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Abstract 

 

The total number of oocytes that an individual will have available for 

reproduction is defined at birth.  This established oocyte pool is essential to 

fertility, as a female loses oocytes throughout her life and never makes more.  In 

the mouse, germ cells form in the fetus and migrate to the gonad, where they 

undergo mitosis and are referred to as oogonia.  These cells are in germ line cysts, 

which are clusters of germ cells connected by intercellular bridges that form by 

incomplete cytokinesis.  Germ cells in the human also develop in clusters with 

characteristics of cysts. The cells within the cysts soon begin to enter meiosis, and 

are now referred to as oocytes. Around post natal day (PND) 2, the cysts undergo 

a process called cyst breakdown, in which the oocytes break apart and become 

surrounded individually by granulosa cells. The mechanism of cyst breakdown is 

currently under investigation, as cysts that fail to properly break down often result 

in multiple oocyte follicles, which develop abnormally. The regulation of cell 

adhesion molecules (CAMs) likely plays a role in the process of cyst breakdown, 

and a hamster model has found two specific CAMs expressed in the ovary during 

egg cell development, E-Cadherin and N-Cadherin. The presence and location of 

these CAMs, as well as their role in cyst breakdown and follicle formation in the 

mouse, is being investigated in this study. 

 Three different experimental techniques were used in order to determine 

the role of E-Cadherin and N-Cadherin in cyst breakdown and follicle 

development in the mouse. First, immunicytochemistry was used in order to 

visualize the proteins in the mouse ovary. Then, organ culture experiments were 

performed in order to block these proteins during PND1-5 to determine their 

function. Finally, western blots were performed in order to determine protein 

expression levels of E-Cadherin and N-Cadherin during development. 

 From these experiments, it can be concluded that both E-Cadherin and N-

Cadherin are expressed during development from 17.5 days post coitum (dpc) to 

PND5. E-Cadherin expression is higher in the cytoplasm of oocytes than in the 

granulosa cells. Starting at PND2, E-Cadherin is also expressed in the cell 

membrane of the oocytes, and is localized to certain spots within the membrane. 

The location of N-Cadherin expression within the ovary was unable to be 

determined from the immunocytochemistry experiments. Overall, N-Cadherin 

expression is higher in the neonatal ovary than E-Cadherin expression. Also, E-

Cadherin expression increases from PND1 to PND3 and N-Cadherin expression 

increases from 17.5dpc to PND5. 
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Introduction 

An organism is said to be biologically successful if it can reproduce and 

produce viable offspring. The process of egg cell development, called oogenesis, 

is necessary for a female to reproduce. As a result, defects in this process may 

interfere with the proper development of a female’s eggs and cause her to be 

infertile, or unable to conceive.  Close to seven million women in the U.S. have 

an impaired ability to conceive (CDC, 2012), which can cause emotional and 

psychological impacts such as depression and anxiety. While there are several 

different potential causes of infertility, defects in oogenesis during development 

likely cause infertility in some cases. Understanding how egg cell development 

works, as well as factors that influence the process of egg cell development, can 

help to prevent and/or treat cases of infertility. While various aspects of oogenesis 

have been thoroughly studied, there are several mechanisms of this developmental 

process that are still poorly understood. 

The total number of oocytes that an individual will have available for 

reproduction is defined at birth (Pepling, 2006).  These egg cells are essential to 

fertility, as a female loses oocytes throughout her life and never makes more. In 

the mouse, which has a very similar genome to the human, primordial germ cells 

form in the embryo and migrate to the genital ridge, where they undergo mitosis 

and are referred to as oogonia.  Because these cell divisions undergo incomplete 

cytokinesis, all cells remain connected by intercellular bridges. These clusters of 

oocytes are known as germ line cysts (Pepling and Spradling, 1998). The cells 

within the cysts divide by mitosis until about 13.5 days post coitum (dpc), when 
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they enter meiosis. At this time, the cells are referred to as oocytes, and they arrest 

from cell division when they reach the diplotene stage of prophase I. 

The timeline and mechanisms of oogenesis have also been extensively 

researched in Drosophila. Germ cell cysts in Drosophila contain sixteen 

interconnected cells that form as a result of incomplete cell divisions as well as 

the formation of intercellular bridges known in the fly as ring canals in between 

all of the cells in the cyst (Pepling et al., 1999).  One germ cell in the cluster will 

go on to become the oocyte, while the rest are called nurse cells and transport 

mitochondria and mRNA to the developing oocyte via microtubules that pass 

through the ring canals (deCuevas et al. 1997). It is speculated that a similar 

process occurs in the mouse, because endoplasmic reticulum and mitochondria 

were identified in the intercellular bridges of cysts in the mouse ovary (Pepling 

and Spradling, 2001). 

 There has been speculation as to the purpose of cyst formation in egg cell 

development, as cysts have been conserved through evolution in both 

invertebrates and vertebrates, including additional organisms to the mouse and 

Drosophila (Pepling et al., 1999).  Perhaps cysts provide the benefit of 

synchronizing development of a small group of germ line cells (Pepling and 

Spradling, 1998). The cyst also provides proximity to allow the cells to use 

certain gene products from their neighboring cells.  Another possible reason for 

cyst formation is to allow for early specialization, as certain cells within the cyst 

may acquire necessary materials from other cells, which may later enter apoptosis 

(Pepling and Spradling, 1998). 



 

 

Starting around 17.5 days post coitum (dpc)

process called cyst 

and become surrounded individually by granulosa cells (Pepling & Spradling, 

2001; Pepling et al

result of apoptosis of a few cells within

(Figure 1).   

 

 

 

 

 

Figure 1. Model for Cyst Breakdown. Surviving oocytes are shown in yellow, 

dying oocytes are shown in green. Adapted from 

 

In fact, a correlation has been found between germ cell loss and cyst break down 

(Figure 2), and also between germ cell loss and apoptosis 

 

 

 

 

 

 

Figure 2. Timeline for Germ Cell Development in the Mouse. Adapted from 

Pepling, 2006. 

 

Starting around 17.5 days post coitum (dpc), the cysts begin to undergo a 

process called cyst breakdown, in which the oocytes within the cysts break apart 

and become surrounded individually by granulosa cells (Pepling & Spradling, 

et al., 2010).  This breakdown process is thought to occur as a 

result of apoptosis of a few cells within the cyst, causing the cyst to break apart 

Model for Cyst Breakdown. Surviving oocytes are shown in yellow, 

dying oocytes are shown in green. Adapted from Pepling and Spradling, 2001.

In fact, a correlation has been found between germ cell loss and cyst break down 

(Figure 2), and also between germ cell loss and apoptosis (Pepling and Spradling,

Timeline for Germ Cell Development in the Mouse. Adapted from 
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2001).  The timing of primordial follicle formation was also found to coincide 

with these processes. In mice, the stepwise cyst breakdown process occurs most 

substantially from postnatal day (PND) 2 to PND4, but this process is not 100% 

complete by PND4. In fact, small cysts of two to four cells were found in the 

ovaries of mice as old as PND8. It is evident that cyst breakdown is a 

programmed step in oogenesis. And while many aspects of cyst breakdown have 

been extensively studied, there are several mechanisms of the process that are not 

yet completely understood. 

Once a single oocyte leaves the cyst, it becomes surrounded by granulosa 

cells, and this whole group of cells is referred to as a primordial follicle. The 

primordial follicle develops into a primary, secondary, and tertiary follicle, which 

are distinguished based on changes in the shape and number of layers of 

granulosa cells surrounding the oocyte in the follicle (Matzuk et al., 2002). In a 

primordial follicle, the granulosa cells surrounding the oocyte are flat in shape. In 

a primary follicle, the granulosa cells have taken on a cuboidal shape. When 

multiple layers of cuboidal-shaped granulosa cells surround the oocyte, it is 

known as a secondary follicle, and the oocyte itself has grown in size. Additional 

stages of development prepare the mature follicle to be released during ovulation, 

when the time comes.  

