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Abstract 

Cell membranes are composed of several different lipid and sterol 
products.  Among these are, chiefly, phospholipids, glycolipids, 
sphingolipids, various proteins posttranslationally modified to carry lipids 
and sterols.  The sterol that is prevalent in fungi, including yeast, is 
ergosterol.  It plays the same physiological role as cholesterol in mammalian 
cells.  That is, mainly, to control membrane fluidity.  Membranes in general 
are extremely important to the normal functioning of any cell and its sub-
cellular compartments.  The primary factor in the normal functioning of a 
membrane is the relative composition of the previously mentioned 
components.  Even though there is a high amount of traffic between different 
membranes within a cell, each one requires its own distinct composition in 
order to function properly.  How cells maintain these distinct compositions is 
of great interest because abnormal sterol levels have been linked to many 
diseases in humans, including heart disease and Alzheimer’s disease. 
 In a previous study, a yeast knockout library was screened for 
sensitivity to a class of anti-fungal drugs called triterpene glycosides.  
Triterpene glycosides, or TTG, are drugs that work by disturbing membranes.  
Of the yeast mutants that were found to be hyper-sensitive to TTG, two, 
ERG4 and ERG5, were found to be involved in the ergosterol biosynthesis 
pathway.  Erg4p, a C-24(28) reductase, is the last enzyme in the ergosterol 
biosynthesis pathway.  When this gene is knocked out, there is a complete 
lack of ergosterol in the membrane.   Instead, the enzyme’s substrate, ergosta-
5,7,22,24(28)-tetraen-3beta-ol, accumulates in the membrane.  Likewise, 
when the ERG5 gene is deleted, the enzyme’s substrate, ergosta-5,7,24-trien-
3beta-ol, accumulates in the place of ergosterol.  The Erg5p is a known C-22 
desaturase and immediately precedes C-24(28) reductase in the biosynthetic 
pathway.  Another gene displaying the hyper-sensitive phenotype, OSH3, is 
involved in the transport of sterols to and from the plasma membrane, and the 
esterification of exogenous sterol products, though its exact function is as yet 
uncharacterized. 
 We have begun high copy suppression screens, using TTG, which 
seek to identify compensation mechanisms between the major components of 
membranes.  Unfortunately, one of these screens did not give enough data to 
justify continuing the project.  The other, however, has been successful, 
yielding several suppression candidates, and the first phase of the screen is 
drawing to a close.   Now that suppressors have been found, the lab will then 
work to understand how these particular genes compensate for alterations in 
the levels of ergosterol in the yeast membranes and rescue the TTG 
hypersensitive phenotype.  These studies seek to lay the groundwork for 
understanding the interplay of the various membrane components, the 
importance of their relative composition in a membrane, and the process by 
which cells regulate the compositions of membrane components, particularly 
the primary yeast sterol, ergosterol.   
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Introduction: 

 The proper distribution of lipids among the cell’s various organelles is 

essential for those organelles’ proper functioning.  Along with phospholipids, 

glycolipids, sphingolipids and proteins, ergosterol, a cholesterol like lipid 

(Figure I-1), is one of the major constituents of yeast cell membranes.  

Located primarily in the plasma membrane, sterol lipids like cholesterol in 

mammals and ergosterol in yeast play essential roles in maintaining 

membrane integrity, structure, fluidity and permeability.  Altered sterol 

composition in these membranes can have far reaching effects on budding, 

vacuolar fusion, endocytosis and numerous other processes involving 

membranes and their components (Beh et al. 2001).   

The yeast Saccharomyces cerevisiae, commonly known as brewer’s 

or baker’s yeast, is a simple, single-celled eukaryote that is a commonly used 

model organism in molecular and cell biology research.  While both quickly 

dividing and easy to maintain, as a eukaryote it shares the complex internal 

cell structure of plants and animals.  This enables the quick application of 

findings using S. cerevisiae to higher organisms.  These advantages of using 

S. cerevisiae led to the complete sequencing of its genome, a project 

completed in 1996.  The project resulted in the discovery of over 6200 open 

reading frames in the haploid yeast’s 16 chromosomes and the eventual 

identification of over 5800 active genes (Goffeau et al. 1996).  This advanced 

knowledge of, and ability to manipulate the yeast genome is what makes    
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Cholesterol    Ergosterol 

 

Figure I-1 (www.doctorfungus.org):  Cholesterol, the predominant 

mammalian sterol is compared here to ergosterol, the predominant yeast 

sterol.  In ergosterol, we see an additional double bond between carbons 7 

and 8, as well as between carbons 22 and 23.  Ergosterol also has an 

additional carbon, carbon 28, in the form of a methyl group bonded to carbon 

24. 
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S. cerevisiae ideal for understanding the mechanisms by which membrane 

sterol compositions are maintained. 

 Used in our research, saponins are a common class of natural 

antifungal agents found in many plants, including potatoes, oats, tomatoes 

and cacti, among others.  Saponins are amphipathic, with a hydrophilic sugar 

moiety and a hydrophobic, sterol-like moiety (Figure I-2).  It is believed 

saponins couple with ergosterol to create pores in the plasma membrane of 

the yeast cells, causing ion leakage as well as disturbing the other functions 

of the cell’s membrane, though the exact mechanism by which saponins act is 

unknown.  However, it is known that the efficacy of saponins is dependent on 

the presence and levels of ergosterol in the plasma membrane of the target 

cell (Morrissey and Osbourn 1999). 

 In a previous study in the Erdman lab, a genetic screen was conducted 

of the 4,851 viable S. cerevisiae deletant (∆) strains to assess their growth on 

media containing triterpene glycoside, or TTG, a natural saponin.  The goal 

of this TTG screen was to identify genes involved in lipid homeostasis and to 

identify genes involved in drug resistance and sensitivity.  TTG was selected 

because of its tendency to intercalate into and disrupt the plasma membrane 

of fungi based on its interaction with ergosterol (Figure 1-3).  Of the 4,851 

genes tested, 110 were identified as super-sensitive to TTG.  I selected three 

genes: ERG4, ERG5 and OSH3, which are known to have functions related to 

the sterol composition of yeast membranes on which to conduct further 
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Figure I-2 (http://syllabus.syr.edu/bio/seerdman/TTG/): This is the structure 

of triterpene glycoside, or TTG, the saponin used in these screens.  The 

hydrophilic sugar moiety consists of four, 6 carbon sugars and the 

hydrophobic moiety consists of five, 6 carbon rings and is similar in structure 

to steroids and sterols. 

 

 

Figure I-3 (Morrissey and Osbourn 1999): This 

demonstrates the method by which saponins 

integrate into the plasma membrane, bind with 

sterols and cause pores to form, through which 

ions and other necessary cellular molecules may    

leak.  

