MO. Lanes 1 and 2 are genomic 

controls. Lane 2 is weaker because this sample requires a longer extension time. Lanes 4, 

6, and 8 are control lanes because they have lhx1a primers on lhx5 S-B MO injected 

samples. Lanes 3, 5, and 7 are experimental and have lhx5 primers on lhx5 S-B MO 

injected. As indicated by lanes 3,5 and 7, the bands become weaker as the concentration is 

increased. This suggests that splicing is being blocked. 
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structures (Peng and Westerfield, 2006). In my previous injections, I had never 

seen any morphological phenotypes. Therefore, I thought that this Peng and 

Westerfield S-B MO which had previously resulted in such visible effects might 

be a better choice for my research. Based on Peng and Westerfield 2006, the 

initial concentration that I injected was slightly higher than that of the other MOs. 

In the first injection, both genomic controls appeared visible and identical to those 

previously seen in the other injection experiments. Furthermore, as the 

concentration of injected MO increased from 4.0µg/µL to 6.0µg/µL, there 

appeared to be a visible change in the band strength, suggesting that the levels of 

spliced RNA were being reduced (figure 23). In addition to the PCR results from 

this round of injections, I observed some morphological phenotypes in injected 

embryos at 24 hours post-fertilization. The embryos were necrotic with misshapen 

heads and eyes which was similar to Peng and Wsterfield who saw that lhx5 MO 

injected embryos have smaller eyes and heads (Peng and Westerfield, 2006). This 

necrosis was most significant in the heads of the embryos. Retrospectively, it may 

have been a good idea to inject the new lhx5 S-B MO in combination with a p53 

MO; however, I did not initially do this as Peng and Westerfield had only injected 

the lhx5 S-B MO by itself. The somites in the tails were also not well-defined. 

Most notably, the tails were visibly kinked backwards. Finally, and interestingly, 

the embryos were hardly moving as compared to the wild-type controls. 



56 

 

To confirm my findings, I conducted a second round of injections with 

this new MO. This 

time, the highest 

concentration (6.0 

µg/µL) used 

previously was 

reinjected as well 

at two higher 

concentrations, 

6.5µg/µL and 

7.5µg/µL. The 

results as shown in figure 24 confirmed the initial findings: the splicing of lhx5 

seemed to be at least partially blocked. The complete absence of longer bands in 

figure 24 might be because the PCR conditions were not ideal for the longer, 

unspliced PCR product. A second possibility is that when splicing is blocked this 

can make some RNAs less stable. In these cases, the RNA is present transiently 

and is unstable, possibly because this longer length is targeted for degradation.  

 

 

 

 

Figure 24. Second injection results with Westerfield lhx5 MO. All 

samples were injected with lhx5 S-B MO. The letter in parentheses 

indicates the primers used. For example, 6.5μg/uL (5) means that 

lhx5 S-B MO was injected and lhx5 primers were used. 
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As with the previous injection 

round, I observed morphological 

phenotypes. The embryos appeared 

identical to those in the previous 

injections with the new lhx5 MO. 

Again, the most notable phenotypic 

changes were necrosis and misshapen 

heads along with the tail kinked 

backwards (figure 25).  

When I injected the lhx5S-B 

MO a fourth time, I repeated the 7.5µg/µL concentration and also increased the 

concentration to 8.3µg/µL in order to see if the knock-down would be more 

severe. Table 6 shows the results of my fourth round of injections.  

Table 6. Results of fourth round of lhx5 S-B MO Injections. 

MO 

Injected 

Concentration Number 

Injected 

Number 

Dead 

Phenotypes/Comments Control 

lhx5 

MO 

7.5µg/µL 

3 nL injected 

55 14.5% 

(8) 

85.5% (47) had 

misshapen heads and 

somites, had kinked 

tails. 

N=20; 

looked 

WT 

lhx5 

MO 

8.3µg/µL 

3 nL injected 

44 63.6% 

(28) 

36.4% (16) had 

misshapen heads and 

somites, had kinked 

tails. 

N=18; 

looked 

WT 

 

Figure 25. Morphology of WT vs. lhx5 S-B MO 

injected. Embryos at 24 hpf. The lhx5 S-B MO 

injected embryo has a stunted, kinked tail 

and misshapen head structures. 
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I also conducted an RT-PCR in order to assess whether the lhx5 MOs 

knocked-down Lhx5 

(figure 26). My results 

from this RT-PCR 

suggest that when 

injected with higher 

concentrations of lhx5 S-

B MO that splicing is 

completely blocked. As 

seen in figure 26, the 

lanes with samples from 

injected embryos have no 

bands while those acting 

as positive controls still 

have bands. This shows 

that spliced RNA was eliminated in the experimental lanes.  I used some of these 

injected embryos in an in situ to assess the impact of injections on 

neurotransmitters throughout the spinal cord and within the CiA cells in 

particular. However, the in situ was unsuccessful. 