In a variety of mammals, a decrease in germ cell number at a point in 

development has been evidenced.  In the human, about seven million oocytes 

form during initial development, but by birth, only about two million have 

survived (Baker, 1963).  In the mouse, the oocyte number has been found to drop 



 

 

from about 6,000 to about 2,000 over a two

While this germ cell loss has been shown to correlate 

cyst breakdown in the mouse, there have been additional 

explain the decrease in germ cell number that has been found i

as well.  Perhaps the surviving oocyte depends on the other germ cells in the cyst 

to transport materials via microtubules that are necessary for survival and viability 

(Pepling and Spradling, 1998). In 

the cyst occurs because the surrounding cells, called nurse cells, transport 

materials to that one surviving oocyte (Pepling and Spradling, 2001). Another 

hypothesis suggests that the decrease in germ cell number is necessary to 

eliminate germ ce

cells have high quality mitochondria. 

Failure of a cyst to properly breakdown can lead to multiple oocyte 

follicles, which develop abnormally and may lead to infertility.  While a normal, 

viable follicle consists of a sing

(Figure 3 left), a multiple oocyte follicle consists of more than one oocyte within 

one follicle (Figure 3 right), both or all oocytes

cells (Pepling, 2006). The oocytes in mul

abnormal shape and size, and are not viable for reproduction. 

 

 

 

 

 

 

 

from about 6,000 to about 2,000 over a two-day period during development.  

While this germ cell loss has been shown to correlate with apoptosis resulting in 

cyst breakdown in the mouse, there have been additional hypotheses

explain the decrease in germ cell number that has been found in other mammals 

as well.  Perhaps the surviving oocyte depends on the other germ cells in the cyst 

to transport materials via microtubules that are necessary for survival and viability 

(Pepling and Spradling, 1998). In Drosophila, determination of the oocy

the cyst occurs because the surrounding cells, called nurse cells, transport 

materials to that one surviving oocyte (Pepling and Spradling, 2001). Another 

hypothesis suggests that the decrease in germ cell number is necessary to 

eliminate germ cells containing chromosome abnormalities and to ensure that all 

cells have high quality mitochondria.  

Failure of a cyst to properly breakdown can lead to multiple oocyte 

follicles, which develop abnormally and may lead to infertility.  While a normal, 

viable follicle consists of a single oocyte surrounded by several granulosa cells 

(Figure 3 left), a multiple oocyte follicle consists of more than one oocyte within 

one follicle (Figure 3 right), both or all oocytes surrounded by several granulosa

cells (Pepling, 2006). The oocytes in multiple oocyte follicles may develop with 

abnormal shape and size, and are not viable for reproduction.  

Figure 3. Normal (left) and 

Abnormal (right) Follicle 

Formation in the Mouse. All 

nuclei stained red with propidium 

iodide, cytoplasm of oocytes 

stained green 

STAT3. Adapted from 

2006. 
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Among studies on cyst formation and breakdown, hormones have been 

found to influence these processes. More specifically, steroid hormones have been 

found to play a role in the process of cyst breakdown to form individual single 

oocyte follicles (Chen et al., 2007).  Multiple oocyte follicles were present in the 

adult ovaries of mice that were treated with estrogens as neonates (Jefferson et al., 

2002). In addition, estradiol, progesterone, and genistein were found to inhibit 

cyst breakdown and primordial follicle formation, but treatment with these 

hormones had no effect on oocyte number (Chen et al., 2007). 

Since cyst formation and break down play such important roles in the 

production of viable egg cells, it is important to understand all mechanisms 

involved in these processes in order to better understand the molecular basis of 

infertility. It is understood that cysts form as a result of cell division without 

cytokinesis, and that the cells within the cysts are connected by intercellular 

bridges. But researchers have found an additional player that may help hold 

together the cells within the cysts: cell adhesion molecules (CAMs). CAMs are 

proteins that play a role in cell adhesion. When these proteins are expressed, they 

migrate to the cell membrane where they anchor so that they can bind to a CAM 

on another cell, holding the cells together. Cell adhesion molecules play a large 

role in organ formation during embryogenesis (Cell Adhesion Molecules, 1997). 

They are made of an intracellular domain, which attaches to the cytoskeleton 

inside the cell with the help of other proteins, a transmembrane domain, which 

sits within the membrane, and an extracellular domain, which acts as a receptor 

for other CAMs to bind to in order to adhere the two cells together.  Cytoplasmic 
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actin and intermediate filaments play a role in cell adhesion by providing the 

CAMs with a base to anchor onto in addition to the membrane of the cell 

(http://www.vivo.colostate.edu/hbooks/cmb/cells/pmemb/adhesion.html).  

There are many different types of CAMs, but the specific CAMs that I 

have focused on in my project are cadherins, which are calcium-binding cell 

adhesion molecules. Cadherins depend on calcium to function, as they contain 

calcium-binding sites in their extracellular domain. Cadherins have been found in 

a variety of organisms throughout evolution, including vertebrates, insects, 

nematodes, and a few unicellular organisms (Halbleib and Nelson, 2006). Over 

100 members of the cadherin family have been identified, all containing the 

characteristic extracellular cadherin repeats. Cadherins are important in a wide 

variety of biological functions within organisms, and therefore their absence or 

defective expression can be correlated with a variety of diseases. A hamster 

model has suggested the presence of two specific cadherins, E-Cadherin and N-

Cadherin, in egg cell development. The role of these two cadherins in mouse 

oogenesis is the focus of my research project, as the cDNA and amino acid 

sequences for both E-Cadherin and N-Cadherin in the hamster are more than 

ninety percent similar to those in the mouse and the human (Roy and Wang, 

2010). 

E-Cadherin and N-Cadherin are categorized into a group called type 1 

classical cadherins, and their full names are epithelial cadherin and neuronal 

cadherin, respectively (Halbleib and Nelson, 2006). The names of the genes for 

these proteins are cdh1 (E-Cadherin) and cdh2 (N-Cadherin). The extracellular 
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domains of these proteins contain five calcium binding extracellular cadherin 

repeats, which usually participate in homophilic adhesion, meaning they bind to 

other cadherins.  

The current speculated model for the role of cell adhesion molecules in 

cyst formation and break down is that certain CAMs play a role in holding 

together the cells within cysts and that these CAMs must be down regulated in 

order for the cyst to break apart. In addition, it is thought that another set of 

CAMs, perhaps the same ones, play a role in holding together oocytes and 

granulosa cells in follicles. In the hamster, E-Cadherin was found in oocytes, and 

its expression was found to decrease coinciding with primordial follicle 

formation, suggesting a role in the maintenance of cells in cysts and the regulation 

of cyst breakdown (Roy and Wang, 2010). Results of neutralization experiments 

in the hamster lead to a conclusion that a decrease in E-Cadherin expression is 

necessary for cysts to break down. N-Cadherin mRNA expression was 

proportionately higher than E-Cadherin mRNA expression in the hamster. N-

Cadherin expression was found in the oocytes as well, but expression moved to 

the granulosa cells adjacent to the oocytes as development progressed, suggesting 

a role in somatic cell congregation with the oocyte during cyst breakdown and 

follicle formation and growth. Further, neutralization of N-Cadherin lead to 

significantly reduced follicle formation. My research on these cadherins was 

performed in order to determine the specific roles of these proteins in mouse 

neonatal oocyte formation (Figure 4). 
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Figure 4. Model for the role of E-Cadherin and N-Cadherin in holding cells 

together in cysts, allowing cysts to breakdown, and holding cells together in 

follicles. Pink cells are oocytes, blue cells are granulosa cells. Adapted from 

Pepling, 2006. 

