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ABSTRACT

The multiscale entropy (MSE) has been widely and successfully used in analyzing

the complexity of physiologic time series. In this thesis, we re-interpret the averaging

process in MSE as filtering a time series by a filter of a piecewise constant type. From

this viewpoint, we introduce the filter-based multiscale entropy (FME) which filters a

time series by filters to generate its multiple frequency components and then compute

the blockwise entropy of the resulting components. By choosing filters adapted to the

feature of a given time series, FME is able to better capture its multiscale information

and to provide more flexibility for studying its complexity. Motivated by the heart

rate turbulence theory which suggests that the human heartbeat interval time series

(HHITS) can be described in piecewise linear patterns, we propose the piecewise

linear filter multiscale entropy (PLFME) for the complexity analysis of the time

series. Numerical results from PLFME are more robust to data of various lengths

than those from MSE. We then propose wavelet packet transform entropy (WPTE)

analysis. We apply WPTE analysis to HHITS using lower and higher piecewise linear

filters. Numerical results show that WPTE using piecewise linear filters gives us

the highest classification rates discriminating different cardiac systems among other

multiscale entropy analysis. At the end, we discuss the application of FME on discrete

time series. We introduce an ‘eliminating’ algorithm to examine and compare the

complexity of coding and noncoding DNA sequences.
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Chapter 1

Introduction

Heart disease is one of the top threats to people’s health. According to Center for

Disease Control and Prevention, about 600,000 people die of heart disease in the

United States every year, that is 1 in every 4 deaths. Worldwide, an estimated 17.3

million people died from heart disease in 2008 according to World Health Organiza-

tion. There are several tests to diagnose heart disease including electrocardiogram,

stress testing, chest X Ray, etc. However, no single test can diagnose heart disease

completely. People have been making great efforts to diagnose heart disease more

accurately and effectively.

Over the past years, interest has risen in applying methods and concepts from

nonlinear dynamics to problems in physiology. This is evidenced by several focus

issues on cardiology and nonlinear dynamics [20, 30]. For example, it has been pro-

posed that the normal heartbeat is associated with complex nonlinear dynamics and

1



CHAPTER 1. INTRODUCTION 2

chaos [62, 70]. This has opened new avenues to use methods from nonlinear dy-

namics as diagnostic tools for the analysis of physiological data for certain heart

trouble [23,31].

There have been several approaches coming from nonlinear dynamics to identify

signatures in heart data [68]. Among these approaches, quantifying the “complex-

ity” of physiologic signals has drawn considerable attention [19, 20, 22, 32, 56, 57]. In

general, there is no precise mathematical definition for the “physiologic complexity”

and no single statistical measure can be used to assess the complexity of physiologic

systems [32]. Intuitively, complexity is referred to “meaningful structural richness”.

Several entropy metrics such as approximation entropy ( [55]) and sample entropy

( [58]) were proposed to measure the regularity of a system by quantifying the degree

of predictability of a series of data points generated from the system. However, irreg-

ularity is not the same as complexity. For example, the entropy measures mentioned

above assign the highest values to uncorrelated random signals (Gaussian white noise),

which are highly unpredictable but not structurally “complex”. Moreover, when they

are applied to human heart interbeat time series (HHITS), certain pathologies includ-

ing cardiac arrhythmias like atrial fibrillation are assigned higher entropy value than

healthy dynamics which represent more physiologically complex, adaptive states. The

reason for which these entropy matrices do not work on physiological systems is that

they only measure the complexity at the single scale. While biological systems operate

across multiple spatial and temporal scales, their complexity should also be measured
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multiscaled. Therefore, these entropy matrices are not direct indices of physiologic

complexity. In this dissertation as in [20, 22] we take the point of view that for a

physiologic system, the complexity should be measured across multiple scales using

entropy matrices and the higher the multiscale entropy value is, the more complex

the system is.

The remarkable MSE [20, 22] takes it into account that the biological systems

operate across multiple spatial and temporal scales during measuring the complexity

of the physiologic time series and examines the physiologic dynamics over multiple

scales. MSE gives more precise descriptions of the complexity of signals. For example,

it is able to show that correlated random signals (1/f noise) are more complex than

uncorrelated random signals (Gaussian white noise). When applied to HHITS, MSE

not only provides a meaningful measure for the complexity of the physiological time

series but also shows good results in distinguishing different patterns from subjects

with different aging and heart diseases. The advantages of MSE have drawn great

attention since it was proposed in 2002. This work is highlighted in Nature News

and Views [16], the American Institute of Physics News Update (Aug. 1, 2002),

the Harvard Focus (Mar. 8, 2002). Numerical results from MSE show that cardiac

system from healthy young subjects is more complex than that from healthy old

subjects and subjects with heart diseases. They also suggest that cardiac system

may lose more complexity from certain heart disease (congestive heart failure) than

from aging. However, when applied to HHITS of various lengths, numerical results
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from MSE have serval inconsistent observations, which is discussed in the second

chapter of this dissertation. We will interpret MSE from the viewpoint of filters and

propose filter-based multiscale entropy analysis, which gives us more robust results

to data of various lengths.