After the in situ was unsuccessful, I decided to inject a final time in order 

to conduct another in situ. In this round, I again injected 8.3µg/µL of lhx5 S-B 

MO. However, unlike in previous injection rounds, I injected into the lhx1b 

Figure 26. RT-PCR on final injection round with highest 

lhx5 MO concentrations. In (control samples in lanes 1 

and 3) where lhx1a were used on lhx5 S-B MO injected 

samples there are still bands representing splicing. 

However, in (2 and 4) which are lhx5 S-B MO injected 

samples with lhx5  primers, there is a visible reduction 

(an absence in this case) of the bands, suggesting that 

splice was blocked. Finally, the genomic sample (lane 5) 

shows up normally, demonstrating that the lhx5 primer 

is working appropriately.  
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homozygous mutant which finally laid embryos in addition to WT embryos. 

Although the lhx1b mutant finally laid embryos that I could use in an experiment, 

all of these injected embryos subsequently died. It should be noted that I only 

saved two of these lhx1b mutant embryos to use as a control. Because only 24 

embryos were laid (table 7), I was eager to use as many as possible for my actual 

experiment. Although these two control embryos survived, I cannot be completely 

sure whether the death was due to my injections or because these mutant embryos 

were sick prior to my injections. I could only be sure if I had more embryos as a 

control. Furthermore, many of the WT injected embryos also died. In the previous 

round of injections with 8.3µg/µL of lhx5 S-B MO, 63.6% (table 6) of the 

embryos died compared to the 88.2% (table 7) that died this time. The increased 

number of dead embryos could be due to the fact that I injected more embryos 

during this last injection round or that the concentration was actually a bit higher 

than I thought. The surviving embryos from this injection were used in an in situ. 

Table 7. Results of final round of injections with lhx5 S-B MO. 

MO 

Injected 

and fish 

line 

Concentration Number 

Injected 

Number 

Dead 

Phenotypes/Comments Control 

lhx5 MO 

into lhx1b 

mutant 

8.3µg/µL 

3 nL injected 

22 100.0% 

(22) 

All embryos died. N=2; 

appeared 

normal 

lhx5 MO 

into WT  

8.3µg/µL 

3 nL injected 

102 88.2% 

(90) 

Embryos displayed the 

same phenotypes as 

my other injected 

embryos (kinked tails 

and misshapen heads). 

N= 40; 

all 

appear 

WT 
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Analyzing expression of Pax2 and Neurotransmitter Markers in embryos with 

reduced Lhx1/5 function 

 I did an in situ on the embryos injected with 3.02 µg/µL each of lhx1a, 

lhx1b, and lhx5 S-B MO and 3.84 µg/µL p53 MO. Unfortunately, these embryos 

were rather fragile and did not make it through the procedure. This is likely 

because they were in proteinase K too long. Proteinase K increases the 

permeability of the membranes in the embryo so that the probes can enter the cells 

and bind to RNA. However, if left too long, the proteinase K can make embryos 

fragile. The amount of time I used was appropriate for WT embryos, but if the 

injected embryos were more fragile to begin with, it may have been too long for 

them. When I completed the in situ and went to analyze the results, I found that 

none of the embryos had made it through the protocol. Instead, I found pieces of 

the embryos and yolks. This is why I think that the proteinase K time was too 

long. 

I also performed an in situ on my embryos injected with 7.5µg/µL lhx5 S-

B MO as well as on the embryos from my most recent RNA injection (table 3). In 

this in situ, I used two glycinergic markers, glyt2a and glyt2b, which correlate 

with transporters that are required to reuptake glycine (Higashijima et al, 2004). 

Based the aforementioned work in the mouse (Pillai et al., 2007), I hypothesized 

that Lhx1/5 might be required to specify an inhibitory neurotransmitter fate in 

CiAs which could be tested using the glyt2a and glyt2b as they are inhibitory 

markers. Additionally, I utilized a pax2.1 probe which encodes for the pax2.1 
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transcription factor (Pfeffer et al., 1998). However, the staining that appeared in 

my in situ was nonspecific and primarily background. This meant that the probes 

had not worked and consequently I had no results from this in situ. 

 As such, I performed a final in situ hybridization with a pax2.1 probe that 

had been kindly prepped and provided by another student in the Lewis lab, Gisella 

Rodriguez-Larrain. I chose to use this probe because I knew that it had worked for 

Gisella in the past. I also knew this would be the last in situ I would have time to 

perform. I hope that using a pax2.1 probe would enable me to answer the question 

of how the Lhx1a/1b/5 and Pax2/8 families of transcription factors interact in the 

zebrafish spinal cord. Furthermore, I was attempting to answer whether Lhx1/5 

and Pax2/8 maintain one another. As such, I expected to see a difference in the 

number of pax2.1 expressing cells in the WT as compared to the control. The 

small dots, most clearly seen in figure 27C, are actually individual cells that 

express Pax. Figure 27C demonstrates that the in situ was successful because 

specific staining can be seen in individual cells throughout the spinal cord. 
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The embryos I used in this in situ were particularly fragile as they had 

been injected with 8.3µg/µL lhx5 S-B MO and their heads and tails were 

misshapen, as shown in figure 25. As such, these embryos made it through the in 

Figure 27. pax2.1 in situ results on WT compared to injected embryos.  (A) and (B) 

