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Abstract 

This dissertation will explore the analysis of waveguide discontinuities for the purpose 

of dielectric filled waveguide filter analysis and design. The filling media studied are uniaxial 

media and uniaxial media embedded with metamaterial. A literary search provides numerous 

methods and numerical techniques for analyzing waveguide class problems, but ultimately the 

Mode Matching Method (MMM) is chosen as the numerical analysis technique for this 

dissertation. 

An overview of waveguide theory and its application to the Mode Matching Method are 

presented. The Mode Matching Method is then used to analyze simple cases to confirm the 

numerical accuracy. Once accuracy is confirmed, Mode Matching theory is applied assuming 

the waveguides are filled with anisotropic medium. This theory is extended to uniaxial media 

with special orientations of the optic axis, because in practice the coordinate systems of media 

and waveguide do not always coincide. The Mode Matching Method with rotated optic axis is 

also extended to include the losses of the dielectric. This thesis also goes on to demonstrate the 

Mode Matching Method can accurately analyze dielectric waveguides with embedded 

metamaterial, specifically thin wire metamaterials 

Finally two dielectric filled waveguide filters are designed using the Mode Matching 

Method: one filter with embedded metamaterials and one filter without metamaterials. The 

filters are then manufactured. The measured results are compared to the Mode Matching 

results and shown to have excellent agreement. 
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1 Introduction 

1.1 Goals of Research 

This research is intended to provide analysis of the propagation of waves inside waveguides 

with an end application of designing waveguide filters that take advantage of filling media 

properties. The author’s hope is that this thesis will provide insight for engineers designing 

waveguide filters or provide a starting point for a future student’s thesis work. 

 This work investigates various analytical methods to solve waveguide problems, such as 

mode-matching, various integral methods, finite element methods (FEM), and various hybrid 

methods. The mode-matching method (MMM) is chosen and analyzed.  This research also 

investigates wave propagation in a waveguide filled with an arbitrarily oriented anisotropic 

uniaxial media, and how the orientation effects propagation. Once a method is derived for the 

analysis of wave propagation in media filled waveguides this knowledge will be applied to 

waveguide filter design, because a high percentage of man-made substrates or media exhibit 

anisotropic uniaxial characteristics.  

The research will be further extended to include analysis of waveguide filters filled with 

man-made metamaterials, which is an advantage the MMM has over other methods. 

Discussion of metamaterials will be left out of the prior work section and included in the 

metamaterial section as it is a relatively new field. 
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Finally, media filled waveguide filters with and without metamaterials are designed, 

manufactured, RF tested and results compared with the MMM of this research. 

1.2 Prior Work 

Volumes of literature provide methods for solving waveguide discontinuities problems, 

describe wave propagation though anisotropic media, and describe techniques for filter design 

based on the aforementioned subjects. This section seeks to cover previous work done in the 

subject area, and highlight areas where there is room for expansion. Specifically, it will expand 

on media filled waveguide filters with arbitrarily oriented optic axis of the media. As mentioned 

earlier there is prior work done with metamaterials, but this will be saved for the metamaterial 

chapter.    

1.2.1 Waveguide Analysis Using Mode-Matching Method 

Analyses of waveguide discontinuities using the mode-matching method (MMM) have been 

around for a long time. All things in electromagnetics fundamentally have roots extending back 

to Maxwell’s equations so credit must in some form be given to Maxwell. However, Wexler [1] 

in 1976 lays the foundation for MMM. He states in modal analysis the amplitudes of normal 

modes are chosen to satisfy boundary conditions. This method is also useful for multimode 

propagation cases, and because it conforms closely to physical reality it has the widest 

applications. This is the main advantage of MMM over other methods.  Itoh [2] and Mittra and 

Lee’s *3] texts both provide in depth analysis of formulation of mode-matching problems, as 

well as detailed derivations for special case discontinuities. Itoh also discusses the importance 

of numerical convergence, which will be mentioned later. Itoh’s formulations and 
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recommendations are the base for the mode-matching techniques of this research. Safavi-Naini 

and MacPhie [4] solve waveguide discontinuities by a different method but similar ideology. 

Safavi-Nanini and MacPhie formulate that power propagating in one waveguide must be 

continuous across boundaries due to conservation of power. They then go on to derive 

reflection and transmission coefficients for various circular waveguide discontinuities. Jarry and 

Beneat [5] expand on MMM with the solution for an arbitrary double step discontinuity and 

provide results assuming the presence of fundamental mode. Chu et al [6] extend the theory of 

mode-matching to microstrip problems, which is not directly applicable to this research but still 

useful nonetheless. Patzelt and Arndt [7] apply mode matching theory to double step and 

cascaded discontinuities with applications for X-band filters. In Papziner and Arndt [8] mode 

matching is applied to analyze coupling from rectangle to rectangle and rectangle to circular 

irises for filter applications. Numerical results are then compared with measured results. Hoppe 

[9] computes reflection and transmission coefficients using MMM for circular, rectangular, and 

coaxial discontinuities. Wade and MacPhie [10] use MMM to compute circular to rectangular 

junctions similar to [4], but using mode-matching instead of power technique. Ihmels and Arndt 

[11] use MMM to solve for cutoff frequencies and s-parameters for the junction of rectangular 

waveguides by a cross iris. Hajimowlana et al [12] solve for reflection and transmission 

coefficients between the discontinuities of double ridged waveguides. 

1.2.2 Alternative Methods for Waveguide Analysis 

There are also numerous other techniques for solving waveguide discontinuity problems. 

Contour-integral and Integral-Equation are two alternate common methods for solving 

waveguide discontinuity problems in literature [13-14]. Hybrid mode-matching finite element 
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technique is another common method to solve waveguide discontinuity problems where FEM is 

used to characterize fields within the arbitrarily shaped discontinuity and a modified MMM is 

then used to solve for the total fields [15-17]. Rozzi [18] uses Green’s function to yield 

equations for magnetic and electrical fields, and then uses a Fourier Expansion to solve for the 

admittance. Weisshaar [19] solves for cascaded waveguide discontinuities by determining an 

equivalent circuit model and treating the discontinuities as coupled transformers, and then 

compares with MMM. Finding an equivalent network model then solving for propagation 

constants is another alternate methodology for solving waveguide discontinuity problems [20-

21]. 

1.2.3 Media Filled Waveguides 

Some of the early work done on analyzing wave propagation in media filled waveguides was 

performed by Engineer and Nag [22] in 1965 when they derive y-dependent E-field propagation 

constants for media filled, and partially filled waveguides in the presence of a transverse 

magnetic field. In 1967 Davies [23+ uses Berk’s variational expression to solve for propagation 

constants when the optic axis is rotated by an arbitrary angle between parallel to the direction 

of propagation and 90:. Liu et al [24] use eigenvalues and eigenvectors to solve for propagation 

constants in a waveguide filled with uniaxial media. The optic axis of the media is aligned with 

the direction of wave propagation. Sobrinho and Giarolas [25] solve the problem of a 

waveguide filled with uniaxial media using a finite-difference method to solve for propagation 

constants when the optic axis is not aligned with the direction of propagation. Damaskos et al 

*26+ solve Maxwell’s equations for a biaxial media, and then assume x or y field independence 

to decouple the field equations and solve for dispersion relations. Sheen [27] takes a biaxial 
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media filled waveguide, and makes the appropriate assumptions to decouple Maxwell’s 

equations. Sheen then solves for all 6 field components for TE and TM modes. Chen [28] derives 

propagation constants in biaxial media, for an arbitrary propagation angle, for an arbitrary 

coordinate system. Pozar [29] derives dispersion relations for TE and TM modes radiating from 

a patch antenna on uniaxial media into free space. Krowne [30] uses a Method of Moments 

approach to solve for the 6 field components created by a line current source sandwiched in 

between biaxial media and a simple media. There is also extensive work done on propagation in 

dielectric waveguides but this type of waveguide is not applicable to this work. However, 

Yakovlev et al and Jalaleddine’s works are mentioned as some of their methodology can be 

applied to this work [31-32]. 

1.2.4 Waveguide Filters 

Using the cascaded solutions of waveguide discontinuity problems filters are formed and 

analyzed. One common way to accomplish this is to use MMM to solve for the discontinuity 

problem, and then cascade the solutions connected by waveguide transmission lines [33─36]. 

1.3 Waveguide Basics 

This work ultimately analyzes and designs waveguide filters. This requires an understanding of 

the equations that govern waveguides.  Pozar, Collin, Kong, and Harrington *37+−*40] all give 

excellent derivations for waveguides, and the reader is invited to explore these texts further.  

The waveguide in Figure 1.1 has x dimension of “a”, and y dimension of “b”. The wave 

propagates in the z direction, or z is the axis of propagation. 
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Figure 1.1: Waveguide Cross Section. 

Maxwell’s Equations are the fundamental starting point for electromagnetic problems and the 

time-harmonic versions are listed below. 

∇ × 𝐸 = −𝑗𝜔𝜇𝐻            1.1 

∇ × 𝐻 = 𝑗𝜔𝜀𝐸            1.2 

When 𝐸  and 𝐻  have 𝑒−𝑗𝛽𝑧  dependence, rectangular components of (1.1) and (1.2) are 

𝜕𝐸𝑧

𝜕𝑦
+ 𝑗𝛽𝐸𝑦 = −𝑗𝜔𝜇𝐻𝑥           1.3 

−
𝜕𝐸𝑧

𝜕𝑥
− 𝑗𝛽𝐸𝑥 = −𝑗𝜔𝜇𝐻𝑦          1.4 

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝑗𝜔𝜇𝐻𝑧           1.5 

𝜕𝐻𝑧

𝜕𝑦
+ 𝑗𝛽𝐻𝑦 = 𝑗𝜔𝜀𝐸𝑥           1.6 

−
𝛿𝐻𝑧

𝛿𝑥
− 𝑗𝛽𝐻𝑥 = 𝑗𝜔𝜀𝐸𝑦           1.7 

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔𝜀𝐸𝑧 .          1.8 

Following similar methods in the recommended text these six equations are solved in terms of 

Hz and Ez. By solving in terms of Hz and Ez four equations can now fully describe the transverse 

fields present inside the rectangular waveguide. 
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𝐻𝑥 =
𝑗

𝑘𝑐
2  𝜔𝜀

𝜕𝐸𝑧

𝜕𝑦
− 𝛽

𝜕𝐻𝑧

𝜕𝑥
          1.9 

𝐻𝑦 =
−𝑗

𝑘𝑐
2  𝜔𝜀

𝜕𝐸𝑧

𝜕𝑥
+ 𝛽

𝜕𝐻𝑧

𝜕𝑦
          1.10 

𝐸𝑥 =
−𝑗

𝑘𝑐
2  𝜔𝜇

𝜕𝐻𝑧

𝜕𝑦
+ 𝛽

𝜕𝐸𝑧

𝜕𝑥
          1.11 

𝐸𝑦 =
𝑗

𝑘𝑐
2  𝜔𝜇

𝜕𝐻𝑧

𝜕𝑥
− 𝛽

𝜕𝐸𝑧

𝜕𝑦
          1.12 

where 

𝑘𝑐
2 = 𝑘2 − 𝛽2           1.13 

and 

𝑘 = 𝜔 𝜀𝜇           1.14 

Waveguides can only support TE or TM waves because the single wall of the waveguide 

does not satisfy conditions necessary for TEM wave propagation. TE waves are transverse 

electric and imply that 𝐸𝑧 = 0. TM or transverse magnetic waves imply that 𝐻𝑧 = 0. The field 

solutions for TE waves are found by setting 𝐸𝑧 = 0 in eq. (1.9) − (1.12). 

𝐻𝑥 =
−𝑗

𝑘𝑐
2  𝛽

𝜕𝐻𝑧

𝜕𝑥
           1.15 

𝐻𝑦 =
−𝑗

𝑘𝑐
2  𝛽

𝜕𝐻𝑧

𝜕𝑦
           1.16 

𝐸𝑥 =
−𝑗

𝑘𝑐
2  𝜔𝜇

𝜕𝐻𝑧

𝜕𝑦
           1.17 

𝐸𝑦 =
𝑗

𝑘𝑐
2  𝜔𝜇

𝜕𝐻𝑧

𝜕𝑥
           1.18 

The solutions for TM waves are similarly found by setting 𝐻𝑧 = 0 in eq. (1.9) − (1.12). 

𝐻𝑥 =
𝑗

𝑘𝑐
2  𝜔𝜀

𝜕𝐸𝑧

𝜕𝑦
           1.19 

𝐻𝑦 =
−𝑗

𝑘𝑐
2  𝜔𝜀

𝜕𝐸𝑧

𝜕𝑥
           1.20 

𝐸𝑥 =
−𝑗

𝑘𝑐
2  𝛽

𝜕𝐸𝑧

𝜕𝑥
            1.21 
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𝐸𝑦 =
−𝑗

𝑘𝑐
2  𝛽

𝜕𝐸𝑧

𝜕𝑦
            1.22 

Pozar [37] tells us that the solution to Hz and Ez must also be a solution to the Helmholtz 

equation where 𝐻𝑧  is assumed to have the form of 𝐻𝑧(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 , and is a solution to 

Helmholtz equation (1.23). 

 
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 + 𝑘2 𝐻(𝑜𝑟 𝐸)𝑧 = 0        1.23 

From separation of variables it is known that a solution for 𝐻𝑧(𝑥, 𝑦) is 

𝐻𝑧 𝑥, 𝑦 =  𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin𝑘𝑥𝑥  𝐶 cos 𝑘𝑦𝑦 + 𝐷 sin 𝑘𝑦𝑦      1.24 

Hz cannot be found directly from (1.24) but can be substituted back into  (1.15) − (1.18). A 

similar expression for Ez can be substituted into (1.19)−(1.22). With the restrictions of the 

boundary conditions imposed, the proper values for the coefficients A,B,C,D are determined, 

and in turn a solution for  (1.24) is realized. For a TE wave, (1.24) is substituted back into  

(1.17)−(1.18) resulting in 

𝐸𝑥 =
−𝑗𝜔𝜇 𝑘𝑦

𝑘𝑐
2  𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin 𝑘𝑥𝑥  −𝐶 sin 𝑘𝑦𝑦 + 𝐷 cos𝑘𝑦𝑦 𝑒

−𝑗𝛽𝑧    1.25 

𝐸𝑦 =
𝑗𝜔𝜇 𝑘𝑥

𝑘𝑐
2  −𝐴 sin𝑘𝑥𝑥 + 𝐵 cos𝑘𝑥𝑥  𝐶 cos𝑘𝑦𝑦 + 𝐷 sin𝑘𝑦𝑦 𝑒

−𝑗𝛽𝑧    1.26 

Imposing the boundary conditions that inside the waveguide Ex = 0 at y=0 and b, and that Ey = 0 

at x =0 and a, it is seen that B=D=0, and (𝑘𝑥 =
𝑚𝜋

𝑎
, 𝑘𝑦 =

𝑛𝜋

𝑏
). Making the proper substitutions in 

(1.24), Hz is now known. With Amn equal to an arbitrary amplitude coefficient, 

𝐻𝑧 𝑥, 𝑦, 𝑧 = 𝐴𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧 .       1.27 

Now that there is a solution for Hz, all transverse fields for TE waves are known and 

(1.15)−(1.18) become 
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𝐸𝑥 =
𝑗𝜔𝜇𝑛𝜋

𝑘𝑐
2𝑏

𝐴𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         1.28 

𝐸𝑦 = −
𝑗𝜔𝜇𝑚𝜋

𝑘𝑐
2𝑎

𝐴𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧        1.29 

𝐻𝑥 =
𝑗𝛽𝑚𝜋

𝑘𝑐
2𝑎

𝐴𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         1.30 

𝐻𝑦 =
𝑗𝛽𝑛𝜋

𝑘𝑐
2𝑏

𝐴𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         1.31 

Following the same procedures used to solve for TE waves, TM wave solutions are solved for 

yielding 

𝐸𝑧 𝑥, 𝑦, 𝑧 = 𝐵𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         1.32 

And substituting (1.32) back into (1.19)−(1.22) yields the transverse fields for TM waves, which 

are 

𝐸𝑥 = −
𝑗𝛽𝑚𝜋

𝑘𝑐
2𝑎

𝐵𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         1.33 

𝐸𝑦 = −
𝑗𝛽𝑛𝜋

𝑘𝑐
2𝑏

𝐵𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         1.34 

𝐻𝑥 =
𝑗𝜔𝜀𝑛 𝜋

𝑘𝑐
2𝑏

𝐵𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         1.35 

𝐻𝑦 = −
𝑗𝜔𝜀𝑚𝜋

𝑘𝑐
2𝑎

𝐵𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧        1.36  

The last thing to consider is β, because for certain values of β waves will either 

propagate or not. Assume the E field takes the form 𝐸𝑜𝑒
−𝛾𝑧 , where 𝛾=jβ=j𝑘𝑧 . It is known that 

𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 = 𝑘2, and 

𝑘𝑧 =  𝑘2 −   
𝑚𝜋

𝑎
 

2
+  

𝑛𝜋

𝑏
 

2
          1.37 

Harrington [40] states only when the wave number k is greater than the cutoff wave number 

defined by eq. (1.13) propagation will occur. Harrington defines this with the following 

equation, and it is valid for TE and TM cases. 
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𝛾𝑚𝑛 = 𝑗𝑘𝑧 =

 
 

 𝑗𝛽 = 𝑗 𝑘2 −   
𝑚𝜋

𝑎
 

2
+  

𝑛𝜋

𝑏
 

2
 , 𝑘 > 𝑘𝑐

𝛼 =  −𝑘2 +   
𝑚𝜋

𝑎
 

2
+  

𝑛𝜋

𝑏
 

2
 , 𝑘 < 𝑘𝑐

 ’      1.38 

and 

𝑘𝑐
2 =  

𝑚𝜋

𝑎
 

2
+  

𝑛𝜋

𝑏
 

2
,          1.39 

where 𝑘𝑐  is the cutoff wave number. Eq. (1.38) states only when k>𝑘𝑐  will propagation happen; 

all other cases will result in evanescent waves. Harrington then goes on to define the wave 

impedances as follows 

 𝑍𝑜 𝑚𝑛
𝑇𝐸 =

𝐸𝑥

𝐻𝑦
= −

𝐸𝑦

𝐻𝑥
=

𝜔𝜇

𝑘𝑧
=  

𝜔𝜇

𝛽
, 𝑓 > 𝑓𝑐

𝑗𝜔𝜇

𝛼
, 𝑓 < 𝑓𝑐

        1.40 

 𝑍𝑜 𝑚𝑛
𝑇𝑀 =

𝐸𝑥

𝐻𝑦
= −

𝐸𝑦

𝐻𝑥
=

𝑘𝑧

𝜔𝜀
=  

𝛽

𝜔𝜀
, 𝑓 > 𝑓𝑐

𝛼

𝑗𝜔𝜀
, 𝑓 < 𝑓𝑐

        1.41 

where 𝑓𝑐  is the cutoff frequency and f is the operating frequency. Equations (1.37)−(1.41) are of 

particular interest because they are used extensively in solving waveguide discontinuities using 

the mode-matching method presented in the next section. 
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2 Mode-Matching 

As mentioned in the introduction, mode-matching is a well-studied topic, and provides some 

advantages over other methods [1]. This section will present the theory of Mode-Matching, and 

discuss some results. 