A crucial step in MSE is the coarse graining procedure which assesses the entropy

rate. It is achieved by an averaging process, extracting low-frequency components

of the time series, at different scales. This procedure can be reinterpreted from a

filter viewpoint as applying a piecewise constant low-pass filter which has a matrix

representation to the time series. We shall take this point of view in studying filter-

based multiscale entropy analysis.

The main purpose of this dissertation is to introduce filter-based multiscale en-

tropy analysis. Specifically, with FME the time series is passed through desired

fine-to-coarse filter matrices at different scales and a blockwise sample entropy value

is calculated at each scale. On one hand, this general setting will give us insightful

understanding of MSE and on the other hand, it will allow us to choose a filter that

better fits the given data when certain prior information of the data is available to

improve the entropy result. When prior information of the time series is not available

we can develop adaptive filters which extract the main feature of the time series.

Entropy values at different scales can also be used as extracted features to clas-

sify different cardiac systems. Fish discriminant analysis and support vector machine

methods were applied to the classification of heartbeat interval time series using en-
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tropy values from MSE as features in [18] and [46] respectively. In terms of classifica-

tion, we want to have as many distinct features as we can on different systems. While

both MSE and PLFME only focus on the lower frequency components of the time se-

ries at different scales, the higher frequency components are overlooked. The entropy

of the higher frequency components of a time series may also provide useful informa-

tion in addition to that encoded in the lower frequency components. One example of

such a system was presented in [38]. The hierarchical entropy (HE) analysis intro-

duced in [38] defined two operators on a time series to extract both lower and higher

frequency components of the time series. Wavelet packet transform [17] provides us

with a systematic way to decompose the original time series into lower and higher

frequency components. Wavelet packet transform has been widely used in texture

classification [41], gearbox fault detection [24], embedded image coding [61], sparse

approximation [64] and among others. We will introduce wavelet packet transform

entropy (WPTE) analysis, as a further development of FME. In WPTE analysis we

decompose the original time series using wavelet packet transform at different scales.

For all of the decomposed time series obtained from wavelet packet transform, which

present a hierarchical structure as in the HE analysis, we compute the (blockwise)

sample entropy.

Using entropy values as extracted features and following from multi-category clas-

sification support vector machine (SVM), we develop several classifiers for human

heartbeat interval time series. Classification rates will be given and compared when



CHAPTER 1. INTRODUCTION 6

we use entropy values from different multiscale entropy methods. Among these clas-

sifiers, we will see that if we use entropy values from WPTE using piecewise linear

filters, we have the highest classification rates.

While most of the application of entropy methods focuses on continuous time

series in current literature, such as HHITS, the application of entropy methods to

discrete time series, such as DNA sequences, is overlooked. In [22], MSE is applied to

DNA sequences, but there is an oscillation artifact. This is because every component

of the discrete time series can only take values from a finite set, but new values will

be created in the MSE analysis. FME provides us a more flexible choice of filters and

it enables us design special filters for discrete time series. We will study the unique

properties of sample entropy on discrete time series. Based on these properties, a

multiscale ‘eliminating’ process is introduced via a special filter designed especially

for the discrete time series. We will verify a conjecture in the medical field that

noncoding DNA sequences are more complex than coding DNA sequences, which

shows the applicability of FME to discrete time series.

We organize the remaining of this dissertation into three chapters. In the second

chapter, we shall provide a general framework of FME and theoretical results of FME

for Guassian white noise as well as 1/f noise. The application of FME to HHITS

will also be thoroughly studied. In the third chapter, we shall introduce the WPTE

analysis. Theoretical results of WPTE for Gaussian white noise will be presented.

We will also apply WPTE to HHITS. Moreover, several classifiers for HHITS will be
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proposed and the classification results will be compared. In the forth chapter, we

study the application of FME to discrete time series. Special properties of sample

entropy on discrete time series will be examined and an “eliminating” algorithm will

be proposed and applied to DNA sequences.



Chapter 2

Filter-Based Multiscale Entropy

The complex fluctuations exhibited by a signal generated from a physiologic system

contain information of underlying interacting mechanisms which regulate the system.

Quantifying the “complexity” of physiologic signals has drawn considerable attention.

The remarkable MSE [20,22] takes it into account that the biological systems operate

across multiple spatial and temporal scales during measuring the complexity of the

physiologic time series and examines the physiologic dynamics over multiple scales.

We reinterpreted a crucial step in MSE, the coarse graining procedure, from a

filter viewpoint as applying a piecewise constant low-pass filter which has a matrix

representation to the time series. We shall take this point of view and propose filter-

based multiscale entropy analysis.

We consider in this chapter HHITS as our main study case. Heart rate turbulence

(HRT), the technique of acceleration-deceleration oscillation analysis proposed in [59],

8



CHAPTER 2. FILTER-BASED MULTISCALE ENTROPY 9

suggests that HHITS can be described in the piecewise linear pattern. The time series

generated by different heart conditions show distinguished differences in this pattern.