Hydrophobic Sterol-like Moiety 

Hydrophilic Sugar Moiety 
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studies.  The method of choice for the study of these genes is high copy 

suppression.   

High copy suppression is an approach that seeks to find other genes 

within the yeast genome that interact with the target gene, i.e. ERG4, ERG5 

or OSH3.  The over-expression of certain genes in these deletant strains may 

enable them to grow on media containing TTG.  The over-expression is 

accomplished by transforming the deletant strains with plasmids containing 

yeast genes and putting the strains under such conditions that the genes 

contained in the plasmids will be expressed.  Such genes that do facilitate 

growth of the super-sensitive strains are termed “suppressors” and are likely 

to have a similar function to the deleted gene, or possibly operate 

downstream in the pathway in which the deleted gene is involved.  

 ERG4 and ERG5 are genes encoding proteins (Erg4p and Erg5p 

respectively) involved in the ergosterol biosynthesis pathway (Figure I-4).  

Erg4p corresponds to C-24(28) reductase, the last enzyme in the ergosterol 

biosynthesis pathway.  When ERG4 is knocked out, there is a complete lack 

of ergosterol in the cellular membranes.   Instead, the enzyme’s substrate, 

ergosta-5,7,22,24(28)-tetraen-3beta-ol, accumulates in the membrane.  

Likewise, when the ERG5 gene is deleted, the enzyme’s substrate, ergosta-

5,7,24-trien-3beta-ol, accumulates in the place of ergosterol.  The protein 

which the ERG5 gene encodes is C-22 desaturase, which immediately  
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Figure I-4 (www.biochemsoctrans.org):  This is the ergosterol biosynthesis 

pathway after the production of squalene, a common precursor molecule.  

The deletion of ERG4 and ERG5, circled in red, results in a super-sensitive 

phenotype.  The deletion of ERG6, ERG2 and ERG3, circled in green, results 

in a resistant phenotype.  
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precedes C-24(28) reductase in the ergosterol biosynthetic pathway 

(www.ihop-net.org).   

These genes were chosen for study because it is unknown how their 

deletion is involved in the increased efficacy of TTG.  The situation is 

especially interesting considering the deletion of the three genes prior to 

ERG4 and ERG5 in the biosynthetic pathway: ERG3, ERG2 and ERG6, 

resulted in TTG resistant phenotypes (Figure I-4).  Because ERG4 and ERG5 

are so closely related in terms of their place in the ergosterol synthesis 

pathway, it is likely that many of their suppressors would be the same, and 

they would also perhaps be suppressors of each other.  In order to avoid 

wasting time, I decided to perform the high copy screen on an erg4∆ erg5∆ 

double deletant strain, and then to test each suppressor on both an erg4∆ and 

erg5∆ single deletant strain.     

The OSH3 gene is one of seven oxysterol binding protein homologues 

present in the yeast genome.  While the specific function of OSH3 is as yet 

incompletely understood, oxysterol binding proteins are a family of 

conserved lipid-binding proteins that have been implicated in the 

maintenance of sterol composition in cell membranes (Beh and Rine 2004).  

While any one of the OSH genes is sufficient for survival, the deletion of the 

entire family is lethal.  This implies the OSH family shares in at least one 

essential overlapping function (Beh et al. 2001).  The deletion of any 

combination of OSH genes results in sterol and membrane defects, which 
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implies a regulatory link between the OSH family and sterol lipids (Beh and 

Rine 2004).  The OSH family has been directly implicated in the non-

vesicular transport of sterols between cellular membranes as well as being 

involved in regulatory pathways for sterol synthesis (Figure I-5).  OSH3 

specifically has been implicated in playing a role in the esterification of 

exogenous sterols (Raychaudhuri et al. 2006).   

The OSH3 gene is interesting for much the same reasons as ERG4 and 

ERG5 are.  The reason osh3∆ deletant strains are super-sensitive to TTG is 

unknown.  Also, the deletion of another member of the OSH family of genes, 

OSH4, was identified in the initial screen as causing resistance to TTG.  In 

addition, the nature of the role Osh3p plays in the general workings of the 

cell is still something of a mystery.  Using the high copy suppression method, 

I hope to identify suppressors that may elucidate specific functions of Osh3p 

as well as explain the nature of its TTG phenotype.   Furthermore, this is the 

groundwork for a better understanding of the mechanism by which cells 

traffic sterols and maintain membrane homeostasis, which may be of 

relevance to similar problems in mammalian cells where defects in sterol 

storage, trafficking, and synthesis may lead to a number of diseases.  

Cholesterol, the mammalian sterol, is linked to numerous diseases from heart 

disease to Alzheimer’s.  Not only high cholesterol levels, but low cholesterol 

levels as well, are linked to diseases, making the understanding of the 
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processes by which cells regulate, synthesize, traffic and store sterols of 

significant importance. 

 

 

Figure I-5 (Im et al. 2005):  This figure depicts Osh4p collecting oxysterols 

from the donor membrane and transporting them to the acceptor membrane.  

As the figure shows, Osh4p is also believed to be involved in negative 

feedback regulation signaling pathways for the regulation of ergosterol 

biosynthesis.  Osh3p is believed to have a similar structure and all the OSH 

proteins are believed to be capable of this function.  Thus, this figure is also a 

general depiction of the appearance and general function of all the OSH 

proteins.   
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Methods and Materials: 

 

Creation of Double Mutants: 

A screening strategy first involving the creation of double mutants 

was designed to make my screen more efficient by eliminating unwanted and 

uninformative suppressors.  As the ERG4 and ERG5 genes are so closely 

related in their place in the ergosterol biosynthesis pathway, it was likely that 

many of their suppressors would be the same, and that they would likely 

suppress each other.  Performing a single screen on the double mutant strain 

was like performing two such screens on the single mutant strains.  This 

method takes advantage of the fact that the ERG4 and ERG5 genes are on 

separate chromosomes, chromosomes 7 and 8 respectively.  It also takes 

advantage of the fact that haploid strains can be mated together to form 

diploid yeast, which in turn will undergo a meiotic division to produce 4 

haploid daughter cells.  Because ERG4 and ERG5 are on separate 

chromosomes, there is a 50% chance that the meiotic division will produce 

haploid double mutant strains after sporulation (Figure II-1). 