were kindly provided by Dr. Lewis. (A) indicates the portion of the spinal cord that 

our lab analyzes. The red dotted lines surrounds the midline and extends upwards 

towards the most ventral cell populations. (B) is a cross-section of the spinal cord and 

indicates the location of the spinal cord relative to the somites and notochord in the 

zebrafish.  In pictures (C) and (D), embryos from the in situ I performed are situated 

with their heads towards the left and their tails to the right.  (C) is a picture of a WT 

embryo I used in my in situ with the pax2.1 probe. The black line indicates the midline 

of the embryo. This picture was taken at 40x magnification.  This picture was included 

to demonstrate that the probe had in fact worked and to show what an ideal picture of 

an in situ looks like. If my injected embryos had been less fragile, I would have taken a 

similar picture with them. (D) is a comparison between a lhx5 S-B MO injected embryo 

and a WT both with the pax2.1 probe. The orientations of the embryos are slightly 

different, but I included this picture so that the obvious differences in the amount of 

cells expressing pax2.1 could be visualized. The orientation was unable to be changed 

because the injected embryo continued to deteriorate as I tried to reorient it. (D) was 

taken at 10x magnification.  
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situ protocol, but when I was removing the yolk to take pictures, I found that the 

embryos deteriorated and were especially hard to mount to take a picture. 

Consequently, figure 27D is not ideal, but still shows that the number of cells 

expressing Pax in the lhx5 S-B MO injected appears to be significantly less than 

in the WT control. This was the case for all five lhx5 S-B MO injected embryos 

that made it through the in situ. The results from my in situ suggest that Lhx1/5 

are related to Pax2/8 in the zebrafish spinal cord which is a novel finding. Based 

on the fewer Pax2/8 expressing cells seen in figure 27D, it is possible that Lhx1/5 

help to maintain Pax2/8 expression in the spinal cord.  This experiment will need 

to be repeated so as to obtain a more ideal picture and to conduct actual cell 

counts. Counting the cells within the spinal cord will enable us to quantify the 

difference that I believe can be seen in these pictures (figure 27D). Although this 

experiment would need to be repeated and cell counts would need to be done, this 

is an exciting result because the effects of knocking-down Lhx5 on Pax2/8 in the 

zebrafish spinal have never been studied and it was unknown whether Lhx1/5 and 

Pax2/8 were related in the zebrafish spinal cord.  
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Discussion 

lhx1b Mutant 

Initially, we were unaware that the lhx1b fish sent to us from the Sanger 

institute were the progeny of a heterozygous incross as the usual practice is to 

send an outcross of a heterozygote. Therefore, it seemed surprising when my PCR 

results suggested that one of the adult fish from this line that I identified was a 

homozygous mutant. We were concerned that this result might have been due to a 

false positive, with the restriction enzyme not cutting the DNA (because WT 

DNA should cut and mutant should not). However, sequencing revealed that this 

fish was indeed a homozygous mutant. This is an exciting result as it shows that 

the lhx1b mutation is embryonic viable.  

By creating a PCR and restriction enzyme protocol to identify the lhx1b 

mutants, I established a way to identify lhx1b mutants in the future and accurately 

separate homozygous and heterozygous fishes from wild-type, without having to 

send DNA from each fish to sequence. However, given the risk of false positives 

(if the DNA does not completely cut), it still might be worth sequencing identified 

heterozygous and homozygous fish. This mutant line is especially valuable in that 

it eliminates the need to inject lhx1b MOs or RNA constructs, making the knock-

down of all 3 Lhx1/5 genes in zebrafish much easier to perform without 

nonspecific toxic effects. 
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 Some of the fish that I identified as wild-type might actually be 

heterozygous for the lhx1b mutation as they have a weak longer (“mutant like”) 

band (example lanes 6 and 11 figure 16). Fish that had any ambiguity were 

compared to the known WT control. In several instances the WT control fish also 

demonstrated weak longer bands (as seen in the last lane with a WT sample in 

figure 16). This could be because of an incomplete digest in the reaction which 

might occur if there is an excess of DNA, leading to the presence of a second 

uncut band. Therefore, fish with a weaker longer band were considered WT and 

fish were only identified as heterozygous if they had two distinct bands, with both 

exhibiting equal brightness. In the case where a “WT” fish had a second band, the 

shorter band was clearly more distinct than the longer, consistent with the idea 

that a small amount of DNA did not cut. Interpreting the results in this way has 

the advantage that we are less likely to wrongly identify a wild-type as a 

heterozygous mutant, which could have dire consequences for our experiments. If 

the bands are not equally strong, then I identified the fish as a wild-type. 

Misidentifying wild-type fish as heterozygous would be much more detrimental 

that misidentifying a heterozygous fish as WT because if we use a WT fish in an 

experiment where we thought we were using a lhx1b heterozygous mutant then 

lhx1b would not actually be knocked-down. While misidentifying a heterozygous 

fish as a WT fish would be a loss because it would mean I have fewer mutant fish 

to work with, I would not be compromising my experiments. In addition, the 

sequencing results as well as the results of the chi square test demonstrate that this 
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rationale for distinguishing between WT and heterozygous fish was probably 

accurate. 