Therefore, using piecewise linear filters for capturing this pattern is highly desirable.

We apply the piecewise linear filter to HHITS before measuring their complexity

and find that aging may reduce the complexity of the cardiac system more than

congestive heart failure. Numerical results from PLFME are more robust to data

of various lengths than those from MSE. We furthermore design an adaptive filter

for HHITS (without prior information of HHITS) and use it in developing adaptive

piecewise constant filter-based multiscale entropy (APCFME) analysis. In the study

of HHITS, numerical performance of APCFME is comparable to that of PLFME.

We organize this chapter in seven sections. In section 1.1, we describe the coarse

graining processing using filters and a blockwise sample entropy for computing the

resulting filter-based multiscale entropy. We then study in section 1.2 FME for the

Gaussian noise and the 1/f noise. We provide theoretical results and numerical

results. Section 1.3 is devoted to application of PLFME to HHITS. In section 1.4,

we design an adaptive piecewise constant filter and use it in developing APCFME.

Numerical results of APCFME applied to the Gaussian noise, 1/f noise and HHITS

are also presented in this section.
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2.1 Filter-Based Multiscale Entropy

We motivate FME from a filter viewpoint which re-interprets the averaging process

in MSE as filtering a time series through a lower pass filter of a piecewise constant

type in generating its multiple frequency components. Piecewise constant filters may

be suitable for signals which can be described in piecewise constant patterns but

may not for others. To make MSE more robust to signals with different nature, we

introduce FME which considers the meaningful structural complexity of a physiologic

system over multiple spatial and temporal scales resulted from filters appropriate for

the specific physiologic system. Specifically, at each scale, from finer to coarser, the

time series is passed through a desired filter to capture its characteristic pattern.

For example, a piecewise polynomial filter of order k can be used to approximate a

time series which can be intrinsically represented by such a function. When prior

information of the signal is available, one can use it in the filter design and when it

is not available, one may construct filters adaptively from the given signal.

A filter may be described in terms of a matrix. For example, the Haar filter is the

1× 2 matrix [1
2
, 1
2
]. The piecewise polynomial filter may be derived from the wavelets

on invariant sets [49] and a general construction of filters of this type was discussed

in [50]. From [43], the piecewise linear filter is the 2 × 4 matrix given by

A :=
1

2

 1 0 1 0

−
√
3
2

1
2

√
3
2

1
2

 (2.1)
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and the piecewise quadratic filter is the 3 × 6 matrix given by

B :=
1

2


1 0 0 1 0 0

−
√
3
2

1
2

0
√
3
2

1
2

0

0 −
√
15
4

1
4

0
√
15
4

1
4

 . (2.2)

A coarse graining process of a time series x := [x0, . . . , xN−1] of real numbers can

be viewed as a matrix multiplication of the vector x (we use the same notation x

for the time series and the vector). Specifically, at each scale τ = 2, 3, . . ., a matrix

A(τ) ∈ Rpτ×qτ is chosen as a filter for x. For matrices P := [pjk] and Q we define the

Kronecker product P ⊗ Q := [pjkQ]. By ⌊·⌋ we denote the floor function. At scale

τ , the coarse-grained time series is constructed by A(τ) as yτ := (In ⊗ A(τ))x, where

n := ⌊N
qτ
⌋ and In is the n × n identity matrix. If N = nqτ + k, for some integers n

and k with 1 ≤ k < qτ , we shall drop the last k components of x when construct the

coarse-grained time series since such insignificant loss of a few components will barely

affect the complexity of the whole system. Thus, in each coarse-grained procedure,

the time series is partitioned into n blocks with each having qτ components and being

transformed by A(τ) to another block of pτ components.

The coarse graining process can also be viewed as the application of the same filter

matrix recursively to x. For a filter matrix A ∈ Rp×q and τ = 2, 3, . . ., the coarse-

grained time series at the scale τ is obtained recursively by yτ = (Inτ−1 ⊗A)yτ−1 with

y1 := x and nτ−1 := ⌊Nτ−1

q
⌋, where Nτ−1 is the length of the time series yτ−1. For

example, for PLFME, in the above formula A is the piecewise linear filter defined in
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(2.1) and q = 4.

We recall the notion of sample entropy [58]. Let Zm := {0, 1, . . . ,m − 1} for a

positive integer m. We denote by x(i) the ith component of a time series x. For

given x, we construct a sequence um := {um(j) : j ∈ ZN−m}, where um(j) :=

[x(j + k) : k ∈ Zm] are vectors of m data points, with m being the length of pattern

templates. The distance between um(ℓ) and um(j) is defined as d[um(ℓ), um(j)] :=

max{|x(ℓ + k) − x(j + k)| : k ∈ Zm}. For a given tolerance r > 0 and a fixed integer

ℓ ∈ ZN−m, we let Bm
ℓ denote the number of vectors um(j) with j > ℓ which satisfy

d[um(ℓ), um(j)] ≤ r. The number r serves as the tolerance for accepting matches and

um(ℓ) is called the template. Then the probability of vectors um(j) ∈ um that are

near the template um(ℓ) within tolerance r is given by

Cm
ℓ (x, r) := Bm

ℓ /(N −m + 1).