 

 

E-Cadherin is thought to play a role in germ cell aggregation in the fetal 

mouse gonad, and was found to be expressed early in development at ages 

11.5dpc, 12.5dpc, and 13.5dpc (Mork et al, 2012). My project researches the role 

of E-Cadherin in mouse neonatal oogenesis more extensively, and also looks at 

the role of N-Cadherin in this process in the mouse. I focus on the timeframe of 

cyst breakdown (about 17.5dpc to PND4) to determine if the two cadherins play a 

role in the breakdown of cysts to form follicles.  

My first aim is to determine the presence and location of E-Cadherin and 

N-Cadherin in the mouse ovary during cyst breakdown. More specifically, to 

determine which cadherin(s) is/are expressed in oocytes in cysts and which is/are 

expressed in oocytes and granulosa cells during follicle formation. I am also 

looking at the location within the cell of the expression of these two proteins. My 

second aim is to determine the effects of blocking E-Cadherin and N-Cadherin on 

cyst breakdown. My third aim is to determine protein expression levels of E-

Cadherin and N-Cadherin during cyst breakdown.  
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Materials and Methods 

 

Animals 

 

The mice used in all of these experiments were the C57BL/6 inbred strain, 

also known as the B6 strain. The mice were maintained by the animal resource 

facility at Syracuse University, with the help of the members of the Pepling lab. 

Each Monday after 2:00pm, up to two females were placed in a cage with one 

male for mating. Only females from the same litter were mated with the same 

male. Each morning prior 10:00am on Tuesday through Friday, the females were 

checked to determine if mating had occurred since the previous day. This was 

done by checking for the presence of a vaginal plug. If the plug was present, the 

female was separated from the male and the “plug date” was recorded. Litters 

were only used for experiments if the plug date was recorded. In other words, if a 

female that was not found to have a plug still ended up having a litter, the litter 

could not be used because the exact time of conception was unknown. The female 

then remained in her own cage during pregnancy, and 19.5dpc was marked as the 

day of birth, or PND1.  

 

Dissection 

 

Dissection of the ovaries from the neonatal or fetal mice was the first step 

in all experiments.  The mice that were used ranged in age from 17.5dpc to PND5. 

The neonates were removed from the cage with their mother on the appropriate 

day for dissection. A Nikon SMZ1500 dissecting microscope was used to help 

locate and remove the ovaries. Dissection was done in a petri dish containing 1x 

phosphate buffered saline (PBS) solution, and the dissected ovaries were then 



 

12

 

 

transferred to a 1.5mL ependorf tube containing room temperature fix, which is 

made of 400µL of PBS and 200µL of 16% formaldehyde. The ovaries remained 

incubating in the fix solution overnight on a nutator at 4°C. 

 For fetal dissection, the mother was first euthanized in a carbon dioxide 

chamber. The fetuses were then removed from her uterine horns and separated 

from the surrounding embryonic tissue. All other steps remained the same as the 

neonatal dissections. 

 For organ culture experiments, the dissections were done in Hank’s 

Balanced Salt Solution instead of PBS. The dissected ovaries were transferred 

into wells filled with Hank’s Balanced Salt Solution on ice instead of ependorf 

tubes filled with fix. 

 For western blot experiments, the ovaries were dissected in PBS and 

transferred to an ependorf tube filled in PBS on ice. 

 

Whole Mount Antibody Staining of Fetal and Neonatal Mouse Ovaries 

 

 The staining procedure was done following a protocol developed by the 

Pepling lab based on protocols from the Spradling lab, N. Patel, H. Lin, B. Capel, 

and the CSH mouse course. After dissecting out the ovaries and incubating them 

in fix overnight, two quick washes followed by a 30 minute wash (on nutator) 

were done using 1mL PT (1X PBS/0.1% Triton X-100). The ovaries were then 

incubated in 1mL PT + 5% BSA (bovine serum albumin; made using 50mL PT 

and 2.5g BSA) for 30 minutes to one hour at room temperature or overnight at 

4°C on the nutator. The next step was to incubate the ovaries with the primary 

antibody overnight at 4°C on the nutator. The primary antibody was first diluted 
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in 500µL PT + 5% BSA. The dilution factor depends on the specific antibody. 

When using STAT3 (oocyte marker) as the primary antibody, 1µL was used in 

500µL PT + 5% BSA (1:500 dilution). When using N-Cadherin or E-Cadherin as 

the primary antibody, 5µL were used in 500µL PT + 5% BSA (1:100 dilution). 

The first antibodies purchased from BD Transduction Laboratories for N-

Cadherin (610920) and E-Cadherin (610181) did not stain well, so new stainings 

were done using antibodies from Invitrogen. The monoclonal antibodies used 

from Invitrogen were mouse anti-N-Cadherin (333900) and rat anti-E-Cadherin 

(131900), so the fluorescent secondary antibodies used against these primary 

antibodies were anti-mouse alexa 488 (green) and anti-rat alexa 488 (green), 

respectively. These secondary antibodies from Molecular Probes were pre-

absorbed overnight at 4°C on the nutator while the ovaries were incubating in the 

primary antibodies. The secondary antibodies (2.5µL) were pre-absorbed with a 

pinch of embryo powder in 500µL PT + 5% BSA. The tubes were wrapped in foil 

to prevent damage from light. The following day, the primary antibody solution 

was removed and the ovaries are washed in 1mL PT + 1% BSA (made using 

50mL PT and 0.5g BSA) for 30 minutes at room temperature on the nutator. They 

were then incubated in RNase A (10µL of 10 mg/mL RNase A in 1mL PT + 1% 

BSA) for 30 minutes on the nutator. The next step was to incubate in propidium 

iodide (10µL of 0.5 mg/mL PI in 1mL PT + 1% BSA) for 20 minutes at room 

temperature on the nutator in the dark. From this point on, the tube was always 

covered in foil. Following another 30 minute wash in PT + 1% BSA, the ovaries 

were incubated in the pre-absorbed secondary antibody overnight at 4°C or for 2-
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4 hours at room temperature on the nutator. The next day, three washes were done 

at room temperature on the nutator for 30 minutes each using 1mL PT + 1% BSA. 

For the final steps, the ovaries were washed with 1mL PBS and transferred to a 

slide, sitting in Vectashield under the cover slip. The slides were always labeled 

with sex, age, antibodies used, date and my initials. Nail polish was used to seal 

the cover slip, and the slides were put in the dark to dry for 10 minutes. They 

were then stored at -20°C. 

 

Confocal 

 

 The slides were analyzed using the LSM 710 Confocal Microscope. This 

microscope, connected to a computer, uses a laser to take images of different 

layers of the ovary. The images from the microscope displayed on the computer 

show propidium iodide (red dye) staining all of the nuclei in the ovary. The 

images also light up green (because of the fluorescent secondary antibody) where 

the protein of interest is present in the cells. The 10x magnification was used to 

focus on the ovary, but the images were taken at 63x magnification using oil. The 

Zen program on the computer was used to capture the images, and they were then 

saved onto a disc for further analysis and use of the images. A special tool called 

Z-stack was used for organ culture analysis on the confocal, explained below. 