RNA fusion constructs as a method of impacting Lhx1/5expression 

This portion of the experimentation was perhaps the most frustrating in 

that the injections appeared to be yielding significant results, but then I found out 

that the enzyme used initially, BamHII, was cutting in the incorrect location. The 

fact that I still saw phenotypic effects from the injections can be attributed to a 

variety of possible causes. It is possible that the injected RNA still had either 

partial function or dominant active or dominant negative function and, therefore, 

was managing to have some effect on the embryos. However, it is more likely that 

the RNA injected was simply sickening the embryos and had no specific effect on 

any of the Lhx1/5 transcription factors. At times, injections can be toxic to 

embryos simply on the basis that too much foreign material is being introduced.  

 When the correct enzyme was used to linearize the DNA, the embryos 

mainly appeared morphologically WT. This suggested that either there might be 

an issue with the RNA itself or there might not be any morphological effect from 

interfering with Lhx1/5 activity. However, given that the literature suggested that 

injecting fusion constructs did result in phenotypic changes to the embryos, I 

remade the RNA. Unfortunately, the injection results from the newly prepped 

RNA contradicted one another. In one round, there appeared to be a 

morphological phenotype whereas the second injection round yielded no 

morphological phenotype. It is possible that these findings actually recapitulate 
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the earlier findings, with the first RNA synthesis with the correct restriction 

enzyme, that the RNA fusion construct had no morphological effect, meaning that 

there was nothing “wrong” with that RNA after all. However, it is also possible 

that the second injection experiment was anomalous and that there is a real effect. 

A reason for the anomaly could be if I introduced an RNAse (RNA-degrading 

enzyme) into the RNA injected thereby degrading the RNA. Furthermore, it is 

theoretically possible that I pipetted inaccurately and therefore injected a different 

amount of RNA than calculated. The results from the third injection round (table 

3) were consistent with the second round in that the embryos did not exhibit a 

morphological phenotype. Based on these results, I concluded that either these 

injected RNA concentrations do not cause a morphological phenotype and the 

effect can only be seen via in situ hybridization or that the concentration must be 

increased to achieve a phenotype. Although I performed an in situ on the RNA 

injected embryos to assess whether the former or the latter was the case, the in 

situ was unsuccessful and failed to yield any specific staining. As such, the 

injections will need to be performed again and another in situ conducted in order 

to assess the effects of injecting this RNA construct on Lhx1/5. 

ATG MOs as a tool for knocking-down Lhx1/5function 

The embryos obtained from the ATG MO injections were quite fragile. 

Even once the middle concentration was injected, the surviving embryos were 

visibly disturbed and exhibited distorted head structures, misshapen tails, and 

slight necrosis. However, I dechorionated them and put them through the in situ 
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protocol. Despite my best efforts, the embryos did not make it through the in situ 

and only the yolks were left at the end of the experiment. This suggested that the 

proteinase K time should have been reduced so as to allow the probes to 

permeate, but reduce the impact on the embryos themselves. Although I did not 

have time to return to the ATG MOs before completing my thesis, this area is 

certainly one that should be addressed by another researcher in the future. 

S-B MOs as a method for impacting Lhx1/5expression and function 

When injecting the original S-B MOs, as these had not been used before, I 

chose to inject at higher concentrations and titrate down so as to more easily 

discover the maximum effect that the morpholino might have. If I had initially 

tried a low concentration and had not seen splice blocking it would have been 

necessary to increase the concentration until all of the embryos died in order to 

determine the maximum dose and most severe effect. Furthermore, I injected each 

of the three MOs  (lhx1a, lhx1b, lhx5) individually in order to be sure how much 

was required to inhibit splicing of each individual transcription factor gene before 

combining them. However, I also injected the two MOs together knowing  that 

the amount required to knockdown the function of one transcription factor might 

be too toxic when combined and injected with the other two MOs. This was in 

fact the case when two splice-blocking MOs (lhx1a and lhx5) were injected 

together at the maximum single injection experimental concentrations that I had 

tried. As the mix of all two was lethal to the embryos and yet for lhx1a and lhx5 I 

had not seen an effect on splicing at these concentrations, I tried switching to 
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another lhx5 S-B MO that had been reported to work (Peng and Westerfield, 

2006). I tried this MO initially at concentrations suggested by Peng and 

Westerfield and therefore did not try the method I had used for the other S-B MOs 

where I titrated the concentration.  

In my RT-PCR experiments I had very variable results. There are several 

possibilities for these inconsistencies. With regards to the morphological 

variation, one possible reason is that knocking down a single transcription factor 

might have variable or even imperceptible results because the other two 

transcription factors act redundantly and could compensate for the loss. However, 

this applies only to morphological phenotypes. Other reasons may account for the 

differences in splice-blocking PCR results. For example, I hypothesized that the 

PCR band for the RNA in question might get longer or a second unspliced band 

might appear if RNA splicing was blocked. This is because splice-blocking means 

the introns are not removed and the RNA product is therefore longer. 