Let

Cm(x, r) :=
N−m∑
ℓ=0

Cm
ℓ (x, r). (2.3)

Sample entropy of x is defined by

Sm(x, r) := − ln

[
Cm+1(x, r)

Cm(x, r)

]
.

We propose a blockwise sample entropy (BSE) for the filtered time series yτ at

each scale. The use of BSE (instead of the standard sample entropy) is to adjust

to the size of the filters used in FME which result in output signals having blocks

consisting of more than one components. We now introduce BSE for the coarse-
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grained time series yτ for τ ≥ 2. It follows the same idea as sample entropy and

is designed to suit the structure of yτ . Note that yτ consists of n blocks, each of

which has pτ components and is obtained from a block of x transformed by the same

matrix A(τ). Components in each block represent different information of x, captured

by different rows of the filter A(τ). For example, different rows of the linear filter

transform x to different components in the piecewise linear function basis. For this

reason, in calculating BSE, we consider each block of yτ as a single unit and apply the

sample entropy calculation process to yτ . To this end, we write yτ = [yτ
0 , . . . ,y

τ
n−1],

where each yτ
j is a vector with pτ components and [yτ

j ]s := yτ (jpτ + s) for each

s ∈ Zpτ with [d]s denoting the sth component of a vector d. Then the sequence

corresponding to um in sample entropy is constructed as uτ
m := {uτ

m(j) : j ∈ Zn−m},

where uτ
m(j) := [yτ

j+k : k ∈ Zm] consists of m vectors. Let

σs(u
τ
m(ℓ), uτ

m(j)) := max{|[yτ
ℓ+k]s − [yτ

j+k]s| : s ∈ Zm}.

The distance between uτ
m(ℓ) and uτ

m(j) is then defined as a vector of pτ components

by

d[uτ
m(ℓ), uτ

m(j)] := [σs(u
τ
m(ℓ), uτ

m(j)) : s ∈ Zpτ ].

For a given uτ
m(ℓ), we denote by Bm,τ

ℓ the number of vectors uτ
m(j) with j > ℓ which

satisfy σs(u
τ
m(ℓ), uτ

m(j)) ≤ rτs for each s ∈ Zpτ , where rτs :=
∑q

t=1 |A
(τ)
st |r. Here r is

the tolerance used in calculating sample entropy of x and A
(τ)
st is the (s, t)-entry of

A(τ). Let rτ := [rτ0 , r
τ
1 , . . . , r

τ
pτ−1] and

C̃m
ℓ (yτ , rτ ) :=

Bm,τ
ℓ

n−m + 1
, ℓ ∈ Zn−m+1.
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BSE S̃m(yτ , rτ ) of yτ is defined in the same way as sample entropy with Cm
ℓ (x, r)

replaced by C̃m
ℓ (yτ , r). That is,

S̃m(yτ , rτ ) := − ln

[
C̃m+1

ℓ (yτ , r)

C̃m
ℓ (yτ , r)

]
. (2.4)

The choice of parameter rτ in BSE is crucial. In MSE, the same value r was used

for different scales. Adjusted to the decreasing variance of the filtered time series in

scales, the parameter r in MSE was adjusted in [51] as a certain percentage of the

standard deviation of the filtered time series at each scale. In BSE, the parameter

rτ is calculated from a different viewpoint. Since the filtering process in FME is

a transformation of the time series by a matrix, measuring the similarity of the

components in the filtered time series should be related to the filter matrix. Thus

the parameter rτ is a vector whose components are transformed by the corresponding

rows of the filter matrix. Each component rτs , s ∈ Zpτ , is to measure the similarity of

the corresponding components among different blocks in the filtered time series.

We now elaborate the relation of MSE and FME. In MSE, the consecutive coarse-

grained time series {yτ} is constructed according to the equation:

yτ (j) = 1/τ

(j+1)τ−1∑
k=jτ

x(k), j ∈ Z⌊N/τ⌋.

The time series is actually filtered by the 1 × τ matrix

C(τ) :=

[
1

τ
,

1

τ
, . . . ,

1

τ

]
at scale τ . That is, yτ = (I⌊N

τ
⌋ ⊗ C(τ))x. Thus yτ has ⌊N/τ⌋ blocks with each

having one component. In this case, BSE degenerates to the standard sample entropy.
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Therefore, MSE is actually a special case of FME with the piecewise constant filter

C(τ) at scale τ . We also remark that when τ = 2k, for k = 1, 2, . . . , filtering a time

series by C(τ) is equivalent to filtering it by the Haar filter k times recursively.

2.2 FME for Gaussian and 1/f Noise

In this section, we discuss the behavior of FME in simulating white noise, a completely

irregular signal and in 1/f noise, a correlated signal.