 

Organ Culture 

 

 The organ culture experiments were performed in order to test the function 

of E-Cadherin and N-Cadherin in cyst breakdown and follicle formation. During 

all steps of the organ culture, the tools and surfaces used must be extremely sterile 
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in order to prevent contamination. When making solutions and during dissection, 

70% ethanol was used to clean the lab bench, all tools, and gloved hands. All 

surfaces were also sprayed down in the organ culture room, in addition to the 

microscope and incubator (inside and out). A hood with UV light was also used to 

sterilize tools for 30 minutes prior to touching the organ culture plates, but the 

treatment media should not be exposed to the UV light, as it can damage the 

antibodies.  

The first step in the organ culture was to make the stock media, which 

should be made no more than one day before the start of the culture. One 

component of the media was L-ascorbic acid, which was made by dissolving 

0.0025g of 0.05mg/mL L-ascorbic acid in 10mL DMEM (pre-made, ordered from 

Invitrogen). The next component was 0.5mL of 10% Albumax stock solution, 

which was made my dissolving 1g of Albumax in 10mL of autoclaved Millipore 

water. The next three components in the stock media were 667µL of 7.5% BSA, 

2.5mL of 100x ITS-X (insulin, sodium transferring, sodium selenite, 

ethanolamine), and 32.5µL of penicillin/streptomycin antibiotics. DMEM media 

was then used to bring the solution up to 50mL. 

Once the stock media was made, the treatment media was made by 

transferring 5mL of the stock media to a 15mL tube and adding 50µL of the 

blocking antibody for a 1:100 dilution (either anti-E-Cadherin or anti-N-

Cadherin). These blocking antibodies were purchased from Takara Bio Inc. (anti-

E-Cadherin AC01520C and anti-N-Cadherin AA11505Z). All media was stored at 

4ºC. 
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The next step was to prepare the incubator and plates for the organ culture. 

The incubator was set to 37ºC and 5% CO2 at least three hours before the start of 

the culture. The inside and outside of the incubator were sprayed with alcohol, 

and all of the removable parts were placed under the hood and exposed to UV 

light for 60 minutes. All tools to be used in the organ culture (plates, filters, stock 

media, pipettes and tips, forceps, etc.) were placed under the UV light for 

sterilization as well. Once sterilized, the parts were returned to the incubator and 

the water pan was filled with autoclaved Millipore water (just enough for the 

entire surface of the pan to be covered in water). To prepare the organ culture 

plate, Millicell floating filters were first cut into quarters using a scalpel. Then, 

400µL of control media were pipetted into the two left wells (labeled “C”) and 

400µL of treatment media were pipetted into the two right wells (labeled “E-Cad 

or N-Cad”). One cut filter was then placed on top of the media in each well, and 

the microscope was used to ensure the filters were floating. The plate was then 

placed into the incubator to warm up while the dissection occurred. 

The dissection was done in the same way as for the stainings, with a few 

changes. The area was sterilized with alcohol and the ovaries were dissected in 

Hank’s Balanced Salt Solution and transferred to wells filled with Hank’s solution 

on ice. It is important to remove all tissue from around the ovaries so they do not 

stick to the forceps during transfer. 

The ovaries were then transferred from the Hank’s solution to the filters in 

the organ culture plate wells. Two pairs of forceps were used for the transfer. The 

first pair was used to scoop up the ovary out of the Hank’s solution. The ovary 



 

17

 

 

was then transferred to the second pair of forceps and the first pair was wiped 

until dry using a kimwipe. The ovary was then transferred back to the dry forceps 

and placed onto a filter in the plate. Finally, the forceps were used to place a small 

drop of media on top of each ovary. Between 2 and 4 ovaries could be placed on 

each filter (mine never had more than 3 each). The plate was then placed back 

into the incubator to sit overnight. 

The following three days around the same time, the media was replaced by 

simply drawing out the old media and adding new media to the wells. On the fifth 

day, the ovaries were transferred from the plate to two different ependorf tubes, 

one for control ovaries and one for treatment ovaries, both filled with 600µL of 

fix. 

The normal staining procedure was then followed. The ovaries were 

stained with STAT3, an oocyte marker, in order to be analyzed for differences in 

cyst breakdown and follicle formation, including total oocyte count, number of 

oocytes in cysts, and number of primordial, primary, and secondary follicles 

formed. 

 

Organ Culture Analysis (Counting Oocytes) 

 

The confocal microscope was used to obtain images of different layers of 

the ovary in order to determine if blocking E-Cadherin and N-Cadherin had an 

effect on oogenesis. The z-stack function on the microscope aided in taking 

images of different sections of the ovary. In each ovary, two cores were imaged 

from opposite ends of the ovary. Within each core, four sections were imaged, 

each going deeper into the ovary. The microscope then took images above and 
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below each of the four sections. This was helpful in determining whether or not 

oocytes in the section are in cysts, as they could be touching in one plane but not 

in another. 

 Once the images were taken, the number of oocytes in each section were 

counted. It was also documented whether each oocyte was in a cyst or a single 

oocyte, and whether the single oocytes were in primordial, primary, or secondary 

follicles. In order to distinguish between different follicle types, the shape and 

orientation of the granlosa cells surrounding the oocyte were used. Primordial 

oocytes contain granulosa cells that are just starting to form around the oocyte. As 

a result, they appear flat in shape and are not in a perfect circle around the oocyte; 

rather, there are spaces between neighboring granulosa cells. In primary follicles, 

the granulosa cells are cuboidal in shape and starting to move closer to one 

another. In secondary follciles, the granulosa cells form more than one layer 

around the oocyte. 

This data was then used to calculate the total single oocytes, total oocytes 

in cysts, and total oocytes, in addition to percentages of primordial, primary, and 

secondary follicles, as well as percentage of single oocytes. Once caluculating the 

average number of oocytes and the average percentages of oocytes, graphs were 

made and standard error was used to compare control versus treatment for the 

significance of the results. 

 

Western Blot 

 

 Following dissection, the 1xPBS was removed form the ependorf tube 

containing the ovaries. The ovaries were then homogenized in 1x sample buffer 
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plus protease inhibitors on ice, using 10µL per ovary. The 1x sample buffer was 

made using 500µL of 2x sample buffer (10% SDS, glycerol, 0.1% bromophenol 

blue, 0.5M Tris, and 2-mercaptoethanol), 100µL of 10x protease inhibitors (one 

tablet of mini complete protease in 1mL of dH20), and 400µL of dH20. Once the 

ovaries were crushed, they were stored at -20ºC until ready for the western blot. 

 To prepare the samples for the gel, 20µL of each sample were thawed and 

2µL of 2-mercaptoethanol were added. The tubes were then boiled for 3 minutes 

and moved to the centrifuge machine on ice, where they were spun for 1 minute at 

600rpm.  

 To set up the gel, the 10% BIORAD gel was removed from the plastic and 

inserted into the gel holder. The gel holder was inserted into the gel box and 1x 

running buffer (made of Tris base, glycine, and SDS) was used to fill the space in 

between the gels. Once it was confirmed that the gel holder was not leaking, the 

1x running buffer was used to fill the gel box and the combs were removed from 

the gels. The samples were then loaded into the wells (20µL of sample, 10µL of 

precision plus standard protein marker). Any empty wells were loaded with 20µL 

of 2x sample buffer to prevent the sample from running sideways. The gel was the 

run at 100 volts for 1 hour. 

 The next step was to transfer the proteins from the gel to a membrane so 

that it could be visualized and imaged. The membrane was soaked in methanol, 

dH20, and transfer buffer (made of Tris base, glycine, and methanol). In addition, 

the gel, filter papers (2), and fiber pads (2) were soaked in transfer buffer for 5 

minutes. The transfer sandwich was then assembled with the fiber pads, filters, 
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gel and membrane, and inserted into the transfer cassette, which was placed into 

the transfer unit up against an ice cube. The unit was filled with transfer buffer 

and run at 4ºC at 100 volts for 1 hour. 