Consequently, the product would run at a different position on the gel. 

Alternatively or in addition, the WT band might appear fainter, or disappear 

completely if inhibiting of splicing caused the RNA to be unstable. Another 

possibility was that the gel might appear blank. This could have been the result of 

several possibilities. First, the primers might not have worked in the PCR, 

resulting in a lack of product. Second, one of the reagents in the RT-PCR might 

not have worked or splicing was blocked and the RNA was targeted for 

degradation. To try and distinguish between these possibilities, I ran a positive 

control in parallel to each experimental sample in order to fully understand the 



70 

 

results. In order to control for the first possibility in particular, I ran two separate 

reactions with each cDNA sample. In each case, the corresponding primer set was 

used (if I injected lhx5 MO then I used lhx5 primers), but a second reaction was 

also run in which another set of Lhx primers was used as a control to test that 

cDNA was present. I expected that a band would always appear on the gel in the 

lane representing where the non-corresponding primer set was used as this region 

should be able to be amplified and should never be knocked down in the absence 

of the corresponding MO. 

My initial MO injection results seemed promising, suggesting a partial 

knock-down of lhx5. However, the second and third experiments were not 

consistent with this finding. It is possible that the results seen in the first injection 

round were actually the result of some contamination that impacted cDNA 

synthesis. If something had damaged the sample, the band on the gel might appear 

weaker even if the MO was not knocking-down lhx5. However, arguing against 

this explanation, the control bands appeared normal and the effect seemed to 

become more significant as the concentration was increased. These anomalies can 

perhaps be attributed to some other error in the PCR. The absence of any apparent 

knock-down in the subsequence two experiments suggested that the possible 

knock-down observed in the first injection was not a true reflection of the effect 

of the MO. This demonstrated the importance of repeating experiments to check 

that the results are reproducible. 

With regards to lhx1a, it looked like when I injected a higher 

concentration in the second round of injections a knock-down might be occurring. 
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However, when the 3.5µg/µL concentration was repeated in addition to a higher 

(4.5µg/µL) concentration, the results showed otherwise. This suggests that the 

results seen in the second injection round were in fact not accurate. It is possible 

that some of the samples were not completely inserted into the wells of the gel 

and instead settled in neighboring wells. This might also explain the presence of 

secondary bands for the control samples in the second injection round. Moreover, 

it is possible that these samples were contaminated with genomic DNA. As such, 

it was concluded that the lhx1a MOs did not have a significant effect on Lhx1a 

splicing. 

Finally, when I increased the concentration of Lhx1b in the second round 

of injections, it appeared a knock-down was occurring. This was perhaps the 

strongest instance of a possible knock-down as the second bands were appearing 

at the un-spliced genomic size and no longer bands were seen in the control 

samples. The absence of longer bands in the control sample shows that there was 

no genomic contamination. Moreover, the band corresponding to the spliced 

lhx1b sample was more decreased in the 2.5 µg/µL injected sample than in the 1.0 

µg/µL sample. This suggests that as the concentration of injected MO was 

increased the splicing was further inhibited. Furthermore, the secondary bands 

corresponding to the un-spliced lhx1b samples were at the same size as the un-

spliced genomic control for lhx1b. Although the results looked promising, the 

lhx1b MO was not injected during the third round of injections because I had 

successfully genotyped the lhx1b mutant. Instead, I focused on finding the correct 
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concentrations of the remaining two MOs. Regardless, it appears that the 2.5 

µg/µL injection of lhx1b was significantly impacting lhx1b RNA splicing. 

Because the embryos all died when I injected a mix of lhx1a and lhx5 S-B 

MOs at their highest tested individual concentrations (table 5), I decided to try a 

new MO. The reason that 2 embryos lived (table 5) might suggest that these 

embryos received a smaller injection or that they were on the side of the dish and 

had accidently not been injected at all or that less of the MO had traveled from the 

yolk into the embryo. Since all of the embryos died when I injected the mix of 

lhx1a and lhx5 MOs, I tested a new lhx5 MO which was used successfully by 

Peng and Westerfield (2006). The initial injection showed possible knock-down at 

the highest concentration of 6.0µg/µL. Furthermore, the control samples showed 

normal bands, indicating that the PCR reaction was working and the cDNA was 

present. The reason for the weaker lhx1a genomic band in figure 19 is probably 

that this longer PCR product requires a longer extension time. However, I omitted 

the extended time because it had the potential to interfere with the results of the 

other samples. Although the band is weak, it is visible.  

My second round of injections with the new lhx5 MO confirmed my initial 

findings. As compared to the controls, the 6.0 µg/µL, 6.5 µg/µL, and 7.5 µg/µL 

experimental samples yielded weaker bands which indicated a knock-down effect. 