FME for Gaussian Noise. We first apply FME to Gaussian white noise. In-

tuitively, complexity is associated with “meaningful structural richness” [4]. There is

no straightforward correspondence between regularity and complexity. For example,

uncorrelated random signals, such as Gaussian white noise, are highly unpredictable

but not structurally complex. We present both theoretical and numerical results of

Gaussian white noise from FME. We shall see that the entropy measure of the Gaus-

sian white noise decreases as the scale increases with proper choices of the filter. This

indicates the lack of the complexity of the Gaussian white noise.

For a positive integer N , let x := [xj : j ∈ ZN ] denote a random vector taking

values in RN . When the components xj, j ∈ ZN , are independent and have the

same Gaussian distribution in the sense that they have the same mean and standard

deviation, we call x a real Gaussian random vector, call a component of x a Gaussian

random variable and call an instance of x the Gaussian white noise. In this subsection,

we use g := [gj : j ∈ ZN ] for the real Gaussian random vector, with the mean of gj
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being 0 and the standard deviation of gj being δ.

The analysis of Gaussian noise mainly relies on the statistical properties of linear

combination of Gaussian random variables. Theorem 4.2.14 in [15] states that a

linear combination of two independent real Gaussian random variables is also a real

Gaussian random variable. This result can be easily generalized to the following

lemma. The proof of the lemma is straightforward and will be omitted.

Lemma 2.1. If Xj are n independent real Gaussian random variables with mean 0

and standard deviation δj, then for αj ∈ R, j ∈ Zn,
∑n−1

j=0 αjXj is a real Gaussian

random variable with mean 0 and standard deviation δ̃ := (
∑n−1

j=0 α
2
jδ

2
j )1/2.

As usual, the expectation of a random variable X taking values in R is defined by

E(X) :=

∫
R
tp(t)dt,

where p is the probability density function for the random variable X. Two random

variables X and Y are independent if and only if E(XY ) = 0. We let COV(X, Y )

denote the covariance of X and Y . It is known from Theorem 4.5.3 in [15] that

COV(X, Y ) = E(XY ) − E(X)E(Y ).

Given a filter A(τ) ∈ Rpτ×qτ , we consider BSE of the filtered Gaussian random

vector,

gτ := (In ⊗ A(τ))g, (2.5)

where n = ⌊N
qτ
⌋. We write gτ as defined in (2.5) in a blockwise form

gτ := [gτ
0 , . . . ,g

τ
n−1], (2.6)
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where gτ
j , j ∈ Zn, is a vector with pτ components, and for each k ∈ Zpτ . let [gτ

j ]k :=

gτ (jpτ + k).

Recall that BSE estimates the negative natural logarithm of the conditional prob-

ability that the distance between two blocks in gτ is small (measured by rs in the

description of BSE) given that the distance between the two preceding blocks is also

small. This conditional probability can be analytically expressed by the probability

density function of all of the blocks in gτ (Lemma 2.2) and the independence of blocks

in gτ (Lemma 2.3).

Lemma 2.2. If gτ
j is defined in (2.6), j ∈ Zn, then gτ

j is a pτ -variate normally

distributed random vector with its mean being the zero vector and and its covariance

matrix being Σ with

Σs,t :=

pτ∑
k=1

A
(τ)
sk A

(τ)
tk δ2, 1 ≤ s, t ≤ pτ , (2.7)

where δ is the standard deviation of gj.

Proof. From the construction of gτ
j , for each j ∈ Zn, we have that gτ

j = A(τ)gj, where

gj ∈ Rqτ with [gj]k = g(qτ + k) for each k ∈ Zqτ . For each j ∈ Zn, gj consists of

qτ independent real Gaussian random variables with mean 0 and standard deviation

δ and [gτ
j ]k, k ∈ Zpτ , is a linear combination of these random variables. Hence, it

follows from Lemma 2.1 that for each k ∈ Zpτ , [gτ
j ]k is a Gaussian random variable
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with mean 0 and standard deviation

√∑pτ
ℓ=1(A

(τ)
kℓ )2δ. Hence, for any 1 ≤ s, t ≤ pτ ,

COV([gτ
j ]s, [g

τ
j ]t) = E([gτ

j ]s[g
τ
j ]t)

= E(A(τ)
s gj · A(τ)

t gj)

=

pτ∑
k=1

A
(τ)
sk A

(τ)
tk δ2,

where A
(τ)
k is the kth row of A(τ) for 1 ≤ k ≤ pτ . The desired result follows directly

from the definition of the multivariate normal distribution.

Noting that formula (2.7) is independent of j, all blocks in gτ have the same

probability density function. In the next lemma, we show the independence of blocks

in gτ . We say that two random variable vectors X and Y are independent if the

elements of X (as a collection of random variables) are independent of the elements of

Y. Elements within X or Y need not be independent when X and Y are independent.

Lemma 2.3. If gτ
j is defined as in (2.6), j ∈ Zn, then gτ

j and gτ
k, j, k ∈ Zn, are

independent when j ̸= k.