 The next step was to block the membrane using blocking buffer for 30 

minutes at room temperature, and then to change the blocking buffer and soak at 

4ºC overnight.  

 The following day, the detection procedure was performed. First, the 

membrane was incubated in primary antibody diluted 1:1000 in blocking buffer 

for 1 hour on the nutator. The antibodies used in my project were mouse anti-N-

Cadherin and mouse anti-E-Cadherin (BD Transduction Laboratories). For the 

dilution, 3µL of the primary antibody were diluted in 3mL of blocking buffer. The 

membrane was then washed 3x for 10 minutes each in blocking buffer in a small 

tray on the shaker. Next, the membrane was incubated in secondary antibody 

diluted 1:10,000 in blocking buffer for 1 hour on the nutator. The secondary 

antibody used was horseradish peroxidase (HRP) rabbit anti-mouse 

(ImmunoPure). For the dilution, 1µL of the secondary antibody was diluted in 

10mL of blocking buffer. The membrane was then washed 2x for 10 minutes each 

in blocking buffer in a small tray on the shaker, and then 1x for 10 minutes in 

wash buffer (0.05% Tween in 1x PBS) on the shaker. Then, the membrane was 

rinsed in PBS and incubated in detection buffer + enhancer (2.5mL of each) for 5 

minutes in a small tray on the shaker. Finally, the membrane was rinsed in dH20 

and carried to the imaging room in a clear plastic cover and inside an 

autoradiography cassette.  
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 Images of the membrane were taken using the BioRad Molecular Imaging 

ChemiDoc XRS+ Imaging System. After taking images, the membrane was 

rinsed in PBS and stored overnight in blocking buffer at 4ºC. 

 The following day, the same detection procedure was followed using the 

primary antibody GAPDH as a loading control. The dilution for GAPDH was 

1:5000, so 1µL of GAPDH was diluted in 5mL of blocking buffer. The HRP 

secondary antibody used was against the animal that the GAPDH was made in 

(either mouse or rabbit). The membrane was then imaged again as a control, and 

the imaging system was used to compare the intensity of the bands on the 

treatment and control membranes. 
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Results 

 

Expression of E-Cadherin in the mouse neonatal ovary 

 

 Immunocytochemistry was performed using neonatal ovaries of ages 

17.5dpc and PND1-5 in order to determine if E-Cadherin is expressed during cyst 

breakdown and follicle development, and if so, to determine its location within 

the ovary (figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Immunocytochemistry results using anti-E-Cadherin antibody (green) at 

various ages of the neonatal mouse. All cell nuclei are stained using propidium 

iodide (red). A) 17.5dpc, B) PND1, C) PND2, D) PND3, E) PND4, F) PND5. 

 

  

E-Cadherin was found to be expressed at least in moderate amounts at all 

ages from 17.5dpc to PND5. At 17.5dpc and PND1, E-Cadherin is moderately 

expressed in the cytoplasm of all oocytes and lightly expressed in granulosa cells. 

During all ages shown, E-Cadherin expression is stronger in the oocytes than in 

the granulosa cells. At PND2, E-Cadherin is expressed in the cytoplasm of all 

A B C 

D  E F 
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oocytes and also in certain parts of the cell membrane of some oocytes. This same 

expression pattern is amplified at PND3, where E-Cadherin expression is 

substantial in both the cytoplasm of all and cell membrane of most oocytes. The 

E-Cadherin expression does not seem to differ between oocytes that are in cysts 

and single oocytes. Many of the oocytes containing E-Cadherin in the cell 

membrane at PND3 show strong expression around the entire membrane, but 

some oocytes show localized expression within the cell membrane. Additional 

images showing E-Cadherin expression at PND 3 show the cell adhesion 

molecule in the cytoplasm of all oocytes, including those in cysts as well as those 

in developing follicles (figure 6). These images also show how E-Cadherin is 

localized to regions of the cell membrane of the oocytes, whether they are in cysts 

or in developing follicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Immnocytochemistry results using anti-E-cadherin (green) showing two 

more examples at PND3. Nuclei of all cells stained with propidium iodide (red). 

Boxes A and D show just anti-E-cadherin, boxes B and E show just propidium 

iodide, and boxes C and F show the overlay. Arrow in box C shows oocytes in a 

cyst. Arrow in box F shows a single oocyte primordial follicle.  
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 Similar expression of E-Cadherin is shown at PND4, as all oocytes stained 

with anti-E-Cadherin in the cytoplasm and at certain regions of the cell 

membranes. At PND5, E-Cadherin remains in the cytoplasm of the oocytes but it 

does not appear in the cell membranes. 

 In summary, during the ages that were tested, E-Cadherin expression starts 

in the cytoplasm of all cells and moves to both the cytoplasm and cell membrane 

of just the oocytes at PND2. E-Cadherin is continuously expressed in the 

cytoplasm of all oocytes as well as in the cell membrane of most oocytes during 

PND3 and PND4. Membrane expression is localized in most oocytes and 

continuous in some oocytes. Expression at PND5 remains in the oocytes but only 

in the cytoplasm. 

 As a control, the neonatal mouse ovary was stained with just the anti-rat 

secondary antibody to see if it would show significant staining without the anti-E-

Cadherin primary antibody. While faint staining appeared in the control (figure 

7), it only appeared when the channels on the microscope were turned all the way 

up, and the ovaries stained with the primary antibody as well were significantly 

brighter, so the data are valid. 

 

 

 

 

 

Figure 7. Immunocytochemistry showing a PND2 ovary treated with the anti-rat 

antibody (faint green). The nuclei of all cells are stained with propidium iodide. 

Because no primary antibody was used, this staining is a control to show that the 
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secondary antibody is actually sticking to the primary antibody in the previous 

experiments. 

 

 

Expression of N-Cadherin in the mouse neonatal ovary  

 

Immunocytochemistry was performed using neonatal ovaries of ages 

17.5dpc and PND1-5 in order to determine if N-Cadherin is expressed during cyst 

breakdown and follicle development, and if so, to determine its location within 

the ovary (figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Immunocytochemistry results using anti-N-Cadherin antibody (green) 

at various ages of the neonatal mouse. All cell nuclei are stained using propidium 

iodide (red). A) PND1, B) PND2, C) PND3, D) PND4, E) PND5. 

 

 Because of the results of the control (figure 9) using just the secondary 

antibody (anti-mouse), these data cannot be used.  
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Figure 9. Immunocytochemistry showing a

mouse antibody (green). The nuclei of all cells are stained with propidium iodide. 

Because no primary antibody was used, this staining is a control. This control 

shows that the secondary antibody is sticking to the tissue e

the primary antibody. This control makes the N

 

 

Effects of blocking E

 

 Now that E

ovary, and its location wit

in order to test the function of this cell adhesion molecule. For the organ culture 

analysis, seven ovaries grown from PND1 to PND 5

control group and the anti

the results after counting total oocytes, percentages of oocytes in different types 

follicles, and percentage of single oocytes for both control and treatment ovaries 

(figures 10-12). 

 

 

 

 

Control

anti-E-

cadherin

Immunocytochemistry showing a PND2 ovary treated with the anti

mouse antibody (green). The nuclei of all cells are stained with propidium iodide. 

Because no primary antibody was used, this staining is a control. This control 

shows that the secondary antibody is sticking to the tissue even in the absence of 

the primary antibody. This control makes the N-Cadherin stainings above invalid.

