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Abstract 

 

Chromatin is the combination of DNA and the proteins binding to DNA in the cell 

nucleus. The primary proteins associated with chromatin are histones, which 

compact the DNA. The DNA strand wraps around the histone octamer core 

complex forming a structure called the nucleosome. Posttranslational 

modifications of histones alter chromatin structure. Generally speaking, acetylated 

histones are associated with active gene expression whereas deacetylated histones 

are associated with repressed gene expression. Histone deacetylases, which 

function as a multi protein complex, remove acetyl groups resulting in altered 

DNA-histone binding affinities. One major histone deacetylase (HDAC) complex 

is the SIN-3 HDAC complex. SIN-3 acts as a “scaffold,” and is specifically 

thought to interact with certain DNA binding proteins and histone deacetylases to 

assemble this HDAC complex.  

 In C. elegans, when germ cells enter meiotic prophase I, the chromosomes 

coil becoming shorter and thicker, and homologous chromosomes pair and 

synapse. A chromosome that fails to pair with a partner and synapse (for example, 

the male X chromosome) accumulates a high level of a specific histone 

modification, histone H3 lysine 9 dimethylation (H3K9me2). This modification is 

associated with facultative heterochromatin assembly, which may result in 

transcriptional silencing. It was observed that loss of sin-3 function disrupts the 

H3K9me2 accumulation on unpaired X chromosomes in C. elegans 

hermaphrodites. Continuing the studies of a former student, Guang Yu Lee, a 

genetic approach has been taken to investigate which components of the SIN-3 

complex contribute to the accumulation of H3K9me2 on nonsynapsed meiotic 

chromosomes. 
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Introduction 

 

 Meiosis is a special type of cell division that produces haploid gametes. 

Meiosis involves two successive cell divisions, Meiosis I and Meiosis II. Meiosis 

I and Meiosis II each involves prophase, metaphase, anaphase, and telophase. 

Prior to the start of meiosis, all chromosomes are duplicated in a process similar 

to mitosis. The result of meiosis is four haploid (N) progeny cells with one copy 

of each chromosome, while the result of mitosis is two progeny cells each with 

two copies of each chromosome.  

 The chromosome is an organized structure of DNA and protein found in 

the nucleus of cells. It includes a single piece of coiled DNA containing many 

genes, regulatory elements, and other nucleotide sequences. Chromosomes also 

have DNA bound proteins, which help package the DNA and control its function. 

  Chromatin is the combination of DNA and the proteins binding to DNA 

(e.g. histones) in the cell nucleus. It functions to package DNA into a smaller 

volume to fit into the cell nucleus, strengthen DNA to allow mitosis and meiosis 

to occur, prevent DNA damage, and - one of the most important - to control gene 

expression. The primary proteins associated with chromatin are histones, which 

compact the DNA. The DNA wraps around the histone complex forming a 

structure called the nucleosome. Chromatin structure depends on several factors 

including: genes encoded by the DNA, the stage of the cell cycle, and 

posttranslational modifications of histones.  
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 Histones undergo posttranslational modifications that alter their 

interaction with DNA and other nuclear proteins. The sites of modification are 

usually in the histone amino-terminal tails. One common modification is 

acetylation, which loosens DNA binding to histones encouraging transcription. 

Generally speaking, acetylated histones are associated with active gene expression 

whereas deacetylated histones are associated with repressed gene expression. 

Histone deacetylases remove acetyl groups, which increases the positive charge of 

histone tails resulting in increased DNA-histone binding affinities. Deacetylated 

histones are associated with repressed gene expression because DNA wraps 

around the histone more tightly, in turn inhibiting transcription. Histone 

deacetylases usually function as a multi-protein complex. 

 There are two major histone deacetylase (HDAC) complexes, which are 

the NuRD and SIN3 complexes (Ahringer 2000). SIN-3 HDAC is a multi-protein 

complex that removes acetyl groups from histone proteins, resulting in altered 

DNA-histone binding affinities. Specifically, SIN-3 protein is thought to bind 

certain DNA binding proteins and histone deacetylases in order to assemble the 

SIN-3 HDAC complex. Although the components have not been well described in 

C. elegans, based on work in other organisms, it is thought that this HDAC 

complex is composed of: SIN-3; the HDA-1 (histone deacetylase), HDA-2, and 

HDA-3 enzymatic components; and the RBA-1 and/or LIN-53/RBA-2 DNA 

binding components. For my project, I am interested in histone deacetylation by 

the SIN-3 HDAC complex in C. elegans, specifically which components of the 

SIN-3 complex contribute to the accumulation of H3K9me2, histone H3 lysine 9 
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dimethylation, on unpaired meiotic chromosomes. MET-2 (histone 

methyltransferase) is the enzyme responsible for dimethylating H3K9 in the C. 

elegans germline (Bessler et al., 2010).  

 The model organism used in the Maine Lab is Caenorhabditis elegans. C. 

elegans is a small, free living soil nematode that lives in many parts of the world 

feeding on microbes, but primarily bacteria. It is a good model organism for 

research in biological sciences including genomics, cell biology, neuroscience, 

aging, and development. This model organism has many advantages such as short 

life cycle, small size, compact genome, rapid period of embryogenesis, ability to 

produce large number of progeny, and a transparent body allowing internal cells 

to be easily visualized without dissection. The anatomy of C. elegans is quite 

simple, with about 1000 somatic cells. Each individual can produce a large 

number of progeny and can be maintained in a laboratory setting when they are 

grown on agar plates or liquid cultures with E. coli as the food source.  