Proof. It suffices to prove that [gτ
j ]s and [gτ

k]t are independent for any s, t ∈ Zpτ if

j ̸= k, j, k ∈ Zn. Since g(jpτ + s) and g(kpτ + t) are independent, we have that

E[g(jpτ + s)g(kpτ + t)] = 0. It follows that

E([gτ
j ]s][g

τ
k]t)

=E

[
pτ∑
ℓ=1

A
(τ)
sℓ g(jqτ + ℓ− 1)

pτ∑
ℓ=1

A
(τ)
tℓ g(kqτ + ℓ− 1)

]

=

pτ∑
ℓ=1

pτ∑
u=1

A
(τ)
sℓ A

(τ)
tu E[g(jqτ + ℓ− 1)g(kqτ + u− 1)] = 0, (2.8)
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if j ̸= k. Thus, [gτ
j ]s and [gτ

k]t, s, t ∈ Zpτ , are independent. We then conclude that gτ
j

and gτ
k are independent for any j, k ∈ Zn with j ̸= k.

For notational convenience, in the remaining part of this section we use the same

notation S̃m(gτ , r) for the theoretical value of BSE of gτ . For a positive integer N,

let Z+
N := {1, 2, . . . , N}. For a given r > 0, we let

rτs :=

qτ∑
t=1

|A(τ)
st |r, s ∈ Z+

pτ .

For a given vector y ∈ Rpτ , we define

Ωy :=
(
[y]1 − rτ1 , [y]1 + rτ1

)
× · · · ×

(
[y]pτ − rτpτ , [y]pτ + rτpτ

)
.

Clearly, Ωy ⊂ Rpτ . For the standard deviation δ of gj, we define the matrix Σ ∈ Rpτ×pτ

by

Σs,t :=

pτ∑
j=1

A
(τ)
sj A

(τ)
tj δ2, 1 ≤ s, t ≤ pτ .

In this chapter we assume that the matrix Σ is invertible. We showed in Lemma

2.2 that all of the blocks in gτ have the same probability density function with the

covariance matrix Σ. We next present S̃m(gτ , r) in terms of the matrix Σ. To this

end, we let

I(Ωy) :=

∫
Ωy

λΣ exp(−1

2
xTΣ−1x)dx, (2.9)

where λΣ := 1
(2π)pτ /2|Σ|1/2 . We say that the distance between two blocks gτ

j and gτ
k,

j, k ∈ Zn, is less than rτ if [|gτ
j − gτ

k|]s < rτs for all s ∈ Zpτ and we write it as

|gτ
j − gτ

k| < rτ .
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Proposition 2.4. If A(τ) ∈ Rpτ×qτ and gτ is defined as in (2.5), then for any r > 0

S̃m(gτ , rτ ) = − ln

{∫
Rpτ

I(Ωy)λΣ exp(−1

2
yTΣ−1y)dy

}
. (2.10)

Proof. BSE S̃m(gτ , rτ ) is the negative natural logarithm of the conditional probability

that the distance between two blocks is less than r provided that the distance between

the two preceding blocks is also less than r. We write gτ in the block form as in (2.6)

and from Lemma 2.3, we know that gτ
j and gτ

k are independent if j ̸= k. Thus, when

m = 1 the conditional probability is

P (|gτ
j − gτ

k| < rτ ||gτ
j−1 − gτ

k−1| < rτ )

=
P (|gτ

j − gτ
k| < r ∧ |gτ

j−1 − gτ
k−1| < rτ )

P (|gτ
j−1 − gτ

k−1| < rτ )

=
P (|gτ

j − gτ
k| < rτ ) × P (|gτ

j−1 − gτ
k−1| < rτ )

P (|gτ
j−1 − gτ

k−1| < rτ )

=P (|gτ
j − gτ

k| < rτ ). (2.11)

Using this approach recursively, it can be proved that this result is valid for any value

of m.

From Lemma 2.2 and the definition of multivariate normal distribution, we know

that the probability density functions of gτ
j , j ∈ Zn, are all equal to

f(x) :=
1

(2π)pτ/2|Σ|1/2
exp

{
−1

2
xTΣ−1x

}
, x ∈ Rpτ , (2.12)

where Σ is defined as in (2.7). Then the desired formula follows from the definition

of BSE, (2.11) and (2.12).
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Formula (2.10) holds for a general filter matrix A(τ). In particular, when we choose

A(τ) = C(τ), it recovers the theoretical results originally proved in [22] of MSE for

Gaussian white noise.

We next present a special result when the rows of the the filter matrix A are

orthogonal. Examples of such filter matrices include the piecewise polynomial filter

of order k. Let A ∈ Rp×q be a matrix with orthogonal rows and

g̃ := (I⌊N
q
⌋ ⊗ A)g.

We also write g̃ in the blockwise form, that is,

g̃ := [g̃0, . . . , g̃n−1]. (2.13)

In this case, a set of independent variables are transformed by A to another set of

independent variables due to the orthogonality of the rows of A. Thus in addition to

the independence of blocks of the filtered Gaussian white noise, elements within each

block are also independent. In particular, given a real Gaussian random vector g, we

have the following result for each block g̃j, j ∈ Zn.