Effects of blocking E-Cadherin on oocyte development  

Now that E-Cadherin was found to be expressed in the neonatal mouse 

s location within the ovary was tested, organ cultures were performed 

in order to test the function of this cell adhesion molecule. For the organ culture 

analysis, seven ovaries grown from PND1 to PND 5 were counted for both the 

control group and the anti-E-Cadherin treatment group. The graphs below reflect 

the results after counting total oocytes, percentages of oocytes in different types 

follicles, and percentage of single oocytes for both control and treatment ovaries 
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PND2 ovary treated with the anti-

mouse antibody (green). The nuclei of all cells are stained with propidium iodide. 

Because no primary antibody was used, this staining is a control. This control 

ven in the absence of 

Cadherin stainings above invalid. 

he neonatal mouse 

hin the ovary was tested, organ cultures were performed 

in order to test the function of this cell adhesion molecule. For the organ culture 

were counted for both the 

atment group. The graphs below reflect 

the results after counting total oocytes, percentages of oocytes in different types 

follicles, and percentage of single oocytes for both control and treatment ovaries 
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Figure 10. Graph of the average number of total oocytes per section. The control 

ovaries had an average of 3.4 oocytes per section (blue bar) and the anti-E-

Cadherin treatment ovaries had an average of 3.2 oocytes per section (pink bar). 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Graph of the average percentage of primordial, primary, and 

secondary follicles per section. The control ovaries, on average, had 95.6% 

primordial follicles, 4.4% primary follicles, and 0% secondary follicles per 

section (blue bars). The anti-E-Cadherin treatment ovaries, on average, had 95.8% 

primordial follicles, 4.2% primary follicles, and 0% secondary follicles per 

section (pink bars).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Graph of the average percent of single oocytes per section. The control 

ovaries had an average 88.0% oocytes as single oocytes (blue bar). The anti-E-

Cadherin treatment ovaries had an average of 87.6% oocytes as single oocytes 

(pink bar). 
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 Statistically, there is no significant difference between the control and 

treatment ovaries in terms of number of total oocytes, follicles, or single oocytes. 

These data therefore show that under these conditions, blocking E-Cadherin from 

PND 1-5 does not affect cyst breakdown, oocyte death or follicle development 

 Another organ culture was performed using ovaries at age 17.5dpc and 

grown until PND3, but the plate was contaminated and the data could not be used. 

 

Effects of blocking N-Cadherin on oocyte development 

 

 The same experiments were performed using anti-N-Cadherin. For the 

organ culture analysis, nine ovaries were counted for the control group and eight 

ovaries were counted for the treatment group. Similar to the E-Cadherin organ 

culture experiments, the results did not show a statistical difference between 

control and treatment groups; therefore, these data show that under these 

conditions, blocking N-Cadherin from PND 1-5 does not affect cyst breakdown, 

oocyte death or follicle development (figures 13-15). 

 

 

 

 

 

Figure 13. Graph of the average number of total oocytes per section. The control 

ovaries had an average of 3.4 oocytes per section (blue bar) and the anti-N-

Cadherin treatment ovaries had an average of 3.2 oocytes per section (pink bar). 
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Figure 14. Graph of the average percentage of primordial, primary, and 

secondary follicles per section. The control ovaries, on average, had 91.6% 

primordial follicles, 8.4% primary follicles, and 0% secondary follicles per 

section (blue bars). The anti-N-Cadherin treatment ovaries, on average, had 

97.3% primordial follicles, 2.7% primary follicles, and 0% secondary follicles per 

section (pink bars). 

 

 

 

 

 

 

 

 

 

Figure 15. Graph of the average percent of single oocytes per section. The control 

ovaries had an average 82.3% oocytes as single oocytes (blue bar). The anti-E-

Cadherin treatment ovaries had an average of 81.3% oocytes as single oocytes 

(pink bar). 

 

Another organ culture was performed using ovaries at age 17.5dpc and 

grown until PND3, but there were not enough samples to do an analysis and there 

was not enough time to run more organ cultures to create a large enough sample 

size. 

 

Protein expression levels of E-Cadherin 
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 In order to test protein expression levels of E-Cadherin in the mouse, four 

western blots were run using samples from ovaries of neonates of ages PND1, 

PND3, and PND5. Two of the four blots also included age 17.5dpc, but only one 

of these was also run with a loading control. While all of the western blots that 

were run did not turn out to be completely consistent with one another, some 

conclusions can be drawn from the similarities in expression trends among the 

western blot results obtained (Table 1, Figure 16).  

 For all three blots analyzed, there was an increase in E-Cadherin 

expression from PND1 to PND 3. Even on blots 2 and 3, while the loading control 

decreased (less protein was loaded), the amount of E-Cadherin still increased. 

There was not enough protein in the samples loaded for age 17.5dpc to make any 

conclusions. The results for the relative expression at PND5 are inconclusive as 

well, as one blot showed drastically increasing expression, one showed decreasing 

expression, and one showed constant expression. As shown in figure 16, it can be 

concluded that E-Cadherin is present at ages PND1, PND3, and PND5, and that 

expression increases from PND1 to PND3.  

 

 

 

 

 

Figure 16.  Western Blot results for probing with anti-E-Cadherin (left) and with 

GAPDH as a loading control (right). These results represent E-Cadherin 1 (left) 

and E-Cadherin 1 GAPDH (right) (Table 1). E-Cadherin is 135kDa in size, but 

the mature protein is only 120kDa, which explains the presence of two bands. 

 

 

Western Blot Band Relative Intensity 

   PND1      PND3     PND5            PND1      PND3     PND5 

135kDa 
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Table 1. Relative intensities of bands on three different Western Blots probed 

with anti-E-Cadherin and then GAPDH as a loading control. The bolded values 

are the reference band; all other values show intensities relative to the bolded 

value. 

 

 

Protein expression levels of N-Cadherin  

 

In order to test protein expression levels of N-Cadherin in the mouse, four 

western blots were run using samples from ovaries of fetuses/neonates at ages 

17.5dpc, PND1, PND3, and PND5. Only three of the western blots were used for 

analysis because one of the blots does not have a matching loading control blot. 

While all of the western blots that were run did not turn out to be completely 

consistent with one another, some conclusions can be drawn from the similarities 

in expression trends among the western blot results obtained (Table 2, Figure 17).  

E-Cadherin 1 PND1 1.0 

PND3 1.22 (1.17) 

PND5 1.0 (0.29) 

E-Cadherin 1 

GAPDH 

PND1 1.0 

PND3 1.04 

PND5 4.2 

E-Cadherin 2 PND1 1.0 

PND3 1.25 (1.69) 

PND5 1.37 (1.10) 

E-Cadherin 2 

GAPDH 

PND1 1.0 

PND3 0.74 

PND5 1.25 

E-Cadherin 3 17.5dpc 0.57 (1.90) 

PND1 1.0 

PND3 4.14 (6.18)  

PND5 5.12 (7.88) 

E-Cadherin 3 

GAPDH 

17.5dpc 0.30 

PND1 1.0 

PND3 0.67 

PND5 0.65 



 

32

 

 

 N-Cadherin expression seems to stay relatively constant (or slightly 

increase) from 17.5dpc to PND1. Expression at PND3 seems to increase a little 

more, and expression at PND5 seems to be the highest. It can be concluded that 

N-Cadherin is expressed during all of these ages, and that expression increases 

slowly from 17.5dpc to PND5.  

 

 

 

 

 

 

Figure 17.  Western Blot results for probing with anti-N-Cadherin (left) and with 

GAPDH as a loading control (right). These results represent N-Cadherin 2 (left) 

and N-Cadherin 2 GAPDH (right) (Table 1). N-Cadherin is 140kDa in size. 