The process begins with mating two haploid strains.  Mating type “a” 

erg4∆ cells were combined with mating type “ά” erg5∆ cells in YPD (Yeast 

extract-Peptone-Dextrose medium) liquid medium and grown on a YPD 

plate.  The cells were transferred to a SC-Met/-Lys plate which selected for  
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Figure II-1:  This figure shows the process by which the erg4 erg5 double 

mutant haploids are made.  Row I shows the diploid created by mating 

haploid erg4∆ and erg5∆ strains.  Row II shows the possibilities after the 

first division of meiosis.  On the left side of Row II, both the chromosomes 

containing the erg4 deletion, shown in blue, and that containing the erg5 

deletion, shown in red, have migrated into one daughter cell, while the 

chromosomes without a deletion have migrated to the other.  Row III shows 

the haploid daughter cells resulting from the second meiotic division, where 

½ of the daughter cells are double mutants.  The right side of Row II shows 

the other possibility after the first meiotic division, where the chromosomes 

containing the deleted genes have migrated to opposite daughter cells.  

Though it is not shown in the diagram, this will result in 4 single mutant 

haploid daughter cells. 

I 

II 

III 

Chromosome 7 with 
ERG4 deletion 
 
 
Chromosome 8 with 

ERG5 deletion 
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the diploid cells.  This is due to the fact that all of the lab’s mating type “a” 

strains are met15∆ and all the mating type “ά” strains are lys2∆.  Thus, in 

these crosses, parental mating type “a” cells will be unable to grow due to the 

lack of methionine and parental “ά” cells will be unable to grow due to the 

lack of lysine.  The only cells able to grow will be diploid cells formed by 

matings and that contain a single functional copy of both the MET15 (from 

the “ά” strain) and LYS2 genes (from the “a” strain).  The diploid cells are 

then placed in 20% potassium acetate (KAc) solution for 5 days to induce 

sporulation.  Sporulation is the process in the yeast life cycle at which diploid 

cells divide by meiosis and form an ascus containing four haploid spores, 

referred to as a tetrad (Figure II-2).  

 After sporulation, the tetrads resulting from meiosis are transferred to 

a YPD plate and dissected using a micromanipulator, which is a microscope 

fitted with a pulled glass needle used to move individual cells on a plate.  

Each haploid daughter cell is placed in a line with its three other sister cells 

and allowed to grow.  A replica of this YPD plate is then made on a 

YPD+Kan (YPD plus Kanamycin, an antibiotic) plate.  Once allowed to 

grow, two growth patterns are observed.  In one case, where all four haploid 

daughter cells are single mutants, all four will grow on the selective plate.  In 

the other case, where two of the cells are haploid double mutants and the 

other two are wild type with respect to the deleted genes (Figure II-1), only 

the haploid double mutants will be able to grow.  The later case we refer to as  
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Figure II-2 (http://www.phys.ksu.edu/gene/a2f3.html):  This figure shows 

the yeast life cycle both as a haploid (n) and diploid (2n).   

 

Figure II-3:  This figure represents homologous crossover.  Yeast cells will 

naturally swap regions of highly similar sequence in their genome, color 

coded in this figure as red regions and blue regions, with free DNA.  This 

method was utilized to create the mutant library that served as the basis for 

the initial screen of all the viable haploid mutants against TTG.  In this 

library, the genes were replaced with a gene conferring resistance to 

kanamycin.  This allows us to select for mutants using kanamycin plates. 

Kanamycin Resistance Gene 

Gene X in yeast genome 
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growing, “2 and 2” because two will grow and two will not. This is because 

in this knockout library, the deleted genes have been replaced by homologous 

crossover with a kanamycin resistance gene (Figure II-3 ).  When haploid 

double mutants result from meiosis, two of the four daughter cells, those that 

contain the chromosomes with the kanamycin genes that replaced ERG4 and 

ERG5, will be able to grow; these are then referred to as double mutant 

candidates.  The other two daughter cells that lack resistance to kanamycin 

will not be able to grow on the selective plate.  The cells are termed 

“candidates” because, while they fit the growth patterns expected of haploid 

double mutants, their genetic makeup is not yet confirmed.  The yeast 

genome is very fickle and subject to mutation, especially when placed under 

stress, so further steps are needed to ensure the growth pattern is due to the 

genetics we expect.  When double mutants do not result, all four of the 

daughter cells will be able to grow on the YPD+Kan plate, as they all have 

one gene conferring resistance.  The next step is to determine the mating type 

of the candidate double mutants (mating type determination).   

Mating type “a” candidates are selected.  The preference for mating 

type “a” cells is arbitrary.  However, we pick one mating type and keep it 

constant throughout the process to keep the genetics as similar as possible 

across the screen.  The mating type “a” candidates are then plated on both 

SC-Met and SC-Lys plates.  Since these haploids are new, it is not guaranteed 
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that the mating type “a” strains will be met15∆, so they are screened at this 

point in order to keep the genetics of the screen as consistent as possible.   

The genomic DNA is then collected (yeast genomic miniprep) from 

the mating type “a” candidates that grow on SC-Lys but not on SC-Met.  We 

then perform two PCR reactions (PCR reaction) on the DNA.  One is run 

with an ERG4ck primer and KanMX primer and the other with the ERG5ck 

and KanMX primers.  The PCR products are then run on a .8% agarose gel 

(agarose gel electrophoresis).  A band will appear on the gels at 

approximately 700bp if the PCR reaction was successful.  A band at 700bp in 

both the lanes utilizing the ERG4ck and ERG5ck primers signifies the 

candidate is in fact an erg4∆ erg5∆ double mutant.   

 

High Copy Suppression Screen 

 The high copy suppression screen is intended to identify genes that 

have a function similar to, or possibly downstream in the pathway of the 

deleted gene or genes.  The first step in the screen is to create positive and 

negative controls, to which the growth of the deletant strains can be 

compared.  This is accomplished by transforming (high-efficiency 

transformation of yeast) several strains whose growth pattern on TTG+ 

media is known with an “empty” plasmid.  The pRS315 plasmid, referred to 

here as the p19 plasmid, carries the same nutritional marker, LEU2, as the 

plasmid used to transform the deletant strains (Figure II-4) except that it does  
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Figure II-4 (www.atcc.org):  This is the pRS315 plasmid vector, referred to 

as the p19 vector in our lab.  This figure shows the LEU2 gene and ampicillin 

resistance gene, ampR, which are the selection markers for this plasmid.  It 

also shows all the restriction digest sites on the vector.  The YEp351 library 

utilizes the same configuration with the addition of 2 to 3 yeast genes as an 

insert. 
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not carry a yeast gene.  The plasmids contain the LEU2 gene which enables 

the transformed strains, whose genome is leu2∆, to grow on media lacking 

leucine.  The plasmid also contains a gene for ampicillin resistance which 

serves as a bacterial selection marker if the plasmid is transformed into 

bacteria.  For both the osh3∆ and erg4∆ erg5∆ suppression screens the 

positive controls were a wild type strain, 430, transformed with p19 

(430+p19), a super sensitive strain, 1305, transformed with p19 (1305+p19) 

and a resistant strain, 1325, transformed with p19 (1325+p19).  The negative 

control for the OSH3 screen was an osh3∆ strain transformed with p19 

(15B9).  The negative control for the ERG4 ERG5 screen was an erg4∆ 

erg5∆ strain transformed with p19 (DDY3).   