Lemma 2.5. If A ∈ Rp×q is a matrix with orthogonal rows and g̃j is defined as

in (2.13) via a real Gaussian random vector g, then g̃j consists of p independent

Gaussian random variables for each j ∈ Zn, with the mean and the standard deviation

of [g̃j]k being 0 and
√∑p

ℓ=1[Akℓ]2δ, respectively, for k ∈ Zp, where δ is the standard

deviation of gj.
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Proof. For each j ∈ Zn and k ∈ Zp, we know from Lemma 2.1 that [g̃j]k is a real

Gaussian variable since it is a linear transformation of real Gaussian variables. The

mean and standard deviation of [g̃j]k are easily obtained from Lemma 2.1.

It remains to prove that [g̃j]s and [g̃j]t, s, t ∈ Zp, are independent when s ̸= t for

each j ∈ Zn. This follows from the orthogonality of the rows of A. In fact,

E ([g̃j]s[g̃j]t)

=E
[ p∑
k=1

Askg(jq + (k − 1)) ·
p∑

k=1

Atkg(jq + (k − 1))
]

=

p∑
k=1

AskAtkE
[
g2(jq + (k − 1))

]
=

p∑
k=1

AskAtkδ = 0. (2.14)

We use erf to denote the error function defined by

erf(x) :=
2√
π

∫ x

0

e−t2dx.

For given r > 0 and matrix A ∈ Rp×q, we let δ(A, j) :=
√∑p

k=1 A
2
jkδ and

rs :=

q∑
t=1

|Ast|r, s ∈ Z+
p . (2.15)

Then δ(A, j) is the standard deviation of the jth element in each block of the filtered

Gaussian random vector (from Lemma 2.5). For real numbers a and b, we define

E(a, b) := erf

(
a + b

δ(A, j)

)
− erf

(
a− b

δ(A, j)

)
.
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Proposition 2.6. If matrix A ∈ Rp×q has orthogonal rows, then for g̃ := (I⌊N
q
⌋⊗A)g

and for any r > 0,

S̃m(g̃, rτ ) = − ln
( p∏

j=1

1√
2πδ(A, j)

∫
R
E(xj, rj) exp

−x2
j

2(δ(A, j))2
dxj

)
. (2.16)

Proof. From Lemma 2.5, we know that the probability density function of gτ
j , for

each j ∈ Zn, is given by

f(x) =

pτ∏
ℓ=1

1√
2π

∑p
k=1 A

2
ℓkδ

exp
( −x2

ℓ

2
∑p

k=1 A
2
ℓkδ

2

)
, (2.17)

where x is a pτ random vector. By applying (2.11) to (2.17) and the definition of

BSE, we obtain the desired result.

Since
√∑p

k=1 A
2
ikδ is actually the standard deviation of [g̃j]i for each block g̃j in

the filtered time series, BSE of g̃ is determined by the standard deviation of [g̃j]i by

Proposition 3.1. This leads us to investigate the standard deviation of the filtered

time series at different scales if we apply the filter matrix A recursively to g.

Considering the Gaussian noise is a completely irregular signal, one expects that

its complexity, measured by FME, decreases as the scale increases. This is the case

when the filter matrix A used in FME has orthogonal rows and satisfies the condition

ATA = ρ2Ip, (2.18)

for some constant ρ ∈ (0, 1). This is stated in the next theorem. For this purpose,

we let

gτ := (I⌊Nτ−1
q

⌋ ⊗ A)(I⌊Nτ−2
q

⌋ ⊗ A) · · · (I⌊N1
q

⌋ ⊗ A)g, (2.19)
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where Nj is the length of the time series gj, j = 2, 3, . . . , τ−1 and N1 is the length of g.

We also write gτ as defined in (2.19) in the blockwise form as in (2.6). By Proposition

2.4, at a fixed scale, all blocks have the same probability density function. Let δ
(τ)
i

denote the standard deviation of of the ith element in a block at scale τ . If the matrix

A has orthogonal rows and satisfies condition (2.18), we have the following result for

δ
(τ)
i .

Lemma 2.7. If A ∈ Rp×q has orthogonal rows and satisfies condition (2.18), then

for τ = 2, 3, . . .,

δ
(τ)
k = ρτ−1δ, k ∈ Zp (2.20)

where ρ is the constant that appears in (2.18) and δ is the standard deviation of gj.

Proof. We prove this result by induction on τ . When τ = 2, it follows from Lemma

2.5 and the fact that A satisfies condition (2.18) that δ
(2)
k = ρδ. By the induction

hypothesis, we have that δ
(τ−1)
k = ρτ−2δ, for some τ ≥ 3. Following the computation

similar to that used in the proof of Lemma 2.5 for computing the standard deviation,

we obtain that for any k ∈ Zp,

δ
(τ)
k =

√√√√ q∑
t=1

A2
ktδ

(τ−1)
k = ρρτ−2δ = ρτ−1δ.

This completes the induction and thus the proof.