 

 

 

 

 

 

 

 

 

Table 2. 

Relative 

intensities of 

bands on three 

different 

Western Blots 

probed with 

anti-N-Cadherin 

and then 

GAPDH as a 

loading control. 

The bolded 

values are the 

reference band; 

all other values 

show intensities 

relative to the 

bolded value. 

Western Blot Band Relative Intensity 

N-Cadherin 1 17.5dpc 1.0 

PND1 0.9 (1.14)  

PND3 2.21 (1.19) 

PND5 3.65 (2.19) 

N-Cadherin 1  

GAPDH 

17.5dpc 1.0 

PND1 0.79 

PND3 1.85 

PND5 1.67 

N-Cadherin 2 17.5dpc 1.0 

PND1 2.84 (1.19) 

PND3 2.58 (1.25) 

PND5 3.26 (1.88) 

N-Cadherin 2  

GAPDH 

17.5dpc 1.0 

PND1 2.39 

PND3 2.06 

PND5 1.73 

N-Cadherin 3 17.5dpc 1.0 

PND1 4.01 

PND3 3.29 

PND5 1.21 

N-Cadherin 3  

GAPDH 

17.5dpc 0  

PND1 1.0 

PND3 1.22 

PND5 0.60 

       17.5dpc    PND1    PND3     PND5           17.5dpc    PND1    PND3     PND5 

140kDa 
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Discussion 

 

 Oogenesis is a crucial process in the mouse and human, as without the 

successful production of egg cells, reproduction cannot occur. Egg cell 

development, which occurs in the fetus and continues for a few days after birth, is 

a highly regulated process involving a variety of hormones and proteins. More 

specifically, the process of cyst formation and cyst breakdown to form primordial 

follicles is regulated to avoid the formation of multiple oocyte follicles, which are 

not viable for reproduction. There is speculation that cell adhesion molecules play 

a role in holding the cysts intact and in allowing the cysts to breakdown, but this 

exact mechanism has not yet been scientifically determined. 

 The results of my E-Cadherin experiments show this cell adhesion 

molecule to be expressed in the neonatal ovary from age 17.5dpc to PND5. The 

stainings using anti-E-Cadherin show the protein to be expressed in all oocytes 

and granulosa cells at 17.5dpc and PND1, but only in oocytes at PND2-5. During 

PND2-4, expression is also found in the cell membrane of oocytes, whether they 

are in cysts or in follicles. But the E-Cadherin cell membrane expression was 

localized to certain spots in the membrane. These results differ from the hamster 

model for E-Cadherin expression, which was found exclusively in the oocytes 

throughout development (Roy and Wang, 2010). 

 The organ culture experiments showed that under these conditions, 

blocking E-Cadherin during PND1-5 does not cause a significant change in cyst 

breakdown, follicle formation, or oocyte number. However, it is possible that the 

ovaries did not grow to their full potential in the cultures, as there were only 3-4 
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oocytes per section (normal, healthy ovaries have 6-8 oocytes per section). In 

addition, cyst breakdown begins prior to PND1, so it is also possible that the 

oocytes in cysts already started to break down and form follicles prior to blocking 

E-Cadherin. 

 The western blot experiments showed E-Cadherin expression increasing 

from PND1 to PND3, which matches the images from the tissue antibody 

labelings. This opposes what was found in the hamster, however, as E-Cadherin 

was found to decrease throughout development (Roy and Wang, 2010). 

 While the hamster model suggests that E-Cadherin plays a role in cyst 

breakdown by deregulating and allow cells within cysts to break apart (Roy and 

Wang, 2010), this does not seem to be the case in the mouse. E-Cadherin 

expression remains prominently expressed throughout the major timeframe of 

cyst breakdown, and is also expressed in the membranes of oocytes in follicles.  

 During the timeframe that I looked at (17.5dpc-PND5), both cyst 

breakdown and follicle formation are occurring. Because E-Cadherin is expressed 

at all of these ages, it is likely that this cell adhesion molecule plays a role in these 

two processes. Further, E-Cadherin may aid in holding oocytes together in cysts 

and also in holding oocytes to granulosa cells in follicles. Although E-Cadherin 

was not expressed in granulosa cells later in development, it is possible that E-

Cadherin could bind to a different cadherin on a neighboring cell (heterotypic 

binding). While these experiments show that E-Cadherin likely plays a role in 

cyst breakdown and follicle formation in the mouse, the exact role and the 

mechanism of function as still not completely clear. 
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 The N-Cadherin antibody labelings cannot be used to draw conclusions 

because of the prominent staining that appeared in the control. Similar to E-

Cadherin, the organ culture experiments showed that under these conditions, 

blocking N-Cadherin during PND1-5 does not cause a significant change in cyst 

breakdown, follicle formation, or oocyte number. Again, it is possible that the 

ovaries did not grow to their full potential in the cultures. It is also possible that 

the oocytes in cysts already started to break down and form follicles prior to 

blocking N-Cadherin. 

But the N-Cadherin western blots show the protein to be present at ages 

17.5dpc, PND1, PND3, and PND5. It also appears that N-Cadherin expression 

increases from 17.5dpc to PND5. The hamster model also showed N-Cadherin 

expression shifting from oocytes to somatic cells as development progressed, but 

this cannot be concluded for sure in the mouse due to the invalidity of the N-

Cadherin stainings. The hamster model further suggests that N-Cadherin plays a 

role in assembly of somatic cells around the oocyte during follicle formation, due 

to both antibody labeling experiments as well as blocking experiments that show a 

decrease in follicle formation in the absence of N-Cadherin. It is possible that N-

Cadherin plays a similar role in the mouse ovary because its expression increases 

throughout the timeframe analyzed, throughout which more and more follicles are 

developing. 

 While the exact role of E-Cadherin and N-Cadherin was not determined 

from these experiments, it was determined that the two cell adhesion molecules 

are expressed in the mouse ovary from 17.5dpc to PND5. It was also determined 
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that E-Cadherin is expressed in both the cytoplasm and cell membrane (localized) 

of oocytes, and that E-Cadherin expression increases form PND1 to PND 3, 

suggesting a role in cyst breakdown and follicle formation. N-Cadherin 

expression was found to increase throughout the time period studied, suggesting a 

role in proper follicle formation. 
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Future Directions 
 

 There are numerous other experiments that could be performed to continue 

testing the role of N-Cadherin and E-Cadherin in cyst breakdown and follicle 

formation in the neonatal mouse ovary. The N-Cadherin immunocytochemistry 

images were invalid because they looked similar to the control; therefore, these 

experiments could be repeated using an antibody made in an animal other than the 

mouse in order to determine the location of N-Cadherin expression within the 

ovary, now that it has been shown to be expressed. Triple stainings could also be 

done to try to determine the localization of E-Cadherin within the cell membrane 

of oocytes and to determine if E-Cadherin is binding to any other cadherins 

during development. The organ culture experiments could also be repeated in 

order to try to get results that show statistical significance. It is likely that the 

ovaries did not thrive in the organ culture, as there were only 3-4 oocytes per 

section (healthy ovaries should have 6-8 oocytes per section). These cultures 

could be run at 17.5dpc to PND3 to try to block the CAMs earlier in development. 

In addition, the E-Cadherin western blots could be re-run, especially at age 

17.5dpc, as the samples used in my western blots at this age were insufficient (did 

not contain enough protein). 