2.1 Simple Step-Discontinuity Problem 

As stated by Itoh’s text [2], Mode Matching is one of the most frequently used methods to 

solve waveguide problems. Mode-Matching is especially useful when the problem is a junction 

of two regions, because the fields in each waveguide region are explicitly expressible in each 

region. At the junction or discontinuity, boundary conditions are used to solve for the unknown 

fields. Using Itoh’s method the problem illustrated in Figure 2.1 cut along the x-z plane is 

solved. 

 

Figure 2.1 Simple Step Discontinuity 
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This problem consists of the junction of two waveguides; Waveguide 1 of region A and 

waveguide 2 of region B. Region A has a height of a, and a depth of b out of the page (not 

shown). Region B has a height of c and the same depth of b out of the page. Region A has wave 

amplitude of A+ entering the region and wave amplitude of A- exiting the region. Similarly, 

region B has wave amplitude of B- entering and B+ exiting.  At z=0 the two waveguides are 

connected at a step discontinuity junction. The problem now is to determine these wave 

amplitudes. 

2.2 Expression of Fields 

Assuming for the sake of argument TE modes are the only modes propagating. Referring back 

to (1.28)−(1.31), the transverse fields are known for a rectangular waveguide. The equations 

are repeated for convenience below. 

𝐸𝑥 =
𝑗𝜔𝜇𝑛𝜋

𝑘𝑐
2𝑏

𝐴𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         2.1 

𝐸𝑦 = −
𝑗𝜔𝜇𝑚𝜋

𝑘𝑐
2𝑎

𝐴𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧        2.2 

𝐻𝑥 =
𝑗𝛽𝑚𝜋

𝑘𝑐
2𝑎

𝐴𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         2.3 

𝐻𝑦 =
𝑗𝛽𝑛𝜋

𝑘𝑐
2𝑏

𝐴𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧         2.4 

In order to express the above equations in line with Harrington’s text the substitution of 

𝑗𝛽 = 𝛾𝑚𝑛  is made and all coefficient terms are absorbed into one coefficient of Amn, where 

𝛾𝑚𝑛 = 𝑗 𝑘2 −   
𝑚𝜋

𝑎
 

2
+  

𝑛𝜋

𝑏
 

2
         2.5 

and k is the free space wave number, a is the height of the waveguide, and b is the depth of the 

waveguide. For example, looking at Figure 2.1 in region B, a = c, and b=b. After making the 
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required substitutions for 𝛾𝑚𝑛  and absorbing all terms into a common coefficient (2.1)−(2.4) 

become 

𝐸𝑥 = −𝐴𝑚𝑛
𝑛𝑎

𝑚𝑏
cos

𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝛾𝑚𝑛 𝑧         2.6 

𝐸𝑦 = 𝐴𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝛾𝑚𝑛 𝑧         2.7 

𝐻𝑥 = 𝐴′𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
𝑒−𝛾𝑚𝑛 𝑧         2.8 

𝐻𝑦 = 𝐴′𝑚𝑛
𝑛𝑎

𝑚𝑏
cos

𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝛾𝑚𝑛 𝑧         2.9 

As mentioned, it is assumed that only TE modes are propagating in the waveguide. It is now 

also assumed that only the TEM0 mode is present. By making this assumption (2.6)−(2.9) are 

reduced to 

𝐸𝑥 = 0            2.10 

𝐸𝑦 = 𝐴𝑚 sin
𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑚 𝑧           2.11 

𝐻𝑥 = 𝐴′𝑚 sin
𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑚 𝑧          2.12 

𝐻𝑦 = 0            2.13 

where 𝐴𝑚  is the coefficient of the electric field, and 𝐴𝑚
′  is the coefficient of the magnetic field. 

For the purpose of commonality it is desired to write the H-fields in terms of the corresponding 

E-fields. Again using Harrington’s E-field/H-field relations one can determine the relation 

𝐻𝑥 =
−𝐸𝑦

 𝑍𝑜 𝑚𝑛
𝑇𝐸 = − 𝑌𝑜 𝑚𝑛

𝑇𝐸 𝐸𝑦          2.14 

where,  

 𝑌𝑜 𝑚𝑛
𝑇𝐸 =

𝛾𝑚𝑛

𝑗𝜔𝜇
           2.15 
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The correct signs for each field component are determined through the Poynting theorem, 

where 𝑆 = 𝐸 × 𝐻  and S is in the direction of power flow. After using (2.15) and the Poynting 

Theorem, (2.11)−(2.12) are written in terms of a common coefficient. 

𝐸𝑦 = 𝐴𝑚 sin
𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑚 𝑧           2.16 

𝐻𝑥 = −𝑌𝑚𝐴𝑚 sin
𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑚 𝑧          2.17 

Now the total field present in the waveguide is a summation of all the wave amplitudes 

traveling forward and all wave amplitudes traveling backward. 

𝐸𝑦,𝑇𝑜𝑡𝑎𝑙 =  (𝐴𝑚
+𝑀

𝑚=1 sin
𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑚 𝑧 + 𝐴𝑚

− sin
𝑚𝜋𝑥

𝑎
𝑒𝛾𝑚 𝑧)      2.18 

𝐻𝑥,𝑇𝑜𝑡𝑎𝑙 =  (𝑌𝑚𝐴𝑚
−𝑀

𝑚=1 sin
𝑚𝜋𝑥

𝑎
𝑒𝛾𝑚 𝑧 − 𝑌𝑚𝐴𝑚

+ sin
𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑚 𝑧)     2.19 

Where 𝐴𝑚
+  is the amplitude of the mth mode traveling forward in the waveguide, 𝐴𝑚

−  is the 

amplitude of the mth mode traveling backward in the waveguide, and 

𝛾𝑚 = 𝑗 𝑘2 −  
𝑚𝜋

𝑎
 

2
          2.20 

𝑌𝑚 =
𝛾𝑚

𝑗𝜔𝜇
           2.21 

 

2.3 Fields of Step-Discontinuity Problem 

Looking at Figure 2.1 one can write an expression for the total fields in region A and B using the 

results of the last section. Using (2.18)−(2.19) and assuming only 𝑇𝐸𝑚0 modes present, the total 

fields in region A are 

𝐸𝑦
𝐴 =  (𝐴𝑚

+𝑀
𝑚=1 sin

𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑎𝑚 𝑧 + 𝐴𝑚

− sin
𝑚𝜋𝑥

𝑎
𝑒𝛾𝑎𝑚 𝑧)      2.22 

𝐻𝑥
𝐴 =  (𝑌𝑎𝑚𝐴𝑚

−𝑀
𝑚=1 sin

𝑚𝜋𝑥

𝑎
𝑒𝛾𝑎𝑚 𝑧 − 𝑌𝑎𝑚𝐴𝑚

+ sin
𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑎𝑚 𝑧)     2.23 
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and in region B 

𝐸𝑦
𝐵 =  (𝐵𝑛

+𝐾
𝑛=1 sin

𝑛𝜋𝑥

𝑐
𝑒−𝛾𝑏𝑛 𝑧 + 𝐵𝑛

− sin
𝑛𝜋𝑥

𝑐
𝑒𝛾𝑏𝑛 𝑧)      2.24 

𝐻𝑥
𝐵 =  (𝑌𝑏𝑛𝐵𝑛

−𝐾
𝑛=1 sin

𝑛𝜋𝑥

𝑐
𝑒𝛾𝑏𝑛 𝑧 − 𝑌𝑏𝑛𝐵𝑛

+ sin
𝑛𝜋𝑥

𝑐
𝑒−𝛾𝑏𝑛 𝑧)     2.25 

Where M is the number of modes present in region A, K is the number of modes present in 

region B, and the propagation constant is 

𝛾𝑖𝑝 = 𝑗 𝑘2 −   
𝑝𝜋

𝑖′
 

2
 , 𝑖 = 𝑎 𝑜𝑟 𝑏, 𝑖′ = 𝑎 𝑓𝑜𝑟 𝑖 = 𝑎 𝑎𝑛𝑑 𝑖′ = 𝑐 𝑓𝑜𝑟 𝑖 = 𝑏,   2.26 

and the admittance is 

𝑌𝑖𝑝 =
𝛾𝑖𝑝

𝑗𝜔𝜇
, 𝑖 = 𝑎 𝑜𝑟 𝑏,          2.27 

where a or b corresponds to the region of waveguide.  Setting z=0 describes the fields at the 

discontinuity in Figure 2.1, and reduces (2.22)−(2.25) to 

𝐸𝑦
𝐴 =  (𝐴𝑚

+𝑀
𝑚=1 sin

𝑚𝜋𝑥

𝑎
+ 𝐴𝑚

− sin
𝑚𝜋𝑥

𝑎
)        2.28 

𝐻𝑥
𝐴 =  (𝑌𝑎𝑚𝐴𝑚

−𝑀
𝑚=1 sin

𝑚𝜋𝑥

𝑎
− 𝑌𝑎𝑚𝐴𝑚

+ sin
𝑚𝜋𝑥

𝑎
 )      2.29 

𝐸𝑦
𝐵 =  𝐵𝑛

+𝐾
𝑛=1 sin

𝑛𝜋𝑥

𝑐
+ 𝐵𝑛

− sin
𝑛𝜋𝑥

𝑐
        2.30 

𝐻𝑥
𝐵 =  𝑌𝑏𝑛𝐵𝑛

−𝐾
𝑛=1 sin

𝑛𝜋𝑥

𝑐
− 𝑌𝑏𝑛𝐵𝑛

+ sin
𝑛𝜋𝑥

𝑐
       2.31 

which are the total E and H fields in regions A and B. At the discontinuity, boundary conditions 

must be preserved. In the case of a source free region the tangential electric and magnetic 

fields must equal each other, or 𝐸𝑡1 = 𝐸𝑡2  𝑎𝑛𝑑 𝐻𝑡1 = 𝐻𝑡2. The total electric fields at the 

discontinuity are defined as 

𝐸𝑦
𝑧=0 =  (𝐴𝑚

+𝑀
𝑚=1 sin

𝑚𝜋𝑥

𝑎
+ 𝐴𝑚

− sin
𝑚𝜋𝑥

𝑎
) =  (𝐵𝑛

+𝐾
𝑛=1 sin

𝑛𝜋𝑥

𝑐
+ 𝐵𝑛

− sin
𝑛𝜋𝑥

𝑐
)   2.32 

and the total magnetic fields are defined as 
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𝐻𝑥
𝑧=0 =  (𝑌𝑎𝑚𝐴𝑚

−𝑀
𝑚=1 sin

𝑚𝜋𝑥

𝑎
− 𝑌𝑎𝑚𝐴𝑚

+ sin
𝑚𝜋𝑥

𝑎
)  

=  (𝑌𝑏𝑛𝐵𝑛
−𝐾

𝑛=1 sin
𝑛𝜋𝑥

𝑐
− 𝑌𝑏𝑛𝐵𝑛

+ sin
𝑛𝜋𝑥

𝑐
)       2.33 

It desired to eliminate the x dependence from the left hand side of (2.32). This is accomplished 

by taking advantage of mode orthogonality as stated by Morse and Feshbach [41] that  

 𝐸𝑛
∗ ∙ 𝐸𝑚  =  𝜓𝑛 𝑥 𝜓𝑚 𝑥 𝑑𝑥 =  

𝐴

2
, 𝑚 = 𝑛

0, 𝑚 ≠ 𝑛 
        2.34 

where 𝐴 is the magnitude of the function squared. By multiplying both sides of (2.32) by 

sin
𝑚𝜋𝑥

𝑎
, changing both summations indices to p, integrating from x=0 to x=c, using 𝐸𝑦

𝐴=0 for 

c≤x≤a, and making use of (2.34), (2.32) now becomes 

 𝐴𝑚
+ + 𝐴𝑚

−  
𝑎

2
=   𝐵𝑝

+ + 𝐵𝑝
− 𝐻𝑚𝑝

𝐾
𝑝=1  for m=1,2,…,M      2.35 

and 

𝐻𝑚𝑝 =  sin
𝑚𝜋𝑥

𝑎
sin

𝑝𝜋𝑥

𝑐
𝑑𝑥

𝑐

0
= −

𝑎𝑐

2𝜋 𝑐𝑚+𝑎𝑝  
sin  

𝜋𝑚𝑐

𝑎
+ 𝜋𝑝 +

𝑎𝑐

2𝜋 𝑐𝑚−𝑎𝑝  
sin  

𝜋𝑚𝑐

𝑎
− 𝜋𝑝 . 2.36 

A similar procedure is now done to eliminate the x dependence on the right hand side of 

(2.33). Multiplying (2.33) by sin
𝑣𝜋𝑥

𝑐
 and integrating from x=0 to x=c, only the term for which n=v 

on the right hand side of (2.33) survives so that 

  𝐴𝑚
− − 𝐴𝑚

+  𝑌𝑎𝑚𝐻𝑚𝑣 =𝑀
𝑚=1  𝐵𝑣

− − 𝐵𝑣
+ 𝑌𝑏𝑣

𝑐

2
 for v=1,2,…,K     2.37 

It is now seen there are four unknowns 𝐴+, 𝐴−, 𝐵+, and 𝐵−and two equations. The 

following sections describe the solutions for the reflected and transmitted wave coefficients in 

terms of the incident wave coefficients. The two equations are displayed below for ease of 

viewing. 

 𝐴𝑚
+ + 𝐴𝑚

−  
𝑎

2
=   𝐵𝑝

+ + 𝐵𝑝
− 𝐻𝑚𝑝

𝐾
𝑝=1 ,  for m=1,2,…,M      2.38 
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  𝐴𝑚
− − 𝐴𝑚

+  𝑌𝑎𝑚𝐻𝑚𝑣 =𝑀
𝑚=1  𝐵𝑣

− − 𝐵𝑣
+ 𝑌𝑏𝑣

𝑐

2
,  for v=1,2,…,K     2.39 

2.3.1 Transmission Coefficients in Region B 

This section contains the derivations for the transmission coefficients in region B, 𝐵+, when the 

waveguide junction is excited from region A. First, (2.38) is solved for 𝐴−. 