 The two sexes of C. elegans are hermaphrodites (XX) and males (XO). 

The hermaphrodites produce both sperm and oocytes and are self-fertile. When 

homozygous hermaphrodites self-fertilize they generate identical progeny; 

however, male mating can be useful in isolating and generating certain mutant 

strains. Males have several key differences in gross morphology, anatomy, and 

expression of certain behaviors that allow us to distinguish them from 

hermaphrodites. Males have a slim body, a clear-white ventral gonad, and 

distinctive tail with a copulatory apparatus. Males arise from the fusion of a nullo-

X gamete (a gamete lacking an X chromosome) with an X-bearing gamete. Males 
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can be generated at a higher frequency through mating because sperm have an 

equal frequency of being X-bearing or nullo-X. In addition, males can be 

generated in high numbers using the him (high incidence of males) mutations. 

These mutations increase the frequency of X chromosome nondisjunction in the 

hermaphrodite germ line, leading to a higher number of nullo-X gametes.  This 

increases the number of males generated through self-fertilization. him-5 and him-

8 mutations are generally used because they have no obvious deleterious effects 

on the anatomy or behavior in both C. elegans sexes ("Wormatlas homepage," 

2003). 

 When germ cells enter meiotic prophase I, duplicated chromosomes coil 

becoming shorter and thicker. Synapsis, the pairing of two homologous 

chromosomes, also occurs during this phase. This allows the matching of 

homologous chromosomes and possible recombination to occur. In C. elegans, a 

chromosome that fails to pair with a partner and synapse (for example, the male X 

chromosome) during meiotic prophase I accumulates a high level of histone H3 

lysine 9 dimethylation (H3K9me2) (Kelly et al., 2002; Bean et al., 2004). This 

modification is associated with facultative heterochromatin assembly, which may 

result in transcriptional silencing. Also, this modification may mark silenced 

genes. High levels of H3K9me2 are observed under special and specific 

conditions in C. elegans hermaphrodites (Bean et al., 2004). Under normal 

conditions, hermaphrodite X chromosomes pair and synapse, but this can be 

disrupted by using mutations in him-8. As mentioned earlier, him-8 mutations 

increase the frequency of the X chromosome nondisjunction in the hermaphrodite 
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germ line.  This is because the X chromosomes fail to pair and synapse in him-8 

mutants.  During the first meiotic prophase, the him-8 mutant hermaphrodites 

contain a high level of H3K9me2 on their unpaired/nonsynapsed X chromosomes. 

  

 Previous studies in the Maine lab have observed that loss of SIN-3 

function disrupts H3K9me2 accumulation on unpaired X chromosomes during 

meiosis in C. elegans hermaphrodites (She et al., 2009; Checchi & Engebrecht, 

2011). However, H3K9me2 accumulation was not affected on the male X 

chromosome. This may be due to differences in the males’ chromatin such as the 

male X chromosome may not be acetylated. These results suggested that SIN-3 

activity is required for H3K9me2 to accumulate on unpaired X chromosomes in 

hermaphrodites but not males. One possible model to explain this result is that the 

SIN-3 HDAC complex deacetylates H3K9 residues or another residue, which in 

turn allows the H3K9 dimethylation to occur.  So, when the SIN-3 protein is 

disabled, the acetyl groups on H3K9 would not be removed, and H3K9me2 would 

not accumulate. 

 Continuing the studies of a former student, Guang Yu Lee, who 

investigated “Meiotic Silencing in C. elegans Through SIN3 Histone 

Deacetylase,” a genetic approach has been taken to investigate which components 

of the SIN-3 complex contribute to the accumulation of H3K9me2 on unpaired 

meiotic chromosomes. Guang Lee found that the distribution of H3K9me2 was 

normal in individual hda-1, hda-2, and hda-3 mutants when compared to controls.  

These results suggested that, individually, the HDA-1, HDA-2, and HDA-3 
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protein components are not essential for H3K9me2 accumulation. To follow up 

on this result, I investigated whether the HDA proteins were redundant for 

function.  To do so, I constructed double mutant strains containing mutations in 

different components of the histone deacetylase complex and examined if the 

distribution of H3K9me2 was altered. In addition, the DNA binding components 

of SIN3 were investigated by using RNA interference and genetic mutations 

simultaneously to reduce the gene activity of RBA-1 and LIN-53. The germline 

development and phenotype in a sin-3; met-2 double mutant was also observed. 

By eliminating more than one component at a time in the double mutants, the 

effects on H3K9me2 accumulation would become clearer.    
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Methods and Materials 

 

Nematode Maintenance 

 The worms were maintained on agar plates using E. coli strain OP50 as a 

food source and stored at 20ºC (Brenner, 1974). Mutations that were used in this 

project were: hda (histone deacetylase), unc (uncoordinated), him (high incidence 

of males), lin (lineage defective), rba (RBAp48 related), sin (yeast Switch 

Independent), met (histone methyltransferase), gfp (green fluorescent protein), 

and dpy (dumpy).  Two gfp-tagged chromosomal balancers were used: hT2[bli-

4(e937) let-?(q782) qIs48] (I;III), and mIn1[dpy-10(e128) mIs4] (II).   In this 

thesis, these two balancers are referred to as hT2g and mIn1g. lin-53(0) and rba-

1(0) are null mutations.  