 In addition to repeating the experiments that I have completed, there are 

other experiments that can be done to test the role of E-Cadherin and N-Cadherin 

in cyst breakdown and follicle development. In particular, estrogen upregulation 

has been shown to hold cells in cysts, preventing them from breaking down and 

forming viable follicles. Perhaps the mechanism of this has to do with cell 
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adhesion molecules. Organ cultures can be done using an antibody that blocks 

estrogen during development, and the ovaries could then be stained with E-

Cadherin and N-Cadherin (separately) to see if there are any differences in 

expression in the presence and absence of estrogen. 
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Capstone Summary 

 In order for a woman to reproduce, she must contain egg cells that are 

healthy and properly developed. A female’s body makes all of the egg cells that 

she will contain for the rest of her life around the time of birth. In fact, this 

essential pool of egg cells that is established early on slowly gets depleted 

throughout the female’s life. For this reason, when a woman is infertile, the cause 

of her inability to conceive often stems back to around the time of birth when her 

ovaries were forming.  

 When a man and a woman conceive, and the man’s sperm fertilizes the 

woman’s egg, an embryo forms. This embryo is comprised of numerous cells 

starting to specialize into different cell types to ultimately form a fetus, and then a 

baby. Throughout a woman’s pregnancy, her fetus’ ovaries are undergoing a 

process called Egg Cell Development (oogenesis). This process is very similar in 

the human and the mouse, making the mouse an appropriate organism to use for 

research pertaining to oogensis.  

In the developing mouse embryo, the germ cells (precursors to egg cells) 

migrate to the genital ridge (a specific location within the embryo). These germ 

cells then begin a process called mitosis, in which they divide and multiply to 

create more cells. In normal mitosis (which occurs throughout the entire embryo 

and human body), the two daughter cells split apart from each other during the 

final step of division. But in the case of oogenesis, the cells remain connected to 

one another, forming what is known as a cyst, or a ball of interconnected cells. 

Soon these cells start dividing my meiosis, which is another type of cell division 
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that only occurs in germ cells (eggs and sperm). At a very specific stage of 

meiosis called “diplotene of prophase I”, the cells stop dividing until later in the 

life of the female. Around 17.5 days after conception, a process called cyst 

breakdown begins, during which the egg cells (oocytes) within the cysts start to 

separate from one another. Once a single oocyte separates from the rest of the 

cyst, it starts to develop into a follicle, consisting of somatic cells (non-germ 

cells) surrounding the oocyte. Around the same time as cyst breakdown and 

follicle formation, germ cells are also dying. There is a theory that it is necessary 

for certain cells within a cyst to die in order for the cyst to break apart and for 

single oocyte follicles to form. This germ cell death explains the decrease in 

oocyte number during development that occurs in both mice and humans. 

When a cyst breaks down properly, single oocyte follicles form, which go 

on to become viable for reproduction later in the baby’s life. But when cyst 

breakdown does not occur properly, multiple oocyte follicles form as a result of 

the granulosa cells (specific somatic cells) surrounding multiple connected 

oocytes, rather than one single oocyte. These multiple oocyte follicles do not 

develop into viable eggs for reproduction, and are therefore one of the factors 

contributing towards infertility. This concept is the basis of my research, as I am 

studying the mechanisms involved in cyst breakdown and follicle formation in 

order to determine the causes of, and hopefully one day the treatments for, 

infertility. 

While the cells within the cyst are held together by intracellular canals, it 

is thought that cell adhesion molecules (proteins on the surface of cells that bind 
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to one another and hold cells together) play a role as well. In fact, research using 

the hamster has found two specific cell adhesion molecules (CAMs) present in the 

ovary during oogenesis. These two CAMs are called E-Cadherin and N-Cadherin 

and are the two proteins that I studied in my research. 

I first tested to see if E-Cadherin and N-Cadherin are present in the 

neonatal mouse ovary, and if so, where within the ovary they are located 

(expressed). I did this using a method called immunocytochemistry, which 

involves dissecting the ovaries out of the neonatal mice and staining them with 

fluorescent tags. The fluorescent tags are attached to proteins called antibodies, 

which bind to very specific molecules. In this case, I used anti-E-Cadherin and 

anti-N-Cadherin in order to create images of the ovaries that fluoresce in all areas 

expressing the proteins E-Cadherin or N-Cadherin, respectively.  

Because I was able to see fluorescence on the E-Cadherin images, I know 

that the E-Cadherin protein is present in the ovary. More specifically, the 

fluorescence was visualized in the cytoplasm (inside of the cell) and on the cell 

membrane (on the surface of the cell) of all oocytes (single oocytes and oocytes in 

cysts). E-Cadherin expression was also found in the granulosa cells, but only 

earlier in development.  

For N-Cadherin, the staining experiments were invalid because the 

antibody used ended up just sticking to the tissue in the ovary and staining the 

entire thing.  

Now that the presence and location of these CAMs was determined (at 

least for E-Cadherin), the next test was to determine the function of E-Cadherin 
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and N-Cadherin in cyst breakdown and follicle formation. This was done by first 

dissecting the ovaries out of the neonatal mice, and then growing them in organ 

cultures in the presence and absence of E-Cadherin and N-Cadherin. The ovaries 

were then stained with oocyte markers in order to determine any changes in 

oocyte numbers in the control versus treatment ovaries. The results showed no 

statistical difference, but there were also a lower number of total oocytes than in a 

normal healthy ovary, so it is possible that the ovaries did not thrive in the organ 

culture. 

The last experiment was western blot, which was performed to determine 

the amount of protein expression for E-Cadherin and N-Cadherin in the mouse 

ovary at different ages during development. For a western blot, the dissected 

ovaries are crushed and a procedure is following to isolate the proteins from the 

ovaries, which are then run on a gel and stained with antibodies to detect the 

protein of interest. The proteins show up on the gel as bands, and the bands are 

transferred to a membrane for analysis.  

For both sets of western blots, the proteins appeared on the gels, once 

again showing that E-Cadherin and N-Cadherin are expressed during oogenesis. 

N-Cadherin expression was more prominent than E-Cadherin expression, which 

matches the current hamster model for these two proteins. Further, E-Cadherin 

expression was found to increase from PND1 (the day of birth) to PND3 (two 

days after birth). N-Cadherin expression was also found to increase with age 

during the timeframe studied. 
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The results of all completed experiments show that both E-Cadherin and 

N-Cadherin are expressed in the neonatal mouse ovary during the timeframe of 

oogenesis that was looked at (17.5 days after conception to PND5, or four days 

after birth). Because E-Cadherin appeared in the cytoplasm of all and the cell 

membrane of most oocytes, it is likely that this cell adhesion molecule plays a 

role in both cyst breakdown and follicle development. But the exact role of E-

Cadherin in oogensis is still unknown at this time. N-Cadherin expression was 

found to increase during the timeframe studied, coinciding with increasing follicle 

formation. As a result, it is likely that N-Cadherin plays a role in ensuring proper 

follicle formation.  

While this research was successful in drawing conclusions pertaining to 

the role of E-Cadherin and N-Cadherin in neonatal mouse oogenesis, there are 

more experiments that can be done. The N-Cadherin stainings can be re-done 

using different antibodies to try to obtain valid images. The organ cultures could 

also be re-done to try to obtain healthier ovaries. These cultures could be run 

starting at an earlier age to try to block the function of E-Cadherin and N-

Cadherin before they have a chance to impact oogenesis.  In addition, estrogen 

has been found to hold oocytes in cysts. Therefore, organ cultures could also be 

run in which estrogen is blocked in order to determine if estrogen has any impact 

of the expression of cell adhesion molecules as a mechanism to prevent cysts 

from breaking down. 
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My research on E-Cadherin and N-Cadherin shows that these two proteins 

play a role in oogenesis in the mouse. It is therefore advantageous to continue 

studying these two cell adhesion molecules and their potential impact on fertility. 
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