Consequently, Lhx5 can be at least partially knocked-down with a MO injection 

at a of concentration of 6.0-7.5µg/µL and a volume of 3 nl.  
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Furthermore, as mentioned earlier, I also observed a visible phenotype in 

these knock-down embryos which was a tail kinked backwards. Additionally, the 

embryos exhibited severe necrosis in their heads which were misshapen with the 

eyes and mid-brain hindbrain boundary not visible. The phenotype was significant 

in that it resembled the findings of Peng and Westerfield (2006) who found that 

Lhx5 S-B MO injections resulted in “embryos that lack the most rostral part of the 

head [and] posterior head structures”. Moreover, MO injected embryos “later 

develop small heads with small eyes,” a finding similar to my results (Peng and 

Westerfield, 2006). The reason that I decided to try a new MO was because, as 

stated previously, I thought it was key to knockdown all three genes together 

given that they are expressed by the same cells and may act redundantly like 

Pax2a/Pax2b/Pax8 (Gustavo Cerda-Moya, 2011; Batista and Lewis, 2008). 

The results from my fourth round of injections (table 6) suggest that the 

phenotype continues to get more severe as the concentration of lhx5 MO is 

increased. More embryos died in this round of injections as well, suggesting that I 

was approaching the upper limit for these injections. My results demonstrate that 

the splice blocking does get more pronounced as the concentration is increased. 

The bands corresponding to the WT spliced RNA in the injected embryos 

completely disappeared as shown in figure 25 while the control samples yielded 

normal bands on the gel. This means that the MOs successfully affected Lhx5 

RNA splicing. 
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In my final round of injections, I injected into lhx1b homozygous mutant 

embryos (table 7). Until this point, the lhx1b mutant had never laid any embryos 

for me to inject. Injecting into these embryos was exciting in that lhx1b was 

already knocked-down and I therefore expected that the phenotype might be more 

severe when I injected the lhx5 S-B MO. I expected this because, as previously 

mentioned, Lhx1/5 are co-expressed in the same cells and therefore might act 

redundantly (Cerda-Moya, 2011). All of the lhx1b mutant embryos died as a result 

of my MO injections (table 7), suggesting that either the embryos were naturally 

less viable because it was the first time I had gotten the mutant to lay or that the 

concentration of injected MO was too high given that lhx1b was already knocked-

down. However, it is also possible that fully knocking-down both Lhxlb and Lhx5 

is embryonic lethal. This experiment would need to be repeated with varying lhx5 

S-B MO concentrations in order to fully assess the reason these embryos died. 

Analysis of gene expression in embryos with reduced Lhx1/5 activity 

Although my original intention was to investigate the function/s of the 

Lhx1/5 transcription factors, most of my time was spent testing various knock-

down strategies. However, I did attempt to investigate the function/s of the 

Lhx1/5 transcription factors through in situ hybridization. The first two in situ 

experiments that I conducted were rather fruitless in their results. As mentioned, 

in the first in situ many of my embryos were lost, possibly as a result of 

subjecting them to proteinase K for too long which can damage already fragile 

embryos. In the second in situ, I found that my probes failed to yield any specific 
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staining which prohibited me from investigating gene expression in embryos with 

reduced Lhx1/5 activity. However, my most recent in situ had significant results. 

Although the pictures obtained were not ideal, I did see a reduction in the number 

of cells expressing Pax2/8. The differences between the embryos injected with 

8.3µg/µL lhx5 S-B MO and the WT embryos were drastic. This is exciting 

because the results have the potential to recapitulate findings in the mouse that 

indicated that Lhx1/5 help maintain Pax2/5/8 (Pillai, 2007). Furthermore, it 

suggests that Lhx1/5 might have a similar function in the zebrafish. Additionally, 

my findings suggest that there is a relationship between Lhx1/5 and Pax2/8 which 

has never been investigated or proven in the zebrafish. 
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Conclusion 

 My research has successfully assayed the tools available to knock-down 

Lhx1/5 in order to test the function of these transcription factors in the zebrafish 

spinal cord. One such tool was the lhx1b mutant line, which can now be 

successfully genotyped using PCR and specially designed primers as well as a 

restriction enzyme digest reaction utilizing the enzyme DraI. The ability to 

identify lhx1b mutants is a novel contribution as is my discovery that this 

mutation is not embryonic lethal. These discoveries have important implications 

for future research on this topic in that fewer knock-down reagents will need to be 

injected into the embryos in order to test the effects of knocking down all three of 

the Lhx1/5 transcription factors. Ultimately, injecting fewer reagents should 

reduce nonspecific toxic effects on embryos. 

 This project also significantly increased our understanding of how to 

knock down the Lhx1/5 transcription factors. Previously, it was unknown which 

were the best methods to employ. However, it now seems that Lhx1/5 MOs are 

the best option. Although the ATG MOs yielded promising results, this direction 

was not fully explored. However, with the results at hand, it currently appears that 

splice-blocking MOs are the most efficient choice for knocking-down Lhx5. In 

contrast, the RNA results at this point seem inconclusive. Experimentation with 

RNA fusion constructs will also be repeated in the future. Finally, in situ 

hybridization results suggest a relationship between Lhx1/5 and Pax2/8 in the 

zebrafish spinal cord and that Lhx1/5 might be necessary in order to maintain 
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Pax2/8. This result was novel as the exact relationship between Lhx1/5 and 

Pax2/8 had never been explored in the zebrafish. 
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Future Directions 