 

Construction of Mutant Strains 

 To generate the hda-3; hda-2; him-8 mutant, an hda-2;him-8 strain was 

first constructed, as follows. unc-75; mIn1/+; him-8 hermaphrodites were first 

mated with him-8 males. The cross- progeny (F1) males were then mated with 

hda-2 hermaphrodites. The cross-progeny (F2) from the F1 mating were then 

picked to single plates and screened for production of male (F4) progeny.  

Production of males indicated that the F3 hermaphrodite was genotype unc-75; 

mIn1/hda-2; him-8.  These hermaphrodites were then mated with hda-3; +; him-8 

males.  Green, non-Unc males (genotype unc-75/hda-3; mIn1/+; him8) were then 

picked from the cross-progeny and mated with unc-75; hda-2; him8 
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hermaphrodites. hda-3/unc-75; mIn1/hda-2; him8 hermaphrodites were then 

cloned. hda-3; mIn1/hda-2; him8 hermaphrodites were re-cloned in the next 

generation. The presence of deletion alleles was confirmed via PCR and gel 

electrophoresis.  See Figures 1 and 2. 

 The following strategy was used to generate the sin-3; met-2 double mutant.  

hT2g/om83; hT2g/+; him-8 males were mated with sin-3 hermaphrodites.  Male 

sin-3/hT2g; +/hT2g; him-8/+ (F1) progeny were mated with met-2 

hermaphrodites.  Non-green male sin-3/+; +/met-2; him-8/+ and sin-3/+; +/met-

2;  + / + progeny (F2) were then mated with hT2g/om83; hT2g/+; him-8/+ 

hermaphrodites.  Animals of the genotype sin-3/hT2g; met-2/hT2g; him-8/+ or 

sin-3/hT2g; met-2/hT2g; +/+ were picked to single plates. sin-3; met-2; him-8 

homozygotes were also generated. However, because of the many genotype 

possibilities, the presence of deletion alleles was confirmed via PCR and gel 

electrophoresis.  See Figures 3 and 4.    

 

RNA interference 

 To generate rba-1(RNAi) lin-53(0) and rba-1(0) lin-53(RNAi) animals, lin-

53 mutants were grown on bacteria that produce rba-1 dsRNA, and rba-1 mutants 

were grown on bacteria that produce lin-53 dsRNA. RNA interference (RNAi) is 

a biological process in which cells use dsRNA to suppress or silence gene 

expression and activity.  RNAi destroys mRNAs encoded by a specific gene, and 

therefore prevents production of the protein.   Here, dsRNA was introduced into 

the nematodes by feeding them a strain of bacteria that produces dsRNA via 
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transcription of a bacterial plasmid containing the gene of interest.  The dsRNA 

enters the C. elegans cells when the bacteria are eaten.  Transcription of the 

bacterial plasmid produces sense and antisense RNA molecules that then 

hybridize to form dsRNA. The dsRNA molecules are cut into small fragments, 

which then serve as guides leading the RNAi machinery to mRNAs that are 

complementary in sequence to the small fragments. The RNAi machinery slices 

the cellular mRNAs, which then prevents their translation (Stiernagle 2006).  To 

make the RNAi “feeding” plates, a liquid culture of the bacterial strain containing 

the plasmid was grown overnight  (4mL LB media, 4µL Ampicillin [100mg/mL] 

and bacteria) at 37ºC.  This culture was seeded onto RNAi plates, which contain 

chemicals to induce the expression of the promoters. The bacterial cultures were 

then grown at room temperature for 2 days.  lin-53(0) L1s were picked to an 

unseeded to plate to remove the OP50 feeding bacteria. After a few hours, the lin-

53(0) homozygous and heterozygous mutants were transferred to a rba-1 RNAi 

plate. After three days, lin-53(0) homozygous mutants were picked to be used for 

indirect immunofluorescence. The same strategy was used to generate rba-1(0) 

lin-53(RNAi) animals. 

 

Single Worm PCR  

 2.5µl of lysis buffer was added to the cap of a small PCR tube, and 2-4 

worms were placed in the buffer. The cap was shut and labeled according to the 

mutant strain.  PCR tubes were spun briefly in a centrifuge to move the 

buffer/worms to the bottom of the tube and then put at -80ºC for 20 minutes.  One 



14 

 

drop of PCR oil was then added to each tube before placing the tubes into the 

thermocycler.  The tubes were incubated at 65ºC for an hour followed by 15 

minutes at 95ºC. This process lyses the worms, releasing the DNA, and allowing 

amplification of the desired region.  During incubation, the PCR mixture was 

made up. This PCR mixture included, per reaction: 16.75 µl distilled water, 2.5 µl 

of 10X PCR buffer, 1 µl dNTPs, 1 µl of each primer (forward and reverse), and 

0.25 µl of TAQ Polymerase (added at the very last minute). 22.5 µl of PCR 

mixture was added to each tube containing the worm lysate.  The tubes were 

placed back into the thermocycler. The PCR program used was: 94ºC for 1 min; 