𝐴𝑚
− =

2

𝑎
  𝐻𝑚𝑝𝐵𝑝

+ 𝐾
𝑝=1 +

2

𝑎
  𝐻𝑚𝑝𝐵𝑝

− 𝐾
𝑝=1 − 𝐴𝑚

+ , for m = 1,2,…,M    2.40 

Next, it is assumed that region B is perfectly matched so that no reflection of waves occurs. This 

is accomplished by setting 𝐵𝑝
− = 0, for p=1,2,…,K. Equation (2.40) now reduces to 

𝐴𝑚
− =

2

𝑎
  𝐻𝑚𝑝𝐵𝑝

+ 𝐾
𝑝=1 − 𝐴𝑚

+ , for m = 1,2,…,M       2.41 

(2.41) is now put into (2.39) yielding 

   
2

𝑎
  𝐻𝑚𝑝𝐵𝑝

+ 𝐾
𝑝=1 − 𝐴𝑚

+  − 𝐴𝑚
+  𝑌𝑎𝑚𝐻𝑚𝑣 =𝑀

𝑚=1  𝐵𝑣
− − 𝐵𝑣

+ 𝑌𝑏𝑣
𝑐

2
,  for v=1,2,…,K  2.42 

Interchanging the order of summations and setting 𝐵𝑣
− = 0, for v=1,2,…,K, 

    
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝𝐵𝑝

+ 𝑀
𝑚=1  𝐾

𝑝=1  + 𝑌𝑏𝑣
𝑐

2
𝐵𝑣

+ = 2  𝑌𝑎𝑚𝐻𝑚𝑣𝐴𝑚
+  𝑀

𝑚=1  for v=1,2,…,K  2.43 

One last assumption is made in order to solve for the transmission coefficient. This is that the 

waveguide in region A is excited by only a dominant coefficient. This is that the waveguide in 

region A is excited by only a  𝑇𝐸10, which is the dominant mode for waveguides. This is 

accomplished by enforcing the following requirement. 

𝐴𝑚
+ =  

1, 𝑓𝑜𝑟 𝑚 = 1
0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑙𝑠𝑒

           2.44 

This reduces (2.43) to 

      
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝  

𝑀
𝑚=1  +  𝑌𝑏𝑣

𝑐

2
𝛿𝑣𝑝  𝐵𝑝

+𝐾
𝑝=1 = 2𝑌𝑎1𝐻1𝑣  𝑓𝑜𝑟 𝑣 = 1,2,… , 𝐾   2.45 
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The left hand side is viewed as a product of a K×K matrix with a Kx1 vector, and the right hand 

side as a K×1 vector. Equation (2.45) has the form 

 
𝐿𝐻𝑆11 ⋯ 𝐿𝐻𝑆1𝐾

⋮ ⋱ ⋮
𝐿𝐻𝑆𝐾1 ⋯ 𝐿𝐻𝑆𝐾𝐾

 𝐵+ =  
𝑅𝐻𝑆1

⋮
𝑅𝐻𝑆𝐾

         2.46 

Since all matrix elements except those of B+ are known, the unknown elements of B+ are solved 

with simple matrix inversion. The elements of B+, which are called transmission coefficients, are 

now defined. 

2.3.2 Reflection Coefficient of Region A 

The reflection coefficient in region A, 𝐴−, is the amplitude of the reflected waves in region A 

when the junction is excited from region A, and region B is assumed to be perfectly matched. 

First, the transmission coefficients of (2.45) are solved for; call them 𝐵𝑝
+ for  p=1,2,…,K. They are 

then substituted into (2.41) with the same assumption of (2.44). 

𝐴𝑚
− =

2

𝑎
  𝐻𝑚𝑝𝐵𝑝

+ 𝐾
𝑝=1 − 𝛿𝑚1 for m = 1,2,…,M       2.47 

2.3.3 Reflection Coefficient of Region B 

The reflection coefficient of region B, 𝐵+, is the amplitude of the reflected waves when the 

waveguide junction is excited from region B. It is important to note that 𝐵+ is no longer the 

transmitted wave when the assumption that the junction is excited from region B is made. First, 

(2.38) is solved for 𝐴𝑚
−  

𝐴𝑚
− =

2

𝑎
  𝐵𝑝

+ + 𝐵𝑝
− 𝐻𝑚𝑝

𝐾
𝑝=1 − 𝐴𝑚

+         2.48 

Equation (2.48) is substituted into eq. (2.39) resulting in 

   
2

𝑎
  𝐵𝑝

+ + 𝐵𝑝
− 𝐻𝑚𝑝

𝐾
𝑝=1 − 𝐴𝑚

+  − 𝐴𝑚
+  𝑌𝑎𝑚𝐻𝑚𝑣 =𝑀

𝑚=1  𝐵𝑣
− − 𝐵𝑣

+ 𝑌𝑏𝑣
𝑐

2
,  for v=1,2,…,K 2.49 
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It is assumed that region A is perfectly matched, which results in no reflected waves or 𝐴𝑚
+ =0. 

After this assumption and regrouping 

    
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝𝐵𝑝

+ 𝑀
𝑚=1  𝐾

𝑝=1 +
𝑐

2
𝑌𝑏𝑣𝐵𝑣

+ =
𝑐

2
𝑌𝑏𝑣𝐵𝑣

− −     
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝𝐵𝑝

− 𝑀
𝑚=1  𝐾

𝑝=1 , for 𝑣 =

1,2,… , 𝐾           2.50 

The same assumption that only a single dominant mode excitation is also made when the wave 

guide is excited from region B: 

𝐵𝑚
− =  

1, 𝑓𝑜𝑟 𝑚 = 1
0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑙𝑠𝑒

           2.51 

After enforcing this condition (2.50) becomes 

      
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝  

𝑀
𝑚=1  + 𝛿𝑣𝑝

𝑐

2
𝑌𝑏𝑣  𝐵𝑝

+ 𝐾
𝑝=1 =

𝑐

2
𝑌𝑏1𝛿𝑣1 −   

2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚1 

𝑀
𝑚=1 , for 𝑣 =

1,2,… , 𝐾           2.52 

Similar to (2.46), pre-multiplying the right hand side of eq. (2.52) by the inverse of the matrix on 

the left hand side of eq. (2.52) results in the values of the wave amplitudes of the reflected 

waves in region B when the waveguide junction is excited from region B and region A is 

assumed to be perfectly matched. 

2.3.4 Transmission Coefficient of Region A 

The transmission coefficient of region A, 𝐴−, is the amplitude of transmitted wave amplitudes 

when the waveguide junction is excited from region B. It is again important to note that 𝐴− is 

no longer the reflected wave when the assumption that the junction is excited from region B is 

made. Equation (2.52) provides the amplitudes of the reflected waves of region B when the 

waveguide junction is excited from region B. These values are, call them 𝐵+ for simplicity, are 

then put into eq. (2.48) while still maintaining eq. (2.51) and 𝐴𝑚
+ =0 for all m. 
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𝐴𝑚
− =

2

𝑎
 (𝐵𝑝

+𝐻𝑚𝑝 + 𝛿𝑝1𝐻𝑚1)𝐾
𝑝=1 , for 𝑚 = 1,2,… ,𝑀      2.53 

2.4 Normalization of Wave Amplitude Coefficients 

The previous section describes the methodology in deriving all transmission and reflection 

coefficients of 𝑇𝐸𝑚0 modes assuming a dominant 𝑇𝐸10 mode excitation. All derived modes 

must now be normalized to the incident 𝑇𝐸10 mode. Assume all modes entering the waveguide 

junction from region A are normalized, and all modes exiting the waveguide junction from 

region B are normalized. Normalized coefficients are defined as follows 

𝐴𝑚
+ = 𝛼𝑚𝐴𝑚

+            2.54 

𝐵𝑝
+ = 𝛽𝑝𝐵𝑝

+           2.55 

where 𝐴𝑚
+  and 𝐵𝑝

+  are the normalized coefficients, and 𝛼𝑚  and 𝛽𝑝  are scaling coefficients. It is 

also known that power is proportional to the square of the amplitude so that 

𝑃𝑚
𝐴+ =  𝜔𝑚

𝐴  𝐴𝑚
+  2          2.56 

𝑃𝑝
𝐵+ =  𝜔𝑝

𝐵 𝐵𝑝
+ 

2
.          2.57 

where 𝜔𝑚
𝐴  and 𝜔𝑝

𝐵  are constants that will be found later.  Using (2.54)−(2.55) in (2.56)−(2.57) 

respectively, yields 

𝑃𝑚
𝐴+ =  

𝜔𝑚
𝐴

𝛼𝑚
2  𝐴𝑚

+  
2

          2.58 

𝑃𝑝
𝐵+ =  

𝜔𝑝
𝐵

𝛽𝑝
2  𝐵𝑝

+  
2

          2.59 

Equating powers associated with equal magnitudes of normalized coefficients we obtain 

𝜔𝑚
𝐴

𝛼𝑚
2 = 𝐶2 =

𝜔𝑝
𝐵

𝛽𝑝
2 , for m=1,2,…,M and p=1,2,…,K       2.60 

Now solving for the scaling coefficients in terms of C, where C is an arbitrary constant, provides 
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𝛼𝑚 =
 𝜔𝑚

𝐴

𝐶
           2.61 

𝛽𝑝 =
 𝜔𝑝

𝐵

𝐶
           2.62 

 

Next the power is solved for. The electric and magnetic fields of the mth mode are 

defined as 

𝐸𝐴 = 𝐴𝑚
+ sin

𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑚 𝑧𝑦          2.63 

𝐻𝐴 = −𝐴𝑚
+ 𝑌𝑎𝑚 sin

𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑚 𝑧𝑥          2.64 

From basic electromagnetics, power calculation based on eq. (2.63)−(2.64) is defined as 

𝑃𝑚
𝐴+ = 𝑅𝑒  𝐸𝐴 ×  𝐻𝐴 ∗

𝑎

0
∙ 𝑧 𝑑𝑥 =  𝐴𝑚

+  2
𝑎

2
𝑌𝑎𝑚       2.65 

The same procedure is used to solve for the power in region B 

𝑃𝑝
𝐵+ = 𝑅𝑒  𝐸𝐵 ×  𝐻𝐵 ∗

𝑐

0
∙ 𝑧 𝑑𝑥 =  𝐵𝑝

+ 
2 𝑐

2
𝑌𝑏𝑝        2.66 

Taking the results of eq. (2.65) and inserting into eq. (2.56), and putting eq. (2.66) into eq. 

(2.57) results in the following two equations. 

𝜔𝑚
𝐴 =

𝑎

2
𝑌𝑎𝑚            2.67 

𝜔𝑝
𝐵 =

𝑐

2
𝑌𝑏𝑝            2.68 

Equations (2.67)−(2.68) are now put into eq. (2.61)−(2.62) respectively 

𝛼𝑚 =
 
𝑎

2
𝑌𝑎𝑚

𝐶
           2.69 

𝛽𝑝 =
 
𝑐

2
𝑌𝑏𝑝

𝐶
           2.70 
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Assuming that 𝛼1=1, (2.69) gives C =  𝑎 2 𝑌𝑎1 so that (2.69) also gives 𝛼𝑚 =
 
𝑎

2
𝑌𝑎𝑚

 
𝑎

2
𝑌𝑎1  

 and (2.70) 

gives 

𝛽𝑝 =
 
𝑐

2
𝑌𝑏𝑝

 
𝑎

2
𝑌𝑎1

           2.71 

The normalized coefficients with respect to the original coefficients are given upon substitution 

of the previously found 𝛼𝑚  into (2.54) and substitution of (2.71) into (2.55). 

𝐴𝑚
+ =

 
𝑎

2
𝑌𝑎𝑚

 
𝑎

2
𝑌𝑎1  

𝐴𝑚
+            2.72 

𝐵𝑝
+ =

 
𝑐

2
𝑌𝑏𝑝

 
𝑎

2
𝑌𝑎1

𝐵𝑝
+           2.73 

A similar method is used to define normalized coefficients when the waveguide junction 

is excited from region B yielding 

𝐴𝑚
− =

 
𝑎

2
𝑌𝑎𝑚

 
𝑐

2
𝑌𝑏1

𝐴𝑚
−            2.74 

𝐵𝑝
− =

 
𝑐

2
𝑌𝑏𝑝

 
𝑐

2
𝑌𝑏1

𝐵𝑝
−           2.75 

Equations (2.72)−(2.75) define the normalized coefficients. The ratio of the powers associated 

with two normalized coefficients is the ratio of the squares of their magnitudes. 
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2.4.1 S-parameter analogy 

  

Figure 2.2 Definition of waves entering and exiting an arbitrary system 

Looking at Figure 2.2, and assuming the wave amplitudes are normalized one can define the 

scattering parameter relations as follows for use later on. 

𝐴𝑛
− = 𝑆11𝐴𝑛

+ + 𝑆12𝐵𝑛
−          2.76 

𝐵𝑛
+ = 𝑆21𝐴𝑛

+ + 𝑆22𝐵𝑛
−          2.77 

2.5 Numerical Convergence  

To obtain exact results using the mode matching method, we need to extend the number of 

modes to infinity. Practically, and computationally, this is not feasible. Therefore the limits of M 

and K in (2.45), (2.47), (2.52), and (2.53) need to be truncated. Itoh [2, p. 604] states that mode 

matching presents a problem as two infinite series need to be truncated simultaneously. 

Depending on the truncated values, selected series can converge to different values. This is 

called relative convergence and can thankfully be avoided. Itoh [2] postulates that if the ratio 
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K/M is kept close to the ratio c/a convergence will occur. Shih and Gray [42] arrive at this same 

conclusion and compare with Marcuvitz’s *43+ results to within 1%. 

2.6 Computed Results 

The results in this section are based on the geometries contained in Figure 2.3. The waveguide 

is filled with a vacuum and walls are considered to be perfect electric conductors. 

 

Figure 2.3 Step discontinuity problem with waveguide dimensions 

 

2.6.1 Wave Coefficients 

As mentioned earlier, depending on which region of the waveguide junction is excited, 

𝐴+, 𝐴−, 𝐵+, and 𝐵−can have different meanings. To avoid confusion the results of the 

normalized wave amplitudes are plotted in terms of their S-parameter theory described by 

(2.76)−(2.77). 
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Figure 2.4 Magnitude of Transmission Coefficient (S21) when waveguide discontinuity is excited from region A 

 

Figure 2.5 Magnitude of Reflection Coefficient (S11) when waveguide discontinuity is excited from region A 
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Figure 2.6 Magnitude of Reflection Coefficient (S22) when waveguide discontinuity is excited from region B 

 

Figure 2.7 Magnitude of Transmission Coefficient (S12) when waveguide discontinuity is excited from region B 
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As expected, as frequency increases the transmission coefficient approaches unity, while the 

reflection coefficient approaches zero because the propagating wave is higher, and higher 

above the cutoff frequency of the waveguide in region B.  

2.6.2 Varying Discontinuity Step Size 

Looking at Figure 2.8, as x increases one would expect the magnitude of the reflection 

coefficient in region A to approach zero quicker. Figure 2.9 visually validates this hypothesis.   

 

Figure 2.8 Waveguide Discontinuity Junction of varying step x 
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Figure 2.9 Magnitude of Reflection Coefficients in Region A for Varying Step Sizes 

 

2.6.3 Coefficient Symmetry 

Looking at Figure 2.3 as a reference at the z=0 plane the S-parameters of this system should be 

the same as the S-parameters of the same system, but with the dimensions of region A and B 

reversed as shown in Figure 2.10. In other words,  𝑆21
𝐴 = 𝑆12

𝐵  𝑎𝑛𝑑 𝑆12
𝐴 = 𝑆21

𝐵 . 
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Figure 2.10 Symmetry of System A and System B 

 

Figure 2.11 Magnitude Comparison of S21 from System A vs. S12 from System B 
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Figure 2.12 Magnitude Comparison of S12 from System A vs. S21 from System B 

 

2.6.4 Mode-Matching vs. Commercial FEM Results 

The previous three sections provide graphical results of numerically computed coefficient 

magnitudes, and through the use of intuitional tests prove that the numerical results appear to 

provide results that agree with simple logic. It is desired to see how the numerical results 

compare with a commercially available Finite Element Solver (FEM) solver such as HFSS [44]. 
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Figure 2.13 Reflection Coefficient Magnitude (S11) of FEM vs. MMM comparison  

 

Figure 2.14 Transmission Coefficient Magnitude (S21) of FEM vs. MMM comparison 
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2.6.5 Phase of Waveguide Junction Discontinuity 

The phases of the S21 and S11 coefficients are plotted below. S22 and S12 have been omitted 

due to symmetry. Based on Figure 2.15 the phase undergoes an abrupt change near cutoff, and 

then maintains close to 0 degrees of phase change. Theoretically this makes sense, because the 

wave is traveling over an ideally zero distance, and no phase change is expected over zero 

distance. Looking at Figure 2.16 the phase also makes sense from simple theory, because the 

wave travels zero distance into the waveguide and then is reflected that same zero distance 

back to the output. The phase of S11 should sweep linearly from −π to π after cutoff. Figure 2.16 

shows this trend. There are no phase comparisons with FEM, because FEM results produce 

errors when trying to solve for exactly zero distance. 