Although my project yielded many useful results, there remains a great 

deal of work to be completed before the questions are fully answered. One 

potential direction would be to also utilize either GFP lines and/or noi (no-isthmus 

mutation) fish lines to investigate the effects of knocking-down lhx1a/1b/5 on the 

zebrafish spinal cord. The GFP lines would enable the examination of 

morphological changes in specific interneurons within the spinal cord whereas the 

noi line would allow for the study of the effects of knocking down the Lhx1/5 in 

the absence of pax2a. To test whether Lhx1/5 and Pax2/8 have any independent 

functions in specifying neurotransmitter fates, it would be necessary to also knock 

down Pax2b and Pax8 and determine if the phenotype is more severe than either 

Pax2/8 triple knock-down or Lhx1/5 triple knock down embryos. This would be 

difficult to do without the embryos getting very sick as it would involve injecting 

four different MOs. This would be an important experiment because of the 

potential interactions of the Pax and Lhx transcription factor families. With 

regards to injections, the lhx1a ATG MO would be an excellent place to continue 

work as it is still not clear if this is an effective way of knocking down lhx1a or 

not. Although, as this is an ATG MO, it is difficult to test this without an 

antibody. Based on the findings mentioned briefly in this paper, there is the 

potential that lhx1a ATG and lhx5 S-B MO injections into lhx1b mutants would 

yield novel findings. In order to target all three genes, the lhx1a ATG MO could 

be injected into the lhx1b mutant fish in combination with the lhx5 S-B MO that 
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has already been shown to work. My results suggest that our existing lhx1a S-B 

MO is not effective, but new S-B MOs for this gene could be tried. In terms of the 

RNA fusion construct injections, the injection of Lhx5Vp16 and Lhx5GFP should 

be tried as this could lead to significant findings. These constructs were never re-

prepped once the enzyme issue had been resolved as I ran out of time. Finally, the 

most recent in situ experiment should be repeated with embryos injected with 

8.3µg/µL of lhx5 S-B MO as compared to WT. This experiment will hopefully 

recapitulate the aforementioned findings (figure 27C-D). 
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Capstone Summary 

Located in the vertebral column, the human spine is responsible for 

controlling many bodily functions that healthy individuals take for granted. In 

addition to regulating standard body movements and organ operations, the spinal 

cord receives sensory input from the rest of the body about pain and touch. 

Various neurological conditions including neuro-degeneration as well as spinal 

cord injuries result in deficits in these functions. These types of ailments are 

particularly common. A recent survey estimated that 183,000-230,000 people in 

the United States alone suffer from spinal cord injuries (NIH Medline Plus). 

Furthermore, approximately 11,000 new cases of spinal cord injury present each 

year in the United States alone (NIH Medline Plus). Oftentimes these injuries are 

the result of accidents, violence, and sports-related injuries and happen to people 

in the prime of their life (NIH Medline Plus). Currently, there are few treatments 

for these conditions, partly because we know very little about how a fully 

functioning spinal cord is constructed. This means that studying spinal cord 

development, specifically neuron specification and patterning, the subject of my 

thesis research, should ultimately be useful for developing better treatments for 

people with spinal cord injuries and diseases.      

Zebrafish are a prime model organism in which to study spinal cord 

development for a number of reasons. Most simply, zebrafish are a relatively 

inexpensive choice when compared to other standard vertebrate model systems 

like mouse and a large quantity of embryos can be easily obtained from adult fish 
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without harming the parents. In addition, zebrafish have transparent embryos that 

grow rapidly outside of the mother. These characteristics allow us to examine 

central nervous system (CNS) development, including spinal cord development, 

in live embryos.   

Zebrafish are also a useful model organism because the cell shape 

(morphology) of individual nerve cells (neurons) can be examined in live 

embryos. Neurons are the communicating cells of the CNS. Interneurons are a 

type of neuron that helps to relay messages between other neurons and they are 

essential components of most CNS neuronal circuits. My project has focused on 

interneurons.  In zebrafish embryos, interneuron morphology can be examined by 

labeling specific cell types with fluorescent proteins such as GFP. This is difficult 

to do in mammals because the embryos develop inside the mother and are not 

transparent. It is easier to study interneurons and identify them as a particular cell 

type with a specific function in zebrafish. This is because, in addition to it being 

easier to visualize individual interneurons in the externally-developing transparent 

zebrafish embryos, the zebrafish spinal cord has relatively few different types of 

interneurons in comparison to mammals. Furthermore, each interneuron type can 

be easily recognized by its particular morphology. For example, the interneuron 

type studied in my research, CiAs, have a distinct interneuron shape which 

distinguishes them from the others. In addition to the unique morphologies, each 

interneuron type has a distinct neurotransmitter fate.  Neurotransmitters are the 

chemicals within the central nervous system that help neurons to communicate. 

Finally, it is easy to knock down individual gene functions with mutants and other 
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methods in zebrafish, which was particularly important for my project. Various 

reagents can be injected into an embryo via a thin needle in order to knock-down 

gene function. The transparency and rapid development of zebrafish embryos 

enables this experimentation to be conducted relatively easily. 