35 cycles of 94ºC for 30 sec, 50ºC for 30 sec, 72ºC for 1-2 min (depending on the 

size of the region amplified); 72ºC for 5 minutes; and 4ºC hold.  A 1% agarose gel 

was prepared, and the size of the amplification products was evaluated via gel 

electrophoresis. Gel electrophoresis is a method used for separation and analysis 

of macromolecules such as DNA. When the electric current is applied to the gel, 

the larger molecules move at a slower rate than the smaller molecules. Using a 1 

kilobase (kb) ladder marker, wild type and deletion alleles can be distinguished by 

comparing the size of the amplified DNA product to the marker.  

 

Indirect Immunofluorescence of Gonads for H3K9me2 

 The H3K9me2 marks were visualized by performing indirect 

immunofluorescence.  The primary antibody used in these studies was 

Abcam1220 anti-H3K9me2 monoclonal antibody diluted 1:200, and the 

secondary antibody used was Alexa 488 anti-mouse antibody diluted 1:200. 
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Details of the H3K9me2 indirect immunofluorescence protocol were as 

previously described (Maine et al., 2005; She et al., 2009).  Adults were first 

washed with M9 buffer in a deep-well slide. The M9 solution was then removed, 

and a solution of 1.0 mM levamisole in PBS was added. As soon as the worms 

became immobile, the gonads were dissected with needles. The tissue was fixed 

in a 2.5% paraformaldehyde (PFA)/ 1X PBS solution for 5 minutes.  Next, the 

tissue was washed in PBST (1X PBS/ 0.1% Tween-20) for a total of three 15-

minute washes. A drawn capillary was used to remove to solution in order not to 

disturb the dissected tissue. The tissue was then blocked for 1-2 hours at room 

temperature in a fresh solution of PBST/ 30% GS. The PBST/ 30% GS was 

removed, and a 1:200 dilution of primary antibody (in PBST) was added to the 

wells. The wells were covered with a slide and parafilm and placed in the 

humidifier chamber at 15ºC overnight. The following morning, the tissue was 

washed three times for 15 minutes in PBST to remove the antibody solution.  

Next, the tissue was incubated in the dark at room temperature for 2 hours with 

the secondary antibody. The tissue was then washed in PBST for 15 minutes at 

room temperature in the dark, incubated in the dark with 0.2 µg/mL DAPI/1X 

PBS for 10 minutes, and washed with 1X PBS for 15 minutes. The gonad arms 

and worm carcasses were transferred to flat slides using a drawn capillary pipette. 

Excess buffer was removed and 3 µl of VectaShield (Vector Labs) was added to 

the slide before a cover slip was gently laid over the gonads and worms. The 

slides were stored in the dark overnight at 4ºC before being viewed with a Zeiss 
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Axioscope compound microscope. Images were captured with a Nikon DS-QiMc 

camera using Nikon software.  

 

DAPI Staining of Chromosomes  

 To view the germline of sin-3; met-2 hermaphrodites, animals were fixed 

in cold methanol and DNA was stained with DAPI, as follows.   Adults were 

washed with distilled water in a deep well slide to remove the bacteria. All but of 

200 µl of water was removed.  -20ºC methanol was added to each well making 

sure to mix well with the distilled water. The wells were covered with a slide to 

prevent the methanol from evaporating. After 10 minutes, the methanol was 

removed and a solution of 0.2 µg/mL DAPI /1X PBS was added for ten minutes 

in the dark. The DAPI solution was removed, and 1X PBS was added. Next, the 

worms were transferred to a flat slide using a drawn capillary pipette. Excess 1X 

PBS was removed and 4 µl of VectaShield was added to the slide before a cover 

slip was gently laid over the worms. The slides were stored in the dark overnight 

at 4ºC before being viewed with the Zeiss Axioscope. 
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Figure 1:  This genetic mating scheme was used to construct the hda-3; hda-2 

double mutant strain. It should be noted that the mIn1 balancer chromosome also 

carries a gfp transgene and dpy mutation.  
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Figure 2: PCR Confirmation of hda-3; hda-2 deletion alleles  

 

 

Figure 2: The above panels show the DNA amplification products that were 

generated to confirm the presence of the hda-3 and hda-2 deletion alleles in the 

hda-3; hda-2 double mutant, as visualized via gel electrophoresis. The arrows 

indicate the amplification products from the deletion alleles. For the hda-2 (B) 

photo, note that there is no arrow because there is no amplification product. 

However, lanes 4 and 5 are homozygous for hda-2 and lanes 6-7 are heterozygous 

for hda-2.  
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Figure 3: The mating scheme used to construct the sin-3; met-2 double mutant 

strain. Due to the many genotype possibilities in the F3 generation double mutants 

were distinguished by PCR.  
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Figure 4: PCR Confirmation of sin-3; met-2 deletion alleles 

 

Figure 4: The above panels show DNA amplification products that confirm the 

presence of the sin-3 and met-2 deletion alleles in the sin-3; met-2 double mutant. 