 Using the controls for each screen, it then becomes necessary to select 

a concentration of TTG and growing temperature to use for the screen.  A 

high concentration of TTG will not allow anything to grow while a low 

concentration of TTG will not have enough antifungal effect to visually 

separate the differences in growth rate between the different strains.  Optimal 

growing temperature, 30˚C, will often allow the yeast to grow too quickly, 

making it difficult to distinguish growth rate.  Often a lower temperature of 

25˚C, about room temperature, is sufficient to slow growth to a manageable 

rate.  Determining the optimal conditions is accomplished by creating SC-

Leu+TTG (SC-Leu plus a concentration of TTG) plates at differing TTG 

concentrations and growing the controls on them at different temperatures.  
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SC-Leu plates are used to maintain selection for only cells containing a 

plasmid.  Basing the range from the appropriate TTG concentration in 

previous experiments in the lab, it was decided to test TTG concentrations 

from .02% to .05% first at intervals of .01% and then at .005%.  The most 

promising concentrations were then tested at both 25˚C and 30˚C to 

determine the optimal conditions in which to conduct the screen. 

 The next step is to transform (high-efficiency transformation of 

yeast) the deletant strains with the YEp351 2µ library.  The 2µ library is 

made up of the basic Yep351 high copy plasmid, but with the addition of an 

average of two to three yeast genes on an insert in the polylinker region of the 

plasmid (Figure II-4).  Each transformed yeast cell should each have just one 

plasmid, but after replication will carry between 20 and 200 copies of this 

single plasmid.  When the transformed strains are grown on SC-Leu media, 

both the LEU2 gene and the genes contained in the insert are transcribed in 

high numbers.   

Once transformed, the strains are then patched onto SC-Leu plates, 

approximately fifty to a plate.  The four controls are also patched onto each 

plate to provide a guide for judging the growth on each individual plate, as 

growth may vary slightly from plate to plate.  The transformants are then 

grown under optimal conditions at 30˚C for 36 to 48 hours.  These patches 

are then replica plated onto SC-Leu+TTG plates, at the concentration of TTG 

earlier determined.  This is accomplished by placing sterile velvet over a 
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block, and then pressing the original SC-Leu plate on the velvet, transferring 

yeast to the velvet.  The SC-Leu+TTG plate is then pressed against the 

velvet, transferring yeast from the velvet onto the fresh plate.  This creates an 

exact replica of the original on the TTG+ plate.  The TTG+ plates are then 

stored at the temperature earlier determined and observed for growth.  For a 

complete screen, to ensure that every gene in the yeast genome has been 

screened at least once, it is necessary to patch approximately 5000 

transformants, which translates to over 10,000 genes screened and greater 

than 1.667x genome coverage.   

If a transformant is observed to grow in excess of the negative 

control, it is termed a suppressor candidate.  The candidate must be retested 

to ensure that the genes on the plasmid are responsible for the suppression of 

the super sensitive phenotype.  The rate at which the yeast genome mutates 

spontaneously, not to mention due to the various stresses the cell is put under 

during transformation etc, means a significant portion of suppressor 

candidates do not retest positively, as the suppressed phenotype is likely due 

to various mutations and not a gene on the high copy plasmid.   

To retest the candidate suppressor, the plasmid must be removed from 

the yeast.  This is accomplished using the yeast genomic miniprep protocol.  

This genomic DNA will be mixed in with the plasmid, but for our purposes it 

is unnecessary to purify the plasmid from the rest of the DNA.  The genomic 

DNA solution containing the plasmid is used to transform E. coli 
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(transformation of E. coli).  The bacteria are plated and grown on LB+Amp 

(Luria-Bertani media plus ampicillin) plates that select only the bacteria 

transformed with the plasmid.  This selection is due to the ampicillin 

resistance gene contained in the plasmid, earlier mentioned as the bacterial 

selection marker.  The bacteria serve to amplify the suppressor candidate 

plasmid to sufficient numbers to be transformed back into the yeast strain to 

be retested against TTG.  The plasmid is obtained from the bacteria and 

purified using the Qiagen Plasmid Miniprep protocol.  The purified plasmid 

is then transformed (transformation of plasmid into yeast) back into the 

yeast strain of interest.  The re-transformed yeast strain is then patched on 

SC-Leu plates and replica plated onto SC-Leu+TTG plates in the same 

fashion as previously described.  If the transformant is observed to grow 

better than the negative control again, it is considered a genuine suppressor.   

The next step is to identify the gene that has caused the suppression of 

the mutant phenotype.  The plasmid purified from the bacteria Qiagen 

Plasmid Miniprep protocol is sufficiently pure to be used for DNA 

sequencing (DNA Sequencing).   

 

Mating Type Determination: 

 .25ml of the haploid strain in question is mixed with .25ml of a strain 

of known mating type and 1ml of YPAD (Yeast extract-Peptone-Dextrose 

medium plus Adenine) liquid media in a culture tube.  Two such culture 
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tubes are made, one utilizing a known strain of mating type “a” and the other 

with a strain of mating type “ά.”  The tubes are placed on a roller and kept at 

30˚C for four hours.  After the incubation period, the tubes are checked for 

aggregates of cells.  Aggregates of cells indicate that the cells of the strain in 

question are agglutinating with and mating to the strain of known mating 

type.  This indicates the strain in question is of the opposite mating type, i.e. 

cell aggregates in the tube containing the known strain of mating type “a” 

indicate the strain in question is mating type “ά.”   

 

Yeast Genomic Miniprep: 

 To collect genomic DNA from yeast, a culture is grown overnight in 

selective liquid media, usually SC-Leu (lacking leucine).  The yeast are 

pelleted and spheroplasted, which is the digestion of the cell wall, at 37˚C for 

one hour in SEM solution.  SEM solution contains Sorbitol, NaPO4, 

ethylenediaminetetraacetic acid (EDTA), betamercaptoethanol and 

zymolyase.  DTAB lysis buffer is then added and the suspension heated at 

65˚C for ten minutes.  The DTAB lysis buffer contains 

dodecyltrimethylammonium bromide (DTAB), NaCl, Tris HCl, and EDTA.  

The DNA is then extracted from the solution with chloroform.  The solution 

is centrifuged and the aqueous phase is collected.  To the aqueous phase is 

added CTAB solution containing cetyl trimethylammonium bromide (CTAB) 

and NaCl.  This precipitates the DNA, which is then pelleted.  The pellet is 
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then resuspended in a 1.2M NaCl solution, precipitated again and 

resuspended in TE buffer. 