 

Figure 2.15 Phase of S21 Coefficient at z=0 
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Figure 2.16 Phase of S11 Coefficient at z=0 

2.7 Double Step Discontinuity 

The double step waveguide discontinuity is shown in Figure 2.17. For this scenario the 

waveguide of region B is now offset from region A’s bottom wall by d, and the top of region B is 

offset from region A’s bottom wall by e. Region A’s total height is still a, and region B’s total 

height is still c.  
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Figure 2.17 Double Step Waveguide Discontinuity 

The general form of equations (2.16)−(2.17) still hold, however, the need to enforce the new 

boundary conditions in region B suggests that fields need to be zero at x=d and x=e. This 

modifies (2.16)−(2.17) to the new form of  

𝐸𝑦
𝐴 = 𝐴𝑎𝑚 sin

𝑚𝜋𝑥

𝑎
𝑒𝛾𝑎𝑚 𝑧           2.78 

𝐻𝑥
𝐴 = −𝑌𝑎𝑚𝐴𝑎𝑚 sin

𝑚𝜋𝑥

𝑎
𝑒𝛾𝑎𝑚 𝑧           2.79 

for region A, and for region B to 

𝐸𝑦
𝐵 = 𝐵𝑏𝑛 sin

𝑛𝜋  𝑥−𝑑 

 𝑒−𝑑 
𝑒𝛾𝑏𝑛 𝑧           2.80 

𝐻𝑥
𝐵 = −𝑌𝑏𝑛𝐵𝑏𝑛 sin

𝑛𝜋  𝑥−𝑑 

 𝑒−𝑑 
𝑒𝛾𝑏𝑛 𝑧          2.81 

Equations (2.81)−(2.84) are then used in the exact same manner described in Sections 2.3−2.4, 

with the exception that 𝐻𝑚𝑛  now equals 
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𝐻𝑚𝑛 =  sin
𝑚𝜋𝑥

a
sin

𝑛𝜋 (𝑥−𝑑)

𝑒−𝑑
𝑑𝑥 =

𝑒

𝑥=𝑑

𝑎 𝑒−𝑑 sin 
𝑚𝜋𝑒

𝑎
−
𝑛𝜋𝑒

𝑒−𝑑
+
𝑛𝜋𝑑

𝑒−𝑑
 

2𝜋 𝑚 𝑒−𝑑 −𝑎𝑛  
−

𝑎 𝑒−𝑑 sin 
𝑚𝜋𝑒

𝑎
+
𝑛𝜋𝑒

𝑒−𝑑
−
𝑛𝜋𝑑

𝑒−𝑑
 

2𝜋 𝑚 𝑒−𝑑 +𝑎𝑛  
   

−
𝑎 𝑒−𝑑 sin 

𝑚𝜋𝑑

𝑎
 

2𝜋 𝑚 𝑒−𝑑 −𝑎𝑛  
+

𝑎 𝑒−𝑑 sin 
𝑚𝜋𝑑

𝑎
 

2𝜋 𝑚 𝑒−𝑑 +𝑎𝑛  
        2.82 

2.7.1 Numerical Results of Double Step Discontinuity 

The results of this section are calculated in the same manner as the previously shown results, 

except that Hmn now is that of (2.82) 

 

Figure 2.18 Magnitude of Transmission Coefficient (S21) for a Double Step Waveguide Discontinuity Junction with 
Region A height 10.7mm and Region B height of 8.7mm 
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Figure 2.19 Magnitude of Reflection Coefficient (S11) for a Double Step Waveguide Discontinuity Junction with 
Region A height 10.7mm and Region B height of 8.7mm 

 

Figure 2.20 Magnitude of Reflection Coefficient (S22) for a Double Step Waveguide Discontinuity Junction with 

Region A height 10.7mm and Region B height of 8.7mm. 
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Figure 2.21 Magnitude of Transmission Coefficient (S12) for a Double Step Waveguide Discontinuity Junction with 

Region A height 10.7mm and Region B height of 8.7mm. 
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2.7.2 Mode-Matching vs. Commercial FEM Results for Double Step Discontinuity 

 

Figure 2.22 Reflection Coefficient (S11) of Centered Double Step Waveguide Discontinuity of FEM vs. MMM Results  

 

Figure 2.23 Transmission Coefficient (S21) of Centered Double Step Waveguide Discontinuity of FEM vs. 
MMM Results 
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One can see a slight difference in the FEM vs. MMM. This undoubtedly results from two 

reasons. 1) There are slight numerical differences in the computational methods, 2) Commercial 

software is not capable of fully de-embedding to the plane z=0. This second source of error 

adds additional phase which distorts the magnitude component.      

2.7.3 Phase of Waveguide Double Step Junction Discontinuity 

Looking at Figure 2.24 and Figure 2.25 one notices that the phase of S21 still converges to zero 

after cutoff, while the phase of S11 varies linearly from -π to π after cutoff as is typical in text. 

Again, there is no FEM vs. MMM comparison because of computational errors in the 

commercial FEM software in approximating zero thickness.  

 

Figure 2.24 Transmission Coefficient Phase (S21) of Centered Double Step Discontinuity 

16 18 20 22 24 26 28
2

4

6

8

10

12

14

Freq (GHz)

D
e
g
re

e
s

Phase of S21 for a=10.7mm, c=8.7mm r=1

 

 

Phase of S21



40 
 

 

Figure 2.25 Reflection Coefficient Phase (S11) of Centered Double Step Discontinuity 

 

2.7.4 Coefficient Symmetry of Centered Step Discontinuity 

Similar to section 2.6.3, the S-parameters of this system should be the same as the S-

parameters of the same system, but with the dimensions of region A and B reversed as shown 

in Figure 2.26. In other words,  𝑆21
𝐴 = 𝑆12

𝐵  and 𝑆12
𝐴 = 𝑆21

𝐵 . Figure 2.27 through Figure 2.28 

contain the numerically computed results of such systems. The figures show very good 

agreement. 
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Figure 2.26 Symmetry of Centered Step Discontinuities System A and System B 

 

Figure 2.27 Magnitude Comparison of S21 from System A vs. S12 from System B when Step Discontinuity 
is Centered 
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Figure 2.28 Magnitude Comparison of S12 from System A vs. S21 from System B when Step Discontinuity 
is Centered 
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3 Mode-Matching and Cascaded S-Parameter Theory 

In [33-36] and in the textbooks [37-38], the theory behind cascading S-parameters from 

multistep systems is described. This research uses a somewhat simplified methodology to form 

these systems vs. the methodology of [33-37] by taking advantage of port extension theory. 

The following section describes this in detail. 

3.1 Cascaded System Breakdown 

By cascading multiple steps, as shown in Figure 3.1, it is possible to form filters. However, it is 

possible to decompose this multistep system in order to simplify analysis. 

 

Figure 3.1 Example of Multiple Step System 

By decomposing the multistep system into the cascade of step discontinuities and connecting 

transmission lines depicted in Figure 3.2 one can use mode-matching theory to analyze the step 

discontinuity to determine the S-parameters of each step. The S-parameters of the step 

discontinuities are then connected with corresponding transmission lines to form the system in 

Figure 3.1. 
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Figure 3.2 Multi-Step System Decomposition 

By using the equations of sections 2.3.1−2.3.4, shown again below for convenience, the S-

parameters for a given step discontinuity are calculated. With X,Y,Z,W used for avoidance of 

confusion. 

𝑋 =     
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝 

𝑀
𝑚=1 +   𝑌𝑏𝑣

𝑐

2
𝛿𝑣𝑝 

−1
𝐾
𝑣=1  2𝑌𝑎1𝐻1𝑣  for 𝑝 = 1,2, … , 𝐾   3.1 

𝑌 =
2

𝑎
  𝐻𝑚𝑝𝑋 𝑝  
𝐾
𝑝=1 − 𝛿𝑚1 for m = 1,2,…,M       3.2 

𝑍 =     
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝  + 𝛿𝑣𝑝

𝑐

2
𝑌𝑏𝑣

𝑀
𝑚=1  𝐾

𝑣=1

−1
 
𝑐

2
𝑌𝑏1𝛿𝑣1 −   

2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚1 

𝑀
𝑚=1  ,     

for 𝑝 = 1,2,… , 𝐾          3.3 

𝑊 =
2

𝑎
  𝑍 𝑝 𝐻𝑚𝑝 + 𝛿𝑝1𝐻𝑚1 
𝐾
𝑝=1 , for 𝑚 = 1,2, … ,𝑀      3.4 

In (3.1), (   
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝  

𝑀
𝑚=1 +   𝑌𝑏𝑣

𝑐

2
𝛿𝑣𝑝 

−1
) is not meant to be the reciprocal of the quantity 

enclosed in the parentheses. It is meant to be the (pv)th element of the inverse of the matrix 

whose (vp)th element is the quantity enclosed in the parentheses. The inverse quantity in (3.3) 

has a similar meaning. Using (3.1)−(3.4) the analogy  of (3.5) is formed where f is the frequency 

for the corresponding S-parameter. 
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 𝑆 𝑓  =  
𝑌(𝑓) 𝑊(𝑓)
𝑋(𝑓) 𝑍(𝑓)

 =  
𝑆11(𝑓) 𝑆12(𝑓)
𝑆21(𝑓) 𝑆22(𝑓)

        3.5 

Similar to [33], transmission lines of length l may be added to each side of the waveguide step 

discontinuity if the S-parameters are premultiplied by a transmission matrix defined by 

𝑇 =  𝑒
𝛾𝑚 𝑙 0
0 𝑒−𝛾𝑚 𝑙

           3.6 

where  

𝛾𝑚 = 𝑗 𝑘2 −   
𝑚𝜋

𝑡
 

2
           3.7 

and k is the free space wave number,  t is the height of the connection waveguide, m is the mth 

mode present in the waveguide, and l is the length of the connecting waveguide. Equations 

(3.1−3.7) now define each decomposed section of Figure 3.2. Since S-parameters are not like 

ABCD parameters they cannot simply be multiplied to provide the response of the overall 

system. In order to account for the effects of later discontinuities at the input one must begin 

with the right-most S-parameters, and then back calculate. For example, in order to account for 

the effects of the transmission line on the step discontinuity the transmission line S-parameters 

are first calculated, and then the step discontinuity is added. This is depicted by arrow 1 in 

Figure 3.3. This process is then repeated from arrow 1 to arrow 8 in order to define the full 

system.  
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Figure 3.3 Calculation Methodology of Cascaded Decomposed S-parameter Blocks 

 

3.2  Simplified System Decomposition  

The methodology of 3.1 and Figure 3.3 provide the correct answer to the original system of 

Figure 3.1; however, as the number of discontinuities increases this method can become 

computationally time consuming. In order to reduce some of this computational effort, port 

extension theory described by Pozar [37] and Collin [38] is used. 

3.2.1 Port Extension Theory Background  

Say for example it is desired to extend the ports reference plane from z=0 to z=lN, where lN is an 

arbitrary length corresponding to the port of interest as shown in Figure 3.4 
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Figure 3.4 Port Extension 

Assume V represents the total wave at reference plane z=0 in Figure 3.4. V is composed of a 

forward traveling voltage wave 𝑉− and a backward traveling wave 𝑉+. V− travels in the minus z-

direction and enters the [S] system at  z=0. V+ travels in the z-direction and exits the [S] system 

at z=0.Following Pozar’s *37, p. 180+ method these traveling waves represent the S-parameters 

of the original system given by eq. (3.8). 

 𝑉+ =  𝑆  𝑉−            3.8 

If the reference plane is now extended by some arbitrary distance 𝑙𝑁, as shown in Figure 3.4, let 

V’ represent the total wave at this new reference plane. V’ is composed of a forward traveling 

voltage wave 𝑉 ′− and a backward traveling wave 𝑉 ′+. The S-parameters of this new system are 

defined as 
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 𝑉 ′+ =  𝑆 ′   𝑉′−           3.9 

Where S’ is the S-parameters of the new system. The new wave amplitudes are related to the 

old wave amplitudes with the following relations 

𝑉𝑚
′− = 𝑉𝑚

−𝑒𝛾𝑚 𝑙𝑚            3.10 

𝑉𝑚
′+ = 𝑉𝑚

+𝑒−𝛾𝑚 𝑙𝑚           3.11 

where  

𝛾𝑚 = 𝑗 𝑘2 −   
𝑚𝜋

𝑎𝑚
 

2
           3.12 

Equation (3.8) is now rewritten as 

 
𝑒𝛾1𝑙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒𝛾𝑚 𝑙𝑚

  𝑉𝑚
′+ =  𝑆  

𝑒−𝛾1𝑙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒−𝛾𝑚 𝑙𝑚

  𝑉𝑚
′−      3.13 

Equation (3.13) solves for the S-parameters of the system with extended port reference planes 

in terms of the original system’s S-parameters. This solution is  𝑉𝑚
′+ =  𝑆′   𝑉𝑚

′−  where 

 𝑆′ =  
𝑒−𝛾1𝑙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒−𝛾𝑚 𝑙𝑚

  𝑆  
𝑒−𝛾1𝑙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒−𝛾𝑚 𝑙𝑚

       3.14 

 

3.2.2 Port Extension of a Step Discontinuity 

Take, for example, one section of a system of discontinuities as shown in the red box of Figure 

3.5. Using equations (3.1)−(3.5) the S-parameters of the discontinuity are calculated. The S-

parameters of the discontinuity and the addition of connecting waveguide are easily provided 

by eq. (3.15), which is eq. (3.14) with the proper values substituted in. 

 𝑆′ =  
𝑒𝛾𝑎𝑚 𝑙1 0

0 𝑒
𝛾𝑏𝑚 𝑙2

2 
  𝑆  

𝑒𝛾𝑎𝑚 𝑙1 0

0 𝑒
𝛾𝑏𝑚 𝑙2

2 
       3.15 
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Where 𝛾𝑎𝑚 is the propagation constant of the mth mode in region A, and 𝛾𝑏𝑚  is the propagation 

constant of the mth mode in region B. 

 

Figure 3.5 Decomposition using Port Extension. 

 

3.2.2.1 Numerical Verification of Port Extension 

To verify that the port extension theory works, the Mode-Matching method is used to calculate 

the S-parameters of the step discontinuity in Figure 3.6, then port extension theory of eq. (3.15) 

is used, and the results are compared to FEM results. Looking at Figure 3.7 through Figure 3.10 

the MMM provides results that agree well with FEM results. 
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Figure 3.6 Dimensions for Port Extension Example 

 

Figure 3.7 Comparison of S11 Coefficients of Centered Discontinuity for MMM vs. FEM Results. 
a=10.7mm, c=8.7mm. 
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Figure 3.8 Comparison of S21 Coefficients of Centered Discontinuity for MMM vs. FEM Results. 
a=10.7mm, c=8.7mm 

 

 

Figure 3.9 Comparison of S22 Coefficients of Centered Discontinuity for MMM vs. FEM Results. 
a=10.7mm, c=8.7mm 
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Figure 3.10 Comparison of S12 Coefficients of Centered Discontinuity for MMM vs. FEM Results. 
a=10.7mm, c=8.7mm 

 

3.3 Cascaded System Using S-Parameter Theory 

Looking at Figure 3.11, which is a system that consists of two centered step discontinuities and 

connecting transmission lines, one notices that the system can be decomposed into two sub-

systems as depicted by the white arrows. Using the described mode matching methods and 

port extension theory described earlier one can determine the S-parameters for the step 

discontinuity and connecting transmission waveguides. The left and right hand side sub-systems 

have the S-Parameters  𝑆𝐴  and   𝑆𝐵  respectively. 
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Figure 3.11 Decomposition of System Using Port Extension Theory 

3.3.1 Cascading S-Parameter Theory 

For each sub-system in Figure 3.11 the individual S-parameters are written in terms of the black 

arrows 

 𝑆𝐴  𝐴
+

𝐵−
 =

𝐴− = 𝐴+𝑆11
𝐴 + 𝐵−𝑆12

𝐴

𝐵+ = 𝐴+𝑆21
𝐴 + 𝐵−𝑆22

𝐴         3.16 

 𝑆𝐵  𝐷
+

𝐸−
 =

𝐷− = 𝐷+𝑆11
𝐵 + 𝐸−𝑆12

𝐵

𝐸+ = 𝐷+𝑆21
𝐵 + 𝐸−𝑆22

𝐵         3.17 

And the S-parameters of the overall system written in terms of black arrows are 

 𝑆𝑇  𝐴
+

𝐸−
 =

𝐴− = 𝐴+𝑆11
𝑇 + 𝐸−𝑆12

𝑇

𝐸+ = 𝐴+𝑆21
𝑇 + 𝐸−𝑆22

𝑇         3.18 
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Making the substitutions of 𝐷+ = 𝐵+ and 𝐵− = 𝐷− allows for (3.16-3.17) to be rewritten as 

follows 

𝐴− = 𝐴+𝑆11
𝐴 + 𝐷−𝑆12

𝐴           3.19 

𝐵+ = 𝐴+𝑆21
𝐴 + 𝐷−𝑆22

𝐴           3.20 

𝐷− = 𝐵+𝑆11
𝐵 + 𝐸−𝑆12

𝐵           3.21 

𝐸+ = 𝐵+𝑆21
𝐵 + 𝐸−𝑆22

𝐵           3.22 

By putting (3.21) into (3.20) yields 

𝐵+ = 𝐴+𝑆21
𝐴 +  𝐵+𝑆11

𝐵 + 𝐸−𝑆12
𝐵  𝑆22

𝐴         3.23 

After grouping 

𝐵+ =
𝑆21
𝐴 𝐴+

 1−𝑆22
𝐴 𝑆11

𝐵  
+

𝑆22
𝐴 𝑆12

𝐵 𝐸−

 1−𝑆22
𝐴 𝑆11

𝐵  
         3.24 

Replacing 𝐵+ in (3.21) with (3.24) and grouping like terms results in 

𝐷− =  
𝑆11
𝐵 𝑆21

𝐴 𝐴+

 1−𝑆22
𝐴 𝑆11

𝐵  
 + 𝐸−  𝑆12

𝐵 +
𝑆11
𝐵 𝑆22

𝐴 𝑆12
𝐵

 1−𝑆22
𝐴 𝑆11

𝐵  
        3.25 

Substituting (3.25) into (3.19) and after regrouping gives the first equation in (3.18) 