Amplification products were visualized via gel electrophoresis. The arrows 

indicate the size of the amplification product generated from the deletion alleles. 

For the confirmation of the met-2 deletion allele, lanes 2-11 and 13-15 were 

candidate double mutants but only lanes 13-15 contained the met-2 mutation. met-

2 and sin-3 were used as controls in both PCR experiments. The image of the met-

2 gel is the photographic negative.  
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Results 

 

 To follow up on previous results from the Maine lab (Lee 2011), we 

constructed double mutant strains containing mutations in different putative 

components of the histone deacetylase complex in order to examine if the 

distribution of H3K9me2 is altered. As mentioned in the Introduction, we made 

double mutants where possible redundant proteins would be eliminated. By 

eliminating more than one component at a time in the double mutants, the effects 

on the H3K9me2 accumulation would become clearer. To determine if the gene 

products were essential for H3K9me2 accumulation on meiotic unpaired X 

chromosomes, the mutants were dissected and labeled via indirect 

immunofluorescence to observe the H3K9me2 pattern in the hermaphrodites’ 

germline. To quantify the results observed, three categories have been created to 

describe the labeling variations observed from the indirect immunofluorescence 

experiments. The first category, “with H3K9me2 enrichment,” included germlines 

that had bright and excellent antibody labeling, with defined foci. Two strong foci 

of anti-H3K9me2 labeling were visible per nucleus in the germline cells (Fig. 5).  

The second category, “with partial H3K9me2 enrichment,” included germlines 

with reduced anti-H3K9me2 labeling intensity of foci, intermediate and blurry 

antibody labeling, and some background or non-specific antibody binding where 

the signal was not in the proper location expected (Fig. 6). The expected signaling 

in the germline occurs on the foci of the two X chromosomes per nucleus. The 

last category, “without H3K9me2 enrichment,” included germlines where there 

was no visible antibody labeling on chromosomes, but there was some non-
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specific background antibody labeling (Fig. 7). Germlines under this category did 

not have two foci of anti-H3K9me2 labeling. There were only faint specks of a 

non-specific background labeling that covered the germline.  See Table 1.  

 

H3K9me2 enrichment in hda-3; hda-2 double mutants 

 As mentioned previously, HDA-2 and HDA-3 are histone deacetylase 

enzymes that are likely components of the SIN-3 HDAC complex. The H3K9me 

2 distribution was examined in the hda-3; hda-2 double mutants to investigate if 

the HDA-2 and HDA-3 components are redundant in function. Absence of 

H3K9me2 enrichment on unpaired hermaphrodite X chromosomes would be an 

indication that these factors are essential for the H3K9me2 enrichment process; 

however, if there is H3K9me2 enrichment, it would imply that these components 

are not crucial for the H3K9me2 modifications. Observations from the indirect 

immunofluorescence show that when compared to control him-8 hermaphrodites, 

the hda-3; hda-2 double mutants did have enrichment. The labeling intensity did 

not seem to be reduced, so these components are not essential for the H3K9me2 

modification. See Figures 5 and 6.  

 

H3K9me2 enrichment in rba-1(RNAi) lin-53(0) and rba-1(0) lin-53(RNAi) 

animals 

 We also generated worms with reduced rba-1 and lin-53 gene activity. As 

stated previously, these genes encode proteins that are thought to be the 

components of the SIN-3 HDAC complex responsible for binding to specific 
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sequences on DNA. If these proteins are redundant for function, then we may find 

that H3K9me2 is not enriched on unpaired chromosomes when both proteins are 

knocked out at once. Because these genes are adjacent on the same chromosome 

we did not make a double mutant. Instead, we used RNA interference to reduce 

the rba-1 gene activity in lin-53(0) mutants and lin-53 gene activity in rba-1(0) 

mutants. Observations from the indirect immunofluorescence show that when 

compared to control him-8 hermaphrodites, the rba-1(RNAi) lin-53(0) and rba-

1(0) lin-53(RNAi) animals showed variable results (Fig. 5-7). In some nuclei, the 

H3K9me2 pattern was normal, and in others it was abnormal. There were also 

variable results and inconsistency within the him-8 control hermaphrodites where 

100% of the germline nuclei are expected to have strong H3K9me2 foci. About a 

third of the him-8 controls had partial H3K9me2 enrichment, and two thirds had 

full H3K9me2 enrichment. The him-8 controls that had partial enrichment also 

had non-specific background signaling. This result might be caused by a technical 

issue when performing indirect immunofluorescence.  The data are inconsistent, 

so it is very difficult to interpret whether loss of LIN-53 and RBA-1 affected the 

level of H3K9me2 accumulation in the germline. The number of labeled germ 

lines was also low, so these experiments should be repeated in order to solidify 

the results. Another important point to mention is that RNAi does not completely 

eliminate the gene product; therefore, there is a possibility that some residual 

RBA-1 or LIN-53 activity exists. This may also explain the variable results. If a 

double knock-out mutant were made, the results might be more consistent. 