 

PCR Reaction: 

 PCR, or polymerase chain reaction, is used for amplifying samples of 

DNA (Figure II-5).  It allows for the replication of DNA without the use of a 

living organism and is highly specific based on the primers used.  The PCR 

solution is as follows: 1µl primer 1, 1µl primer 2, 1µl dNTPs (Deoxyribose 

Nucleotide Tri-Phosphates) at 5mM each, 3µl 10x PCR buffer with MgCl2, 

1.5µl genomic DNA solution, 1µl Taq polymerase and double distilled water 

to a total solution volume of 30µl.  The solution is placed in the automatic 

thermal cycling machine with the following sequence:   

Step 1: 4 min at 95˚C  Step 5: Repeat steps 2-4 32x’s  

Step 2: 1 min at 94˚C  Step 6: 5 min at 72˚C 

Step 3: 2 min at 54˚C  Step 7: up to 24 hours at 4˚C 

Step 4: 2 min at 72˚C  

 

Agarose Gel Electrophoresis: 

 Gel Electrophoresis is run for several reasons.  It can be run to 

determine DNA size, DNA concentration, or test the result of a PCR reaction.  

For DNA electrophoresis, a .8% gel is made by heating agarose powder and 

electrophoresis buffer at the correct concentration.  Ethidium bromide is then  
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Figure II-5 (http://en.wikipedia.org/wiki/Image:PCR.svg):  This figure 

shows the process of DNA amplification during PCR.  Two primers are used, 

one for each direction.  In the experiments I have performed, the primers 

were ERG4ck and KanMX or ERG5ck and KanMX. 
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added to a concentration of about .5µg/ml and the gel is poured into a mold 

with a comb that creates wells.  After the gel has solidified the gel is placed 

in an electrophoresis box and covered with tris-acetate-EDTA (TAE) buffer, 

where the comb is removed.   The DNA, often a PCR product or product of 

genomic miniprep, is mixed with a loading buffer that contains glycerol to 

ensure the DNA sinks in the well, and a tracking dye.  This is loaded into the 

wells and an electric current is passed through the buffer and gel for ninety 

minutes to two hours.  This will give good separation the DNA based on size, 

with the smaller fragments traveling the farthest on the gel.  As the DNA 

migrates towards the positive electrode, it binds ethidium bromide and 

becomes visible under UV light.  When determining size, a mass ladder, 

which consists of several pre-cut DNA strands of various lengths, is run in 

one of the wells.  When determining concentration, this same mass ladder, 

with differing, known concentrations of the different size strands, is run in 

one of the wells and will fluoresce at different intensities based on the 

concentration of DNA at that size.  The fluorescence of the unknown 

concentration of DNA can be compared to the fluorescence of the known 

concentrations in the mass ladder.  This method can also be used to purify 

DNA of a particular size from other DNA fragments.  If this is the goal, a low 

melting temperature agarose is used, but the protocol is the same.  Once the 

gel has been run, the DNA band can be excised using a razor blade, the gel 
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melted at a low enough temperature so as not to destroy the DNA sample, 

and the DNA purified from the agarose. 

 

High-efficiency Transformation of Yeast 

 This method of transformation is used to transform strains with the 

YEp351 library.  The higher efficiency method is preferred because the 

plasmids in this library are different from one another, and thus it is 

necessary to transform as many cells as possible.   

The strain to be transformed is grown in a liquid YPAD media 

overnight.  The cell density is then measured using a spectrophotometer and 

50ml of YPAD liquid media is inoculated to a cell density of 5 x 106 cells/ml.  

This culture is then incubated at 30˚C on a shaker until its cell density is 2 x 

107 cells/ml, which is the result of two rounds of cell division.  Two rounds 

of division typically take about four hours under such conditions.  The 50ml 

culture is then harvested and separated into 5 conical, centrifuge tubes.   

The centrifuge tubes are then centrifuged at 3000g (2500rpm) for 5 

minutes.  The YPAD medium is poured off the pelleted cells and they are 

resuspended in sterile H2O and centrifuged again.  The water is then poured 

off, the cells are resuspended in 200µl of 100mM lithium acetate (LiAc) and 

the suspension is transferred to an eppendorf tube.  The cells are pelleted and 

the LiAc is removed with a pipette.  The cells are then resuspended to a final 

volume of 100µl with 100mM LiAc again.  The suspension is then divided 
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into ten, 50µl samples in microfuge tubes.  The cells are then pelleted again 

and the LiAc removed.   

The “transformation mix” is then added in the order listed.  240µl 

PEG (polyethylene glycol), 36µl of 1M LiAc, 25µl of single-stranded carrier 

DNA usually salmon sperm DNA, and 50µl of Plasmid DNA (.1-10µg) and 

water.  The order is important because PEG shields the cells from the 

detrimental effects of the high LiAc concentration.  The cells are resuspended 

in this mix by gentle pipetting and the suspensions are incubated for thirty 

minutes at 30˚C.  Once the incubation period is over, the cells are heat 

shocked by placing the suspensions in a water bath at 42˚C for twenty to 

twenty five minutes.  Next, the suspensions are microfuged at 7,000rpm for 

15 seconds to pellet the cells, and the transformation mix is removed with a 

pipette.  500µl of sterile H2O is used to resuspend the pellet by pipetting it 

gently.  200µl aliquots are then used to plate the transformed strain onto 

selective plates, SC-Leu in our instance. 

 

Qiagen Plasmid Miniprep 

 The purification of plasmids from E. coli is an important step in any 

molecular biology research.  It is generally important for the plasmid solution 

to be free from most contaminants.  In order to purify the plasmid so that it 

can be retransformed into yeast strains, or the yeast gene insert sequenced 
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(DNA Sequencing) our lab uses the Qiagen plasmid miniprep kit (Qiagen 

Inc., Valencia, CA).   

 To start, a single colony of transformed E. coli is grown overnight in 

3ml of LB+Amp selective liquid media.  The bacteria are pelleted by 

centrifugation at 6000g for 15 minutes and the supernatant removed.  The 

pellet is then resuspended in .3ml of buffer P1, provided in the kit.  Then .3ml 

of buffer P2 is added to the suspension, the tube is inverted several times to 

mix the buffers and the suspension is incubated at room temperature for 5 

minutes.  .3ml of buffer P3, which has been chilled on ice, is then added and 

the suspension is mixed and chilled on ice for 5 minutes.  The suspension is 

then centrifuged for 10 minutes at 14,000g, maximum speed for most 

microcentrifuges.  While the suspension is being centrifuged, a Qiagen-20 

column is equilibrated by allowing 1ml of QBT buffer to pass through it.  