𝐴− =  𝑆11
𝐴 +  

𝑆12
𝐴 𝑆11

𝐵 𝑆21
𝐴

 1−𝑆22
𝐴 𝑆11

𝐵  
  𝐴+ +  𝑆12

𝐵 𝑆12
𝐴 +

𝑆12
𝐴 𝑆11

𝐵 𝑆22
𝐴 𝑆12

𝐵

 1−𝑆22
𝐴 𝑆11

𝐵  
 𝐸−     3.26 

Taking (3.24) and now replacing 𝐵+ in (3.22) gives 

𝐸+ =  
𝑆21
𝐴 𝐴+

 1−𝑆22
𝐴 𝑆11

𝐵  
+

𝑆22
𝐴 𝑆12

𝐵 𝐸−

 1−𝑆22
𝐴 𝑆11

𝐵  
 𝑆21

𝐵 + 𝐸−𝑆22
𝐵        3.27 

After regrouping gives (3.28), which is the second equation in (3.18) 

𝐸+ =
𝑆21
𝐵 𝑆21

𝐴 𝐴+

 1−𝑆22
𝐴 𝑆11

𝐵  
+  

𝑆21
𝐵 𝑆22

𝐴 𝑆12
𝐵

 1−𝑆22
𝐴 𝑆11

𝐵  
+ 𝑆22

𝐵  𝐸−        3.28 

The S-parameters of the overall system shown in Figure 3.11 are now defined as follows 
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𝑆11
𝑇 =  𝑆11

𝐴 +  
𝑆12
𝐴 𝑆11

𝐵 𝑆21
𝐴

 1−𝑆22
𝐴 𝑆11

𝐵  
          3.29 

𝑆21
𝑇 =

𝑆21
𝐵 𝑆21

𝐴

 1−𝑆22
𝐴 𝑆11

𝐵  
           3.30 

𝑆12
𝑇 =

𝑆12
𝐵 𝑆12

𝐴

 1−𝑆22
𝐴 𝑆11

𝐵  
           3.31 

𝑆22
𝑇 =  

𝑆21
𝐵 𝑆22

𝐴 𝑆12
𝐵

 1−𝑆22
𝐴 𝑆11

𝐵  
+ 𝑆22

𝐵           3.32 

 

This method can be used to solve for multiple discontinuities. By using the port extension 

theory where the elements of the scattering matrix are of the form (3.29)−(3.32), the eight 

scattering matrices in Figure 3.3, one for each arrow in Figure 3.3, can be reduced to two 

scattering matrices each of whose elements are of the form (3.29)−(3.32). The first of these two 

scattering matrices consists of arrows 1 to 4 in Figure 3.3 and the second of these scattering 

matrices consists of arrows 5 to 8 in Figure 3.3. It is clear the numerical efficiency port extension 

theory brings. 

3.3.2 Numerical Results of Cascaded System 

Using Figure 3.11 as a reference, Figure 3.12-Figure 3.15 compare MMM results with FEM 

results for a=10.7mm, c=9.7mm, l1=15mm, and l2=15mm. It is shown that the results agree. 
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Figure 3.12 MMM vs. FEM S11 for Cascaded System, a=10.7mm,c=9.7mm,l1=15mm,l2=15mm 

 

Figure 3.13 MMM vs. FEM S21 for Cascaded System, a=10.7mm,c=9.7mm,l1=15mm,l2=15mm 
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Figure 3.14 MMM vs. FEM S22 for Cascaded System, a=10.7mm,c=9.7mm,l1=15mm,l2=15mm 

 

Figure 3.15 MMM vs. FEM S12 for Cascaded System, a=10.7mm,c=9.7mm,l1=15mm,l2=15mm 
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4 Step Discontinuities Filled with Uniaxial Media  

As mentioned, in Section 1.2, there is work regarding media filled waveguides with and without 

optic axis rotation *22+−[25]. However, to the best of our knowledge this is the first research 

that uses the Mode-Matching Method (MMM) to solve for reflection and transmission 

coefficients of various waveguide step discontinuities filled with uniaxial media. 

4.1 Rotation Matrices 

Before dispersion relations in uniaxial media are derived mathematical formulation of rotation 

matrices is explained. Rotation of the optic axis is important because looking at Figure 4.1 one 

can see that the coordinate system of the media does not necessarily coincide with the analysis 

coordinate system of the waveguide. 

 

 

Figure 4.1 Uniaxial and waveguide coordinate systems 

The theory used here is the same as that in [45+−[46], but expanded on. This theory allows the 

optic axis to be arbitrarily rotated with respect to the z-axis of the laboratory coordinate 
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system. Assume for generality the displacement vector D for a Cartesian coordinate system is 

given by 

 
𝐷 ∙ 𝑥 ′′′
𝐷 ∙ 𝑦 ′′′
𝐷 ∙ 𝑧 ′′′

 = 𝜀0  

𝜀𝑥 0 0
0 𝜀𝑦 0

0 0 𝜀𝑧

  
𝐸 ∙ 𝑥 ′′′
𝐸 ∙ 𝑦 ′′′
𝐸 ∙ 𝑧 ′′′

           4.1 

where 𝑥 ′′′, 𝑦 ’’’, 𝑧 ’’’ are respectively the unit vectors in the x’’’, y’’’, and z’’’ directions of what is 

called the experimental coordinate system. Through a series of three rotations we wish to 

express the experimental coordinate system in terms of the laboratory system. First, assume an 

observer is looking in the minus z-direction of the (x’’’,y’’’,z’’’) coordinate system and wishes to 

rotate the system by a counterclockwise rotation of α about the z’’’-axis of the original 

(x’’’,y’’’,z’’’) coordinate system as shown in Figure 4.2. This forms a new coordinate system 

(x’’,y’’,z’’). 

 

Figure 4.2 Rotation about the z’’’-axis by angle α 
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The unit vectors in the (x’’,y’’,z’’) system depend on the unit vectors in the original (x’’’, y’’’, z’’’) 

system through the relation 

 
𝑥 ′′

𝑦 ′′

𝑧 ′′
 =  

cos 𝛼 sin 𝛼 0
−sin 𝛼 cos 𝛼 0

0 0 1
  
𝑥 ′′′
𝑦 ′′′

𝑧 ′′′

          4.2 

where (𝑥 ′′ , 𝑦 ′′ , 𝑧 ′′) are the unit vectors in the (x’’,y’’,z’’) system and (𝑥 ′′′, 𝑦 ′′′, 𝑧 ′′′) are the unit 

vectors in the (x’’’,y’’’,z’’’) coordinate system.  Premultiplying (4.2) by the inverse of the rotation 

matrix gives 

 
𝑥 ′′′
𝑦 ′′′

𝑧 ′′′

 =  
cos𝛼 −sin 𝛼 0
sin 𝛼 cos𝛼 0

0 0 1
  
𝑥 ′′

𝑦 ′′

𝑧 ′′
 .         4.3 

Substituting (4.3) into (4.1),  

 
cos 𝛼 −sin 𝛼 0
sin 𝛼 cos𝛼 0

0 0 1
  
𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐷 = 𝜀0  

𝜀𝑥 0 0
0 𝜀𝑦 0

0 0 𝜀𝑧

  
cos 𝛼 −sin 𝛼 0
sin 𝛼 cos𝛼 0

0 0 1
  
𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐸,    4.4 

where for 𝐶 =𝐷  or 𝐶 =𝐸  

 
𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐶 = 

𝐶 ∙ 𝑥 ′′
𝐶 ∙ 𝑦 ′′
𝐶 ∙ 𝑧 ′′

 .           4.5 

Premultiplying both sides of (4.4) with the rotation matrix in (4.2) gives 

 
𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐷 = 𝜀0  

cos 𝛼 sin 𝛼 0
−sin 𝛼 cos𝛼 0

0 0 1
  

𝜀𝑥 0 0
0 𝜀𝑦 0

0 0 𝜀𝑧

  
cos 𝛼 −sin 𝛼 0
sin 𝛼 cos𝛼 0

0 0 1
  
𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐸 ,     4.6  

and after multiplication gives 

 
𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐷 = 𝜀0  

εy sin2α + εxcos2α  εy − εx sin α cos α 0

 εy − εx sin α cos α εxsin2α + εycos2α 0

0 0 εz

  
𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐸 .     4.7 

  Condensing (4.7) we get 
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𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐷 = 𝜀0  

𝜀11
′ 𝜀12

′ 0

𝜀12
′ 𝜀22

′ 0

0 0 𝜀33
′

  
𝑥 ′′

𝑦 ′′

𝑧 ′′
 ∙ 𝐸          4.8 

where 

ε11
′ = εy sin2α + εx cos2α          4.9 

ε12
′ =  εy − εx sin α cos α          4.10 

ε22
′ = εxsin2α + εycos2α          4.11  

ε33
′ = εz             4.12 

Now assume an observer is looking in the minus x’’-direction of the new (x’’,y’’,z’’) 

system, and wishes to rotate the coordinate system about the x’’-axis clockwise by an angle of β 

forming a 2nd new coordinate system (x’,y’,z’) as shown in Figure 4.3. 

 

Figure 4.3 Rotation about the x’’-axis by angle β 
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In the 2nd coordinate system the relation between the (x’’,y’’,z’’) system and the (x’,y’,z’) system 

is given by 

 
𝑥 ′

𝑦 ′

𝑧 ′
 =  

1 0 0
0 cos 𝛽 −sin 𝛽
0 sin 𝛽 cos 𝛽

  
𝑥 ′′

𝑦 ′′

𝑧 ′′
          4.13 

       

where (𝑥 ′ , 𝑦 ′ , 𝑧 ′ ) are the unit vectors of the (x’,y’,z’) system, and (𝑥 ′ ′, 𝑦 ′ ′, 𝑧 ′′ ) are the unit vectors 

in the (x’’,y’’,z’’) system. Premultiplying (4.13) by the inverse of the rotation matrix in (4.13) 

gives 

 
𝑥 ′′

𝑦 ′′

𝑧 ′′
 =  

1 0 0
0 cos𝛽 sin 𝛽
0 −sin 𝛽 cos 𝛽

  
𝑥 ′

𝑦 ′

𝑧 ′
 ,         4.14 

and substituting (4.14) into (4.8) yields 

 

1 0 0
0 cos 𝛽 sin 𝛽
0 −sin 𝛽 cos𝛽

  
𝑥 ′

𝑦 ′

𝑧 ′
 ∙ 𝐷 = 𝜀0  

𝜀11
′ 𝜀12

′ 0

𝜀12
′ 𝜀22

′ 0

0 0 𝜀33
′

  

1 0 0
0 cos𝛽 sin 𝛽
0 −sin 𝛽 cos 𝛽

  
𝑥 ′

𝑦 ′

𝑧 ′
 ∙ 𝐸 .    4.15 

Premultiplication of both sides of (4.15) with the rotation matrix in (4.13) gives 

 
𝑥 ′

𝑦 ′

𝑧 ′
 ∙ 𝐷 = 𝜀0  

1 0 0
0 cos 𝛽 −sin 𝛽
0 sin 𝛽 cos𝛽

  

𝜀11
′ 𝜀12

′ 0

𝜀12
′ 𝜀22

′ 0

0 0 𝜀33
′

  

1 0 0
0 cos𝛽 sin 𝛽
0 −sin 𝛽 cos 𝛽

  
𝑥 ′

𝑦 ′

𝑧 ′
 ∙ 𝐸 ,    4.16 

which after multiplication provides 

 
𝑥 ′

𝑦 ′

𝑧 ′
 ∙ 𝐷 = 𝜀0  

𝜀11
" 𝜀12

" 𝜀13
"

𝜀12
" 𝜀22

" 𝜀23
"

𝜀13
" 𝜀23

" 𝜀33
"

  
𝑥 ′

𝑦 ′

𝑧 ′
 ∙ 𝐸 ,        4.17 

where 

𝜀11
" = 𝜀𝑦sin2𝛼 + 𝜀𝑥cos2𝛼          4.18 

𝜀12
" =  𝜀𝑦 − 𝜀𝑥 sin 𝛼 cos 𝛼 cos 𝛽         4.19 

𝜀13
" =  𝜀𝑦 − 𝜀𝑥 sin 𝛼 cos 𝛼 sin 𝛽         4.20 

𝜀22
" = 𝜀𝑧sin2𝛽 + cos2𝛽 𝜀𝑥sin2𝛼 + 𝜀𝑦cos2𝛼        4.21 
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𝜀23
" = cos 𝛽 sin 𝛽  𝜀𝑥sin2𝛼 + 𝜀𝑦cos2𝛼 − 𝜀𝑧 sin 𝛽 cos 𝛽      4.22 

𝜀33
" = 𝜀𝑧cos2𝛽 + sin2𝛽 𝜀𝑥sin2𝛼 + 𝜀𝑦cos2𝛼 .       4.23 

Finally,  looking at Figure 4.4 (similar to Figure 4.2) assume an observer is looking in the 

negative direction of the z’ axis and wishes to rotate the (x’,y’,z’) coordinate system about the z’ 

axis counterclockwise, but this time by an angle of ψ forming the laboratory coordinate system 

(x, y, z).  

 

Figure 4.4 Rotation of the z’ axis counterclockwise by an angle of ψ. 

 

Therefore, the rotations in Figures 4.1−4.3 have transformed the experimental 

coordinate system into the laboratory coordinate system. The equation that expresses the 

(x,y,z) system in terms of the (x’,y’,z’) coordinate system is 
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𝑥 
𝑦 
𝑧 

 =  
cos𝜓 sin𝜓 0
−sin𝜓 cos𝜓 0

0 0 1

  
𝑥 ′

𝑦 ′

𝑧 ′
          4.24 

Premultiplying  both sides of (4.24) by the inverse of the rotation matrix in (4.24) yields 

 
𝑥 ′

𝑦 ′

𝑧 ′
 =  

cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

  
𝑥 
𝑦 
𝑧 

 .         4.25 

Substituting (4.25) into (4.17), 

 
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

  
𝑥 
𝑦 
𝑧 

 ∙ 𝐷 = 𝜀0  

𝜀11
" 𝜀12

" 𝜀13
"

𝜀12
" 𝜀22

" 𝜀23
"

𝜀13
" 𝜀23

" 𝜀33
"

  
cos𝜓 −sin 𝜓 0
sin𝜓 cos𝜓 0

0 0 1

  
𝑥 
𝑦 
𝑧 

 ∙ 𝐸 ,    4.26 

and premultiplying (4.26) with the rotation matrix in (4.24) gives 

 
𝑥 
𝑦 
𝑧 

 ∙ 𝐷 = 𝜀0  
cos𝜓 sin𝜓 0
−sin𝜓 cos𝜓 0

0 0 1

  

𝜀11
" 𝜀12

" 𝜀13
"

𝜀12
" 𝜀22

" 𝜀23
"

𝜀13
" 𝜀23

" 𝜀33
"

  
cos𝜓 −sin𝜓 0
sin 𝜓 cos𝜓 0

0 0 1

  
𝑥 
𝑦 
𝑧 

 ∙ 𝐸 .    4.27 

After multiplication, (4.27) gives 

 
𝑥 
𝑦 
𝑧 

 ∙ 𝐷 = 𝜀0  

𝜀11 𝜀12 𝜀13

𝜀12 𝜀22 𝜀23

𝜀13 𝜀23 𝜀33

  
𝑥 
𝑦 
𝑧 

 ∙ 𝐸          4.28 

where 

𝜀11 =  cos2𝜓 𝜀𝑥cos2𝛼 + 𝜀𝑦sin2𝛼 + 2 𝜀𝑦 − 𝜀𝑥 cos 𝛼 sin 𝛼 cos 𝛽 sin𝜓 cos𝜓   

+sin2𝜓 cos2𝛽 𝜀𝑦cos2𝛼 + 𝜀𝑥sin2𝛼 + 𝜀𝑧sin2𝛽         4.29 

𝜀12 = −sin𝜓 cos𝜓  𝜀𝑥cos2𝛼 + 𝜀𝑦sin2𝛼 +  𝜀𝑦 − 𝜀𝑥 cos 𝛼 sin 𝛼 cos 𝛽 cos2𝜓 − sin2𝜓 𝜀𝑦 − 𝜀𝑥 cos𝛼 sin 𝛼 cos 𝛽  

+ sin𝜓 cos𝜓  cos2𝛽 𝜀𝑦cos2𝛼 + 𝜀𝑥sin2𝛼 + 𝜀𝑧sin2𝛽        4.30 

𝜀13 =   𝜀𝑦 − 𝜀𝑥 cos 𝛼 sin 𝛼 sin 𝛽 cos𝜓 + cos 𝛽 sin 𝛽 sin𝜓  𝜀𝑦cos2𝛼 + 𝜀𝑥sin2𝛼 − 𝜀𝑧 cos𝛽 sin 𝛽 sin 𝜓  4.31 

𝜀22 =  sin2𝜓 𝜀𝑥cos2𝛼 + 𝜀𝑦sin2𝛼 − 2 𝜀𝑦 − 𝜀𝑥 cos𝛼 sin 𝛼 cos 𝛽 cos𝜓 sin𝜓  

+cos2𝜓 cos2𝛽 𝜀𝑦cos2𝛼 + 𝜀𝑥sin2𝛼 + 𝜀𝑧sin2𝛽         4.32 

𝜀23 = −sin𝜓  𝜀𝑦 − 𝜀𝑥 cos𝛼 sin 𝛼 sin 𝛽 + cos𝜓 cos𝛽 sin 𝛽  𝜀𝑦cos2𝛼 + 𝜀𝑥sin2𝛼 − 𝜀𝑧 cos 𝛽 sin 𝛽 cos𝜓  4.33 

𝜀33 = 𝜀𝑧cos2𝛽 +  𝜀𝑦cos2α + 𝜀𝑥sin2𝛼 sin2𝛽.        4.34 
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The equations in (4.29) ─(4.34) define a diagonal dielectric tensor in the experimental 

coordinate system transformed through a series of three rotations to the laboratory system. 