However, him-8 controls were also variable, which suggests there was an 
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unknown technical issue encountered during the performance of Indirect 

Immunofluorescence. 
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Table 1: H3K9me2 Distribution in HDA, RBA-1, and LIN-53 Mutants 

 

Genotype No. of Germlines 

with H3K9me2 

enrichment 

No. of Germlines 

with partial 

H3K9me2 

enrichment 

No. of Germlines 

without H3K9me2 

enrichment 

hda-3; hda-2 21 (87.5%) 3 (12.5%) 0 

him-8 control 36 (92.3%) 3 (7.7%) 0 

    

rba-1(RNAi) lin-

53(0) 

13 (59.1%) 6 (27.3%) 3 (13.6%) 

him-8 control 12 (57.1%) 9 (42.9%) 0 

    

rba-1(0) lin-

53(RNAi) 

5 (26.3%) 10 (52.6%) 4 (21.1%) 

him-8 control 20 (69%) 9 (31%) 0 

 

Germlines were scored as having H3K9me2 enrichment, partial H3K9me2 

enrichment, or no H3K9me2 enrichment. Germlines with H3K9me2 enrichment 

included nuclei that had bright and excellent antibody labeling, with defined foci. 

Two strong foci of anti-H3K9me2 labeling were visible per nucleus in the germ 

cells.  Germlines with partial H3K9me2 enrichment included nuclei with reduced 

anti-H3K9me2 labeling intensity of foci, intermediate and blurry antibody 

labeling, and/or some background or non-specific antibody binding. Germlines 

categorized as without H3K9me2 enrichment included germlines where there was 

no visible antibody labeling on chromosomes; nuclei did not have two foci of 

anti-H3K9me2 labeling. However there were faint specks of non-specific 

background antibody labeling that covered the germline including the cytoplasm. 

As a control, him-8 animals were analyzed in parallel in each individual 

experiment. Data are arranged with the corresponding him-8 data listed below 

each experimental data.  



26 

 

 



27 

 

 

Figure 5 

 

 



28 

 

 

Figure 5 



29 

 

 

Figure 5 

 



30 

 

Figure 5: H3K9me2 distribution in hda-3; hda-2, rba-1(RNAi) lin-53(0) and 

rba-1(0) lin-53(RNAi).   

Each photo shows nuclei stained with DAPI to visualize DNA and labeled with 

antibody against H3K9me2. These nuclei are categorized as having “H3K9me2 

enrichment” because they had bright and excellent antibody labeling, with defined 

foci. Two strong foci of anti-H3K9me2 labeling were visible per nucleus. Arrows 

indicate H3K9me2 enrichment on unpaired X chromosomes. All DAPI images 

were taken at the same exposure. All H3K9me2 images were taken at same 

exposure.  
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Figure 6 
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Figure 6: H3K9me2 distribution in hda-3; hda-2, rba-1(RNAi) lin-53(0) and 

rba-1(0) lin-53(RNAi) germ cells. 

Each photo shows meiotic nuclei stained with DAPI to visualize DNA and labeled 

with antibody against H3K9me2. These nuclei are categorized as having “partial 

H3K9me2 enrichment” because they have reduced anti-H3K9me2 labeling 

intensity of foci, intermediate and blurry antibody labeling, and some background 

or non-specific antibody binding. Arrows indicate “partial H3K9me2 enrichment” 

on unpaired X chromosomes. All DAPI images were taken at the same exposure. 

All H3K9me2 images were taken at same exposure.  
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Figure 7 
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Figure 7: H3K9me2 distribution in rba-1(RNAi) lin-53(0) and rba-1(0) lin-

53(RNAi) germ cells. 

These images show examples of nuclei that failed to label well with anti-

H3K9me3 antibody.  DNA is stained with DAPI.  These nuclei are categorized as 

“without H3K9me2 enrichment” because there was no visible antibody labeling 

on chromosomes; nuclei did not have two foci of anti-H3K9me2 labeling. 

However there were faint specks of non-specific background antibody labeling 

that covered the germline. The him-8 control is not shown because all him-8 

controls either had full or partial H3K9me2 enrichment. All DAPI images were 

taken at the same exposure. All H3K9me2 images were taken at same exposure.  
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Germline Development in sin-3; met-2 double mutants  

 We constructed a sin-3; met-2 double mutant to observe its germline 

phenotype. The question is whether SIN-3 activity primarily removes H3K9ac, 

which would allow MET-2 to generate H3K9me2. If it does, then the met-2; sin-3 

double mutant should resemble the met-2 single mutant. This would also suggest 

that the SIN-3 and MET-2 proteins work together by interacting in a common 

biochemical pathway that allows this dimethylation to occur. In contrast, if SIN-3 

has other or additional functions, then we would notice that the phenotype of the 

met-2; sin-3 mutant would be more severe than the met-2 phenotype. After 

analyzing and comparing germlines from all three mutants, the sin-3; met-2 

double mutant seems normal when compared to sin-3 and met-2 germlines  

(Fig. 8). The sin-3; met-2 double mutants are fertile and viable. 
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Figure 8: DAPI Staining of sin-3, met-2, and sin-3; met-2 mutants 

Each photo shows a region of the germline.  DAPI staining was used to visualize 

the DNA. The sin-3; met-2 double mutant does not have a more severe phenotype 

when compared to the sin-3 and met-2 single mutants. The germline of the sin-3; 

met-2 double mutant seems normal, and the animals are viable and fertile, 

suggesting that SIN-3 may work in a common biochemical pathway with MET-2 

to generate H3K9me2.  
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Discussion 

 

 The experiments and data mentioned previously demonstrate that together 

HDA-2 and HDA-3, and LIN-53 and RBA-1 activities are not essential for the 

accumulation of H3K9me2 on nonsynapsed chromosomes during meiosis. The 

data showed that hda-3; hda-2, rba-1(RNAi) lin-53(0) and rba-1(0) lin-53(RNAi) 

germlines all accumulated H3K9me2 on unpaired meiotic X chromosomes. The 

mechanism involved in this chromatin regulation was not completely inhibited by 

the reduced protein activity of HDA-2 and HDA-3, and LIN-53 and RBA-1 

components.   