Once the suspension is removed from the centrifuge, the supernatant is 

removed immediately and applied to the Qiagen-20 column and allowed to 

enter the resin by gravity flow.  The column is then washed twice with 2ml 

aliquots of buffer QC.  The column is then placed over an eppendorf tube and 

the DNA is eluted with .8ml buffer QF.   

 The eluted DNA is then precipitated by adding .56ml isopropanol to 

the solution, mixing and then centrifuging the solution at 10,000rpm for 30 

minutes.  The supernatant is carefully decanted and the DNA pellet is 

resuspended in 1ml 70% ethanol.  This solution is centrifuged for 10 minutes 
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at 10,000rpm.  The supernatant is carefully decanted again and the pellet 

allowed to air dry for 5 to 10 minutes.  The DNA pellet is then resuspended 

in 50µl of TE buffer.  It is then ready for quantitative gel analysis (Agarose 

Gel Electrophoresis), for transformation into yeast strains (Transformation 

of Plasmid into Yeast), or for DNA Sequencing. 

Composition of Qiagen buffers: 

P1 (Resuspension Buffer): 50mM Tris Cl, 10mM EDTA, 100µg/ml RNase A 

P2 (Lysis Buffer): 200mM NaOH, 1% SDS 

P3 (Neutralization Buffer): 3M Potassium Acetate (KAc) 

QBT (Equilibration Buffer): 750mM NaCl, 50mM MOPS, 15% Isopropanol, 

.15% Triton® X-100 

QC (Wash Buffer): 1M NaCl, 50mM MOPS, 15% Isopropanol 

QF (Elution Buffer): 1.25M NaCl, 50mM Tris Cl, 15% Isopropanol 

 

Transformation of E. coli 

 The transformation of E. coli is a common method used in genetics 

and biochemistry research.  For our purposes, E. coli are used to amplify 

selected plasmids so they can be retransformed into yeast strains.  The first 

step is to create competent bacterial cells.  This is accomplished by first 

growing the E. coli cells overnight in LB media.  49.5ml of LB media + 

10mM MgCl2 is then inoculated with .5ml of this overnight culture.  It is then 

allowed to grow for two to three hours at 37˚C.  The flask containing the 
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suspension is then cooled on ice for fifteen minutes.  The culture is the spun 

at 3000g (2500rpm) for five minutes.  The supernatant is then discarded and 

the pellet resuspended in half volume of ice cold .1M CaCl2.  This suspension 

is put on ice for an additional thirty minutes.  This suspension is divided into 

centrifuge tubes and spun for five minutes at 3000g (2500rpm).  This 

supernatant is discarded and the pellets resuspended in 1/20 volume ice cold 

.1M CaCl2+ 15%glycerol.  This suspension is left to sit in a 4˚C refrigerator 

for 24 hours, as competency increases in 24 hours, but subsequently falls.  

After 24 hours, the suspension is divided into 200µl aliquots of competent 

cells, which can be frozen at -80˚C.   

 Starting with these pre-chilled tubes of competent cells, in order to 

transform the bacteria 2µl of DNA solution obtained from yeast by the Yeast 

Genomic Miniprep method is added.  The tube is left on ice for 30 minutes 

and then heat shocked for 45 seconds at 42˚C.  The tube is then returned to 

the ice for approximately two minutes.  Then, 100µl of LB media that has 

been pre-warmed to 42˚C is added to the tube.  Once mixed, the culture is 

plated on a selective, LB+Amp (Ampicillin) plate.  The plates are then left 

overnight at 37˚C. 

 

One Step Transformation of Plasmid into Yeast 

 This method of transformation does not have the same level of 

transformation efficiency as the high-efficiency method, but is sufficient for 
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the purpose of transforming with a single, purified plasmid.  It is also much 

less complex and time consuming, making it the preferred method when high 

transformation efficiency is not necessary.  To transform the yeast, a culture 

of the yeast strain to be transformed is grown overnight in selective media, 

usually SC-Leu.  The cells are transferred to an eppendorf tube and pelleted.  

The supernatant is then removed.  The cells are then resuspended in one step 

buffer, which contains lithium acetate (LiAc), polyethylene glycol (PEG), 

and β-mercaptoethanol.  A single stranded DNA carrier, like salmon sperm 

DNA, is then added along with the plasmid.  After mixing, the tube is placed 

in a 45˚C water bath for thirty minutes.  After this incubation period, the cells 

are pelleted again and the supernatant is removed.  The cells are then 

resuspended in SC-Leu liquid media and then plated on SC-Leu plates, in 

order to select only the transformed cells for growth.   

  

DNA Sequencing 

  The DNA sequencing service we use is performed using BIG DYETM 

Version 3 terminators from Applied Biosystems and are run on an ABI 377 

DNA Sequencer at SUNY Upstate Medical Center’s DNA core facility.  The 

method is known as automated fluorescent sequencing and is run in a similar 

fashion to PCR reactions, with some slight differences.  The reaction is run in 

a thermal cycler using a single primer to start a unidirectional polymerase 

reaction (whereas in PCR two primers are used and the polymerase reaction 
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goes in both directions) and also utilizes ddNTP’s (di-deoxynucleotide 

triphosphates) that are labeled with fluorescent dyes.   

These ddNTP’s terminate the replication reaction at random intervals.  

They terminate the polymerase reaction when integrated into the new DNA 

strand due to the lack of an oxygen molecule on the ribose moiety to which 

the next nucleotide can be fixed.  Due to the large amount of DNA present, 

this should terminate a detectable number of DNA strands at each base in the 

sequence.  The last nucleotide in the sequence, the ddNTP, is labeled with a 

fluorescent dye, ddATP appears green, ddTTP appears yellow, ddCTP 

appears red and ddGTP appears blue.   

After the DNA is purified, the strands can be run on a gel and read by 

an automatic sequencing machine which can read the fluorescent dyes, and 

which will display the DNA sequence.  This is only a partial sequence, 

however, as the reaction will only accurately replicate 500-700 base pairs.  

The sequence is then used to run a BLAST search on the yeast genome 

database website, www.yeastgenome.org, which will show us what part of 

the yeast genome corresponds to the insert in the 2µ library for the suppressor 

we have seqeunced.  Once this information is acquired, another primer can be 

selected to sequence the opposite side of the insert.  Once this sequence is 

obtained, a BLAST search of both the sequences will reveal the two ends of 

the insert and what yeast genes lie in between. 
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The first step in the sequencing reaction procedure is to prepare the 

reaction mixture.  It contains: 8µl “Terminator Reaction Ready Mix,” 200-

500ng double stranded template DNA, 3.2pmol primer, and deionized H2O to 

a total volume of 20µl.  The “Terminator Reaction Ready Mix” contains 

AmpliTaq® DNA polymerase, dNTP’s, and BIG DYETM v3.0 fluorescently 

labeled ddNTP terminators.  The mixture is then mixed well and spun briefly 

before being overlaid with 40µl of mineral oil.  The tubes are then placed in 

the thermal cycler with the following steps repeated 25 times: 

1: Rapid thermal ramp* to 96˚C 4: 50˚C for 5 seconds 

2: 96˚C for 10 seconds  5: Rapid thermal ramp to 60˚C 

3: Rapid thermal ramp to 50˚C 6: 60˚C for 4 minutes 

After the 25 cycles: Rapid thermal ramp to 4˚C, hold until ready to purify 

*Rapid thermal ramp corresponds to 1˚C/second 

 The contents of the tube are then spun down for purification.  