Taking the uniaxial case where 𝜀𝑥 = 𝜀𝑦 = 𝜀, (4.29)―(4.34) reduce to 

𝜀11 = 𝜀 cos2𝜓 + cos2𝛽sin2𝜓 + 𝜀𝑧sin2𝛽sin2𝜓       4.35 

𝜀12 =  𝜀𝑧 − 𝜀 sin2𝛽 sin𝜓 cos𝜓         4.36 

𝜀13 =  𝜀 − 𝜀𝑧 sin 𝛽 cos 𝛽 sin𝜓         4.37 

𝜀22 = 𝜀 sin2𝜓 + cos2𝛽cos2𝜓 + 𝜀𝑧sin2𝛽cos2𝜓       4.38 

𝜀23 =  𝜀 − 𝜀𝑧 sin 𝛽 cos 𝛽 cos𝜓         4.39 

𝜀33 = 𝜀sin2𝛽 + 𝜀𝑧cos2𝛽,          4.40 

and now using (4.35) ― (4.40) for uniaxial media one finally has the displacement vector D for a 

diagonal permittivity tensor in the experimental coordinate system represented in the 

laboratory coordinate system. This can be thought of as analogous to an arbitrary rotation of 

the optic axis. The components of the displacement vector D are given by 

 

𝐷𝑥
𝐷𝑦
𝐷𝑧

 = 𝜀0  

𝜀11 𝜀12 𝜀13

𝜀12 𝜀22 𝜀23

𝜀13 𝜀23 𝜀33

  

𝐸𝑥
𝐸𝑦
𝐸𝑧

          4.41 

 

4.2 Propagation Constant Derivation 

From waveguide theory, TEmn modes are solved for in terms of Hz. Therefore, the solution of Hz 

provides the solution for TE modes and the propagation constant. Using the rotated 

permittivity matrix derived in the last section, dispersion relations are now solved for. 

Maxwell’s Equations are now  

∇× 𝐸 = −𝑗𝜔𝜇𝑜𝐻           4.42   

∇ × 𝐻 = 𝑗𝜔𝜀𝑜𝜀𝑟 𝐸           4.43   
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where 

𝜀𝑟 =  

𝜀11 𝜀12 𝜀13

𝜀12 𝜀22 𝜀23

𝜀13 𝜀23 𝜀33

           4.44 

and the matrix elements of (4.44) are given from (4.35) ― (4.40) . Rearranging (4.43) yields 

 𝜀𝑟  
−1 ∙  ∇ × 𝐻  = 𝑗𝜔𝜀𝑜𝐸           4.45 

Taking the curl of both sides yields 

∇ ×   𝜀𝑟  
−1 ∙  ∇ × 𝐻   = 𝑗𝜔𝜀𝑜 ∇ × 𝐸          4.46 

Equation (4.42) is substituted into the RHS of eq. (4.46) resulting in 

∇ ×   𝜀𝑟  
−1 ∙  ∇ × 𝐻   = 𝑗𝜔𝜀𝑜 −𝑗𝜔𝜇𝑜𝐻          4.47 

Grouping the constants provides 

∇ ×   𝜀𝑟  
−1 ∙  ∇ × 𝐻   = 𝜔2𝜀𝑜𝜇𝑜 𝐻  = 𝑘𝑜

2 𝐻         4.48  

For substitution simplicity assume 𝛼𝑟   =  𝜀𝑟  
−1. Now expanding   𝜀𝑟  

−1 ∙  ∇ × 𝐻   

𝛼𝑟   ∙  ∇ × 𝐻  =  

𝛼11 𝛼12 𝛼13

𝛼12 𝛼22 𝛼23

𝛼13 𝛼23 𝛼33

 ∙

 
 
 
 
 
𝜕

𝜕𝑦
𝐻𝑧 −

𝜕

𝜕𝑧
𝐻𝑦

𝜕

𝜕𝑧
𝐻𝑥 −

𝜕

𝜕𝑥
𝐻𝑧

𝜕

𝜕𝑥
𝐻𝑦 −

𝜕

𝜕𝑦
𝐻𝑥 
 
 
 
 

=  

𝛼11 𝛼12 𝛼13

𝛼12 𝛼22 𝛼23

𝛼13 𝛼23 𝛼33

 ∙  

𝐺𝑥
𝐺𝑦
𝐺𝑧

 =  

𝛼11𝐺𝑥 + 𝛼12𝐺𝑦+𝛼13𝐺𝑧
𝛼12𝐺𝑥 + 𝛼22𝐺𝑦+𝛼23𝐺𝑧
𝛼13𝐺𝑥 + 𝛼23𝐺𝑦+𝛼33𝐺𝑧

    4.49 

where 

𝐺𝑥 =
𝜕

𝜕𝑦
𝐻𝑧 −

𝜕

𝜕𝑧
𝐻𝑦   

𝐺𝑦 =
𝜕

𝜕𝑧
𝐻𝑥 −

𝜕

𝜕𝑥
𝐻𝑧   

𝐺𝑧 =
𝜕

𝜕𝑥
𝐻𝑦 −

𝜕

𝜕𝑦
𝐻𝑥           4.50 

 

and now 
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∇ ×  

𝛼11𝐺𝑥 + 𝛼12𝐺𝑦+𝛼13𝐺𝑧
𝛼12𝐺𝑥 + 𝛼22𝐺𝑦+𝛼23𝐺𝑧
𝛼13𝐺𝑥 + 𝛼23𝐺𝑦+𝛼33𝐺𝑧

 =  ∇ ×  

𝐺𝑥
′

𝐺𝑦
′

𝐺𝑧
′

 = 𝑥  
𝜕

𝜕𝑦
𝐺𝑧
′ −

𝜕

𝜕𝑧
𝐺𝑦
′  + 𝑦  

𝜕

𝜕𝑧
𝐺𝑥
′ −

𝜕

𝜕𝑥
𝐺𝑧
′  + 𝑧  

𝜕

𝜕𝑥
𝐺𝑦
′ −

𝜕

𝜕𝑦
𝐺𝑥
′   4.51  

where 

𝐺𝑥
′ = 𝛼11𝐺𝑥 + 𝛼12𝐺𝑦+𝛼13𝐺𝑧   

𝐺𝑦
′ = 𝛼12𝐺𝑥 + 𝛼22𝐺𝑦+𝛼23𝐺𝑧   

𝐺𝑧
′ = 𝛼13𝐺𝑥 + 𝛼23𝐺𝑦+𝛼33𝐺𝑧           4.52 

 

Looking at the z-component of (4.51), 

 
𝜕

𝜕𝑥
𝐺𝑦
′ −

𝜕

𝜕𝑦
𝐺𝑥
′  =  

𝜕

𝜕𝑥
 𝛼12𝐺𝑥 + 𝛼22𝐺𝑦+𝛼23𝐺𝑧 −

𝜕

𝜕𝑦
 𝛼11𝐺𝑥 + 𝛼12𝐺𝑦+𝛼13𝐺𝑧   

=  𝛼12
𝜕

𝜕𝑥
 
𝜕

𝜕𝑦
𝐻𝑧 −

𝜕

𝜕𝑧
𝐻𝑦 + 𝛼22

𝜕

𝜕𝑥
 
𝜕

𝜕𝑧
𝐻𝑥 −

𝜕

𝜕𝑥
𝐻𝑧 + 𝛼23

𝜕

𝜕𝑥
 
𝜕

𝜕𝑥
𝐻𝑦 −

𝜕

𝜕𝑦
𝐻𝑥     

−𝛼11
𝜕

𝜕𝑦
 
𝜕

𝜕𝑦
𝐻𝑧 −

𝜕

𝜕𝑧
𝐻𝑦      − 𝛼12

𝜕

𝜕𝑦
 
𝜕

𝜕𝑧
𝐻𝑥 −

𝜕

𝜕𝑥
𝐻𝑧 − 𝛼13

𝜕

𝜕𝑦
 
𝜕

𝜕𝑥
𝐻𝑦 −

𝜕

𝜕𝑦
𝐻𝑥     4.53 

after distributing each outside derivative 

= 𝛼12
𝜕2

𝜕𝑥𝜕𝑦
𝐻𝑧 − 𝛼12

𝜕2

𝜕𝑥𝜕𝑧
𝐻𝑦 + 𝛼22

𝜕2

𝜕𝑥𝜕𝑧
𝐻𝑥 − 𝛼22

𝜕2

𝜕𝑥 2 𝐻𝑧 + 𝛼23
𝜕2

𝜕𝑥 2 𝐻𝑦 − 𝛼23
𝜕2

𝜕𝑥𝜕𝑦
𝐻𝑥 − 𝛼11

𝜕2

𝜕𝑦 2 𝐻𝑧  

+𝛼11
𝜕2

𝜕𝑦𝜕𝑧
𝐻𝑦  − 𝛼12

𝜕2

𝜕𝑦𝜕𝑧
𝐻𝑥 + 𝛼12

𝜕2

𝜕𝑥𝜕𝑦
𝐻𝑧 − 𝛼13

𝜕2

𝜕𝑥𝜕𝑦
𝐻𝑦 + 𝛼13

𝜕2

𝜕𝑦 2 𝐻𝑥       4.54 

Grouping like terms and equating to the z-component of the right-hand side of eq. (4.48) 

 𝛼22

𝜕2

𝜕𝑥𝜕𝑧
− 𝛼23

𝜕2

𝜕𝑥𝜕𝑦
− 𝛼12

𝜕2

𝜕𝑦𝜕𝑧
+ 𝛼13

𝜕2

𝜕𝑦2
 𝐻𝑥 +  −𝛼12

𝜕2

𝜕𝑥𝜕𝑧
+ 𝛼23

𝜕2

𝜕𝑥2
+ 𝛼11

𝜕2

𝜕𝑦𝜕𝑧
− 𝛼13

𝜕2

𝜕𝑥𝜕𝑦
 𝐻𝑦 

+  𝛼12

𝜕2

𝜕𝑥𝜕𝑦
− 𝛼22

𝜕2

𝜕𝑥2
− 𝛼11

𝜕2

𝜕𝑦2
+ 𝛼12

𝜕2

𝜕𝑥𝜕𝑦
 𝐻𝑧= 𝑘𝑜

2𝐻𝑧       4.55 
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Assuming Hz is in the form cos( 𝑘𝑥𝑥) cos(𝑘𝑦𝑦) 𝑒−𝑗𝑘𝑧𝑧  one can see that determining the 

propagation constant is difficult. Due to the coupling of H-field components the waveguide 

equations no longer hold. However, in a rectangular waveguide system assuming only TEm0 

modes propagate, and limiting the rotation to three cases most commonly found in dielectrics, 

knowing 𝐻𝑦 = 𝐸𝑥 =ky=0, and from ∇ ∙ 𝐻 = 0 eq. (4.55) reduces to 

 −𝛼22

𝜕2

𝜕𝑧2
𝐻𝑧 +  −𝛼22

𝜕2

𝜕𝑥2
 𝐻𝑧= 𝑘𝑜

2𝐻𝑧           4.56 

 

The three special cases of angles α, β, and ψ in (4.35)−(4.40) represent the most common 

alignments of optic axis in microwave substrates.  

4.2.1 Case 1 α=β=ψ=0 

This case corresponds to the optic axis being parallel to the z-axis, and solving (4.56) for kz with 

Hz given by the previously assumed form with ky=0, we obtain 

𝑘𝑧 = −𝑗 𝑘𝑥
2 − 𝜀22𝑘𝑜

2 ,       𝜀22 = 𝜀         4.57 

where 𝜀22  is given from (4.38), and α, β, and ψ are defined by the Subsection title. 

4.2.2 Case 2 α=0, β=π/2, ψ=0 

Assuming that the optic axis is the z axis in the experimental coordinate system, this case 

corresponds to the optic axis being parallel to the y-axis, and solving (4.56) for kz with Hz given 

by the previously assumed form we obtain 

𝑘𝑧 = −𝑗 𝑘𝑥
2 − 𝜀22𝑘𝑜

2 ,       𝜀22 = 𝜀𝑧          4.58 

where 𝜀22  is given from (4.38), and α, β, and ψ are defined by the Subsection title. 



69 
 

 

4.2.3 Case 3 α=0, β=π/2, ψ= π/2 

Assuming that the optic axis is the z axis in the experimental coordinate system, this case 

corresponds to the optic axis being parallel to the x-axis. Again solving (4.56) for kz with Hz given 

by the previously assumed form we obtain  

𝑘𝑧 = −𝑗 𝑘𝑥
2 − 𝜀22𝑘𝑜

2 ,       𝜀22 = 𝜀         4.59 

where 𝜀22  is given from (4.38), and α, β, and ψ are defined by the Subsection title. 

4.2.4 Application of Mode-Matching Method in Uniaxial Media 

The theory of mode-matching is covered in detail in Section 2, so it will only be briefly 

reiterated here as the numerical computation is essentially the same, but the wave admittance 

now equals 

𝑌𝑖𝑚 =
𝛾𝑖𝑚

𝑗𝜔𝜇
, 𝑖 = 𝑎 𝑜𝑟 𝑏          4.60 

with 𝛾𝑖𝑚  equal to that in one of the 3 cases in Sections 4.2. Numerical calculation is then carried 

out in the same manner as in Section 2. 

4.3 Analysis of Simple Step Discontinuities in Waveguides Filled with Rotated 

Anisotropic Uniaxial Media 

 

Step discontinuities are solved for with a rotated medium present. A rotated anisotropic 

uniaxial medium is one whose optic axis is not the z-axis. It is still assumed that only  TEm0 

modes for ,m=1,2,…,M- are present. Using the method of the previous section numerical 
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results follow. All analyses in the proceeding sections are based on Figure 4.5. It is assumed in 

the following section the dielectric tensor is of the form (4.1) in the experimental coordinate 

system (i.e. diagonal), but is uniaxial with εx = εy = 2 and εz = 3 being the optic axis. For given 

angles of rotation, (4.35)−(4.40) provide the resulting dielectric tensor in the laboratory 

coordinate system. In Appendix A, it is easily shown that the same waveguide equations similar 

to those of Section 1.3 hold for the three special cases of rotation in Section 4.2.1, 4.2.2, and 

4.2.3. 

 

Figure 4.5 Simple Step Discontinuity filled with Rotated Media 

 

4.3.1 Rotated Media for Case 1 where there is no rotation (α=0, β=0, ψ=0) 

Looking at Figure 4.6 the rotation angles of α=0, β=0, ψ=0 with a wave propagating in the z 

direction correspond to 𝜖11 = 𝜖22 = 𝜀 = 2 , and 𝜖33 = 3. Compared to an isotropic case the 

response should match that of 𝜀 = 2, which looking at Figure 4.7 it does. 
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Figure 4.6 Rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 

 

Figure 4.7 Magnitude of S11 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 
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Figure 4.8 Magnitude of S21 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 

 

Figure 4.9 Magnitude of S22 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 
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Figure 4.10 Magnitude of S12 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 

 

4.3.1.1 Comparison of MMM vs. FEM Results for α=0, β=0, ψ=0  

Figure 4.11 through Figure 4.14 display the numerically computed results of MMM vs. the FEM 

results. 