 Reduced activity of some components (i.e., rba-1(0) lin-53(RNAi)) did 

show some effect while removal of other components (hda-3; hda-2) showed 

little effect when compared to the him-8 control. Some of the collected data were 

extremely variable and inconsistent. It is unknown why the results from the rba-

1(RNAi) lin-53(0) and rba-1(0) lin-53(RNAi) mutants and him-8 controls were 

inconsistent and variable. However, based on the data, we can consider which of 

the genes seem to be of least importance and which seem to have some role in 

determining the H3K9me2 pattern in the germline.  

 From the results, hda-3; hda-2 germlines showed the same level of 

labeling as the him-8 controls, so these components may not be of importance in 

H3K9me2 accumulation. However, results from past experiments performed by 

Guang Lee suggest that when these two components were individually removed, 

labeling intensity was decreased. The result was not completely solidified due to 

low number of animals used, but constructing a mutant lacking all three HDAs 
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would remove possible overlapping and redundant functions performed by the 

HDA components.  

 H3K9me2 labeling in the rba-1(RNAi) lin-53(0) and rba-1(0) lin-

53(RNAi) mutants and him-8 controls was diffuse. When viewed, some germline 

nuclei contained strong labeling on the X chromosomes while others had only 

faint specks of non-specific background signaling. RNAi may not completely 

eliminate the gene product; therefore, there is a possibility that some residual 

RBA-1 or LIN-53 activity exists. This may also explain the variable results. If a 

double knock-out mutant were made, the results might be more consistent. The 

same variation and inconsistency was also seen in the him-8 controls. This would 

suggest that there was an unknown technical issue encountered during the 

performance of Indirect Immunofluorescence protocol because 100% of the him-8 

germline nuclei are expected to have strong H3K9me2 foci. Another possible 

explanation for this inconsistency is that during meiosis the X chromosome were 

not properly compacted which could explain the low level of H3K9me2 labeling 

and non-specific labeling in the germline cells. 

 As mentioned previously, we constructed a sin-3; met-2 double mutant to 

observe its germline phenotype. The question we asked is whether SIN-3 activity 

primarily removes H3K9ac, which would allow MET-2 to generate H3K9me2. If 

it does, then the met-2; sin-3 double mutant should resemble the met-2 single 

mutant. This would also suggest that the SIN-3 and MET-2 proteins work 

together by interacting in a common biochemical pathway that allows this 

dimethylation to occur. After analyzing and comparing germlines from all three 
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mutants, the sin-3; met-2 double mutant seems normal when compared to sin-3 

and met-2 germlines. The sin-3; met-2 animals are fertile and viable. These results 

suggest that SIN-3 may interact with MET-2 in a common biochemical pathway 

that allows this dimethylation.  

 How these four gene products interact along with the other gene products 

of the SIN-3 HDAC complex to allow for the H3K9me2 chromatin modification 

is unclear. However, as more components are systematically eliminated at a time, 

the question of which components of the SIN-3 HDAC contribute to the 

H3K9me2 accumulation will become answered. Future studies will include 

constructing other different mutant combinations of the SIN-3 components. 
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Summary 

 

 Chromatin is the combination of DNA and the proteins binding to DNA in 

the cell nucleus. The primary proteins associated with chromatin are histones, 

which compact the DNA. The DNA strand wraps around the histone octamer core 

complex forming a structure called the nucleosome. Histones undergo 

posttranslational modifications that alter their interaction with DNA and other 

nuclear proteins. The sites of modification are usually in the histone amino-

terminal tails. One common modification is acetylation, which loosens DNA 

binding to histones and promotes transcription. Generally speaking, acetylated 

histones are associated with active gene expression whereas deacetylated histones 

are associated with repressed gene expression.  

 Histone deacetylases remove acetyl groups, which increases the positive 

charge of histone tails resulting in increased DNA-histone binding affinities. 

Deacetylated histones are associated with repressed gene expression because 

DNA wraps around the histone more tightly, in turn inhibiting transcription. 

Histone deacetylases usually function as a multi-protein complex. One major 

histone deacetylase (HDAC) complex is the SIN-3 HDAC complex. SIN-3 acts as 

a “scaffold,” and is specifically thought to interact with certain DNA binding 

proteins and histone deacetylases to assemble this HDAC complex. Although the 

components have not been well described in C. elegans, based on work in other 

organisms, it is thought that this HDAC complex is composed of: SIN-3; the 

HDA-1 (histone deacetylase), HDA-2, and HDA-3 enzymatic components; and 

the RBA-1 and/or LIN-53/RBA-2 DNA binding components. For my project, I 
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am interested in understanding which components of the SIN-3 HDAC complex 

contribute to the accumulation of H3K9me2, histone H3 lysine 9 dimethylation, 

on unpaired meiotic chromosomes.  