Purification is necessary because excess dye terminators will interfere will 

the reading of the shortest strands and could interfere with base counting as 

well.  The first step in ethanol purification is to remove the reaction mixture 

from under the oil and place it in a 1.5ml microfuge tube.  To the microfuge 

tube is added 16µl deionized water and 64µl 95% ethanol and mixed well.  

The tubes are then left at room temperature for at least 15 minutes and 

preferably longer to precipitate the extension products.  The tubes are then 

spun in a microcentrifuge at maximum speed.  The supernatant is then 
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aspirated carefully and completely, as unincorporated dye terminators are in 

the supernatant.  250µl of 70% ethanol is then added and the pellet 

resuspended by careful vortexing.  The tubes are then spun for 10 minutes at 

maximum speed.  The supernatant is then aspirated carefully again and the 

pellets allowed to dry.   

 The pellets are then prepared to be run on a 4.5% acrylamide gel and 

analyzed using the ABI 377 DNA Sequencer.  Each pellet is resuspended in 

6µl of a loading buffer which consists of a 5:1 ratio of deionized formamide 

and 25mM EDTA with 50mg/ml dexetran blue.  The samples are then 

vortexed gently and spun briefly.  The samples are heated to 95˚C for 2 

minutes to denature any DNA that had bound, and 2µl of each sample placed 

in a separate well.  The gel is then set up to run in the automated sequence 

analyzer and the machine does the rest.   

 

 

 

 

 

 

 

 

 



34 

Results: 

  

Creation of erg4∆ erg5∆ Double Mutants: 

 In attempting to create the erg4∆ erg5∆ double mutants 

approximately 45 tetrads were dissected.  Of these, 16 grew in a “2 and 2” 

pattern when replica plated onto YPAD+KAN media.  This is 35.5% of the 

tetrads dissected.  This number is not quite as high as would be expected, i.e. 

50%, perhaps due to chance, but also possibly due to human error.  For 

example, some of the “tetrads” that were dissected were not really tetrads, but 

clumps of four cells that were mistaken to be tetrads when looked at through 

the microscope.  This resulted in 32 (16 x 2) double mutant candidates.  

 Of these 32 candidates, eight grew on SC-Lys but not on SC-Met 

media.  This is performed because the strains we have decided to use are 

met15∆. Of these eight candidates, four were mating type “a.”  Remembering 

that we have decided to use mating type “a” cells and that all of the labs 

mating type “a” cells are met15∆, the four that are met15∆ and mating type 

“a” are the usable double mutant candidates.  Genomic DNA was obtained 

from the four usable candidates and two PCR reactions run on each 

candidate’s DNA.  The first used the ERG4ck and KanMX primers.  The 

second used the ERG5ck and KanMX primers (Figure III-1).  Gels were then 

run to allow me to determine which candidates were in fact actual double 

mutants.  The first gel was run using the samples from the ERG4ck and  
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Figure III-1:  This figure depicts how the primers anneal during the PCR 

reaction.  If the ERG4 or ERG5 gene has not been replaced by the Kan 

resistance gene, then only the ERG4 or ERG5 primer will have a binding site 

and no band will be present on the gel.  If the genes have been replaced, only 

then will the KanMX primer have a binding site and the PCR reaction 

successfully take place, resulting in a band on the gel. 
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Figure III-2:  This gel was run on the four double mutant candidates and two 

single mutant strains.  All the lanes in this gel depict PCR reactions run with 

the ERG4ck and KanMX primers.  Lanes 1 and 2 show the erg4∆ genomic 

DNA reaction, lanes 3 and 4 show the erg5∆ genomic DNA reaction, the four 

double mutant candidates, C1-C4, were run on the next eight lanes, two lanes 

to each candidate.  Lane 13 is a mass ladder that, for some reason, did not 

work.  Though it doesn’t print clearly, the gel shows bands in all lanes except 

lanes 3 and 4.  This result is as expected, as the erg5∆ should not show a 

product with the ERG4ck primer, and shows all the double mutant candidates 

to be erg4∆. 
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Figure III-3:  This gel was also run on the 4 double mutant candidates as 

well as the 2 single mutants, but utilizing the ERG5ck and KanMX primers.  

Lane 1 is the erg4∆ single mutant strain and lane 2 is the erg5∆ single mutant 

strain.  Lanes 3-6 are the double mutant candidates, C1-C4.  Lane 7 is a 

sample run from another experiment and not pertinent to the identification of 

the double mutants.  Lane 8 is a mass ladder.  The gel shows that bands 

appeared at 700bp in lanes 3, 5 and 6.  A band did not appear in lanes 2 and 4 

which was unexpected.  Lane 2 was rerun in the next gel (Figure III-4) 

because it should have had a band.  The gel indicates that the double mutant 

candidate in lane 4, C2, was not erg5∆. 
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Figure III-4:  This gel was run with two of the candidates that showed the 

strongest bands in the previous gels and intended to prove conclusively they 

are double mutants.  Lane 1 is the retest of the erg5∆ single mutant with the 

ERG5ck and KanMX primers.  Lane 2 is C4 with the ERG4ck and KanMX 

primers and lane 3 is C4 with the ERG5ck and KanMX primers.  Lane 4 is 

C3 with the ERG4ck and KanMX primers and Lane 5 is C3 with the ERG5ck 

and KanMX primers.  Lane 6 is a mass ladder.  A band appears in all lanes at 

700bp, which shows that the erg5∆ strain is really an erg5∆ strain and that 

both C3 and C4 are truly double mutants. 
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KanMX PCR reaction (Figure III-2).  The second gel was run using the 

samples from the ERG5ck and KanMX PCR reaction (Figure III-3).  From 

these gels, three of the four samples were shown to be genuine erg4∆ erg5∆ 

double mutants.  To be absolutely sure, the two PCR reactions were run again 

on the two samples with the strongest bands in the first two gels, and the 

resultant PCR samples run on a gel (Figure III-4).  This gel confirmed the 

two candidates are in fact genuine double mutants.  These two erg4∆ erg5∆ 

double mutants were transformed with the p19 plasmid to create control 

strains, named DDY3 and DDY4.  Additionally, an erg4∆ single mutant 

haploid was transformed with the p19 plasmid to create the DDY1 control 

strain and an erg5∆ single mutant likewise transformed to create the DDY2 

control strain. 