 

Figure 4.11 Magnitude of MMM vs. FEM S11 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 
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Figure 4.12 Magnitude of MMM vs. FEM S21 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 

 

Figure 4.13 Magnitude of MMM vs. FEM S22 Coefficients of Rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 
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Figure 4.14 Magnitude of MMM vs. FEM S12 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 

4.3.2 Rotated Media for Case 2  (α=0, β=90, ψ=0) 

Looking at Figure 4.15 the rotation α=0, β=90, ψ=0 with a wave propagating in the z direction 

corresponds to 𝜖11 = 2, 𝜖22 = 3, and 𝜖33 = 2. Compared to an isotropic case the response 

should match that of 𝜀 = 3, which looking at Figure 4.16 it does. 

 

Figure 4.15 Rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 
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Figure 4.16 Magnitude of S11 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.17 Magnitude of S21 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 
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Figure 4.18 Magnitude of S22 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.19 Magnitude of S12 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 
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4.3.2.1 Comparison of MMM vs. FEM Results for α=0, β=90, ψ=0  

Figure 4.20 through Figure 4.23 display the numerically computed results of MMM vs. the FEM 

results. 

 

Figure 4.20 Magnitude of MMM vs. FEM S11 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 
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Figure 4.21 Magnitude of MMM vs. FEM S21 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.22 Magnitude of MMM vs. FEM S22 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 
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Figure 4.23 Magnitude of MMM vs. FEM S12 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 

4.3.3 Rotated Media for Case 3  (α=0, β=90, ψ=90) 

Looking at Figure 4.24 the rotation α=0, β=90, ψ=90 with a wave propagating in the z direction 

corresponds to the alignment of 𝜖11 = 3, 𝜖22 = 2, and 𝜖33 = 2. Compared to an isotropic case 

the response should match that of 𝜀 = 2, which looking at Figure 4.25 it does. 

 

Figure 4.24 Rotated medium with α=0, β=90, ψ=90  
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Figure 4.25 Magnitude of S11 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.26 Magnitude of S21 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 
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Figure 4.27 Magnitude of S22 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.28 Magnitude of S12 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 
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4.3.3.1 Comparison of MMM vs. FEM Results for α=0, β=90, ψ=90  

Figure 4.29 through Figure 4.32 contain the comparison of MMM vs. FEM results for α=0, β=90, 

ψ=90  

 

Figure 4.29 Magnitude of MMM vs FEM S11 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.30 Magnitude of MMM vs. FEM S21 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 
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Figure 4.31 Magnitude of MMM vs. FEM S22 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.32 Magnitude of MMM vs. FEM S12 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 
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rotated medium are calculated. All analysis in the proceeding sections is based on the geometry 

of Figure 4.33. Axis alignment is the same as shown in Figure 4.6, Figure 4.15, and Figure 4.24, 

and the dielectric tensor is assumed to be the same as in Section 4.3. 

 

Figure 4.33 Geometry of a Centered Step Filled with Rotated Media 

 

4.4.1 Comparison of MMM vs. FEM Results for Centered Step with α=0, β=0, ψ=0  

From Figure 4.34-Figure 4.37 one can see excellent agreement of MMM results compared to 

FEM results. 
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Figure 4.34 Magnitude of MMM vs. FEM S11 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 

 

Figure 4.35 Magnitude of MMM vs. FEM S21 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 
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Figure 4.36 Magnitude of MMM vs. FEM S22 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 

 

Figure 4.37 Magnitude of MMM vs. FEM S12 coefficients of rotated medium with α=0, β=0, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟑) 
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4.4.2 Comparison of MMM vs. FEM Results for Centered Step with α=0, β=90, ψ=0  

From Figure 4.38 through Figure 4.41 one can see excellent agreement of MMM results 

compared to FEM results for a rotated medium with α=0, β=90, ψ=0. 

 

Figure 4.38 Magnitude of MMM vs. FEM S11 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.39 Magnitude of MMM vs. FEM S21 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 
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Figure 4.40 Magnitude of MMM vs. FEM S22 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.41 Magnitude of MMM vs. FEM S12 coefficients of rotated medium with α=0, β=90, ψ=0 (𝝐𝟏𝟏 = 𝟐, 𝝐𝟐𝟐 = 𝟑, 𝝐𝟑𝟑 = 𝟐) 
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4.4.3 Comparison of MMM vs. FEM Results for Centered Step with α=0, β=90, ψ=90  

From Figure 4.42 through Figure 4.45 one can see excellent agreement of MMM results 

compared to FEM results for a rotated medium with α=0, β=90, ψ=90. 

 

Figure 4.42 Magnitude of MMM vs. FEM S11 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.43 Magnitude of MMM vs. FEM S21 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 
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Figure 4.44 Magnitude of MMM vs. FEM S22 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 

 

Figure 4.45 Magnitude of MMM vs. FEM S12 coefficients of rotated medium with α=0, β=90, ψ=90 (𝝐𝟏𝟏 = 𝟑, 𝝐𝟐𝟐 = 𝟐, 𝝐𝟑𝟑 = 𝟐) 
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4.5 Dispersion Relations for Lossy Dielectrics 

In practice all dielectrics will exhibit some loss. Accounting for dielectric loss is necessary to give 

an accurate prediction of microwave device performance. In an isotropic medium Kong [39] 

defines the relative permittivity of a lossy isotropic medium by 

 𝜀𝑐𝑑 = 𝜀 +
𝜍𝑑

𝑗𝜔 𝜀0
,           4.61 

where ε is the relative permittivity of the medium, 𝜍𝑑  is the conductivity of the dielectric, and 

𝜀0 is the permittivity of free space. The conductivity of the dielectric is expressed as 

𝜍𝑑 = 𝜔𝜏𝜀𝜀0,           4.62 

where in this thesis τ is the loss tangent of the medium. Now assume the permittivity of the 

lossy medium in an experimental coordinate system is of the form of (4.1). Equation (4.61) is 

now written as 

𝜀𝑐𝑑    = 𝜀𝑟 − 𝑗𝜏𝜀𝑟            4.63 

for anisotropic medium or expanded as 

𝜀𝑐𝑑   =  

𝜀𝑥 − 𝑗𝜏𝜀𝑥 0 0

0 𝜀𝑦 − 𝑗𝜏𝜀𝑦 0

0 0 𝜀𝑧 − 𝑗𝜏𝜀𝑧

 .         4.64 

If (4.64) is assumed to be diagonal in the experimental coordinate system, then the same 

methodology in (4.1)−(4.34) is used to represent this diagonal tensor in the laboratory 

coordinate system. In (4.29)−(4.34) 𝜀𝑥  is replaced with 𝜀𝑥 − 𝑗𝜏𝜀𝑥 , 𝜀𝑦  is replaced with 𝜀𝑦 − 𝑗𝜏𝜀𝑦 , 

and 𝜀𝑧  is replaced with 𝜀𝑧 − 𝑗𝜏𝜀𝑧 . Maxwell’s Equations are now  

∇ × 𝐻 = 𝑗𝜔𝜀0𝜀𝑐𝑑    ′𝐸          4.65 

∇ × 𝐸 = −𝑗𝜔𝜇0𝐻          4.66 



93 
 

where 𝜀𝑐𝑑    ′ is the diagonal permittivity tensor of a lossy anisotropic medium after 

transformation from the experimental coordinate system to the laboratory coordinate system. 

Assuming uniaxial media with 𝜀𝑥= 𝜀𝑦= ε and  𝜀𝑧= 𝜀𝑧  the same procedures used in (4.42)─(4.56) 

give us three dispersion relations for the most common alignments of the optic axis for media 

in the laboratory system. 

4.5.1 Case 1 α=β=ψ=0 

This case corresponds to the optic axis being parallel to the z-axis, and solving for kz with Hz 

given by the previously assumed form we obtain, similar to (4.57), 

𝑘𝑧 = −𝑗 𝑘𝑥
2 − (𝜀22 − 𝑗𝜏𝜀22)𝑘𝑜

2 ,       𝜀22 = 𝜀        4.67 

4.5.2 Case 2 α=0, β=π/2, ψ=0 

This case corresponds to the optic axis being parallel to the y-axis, and solving for kz with Hz 

given by the previously assumed form we obtain, similar to (4.58), 

𝑘𝑧 = −𝑗 𝑘𝑥
2 −  𝜀22 − 𝑗𝜏𝜀22 𝑘0

2,       𝜀22 = 𝜀𝑧       4.68 

4.5.3 Case 3 α=0, β=π/2, ψ= π/2 

This case corresponds to the optic axis being parallel to the x-axis. Again solving for kz with Hz 

given by the previously assumed form we obtain, similar to (4.59), 

𝑘𝑧 = −𝑗 𝑘𝑥2 − (𝜀22 − 𝑗𝜏𝜀22)𝑘𝑜2,       𝜀22 = 𝜀       4.69 
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5 Waveguide Step Discontinuities in Waveguides Filled with Embedded 

Metamaterials in Uniaxial Media 

5.1 Metamaterial Background 

Metamaterials are man-made materials that produce a negative ε and/or μ for a given 

frequency range. One area of research using metamaterials is in the area of cloaking devices. 

Another area applicable to waveguides is the use of metamaterials to form passbands below 

cutoff, form transmission nulls within the passband, and shift cutoff frequency altogether 

[47]─[50]. One way to produce a negative μ is through the use of split ring resonators (SRR). 

These resonators are fabricated and periodically spaced on a thin dielectric and inserted in a 

waveguide perpendicular to the H-fields as shown in Figure 5.1. Hrabar and others [50]─[57] 

show that by using this method one can design a waveguide with a passband below cutoff or a 

transmission null within the passband depending on the characteristics of the SRR. A passband 

below cutoff corresponds to a SRR resonant frequency below cutoff, and a transmission null 

corresponds to a SRR resonant frequency above cutoff. 
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Figure 5.1 Split Ring Resonator Metamaterial. Graphic borrowed and modified from [51] 

 

One commonly used method to produce a negative ε in a waveguide is to insert thin wires 

parallel to the E-field depicted in Figure 5.2.  Each end of the wire is connected to the wall of 

the waveguide. It is shown that thin wires parallel to the E-field shift the cutoff frequency of the 

waveguide depending on wire diameter and spacing [55+−[56]. Hrabar [56+−[57] analyzes thin 

copper wire lattices in air filled waveguides and experimentally verifies the shift in cutoff 

frequency.   
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Figure 5.2: Thin Wire Metamaterial filled waveguide 

5.1.1 Calculation of Metamaterial Properties  

Hrabar [50] states that SRR produce a local magnetic field that is lower than the incident field. 

This leads to a negative magnetic polarization and negative effective permeability. He shows 

this effective permeability to be 

𝜇𝑒𝑓𝑓 = 1 −
𝑓𝑚𝑝

2 −𝑓0
2

𝑓2−𝑓0
2−𝑗𝛾𝑓

          5.1 

where f is the signal frequency,  fmp is the magnetic plasma frequency at which (in the lossless 

case) μeff = 0, f0 is the resonant frequency of the SRR, and ϒ represents losses(1MHz based on 

Hrabar). Since parallel or longitudinal H-fields will not produce a current in the SRR the 

permeability tensor is defined as 
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𝜇 = 𝜇
0
 

𝜇
𝑒𝑓𝑓

0 0

0 1 0

0 0 1

           5.2 

Using (5.2) and Maxwell’s Equations Hrabar derives 

𝑘𝑧 =  𝜀𝑟𝜇𝑒𝑓𝑓  𝑘𝑜
2 −

𝑘𝑥
2

𝜀𝑟
          5.3 

where 𝜀𝑟  is the relative permittivity of an isotropic material, 𝜇𝑒𝑓𝑓  is defined in (5.1), 𝑘𝑜
2 is the 

free space wavenumber, and 𝑘𝑥=
𝑚𝜋

𝑎
. The sign of the right-hand side of (5.3) is chosen such that 

it has a negative imaginary part when 𝜇𝑒𝑓𝑓  is assigned a negative imaginary part. Then, while 

retaining this chosen sign, the limit is taken as the imaginary part of 𝜇𝑒𝑓𝑓  approaches zero. 

Assuming the fields have 𝑒−𝑗𝑘𝑧𝑧  dependence when 𝑘𝑧  is real propagation will occur. Plots of the 

real part of 𝑘𝑧  reveal the effects on propagation when SRR metamaterial is present. Figure 5.3 

shows that when the resonance frequency of the SRR is designed below the cutoff frequency of 

the waveguide a real part of kz exists. Normally, below cutoff kz is purely imaginary 

corresponding to evanescent waves, but from Figure 5.3 we can see there is now a passband 

below the cutoff frequency of the waveguide. Similarly, in Figure 5.4 when the resonant 

frequency of the SRR is above the cutoff frequency of the waveguide, there is now a 

transmission null where kz becomes purely imaginary. 
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Figure 5.3 Real part of kz when fo of SRR is 13.1GHz 

  

Figure 5.4 Real part of kz when fo of SRR is 20GHz 
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Inserting thin periodically spaced wires in a waveguide creates a uniaxial medium [58], and the 

permittivity tensor is given by 

𝜀𝑟 𝑚𝑒𝑡𝑎 =  
𝜀′ 0 0
0 𝜀′ 0
0 0 𝜀𝑚𝑒𝑡𝑎

 ,          5.4 

and Nefedov’s  [58] definition for the permittivity of thin wires in a host medium is that of 

plasma medium. However, Nefedov fails to account for a loss term in plasma medium defined 

by Kong [39]. Assuming a loss term the permittivity of thin wire metamaterial is now 

𝜀𝑤𝑖𝑟𝑒 = 𝜀′  1 −
𝜔𝑝

2

𝜀′(𝜔2−𝑗𝜔𝜌 )
 ,         5.5 

where  

𝜌 =
𝑁𝑞2

𝜍𝑑𝑚
,            5.6 

where N is the total electron density in the wire material, q is electron charge of ─1.6 x 10-19C, 

m is the electron mass of 9.1 x 10-31kg, and 𝜍𝑑  is defined from (4.62). In (5.5) 𝜔𝑝
2 is defined by 

Pendry’s method *55] 

𝜔𝑝
2 =

2𝜋𝑐2

𝑎2 ln 𝑎 𝑟  
 ,          5.7 

and c is the speed of light, a is the distance between wires, and r is the wire radius. If we 

assume the host medium itself is uniaxial the permittivity tensor of a uniaxial media embedded 

with thin wire metamaterial is 

𝜀𝑟 =  

𝜀 0 0
0 𝜀 0

0 0 𝜀𝑧  1 −
𝜔𝑝

2

𝜀𝑧(𝜔
2
−𝑗𝜔𝜌)

 
          5.8 

     

Using the same methodology from Section 4 one can rotate the optic axis to align with an 

arbitrary unit vector in the laboratory coordinate system, and derive dispersion relations. From 
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[47] it is known that thin wire metamaterial must be parallel to the E-field to be effective. 

Assuming TE10 mode propagation in the z-direction with Case 2 ensures the E-field condition on 

the metamaterials is satisfied. The dispersion relation for embedded metamaterials gives kz as 

𝑘𝑧 = −𝑗 𝑘𝑥
2 − 𝜀𝑧  1 −

𝜔𝑝
2

𝜀𝑧(𝜔
2
−𝑗𝜔𝜌)

 𝑘𝑜
2        5.9 

If the fields are assumed to have 𝑒−𝑗𝑘 𝑧𝑧  dependence, wave propagation will occur when kz is 

real. Illustrated in Figure 5.5, propagation in an air filled waveguide starts to occur at cutoff 

(~22.3GHz), but when thin wire metamaterial is inserted into the waveguide the negative 

permittivity causes the cutoff frequency to shift higher in frequency, as shown by the red curve. 

This is fundamentally different than simply shifting the cutoff frequency, because as 𝜔 goes to 

infinity 𝜀𝑤𝑖𝑟𝑒  converges to 𝜀 of the media. It will be shown this allows for a shift in cutoff 

frequency without effecting performance characteristics of the waveguide at higher 

frequencies.  



101 
 

 

Figure 5.5 kz of air filled waveguide vs. kz of waveguide containing thin wire metamaterial. 𝜀𝑟  = 1, a=2.18mm, r=0.08mm 

 

5.2 Metamaterials and Mode Matching Method 

Mode matching using thin wire metamaterials will be discussed in this section because they 

allow for easy manufacturing and testing.  Although SRR metamaterial is not discussed in this 

section its analysis with the MMM is carried out in the same manner as thin wire metamaterial. 

Mode matching using thin wires is done in the exact same manner as in an air filled waveguide 

or uniaxial media filled waveguide, but using (5.9) for kz. In Figure 5.6 the dimensions of the 

step discontinuity, wire radius, and wire spacing are given.  Figure 5.7 and Figure 5.8 contain 

the MMM results. One can see that in a waveguide step discontinuity filled with a uniaxial 
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media the waveguide’s cutoff is around 9GHz. However, if thin wires of diameter 0.127mm and 

spacing distance of 5.46mm are embedded in the uniaxial media, the waveguide’s cutoff shifts 

to around 14GHz. A box with length 2d and a wire in the center is referred to as a unit cell of 

metamaterial.  