 The model organism used in the Maine Lab is Caenorhabditis elegans. C. 

elegans is a small, free living soil nematode that lives in many parts of the world 

feeding on microbes, but primarily bacteria. It is a good model organism for 

research in biological sciences including genomics, cell biology, neuroscience, 

aging, and development. This model organism has many advantages: short life 

cycle, small size, compact genome, rapid period of embryogenesis, ability to 

produce large number of progeny, and a transparent body allowing internal cells 

to be easily visualized without dissection. 

 When germ cells enter meiotic prophase I, duplicated chromosomes coil 

becoming shorter and thicker. In C. elegans, a chromosome that fails to pair with 

a partner and synapse (for example, the male X chromosome) during meiotic 

prophase I accumulates a high level of histone H3 lysine 9 dimethylation 

(H3K9me2) (Kelly et al., 2002; Bean et al., 2004). This modification is associated 

with facultative heterochromatin assembly, which may result in transcriptional 

silencing. Also, this modification may mark silenced genes. High levels of 

H3K9me2 are observed under special and specific conditions in C. elegans 

hermaphrodites (Bean et al., 2004).  

 Previous studies in the Maine Lab have observed that loss of SIN-3 

function disrupts H3K9me2 accumulation on unpaired X chromosomes during 

meiosis in C. elegans hermaphrodites (She et al., 2009). However, the H3K9me2 
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accumulation was not affected on the male X-chromosome. These results 

suggested that SIN-3 activity is required for H3K9me2 to accumulate on unpaired 

X-chromosomes in hermaphrodites but not males. 

 Continuing the studies of a former student, Guang Yu Lee, who 

investigated “Meiotic Silencing in C. elegans Through SIN-3 Histone 

Deacetylase,” a genetic approach has been taken to investigate which components 

of the SIN-3 complex contribute to the accumulation of H3K9me2 on unpaired 

meiotic chromosomes. Guang Lee found that the distribution of H3K9me2 was 

normal in individual hda-1, hda-2, and hda-3 mutants when compared to controls.  

These results suggested that, individually, the HDA-1, HDA-2, and HDA-3 

protein components are not essential for H3K9me2 accumulation. To follow up 

on this result, I investigated whether the HDA proteins were redundant for 

function.  To do so, I constructed double mutant strains containing mutations in 

different components of the histone deacetylase complex and examined if the 

distribution of H3K9me2 was altered. By eliminating more than one component at 

a time in the double mutants, the effects on H3K9me2 accumulation would 

become clearer.  I also generated mutant worms with reduced gene activity by 

growing mutant worms on bacteria that produce double stranded RNA of the gene 

of interest to be suppressed.  

 The H3K9me2 marks in the mutant worms were visualized by performing 

indirect immunofluorescence. This protocol involves the dissection of 

hermaphrodites’ gonad arm to view the germ cells and the use of an antibody that 

binds to the histone modification, H3K9me2. Slides were prepared after the 
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protocol, and the gonads were viewed using a Zeiss Axioscope compound 

microscope.  

 Germlines were scored as having H3K9me2 enrichment, partial H3K9me2 

enrichment, or no H3K9me2 enrichment on the (nonsynapsed) X chromosomes in 

the meiotic nuclei. Germlines with H3K9me2 enrichment included nuclei that had 

bright and excellent antibody labeling, with defined foci. Two strong foci of anti-

H3K9me2 labeling were visible per nucleus. Germlines with partial H3K9me2 

enrichment included nuclei with some defined foci, intermediate and blurry 

antibody labeling, and some background or non-specific antibody binding. 

Germlines categorized as without H3K9me2 enrichment included nuclei where 

there was no visible antibody labeling on chromosomes; nuclei did not have two 

foci of anti-H3 K9me2 labeling. However there were faint specks of non-specific 

background antibody labeling that covered the germline. As a control, him-8 

animals were analyzed in parallel in each individual experiment. 

 The experiments and data demonstrate that together HDA-2 and HDA-3, 

and LIN-53 and RBA-1, activities are not essential in the accumulation of 

H3K9me2 on nonsynapsed chromosomes during meiosis. The data showed that 

hda-3; hda-2, rba-1(RNAi) lin-53(0) and rba-1(0) lin-53(RNAi) meiotic nuclei all 

accumulated H3K9me2 on unpaired meiotic X chromosomes. The mutations and 

RNAi both reduce protein activity. Therefore, the mechanism involved in this 

chromatin regulation was not completely inhibited by the reduced protein activity 

of HDA-2 and HDA-3, and LIN-53 and RBA-1 components.   
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 The role of these four gene products in the SIN-3 HDAC is still unclear. 

However, as more components are systematically eliminated, the question of 

which components of the SIN-3 HDAC contribute to the H3K9me2 accumulation 

will be answered. Future studies will include constructing other different mutant 

combinations of the SIN-3 components. 
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