My project focused on V1 neurons which form in the ventral (abdominal-

side) spinal cord. In zebrafish, V1 cells, which regulate/enable fast movement, 

develop into CiAs or Circumferential Ascending interneurons (Goulding, 2009). 

During spinal cord development, individual cells take on a particular identity 

depending on their location in the spinal cord. Based on this cellular identity, the 

cells have unique characteristics and functions and later develop into distinct 

interneuron types. For instance, distinct ventral interneurons control different 

aspects of movement in the zebrafish  

CiAs have several functions including motor control and sensory gating. 

Sensory gating is the ability to screen for irrelevant sensory input and prevent it 

from interfering with other neurological processes (Burgess and Granato, 2007). 

Various research projects have already been conducted with V1 cells in other 

organisms such as frogs and mice. Results from tadpoles demonstrated that the 

cells correlating to CiAs and V1 cells, called aINs in frogs, are implicated in 

swimming behaviors and sensory gating (Li, et al., 2004). Similarly, V1 cells in 

mice are required for faster movements. When V1 cells were ablated, mice had 

difficulty moving at faster speeds although movement was still possible 

(Gosgnach et al., 2006). The CiA cells in zebrafish are functionally similar to the 

V1 cells seen in mammals (Higashijima, 2004), which makes them an appropriate 
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choice for study considering my goal of aiding in the treatment of spinal cord 

injuries in humans.  

Each interneuron type expresses a unique combination of transcription 

factors. Transcription factors are proteins that bind to DNA and either promote or 

inhibit expression of particular genes. Therefore, investigating the roles of 

transcription factors is key to better understanding how interneuron characteristics 

are genetically specified. Several transcription factors are expressed consistently 

in all vertebrate V1 cells and my research focused on a few of these, namely 

Lhx1a, Lhx1b and Lhx5 (often referred to here as Lhx1a/Lhx1b/Lhx5). My main 

questions were: What are the best reagents to test Lhx1a/1b/5 function? Can I 

identify ways to work with a new Lhx1b mutant line? and What is/are the 

function/s of Lhx1a/1b/5 in the zebrafish spinal cord? In order to answer these 

questions I had to use a variety of experimental techniques. 

  In my research project I primarily used morpholinos (MOs) and RNA 

fusion constructs to knock-down the function of specific transcription factors. 

Morpholinos are synthetic agents that mimic the actions of real RNA; however, 

whereas RNA is the template for creating proteins, MOs stop the production of 

protein. RNA fusion constructs are RNA that has been made from DNA that can 

be injected into an embryo. This RNA can either enhance or repress the 

expression of normal genes because it acts as the new template for creating 

proteins. Both MOs and RNA fusion constructs are reagents that can be injected 

into the zebrafish embryo to knock-down specific protein functions. To “knock-

down” function in these cases, means to eliminate or reduce the presence or 



87 

 

activity of a particular protein. By knocking-down Lhx1a/1b/5, I aimed to assess 

what their functions were within the spinal cord because the processes and/or 

gene expression that they control should theoretically be stopped in their absence. 

I then used a specific experiment called reverse transcription polymerase chain 

reaction (RT-PCR) to determine whether the transcription factors had indeed been 

knocked-down. RT-PCR is a molecular biology tool that enables the creation and 

amplification of DNA from RNA and it can be used, as it was in this case, to 

assess the expression of certain RNAs (and therefore, by inference, the expression 

of the proteins encoded by those RNAs). Finally, I used in situ hybridization to 

examine the effects of reducing Lhx1/5 function in the spinal cord. in situ 

hybridization is an experiment that identifies which cells are expressing particular 

genes. I also utilized the molecular biology technique of polymerase chain 

reactions (PCRs) to identify lhx1b mutants, which are fish in which the lhx1b 

gene is mutated and therefore inactive. Similar to the RT-PCR explained above, 

PCRs are a molecular biology tool used to amplify specific regions of DNA.  

However, in this case, DNA, not RNA, is used as the initial template.  

My research demonstrated that certain reagents, namely MOs, are more 

effective for knocking-down Lhx1/5 in the zebrafish spinal cord than RNA fusion 

constructs. I also developed a way to successfully identify lhx1b mutants. 

Developing a method to successfully identify lhx1b mutant fish is important 

because it eliminates the need to knock-down lhx1b with reagents such as 

morpholinos or dominant negative constructs, which are inherently more variable 

and more likely to have non-specific effects than a mutation. These results are 
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important because they will enable future researchers to perform more in depth 

experiments concerning the function of these transcription factors. Without a 

successful knock-down, neither I nor anyone else would be able to ultimately 

investigate the function of Lhx1/5. With a better understanding of the knock-

down reagents comes the ability to determine the functions of Lhx1/5. Being able 

to better understand these transcription factors and the roles they play in the spinal 

cord has the potential to translate into important medical applications to help 

spinal cord regeneration. Preliminary data suggests that Lhx1/5 are involved in 

maintaining another family of transcription factors, Pax2/8. However, this 

relationship will need to be further investigated and other experiments will need 

to be performed to fully understand Lhx1/5 function. 
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