 

Figure 5.6 Dimensions of step discontinuity filled with uniaxial media with embedded metamaterial with a=10.7mm, c=9.7mm, 
ε11=ε22=2, ε33=3, r=0.0635mm, and d=5.46mm. 
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Figure 5.7 Waveguide reflection coefficients (S11) for uniaxial media with embedded metamaterial with a=10.7mm, c=9.7mm, 
ε11=ε22=2, ε33=3, r=0.0635mm, and d=5.46mm. 

 

 

Figure 5.8 Waveguide transmission coefficients (S21) for uniaxial media with embedded metamaterial with a=10.7mm, 
c=9.7mm, ε11=ε22=2, ε33=3, r=0.0635mm, and d=5.46mm. 

8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Freq (GHz)

M
a

g
 S

1
1

Centered Waveguide Discontinuity a=10.7mm, c=9.7mm, 
11

 = 
22

 = 2, 
33

 = 3, r=0.0635mm, d=5.46mm

 

 

Uniaxial Filled Waveguide

Metamaterial Waveguide



104 
 

6 Filter Theory, Design and Fabrication 

This section will discuss the design of two waveguide filters. One waveguide is a filter fabricated 

on Dielectric laboratories CG material, and a second identical filter is embedded with thin wire 

metamaterial. Analysis is carried out with MMM, and results are compared with commercial 

full wave solvers and measured results. 

6.1 Initial Filter Design 

Hong and Lancaster [59] derive the theory for band-pass filter design based on ideal coupling 

coefficients. The coupling coefficients are calculated from filter g values. For a desired filter 

order Hong and Lancaster list the g values as 

𝑔𝑜 = 1            6.1 

𝑔1 =
2

𝛾
sin

𝜋

2𝑛
           6.2 

𝑔𝑖 =
1

𝑔𝑖−1

4 sin  
(2𝑖−1)𝜋

2𝑛
 sin  

(2𝑖−3)𝜋

2𝑛
 

𝛾2+𝑠𝑖𝑛2 
(𝑖−1)𝜋

𝑛
 

 for i = 2,3,…, n,      6.3 

and 

𝑔𝑛+1 =  
1 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑

coth2 𝛽

4
 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛

          6.4 

where 

𝛾 = sinh
𝛽

2𝑛
           6.5 

and 

𝛽 =  ln  coth
𝐿𝐴𝑅

17.37
           6.6 

and 
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𝐿𝐴𝑅 = −10 log(1 − 100.1𝑅𝐿).         6.7 

In (6.7) RL is the desired passband return loss level in dB. Once the g values are calculated using 

(6.1)─(6.5) the ideal coupling coefficients are calculated and filter design can begin. 

𝑀𝑖,𝑖+1 =
𝐹𝐵𝑊

 𝑔𝑖𝑔𝑖+1
 for i= 1 to n-1        6.8 

where M i,i+1 are the coupling coefficients between adjacent resonators.  

In (6.8) FBW is the fractional bandwidth of the filter. Using the MMM a castellation of step 

discontinuities is analyzed. By adjusting the dimensions c and d in Figure 6.1 coupling 

coefficients are calculated. 

 

Figure 6.1 Castellation of waveguide step discontinuities. 

Mode matching analysis of the junction in Figure 6.1 will provide two distinct resonances in 

frequency knowing that the coupling coefficients are also calculated using 

𝑘 =
𝑓2

2−𝑓1
2

𝑓2
2+𝑓1

2            6.9 

where 𝑓2 is the higher resonance peak and 𝑓1is the lower resonance peak. Comparing the k 

value results of the MMM with the ideal coupling coefficients provides a starting point for filter 

design. 
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6.2 Filter Design and Results 

A three pole, n=3, filter with a center frequency of 32.5GHz, bandwidth of 6%, and return loss 

of -35dB will be used for the filter design. The dielectric used is a CG material donated by 

Dielectric Laboratories. It has ε11=ε22=67.1 and a different ε33 of 63. Using (6.1)─(6.8) provides 

coupling coefficients of M12=M23=0.1047. In this case, the optic axis alignment is that of Case 2 

from Section 4, and with the MMM, a structure similar to Figure 6.1 is analyzed with the larger 

waveguide having a width of 0.9144mm and L is set at 0.127mm to accommodate 

manufacturing processes. By varying c and d coupling coefficients are calculated and plotted in 

Figure 6.2 for Case 1 through Case 3 and isotropic case. One can see from the coupling 

coefficients that if uniaxial media is unaccounted for the filter’s fc and bandwidth will be 

drastically affected.   

 

Figure 6.2 Coupling coefficients for varying c distances for  d=1.2mm. 
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Using the coupling coefficients, proper distances and gaps are selected for an initial filter 

starting point. A distance of d=1.213mm and c=0.482mm were used to give a k of (6.9) value 

close to 0.1047. After some tuning the final dimensions of the filter had d=1.245mm and 

c=0.432mm. The first and last sections’ lengths were optimized to improve return loss. Figure 

6.3 lists the dimensions of the final filter, and Figure 6.4 compares the MMM results with 

commercial FEM results. 

 

Figure 6.3 Dimensions of final filter.  
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Figure 6.4 MMM filter results (black dotted) vs. FEM filter results. 

6.2.1 Filter Excitation 

Exciting the waveguide filter with a TE10 wave is important because all analytical results are 

based on this assumption. Excitation methods are also important because it is how the filter 

connects to an external circuit. One of the more popular excitation techniques is using a 

tapered microstrip line to excite the filter [60]─[65]. The filter’s dimensions are finalized, after 

the optimization of the taper is carried out with the MoM solver from Sonnet software [66].  
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6.2.2 Filter Results 

Figure 6.5 shows the finalized filter after optimization of the excitation lines. The measured 

results are compared with the simulated MMM results in Figure 6.6. The filter has a VSWR of 

2:1 or better from 31.6-33.8GHz, with a center frequency of 32.68GHz. The insertion loss is 6dB 

or better in this band.  Figure 6.7 shows the manufactured filter above the word liberty on a 

USA penny for a size comparison. 

 

Figure 6.5 Dimensions of final filter with taper optimization. 

 

Figure 6.6 Measured filter results vs. MMM results. 
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Figure 6.7 Manufactured filter next to the word liberty on a USA penny for size comparison 

6.3 Filter Design with Metamaterial 

Using the filter of Section 6.2 we wish to shift the cutoff frequency into the stopband of the 

filter using thin wire metamaterial. This has the benefit of increasing the stop band region on 

the lower side of the filter. Manufacturing processes limit the diameter of the wire to around 

𝜆 9 . Using this diameter limits the smallest spacing of wire to around 2.1mm before cutoff is 

shifted into passband. Starting with the simplest case of one unit cell overlap with the filter 

corresponds to a spacing of 2.48mm as shown in Figure 6.8. Theory predicts that the start of 

transmission shifts from 20 GHz to 25.3GHz when there is metamaterial embedded into the 

filter. Looking at Figure 6.9, one sees that the original transmission peak is now suppressed in 
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value because it is shifted into the start of the filters lower rejection band. It will be shown later 

these MMT results agree well with measured results. The embedded metamaterial filter results 

using the MMM are in Figure 6.9. The use of 𝜀𝑤𝑖𝑟𝑒  in the dispersion relation is based on theory 

and does not account for parasitic couplings; this explains the difference in bandwidth. 

 

Figure 6.8. Filter with embedded thin wire metamaterial. 
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Figure 6.9.  Response of filter with and without embedded metamaterial, using the MMM. 

 

6.3.1 Metamaterial Filter Results 

 

Figure 6.10 shows the manufactured filter with the embedded thin wire metamaterial. In Figure 

6.11 one can clearly see that the cutoff frequency has shifted, and is no longer around 20GHz. 

Measured results also verify that the MMM verified a reduction of bandwidth due to 

embedded metamaterials, which supports the reduction of bandwidth in Figure 6.9. Again, the 

filter has a VSWR of 2:1 or better from 31.6-33.8GHz, with a center frequency of 32.68GHz, and 

insertion loss of 6dB or better in this band.  
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Figure 6.10. Manufactured filter with embedded metamaterial. 

 

Figure 6.11. Measured results of filter vs. filter with embedded metamaterial. 
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7 Conclusion 

Much work covers the analysis of waveguide discontinuities and waveguide filters. There 

are numerous numerical techniques to analyze the performance of waveguide filters. As 

previously stated the mode matching method (MMM) provides advantages over other methods 

for analyzing waveguide type problems. Although the MMM has been around since the 1960s 

lossy uniaxial media with a rotated optic axis has never been accounted for in its analysis. Most 

dielectrics exhibit some sort of uniaxial nature, and at higher frequencies even some isotropic 

dielectrics behave uniaxial by accounting for this anisotropic behavior in dielectrics, specifically 

uniaxial media, is extremely important in the design phase of filters, because the coordinate 

system of the uniaxial media and coordinate system of the waveguide system under analysis 

are not always necessarily the same. If the uniaxiality is not factored into analysis, the center 

frequency and bandwidth of the manufactured filter can vary drastically from the theoretical or 

simulated performance as shown by the difference in coupling coefficient values.  

Although analysis of a completely arbitrarily rotated optic axis is complex, this work 

demonstrates for 3 special cases analysis provides a closed form expression for the dispersion 

relation, which is fundamental in the MMM analysis. These 3 cases are of interest because most 

bulk dielectrics used to fill waveguides or manufacture substrate integrated waveguides (SIW) 

exhibit a uniaxial behavior at microwave frequencies common to the 3 aforementioned cases.  

The work also demonstrates that MMM when compared with commercially available EM 

full-wave solvers provides accurate results. This work also takes advantage of port extension 

theory to reduce the number of computational steps needed to provide results of the filter. 
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Although computational power and memory are very powerful in this day and age any 

reduction in computational time is still an advantage and reduces analysis time. 

Metamaterials recently became a hot topic of research, as well as, their analysis when 

incorporated into microwave devices. The results show that the MMM provides accurate 

analysis of waveguide filters with uniaxial media that contain embedded metamaterials. Much 

literature analyzes the theoretical and measured results of metamaterials, but the MMM has 

never been used to analyze embedded metamaterials. Analysis of metamaterials embedded in 

uniaxial media to the best of the author’s knowledge has never been analyzed with the MMM. 

To the best of the authors knowledge again, the MMM is the only method, aside from creating 

a full 3D model in an EM solver, that provides accurate analysis results of waveguide filters 

made with embedded thin wire metamaterial in a uniaxial media. Using the presented idea of a 

metamaterial unit cell the MMM can easily analyze embedded thin wire metamaterials. The 

MMM when applied to metamaterials provides a huge reduction in analysis time when 

compared to the setup time needed to analyze metamaterials in a full wave EM solver 

environment.  

The MMM results are then compared to results of manufactured dielectric filled waveguide 

filters manufactured with a high ε uniaxial High Temperature Co-fired Ceramic (HTCC). The 

MMM provides results that agree well with measured results. A manufactured filter was also 

constructed with embedded thin wire metamaterial. The MMM results again provided results 

that agreed with measurements. 
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The MMM is a robust analytical method that allows for the analysis of waveguide filters or 

waveguide filters filled with uniaxial media. It also can accurately predict performance of filters 

containing embedded metamaterials. Future work will continue to expand the method to more 

complex structures, degenerate excitation, and newly emerging metamaterials. 
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Appendix A 

It will be shown that the wave admittance for all three cases of uniaxial media in Section 4.2 is 

𝛽 𝜔𝜇  which is the wave admittance for isotropic media. Equation (4.56) is 

−𝛼22
𝜕2

𝜕𝑧 2 𝐻𝑧 − 𝛼22
𝜕2

𝜕𝑥 2 𝐻𝑧 = 𝑘0
2𝐻𝑧              A.1 

where 𝑘0
2 = 𝜔2𝜇0𝜀0. Assuming that Hz has 𝑒−𝑗𝛽𝑧 dependence, 

𝜕

𝜕𝑧 2 𝐻𝑧 = −𝛽2𝐻𝑧  and (A.1) 

becomes 

−
𝜕2

𝜕𝑥 2 𝐻𝑧 =  
𝑘0

2

𝛼22
− 𝛽2 𝐻𝑧 .         A.2 

Taking α, β, and ψ for each of Case 1 in 4.2.1, Case 2 in 4.2.2, and Case 3 in 4.2.3 and 

substituting them into (4.35)−(4.40), we obtain 

𝜀𝑟 =  

𝜀11 = 𝜀 0 0
0 𝜀22 = 𝜀 0
0 0 𝜀33 = 𝜀𝑧

  for Case 1       A.3 

𝜀𝑟 =  
𝜀11 = 𝜀 0 0

0 𝜀22 = 𝜀𝑧 0
0 0 𝜀33 = 𝜀

  for Case 2       A.4 

𝜀𝑟 =  
𝜀11 = 𝜀𝑧 0 0

0 𝜀22 = 𝜀 0
0 0 𝜀33 = 𝜀

  for Case 3       A.5 

Substituting (A.3)−(A.5) for 𝜀𝑟  in 

𝛼𝑟   =  𝜀𝑟  
−1 ,           A.6 

we obtain 

𝛼𝑟   =  

𝛼11 = 1/𝜀 0 0
0 𝛼22 = 1/𝜀 0
0 0 𝛼33 = 1/𝜀𝑧

  for Case 1      A.7 

𝛼𝑟   =  

𝛼11 = 1/𝜀 0 0
0 𝛼22 = 1/𝜀𝑧 0
0 0 𝛼33 = 1/𝜀

  for Case 2      A.8 
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𝛼𝑟   =  

𝛼11 = 1/𝜀𝑧 0 0
0 𝛼22 = 1/𝜀 0
0 0 𝛼33 = 1/𝜀

  for Case 3      A.9 

Extracting the values of 𝛼22from (A.7)−(A.9), we have 

𝛼22 =
1

𝜀22
           A.10 

where 

𝜀22 =  
𝜀, Case 1
𝜀𝑧 , Case 2
𝜀, Case 3

           A.11 

Substitution of (A.10) into (A.2) gives 

−
𝜕2

𝜕𝑥 2 𝐻𝑧 =  𝑘0
2𝜀22 − 𝛽2 𝐻𝑧 .          A.12 

If 𝑘0
2𝜀22 > 𝛽2, then the general solution of (A.12) for Hz is 

𝐻𝑧 = 𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin 𝑘𝑥𝑥          A.13 

where A and B are arbitrary complex constants and 𝑘𝑥
2 = 𝑘0

2𝜀22 − 𝛽0
2. 

 Next, we will assume that Ez = 0 and proceed to express Ex, Ey, Hx, and Hy in terms of Hz. 

The source-free Maxwell’s equations subject to the constitutive relations are 

∇ × 𝐸  = −𝑗𝜔𝜇0𝐻             A.14 

∇ × 𝐻   = −𝑗𝜔𝜀0𝜀𝑟 𝐸            A.15 

With Ez = 0 and with all field components having 𝑒−𝑗𝛽𝑧 dependence, (A.14) expands to 

𝑗𝛽𝐸𝑦 = −𝑗𝜔𝜇0𝐻𝑥           A.16 

−𝑗𝛽𝐸𝑥 = −𝑗𝜔𝜇0𝐻𝑦           A.17 

𝜕𝐸𝑦

𝜕𝑥
= −𝑗𝜔𝜇0𝐻𝑧           A.18 

and (A.15) expands to 
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𝑗𝛽𝐻𝑦 = 𝑗𝜔𝜀𝑜𝜀11𝐸𝑥           A.19 

−𝑗𝛽𝐻𝑥 −
𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔𝜀𝑜𝜀22𝐸𝑦          A.20 

𝜕𝐻𝑦

𝜕𝑥
= 𝑗𝜔𝜀𝑜𝜀33𝐸𝑧           A.21 

Use of (A.16) and (A.20) gives 

𝐸𝑦 =
𝑗𝜔 𝜇0

𝜕𝐻𝑧
𝜕𝑥

𝑘0
2𝜀22−𝛽2           A.22 

𝐻𝑥 =
−𝑗𝛽

𝜕𝐻𝑧
𝜕𝑥

𝑘0
2𝜀22−𝛽2

           A.23 

Use of (A.17) and (A.19) gives 

Ex = Ey = 0.           A.24 

The characteristic admittance is Yin defined by 

𝑌𝑖𝑛 = −
𝐻𝑥

𝐸𝑦
.           A.25 

Substitution of (A.22) and (A.23) into (A.25) gives 

𝑌𝑖𝑛 =
𝛽

𝜔𝜇
.           A.26 

The boundary condition is 

Ey = 0 at x = 0 and x = a.         A.27 

In view of (A.22), (A.27) requires that 

𝜕𝐻𝑧

𝜕𝑥
= 0 at x = 0 and at x = a.          A.28 

Equation (A.28) reduces (A.13) to 

𝐻𝑧 = 𝐴 cos 𝑘𝑥𝑥           A.29 

where 

kx = mπ/a, m = 1,2,…          A.30 
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