 

Selection of TTG concentration for suppressor screening: 

 For the erg4∆ erg5∆ double mutant screen the wild type (430), super-

sensitive (1305), resistant (1325) and ERG4∆ ERG5∆ double mutant (DDY3) 

strains were grown on SC-Leu plates with TTG concentrations of .02%, 

.03%, .04% and .05% at 30˚C overnight.  It was determined that .02% and 

.03% were the most promising concentrations, as .04% and .05% did not 

allow sufficient growth even in the resistant controls.  SC-Leu+ .02%, .025% 

and .03% were then inoculated with the control strains and grown at both 

30˚C and 25˚C.  It was determined that .025% TTG concentration at 25˚C 
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provided the best separation of growth patterns and was therefore the most 

conducive to identifying suppressors.  The same process was repeated with 

the osh3∆ control strains with the same results.  Both screens were therefore 

conducted on SC-Leu+.025%TTG at 25˚C.   

 

High Copy Suppression Screen: 

 For the erg4∆ erg5∆ double mutant screen 30 plates were patched 

with a total of 1,322 patches, each representing a different transformant.  

Each transformant screened represents one plasmid screened and each 

plasmid contains two to three genes.  Thus, the 1,322 patches correspond to 

approximately 1322 x 2.5= 3,300 genes, or more than half of the predicted 

5,800 genes comprising the yeast genome.  However, no suppressor 

candidates were identified after such a substantial number of genes were 

screened, so the project was abandoned.   

 For the osh3∆ screen, 17 plates have been patched thus far with a total 

of 909 patches.  This corresponds to approximately 909 x 2.5 = 2,270 genes 

tested, about 40% of the yeast genome.  Of these patches, six were identified 

as suppressor candidates.  Candidates 1, 3, 4, 5 and 6 grew in excess of the 

negative control, similar to the wild type control.  Candidate 2 grew well in 

excess of the wild type control and even in excess of the resistant control.  

The six candidates represent 0.66% of the plasmids screened.  Of the six 

suppressor candidates, four candidates, 2, 3, 5 and 6, retested as genuine 
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suppressors.  These four candidates represent 0.44% of the plasmids screened 

(Table III-1).   

 

 

Mutant Strain 
Transformants 

Screened 
Suppressor 
Candidates % 

Genuine 
Suppressors % 

erg4∆ erg5∆ 1322 0 0 0 0 

osh3∆ 909 6 0.66 4 0.44 

 

Table III-1:  This table summarizes the results obtained from the two high 

copy suppression screens.  The candidate suppressors are in the process of 

being sequenced at the time of the publication of this Capstone Project. 
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Discussion: 

 The distribution of lipids among the cell’s various organelles is 

essential for the proper functioning of the cell.  The processes by which cells 

regulate the distribution of lipid particles like phospholipids, glycolipids, 

sphingolipids, proteins and sterols, are poorly understood.  Because improper 

sterol regulation and trafficking can lead to both high and low cholesterol 

levels in the human circulatory system, and improper cholesterol levels have 

been associated with a range of diseases from heart disease to Alzheimer’s 

disease, understanding the mechanisms by which cells regulate membrane 

composition of sterols is essential.   

 Yeast, as a simple eukaryote, is an essential model system for 

discovering the methods by which cells regulate their membrane 

compositions.  The members of the Erdman lab, myself included, are 

utilizing high copy suppression screens in order to understand membrane 

homeostasis.  I have begun high copy suppression screens on the osh3∆ and 

erg4∆ erg5∆ double mutant strains.  The erg4∆ erg5∆ double mutant screen 

did not yield any suppressors after a significant number of genes had been 

screened, and the screen was thus abandoned.  In the osh3∆ screen six 

candidate suppressors were identified, four of which retested positively as 

genuine suppressors.  The four suppressors of the osh3∆ phenotype need to 

be sequenced and the genes responsible for the suppression identified.   
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 Thus far, we have learned something is not right with the erg4∆ 

erg5∆ double mutant screen.  The double mutant is viable, but it is unclear 

why the screen did not yield any positive results after so many genes were 

screened.  It is possible no suppressors could overcome the deletion of both 

genes, so screens on the erg4∆ and erg5∆ single deletion strains is a 

possibility for future research in the Erdman lab.  What we have learned from 

the osh3∆ screen is unclear until the genes responsible for the suppression 

can be identified.  It is hoped that these genes, which may have a similar or 

overlapping function with the OSH3 gene, will give clues to the function of 

Osh3p.   

 The future direction of the project is to continue the osh3∆ screen.  At 

this point, only about 1/5 of the transformants that are necessary to ensure 

complete genome coverage have been screened.  In addition, the suppressors 

already identified, and any resulting from the continuation of the screen, will 

be sequenced and their identities discovered.  Deletion mapping and 

subcloning strategies will be used to map the genes responsible for the high 

copy suppression within the genomic DNA inserts of the different library 

plasmids will be mapped to single genes (the plasmids typically contain 

between one and as many as five open reading frames depending on ORF 

sizes and insert size). Also, individual screens may be carried out on the 

erg4∆ and erg5∆ single mutant strains, instead of the failed double mutant 

screen.  Once these screens are completed, future work will depend heavily 
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on the identity and nature of the suppressors.  If any suppressors have a 

particularly interesting function, an unknown function or their function is 

involved in membrane homeostasis or composition, these are likely 

candidates for future research in the Erdman lab.  It is also possible that any 

of the OSH family of genes was responsible for the suppression, including 

OSH3 itself.  If this is the case, it is not likely these genes would be pursued 

any further.  Discovering the nature of the suppression of the genes selected 

for further research is the likely first step in this future research.   

One of the first experiments will be to determine whether the 

suppressor gene will increase the resistance of wild type strains to TTG.  If 

the suppressors do increase resistance of the 430 strain to TTG, it would 

indicate the over expression of the suppressor gene increases resistance in 

general, and is not specific to the deleted gene. If the suppression is shown to 

be specific to the deleted gene, future experiments would seek to identify the 

exact nature of the interaction, which may include two-hybrid screens or 

protein co-purification experiments among other possibilities, depending on 

the functions of the suppressor genes.   

Though much of my time was tied up in a screen that had no results, 

and the other screen is far from complete, I hope to have laid the groundwork 

for future research on these genes and the pathways associated with 

membrane sterol composition.  I also hope that this future research may find 
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broad application beyond mere knowledge of the cell and be applied to 

medical and pharmaceutical fields. 
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