Theorem 2.8. If g := [gj : j ∈ ZN ] is a real Gaussian random vector with mean 0

and standard deviation δ, A ∈ Rp×q is a filter with orthogonal rows and satisfies the
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condition (2.18), m ≥ 1, r > 0 and gτ is defined as in (2.19), then for τ1 > τ2,

S̃m(gτ1 , rτ1) < S̃m(gτ2 , rτ2).

Proof. The proof follows from Proposition 3.1 and the fact that the error function is

strictly increasing.

We first re-express S̃m(gτ , rτ ) at the scale τ . For each s ∈ Zp, let rs be defined in

(2.15), xs be a fixed number and

E(xs, rs, τ) := erf

(
xs + rs

δ
(τ)
s

)
− erf

(
xs − rs

δ
(τ)
s

)
,

where δ
(τ)
s is the standard deviation of of the sth element in a block of gτ at the scale

τ . Replacing δ(A, s) by δ
(τ)
s in Proposition 3.1, we have that

S̃m(gτ , rτ ) = − ln

p∏
s=1

Is(τ),

where

Is(τ) :=
1

√
2πδ

(τ)
s

∫
R
E(xs, rs, τ) exp

−x2
s

2(δ
(τ)
s )2

dxs.

It remains to prove that for each s ∈ Zp, Is is strictly increasing. By employing

Lemma 2.7 and with a change of variable, ys = xs

ρτ−1 , we observe that

Is(τ) =
1√
2πδ

∫
R
Ẽ(ys, rs, τ) exp

−y2s
2δ2

dys

where

Ẽ(ys, rs, τ) := erf

(
ys + rs/ρ

τ−1

δ

)
− erf

(
ys − rs/ρ

τ−1

δ

)
.

Since erf is strictly increasing, for 0 < ρ < 1, we have that Ẽ(ys, rs, τ1) > Ẽ(ys, rs, τ2)

when τ1 > τ2. Thus, Is is strictly increasing.
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It can be verified that the piecewise polynomial filters of order k whose construc-

tion was described in [50] have orthogonal rows and satisfy the condition (2.18).

Hence, the hypotheses of Theorem 2.8 are satisfied for this class of filters, and as a re-

sult, the corresponding filter based multiscale entropy of the Gaussian noise decreases

as the scale increases. This fact is further confirmed by the numerical example. Nu-

merical results from PLFME and also MSE for Gaussian white noise are presented

in Fig. 2.1. Unless stated otherwise, all entropy values presented in this paper are

computed by choosing m := 2 and r being 15% percentage of the time series stan-

dard deviation. A similar pattern that entropy value decreases as the scale increases

is shown in both of the methods.

FME for 1/f Noise. Now we apply FME to 1/f noise. Note that 1/f noise

can be observed in various physical, chemical and biological systems [10]. It is the

signal whose power spectral density is proportional to the reciprocal of its frequency.

To describe 1/f noise, we recall complex Gaussian variables and the discrete Fourier

transform. As usual, we let i =
√
−1 be the imaginary unit and denote the complex

plane by C. A complex variable z := x + iy is called a complex Gaussian random

variable if both x and y are real independent Gaussian variables with the mean 0 and

the same standard deviation δ. The corresponding probability density function for

the complex Gaussian random variable z is given by

ρ(z) :=
1

πδ2z
e|z|

2/δ2z , z ∈ C,

where δz :=
√

2δ. Given n ∈ N, we let θn := 2π
2n

and define the discrete Fourier
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transform Fn by a 2n × 2n matrix

Fn :=
1

2n
[e−iθnkℓ : k ∈ Z2n , ℓ ∈ Z2n ]. (2.21)

For a random vector x taking values in R2N , we use x̂ to denote the discrete Fourier

transform of x, that is, x̂ := FNx. We write x̂ := [zk : k ∈ Z2N ]T . It is well-known

that the discrete Fourier Transform has the symmetric property

z2N−1+k = z̄2N−1−k, k ∈ Z+
2N−1 . (2.22)

We need only to obtain the first 2N−1 + 1 components of the vector x̂ since the

remaining components may be obtained from the symmetry property.

We describe the 1/f noise following [2]. If zk, k ∈ Z+
2N−1−1

, are independent

complex Gaussian random variables with mean 0, z0 and z2N−1 are real Gaussian

random variables with mean 0, and there is a positive constant c such that for all

k ∈ Z2N−1+1 the standard deviation δk of zk satisfy δk ≤ c
k+1

, then we call x 1/f

random vector and call an instance of x a 1/f noise. In this subsection, we use

f := [fk : k ∈ Z2N ]T to denote a 1/f random vector and f̂ := [zk : k ∈ Z2N ]T

to denote the discrete Fourier transform of f . It is known that 1/f noise contains

complex structures across multiple time scales [25,71]. We shall show that the filtered

1/f noise is again 1/f noise if the filters satisfy certain conditions. This indicates

that the filtered 1/f signal is as complex as the original 1/f signal. In the remaining

part of this section, we assume that the length of f is 2N for a positive integer N .
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We start with a simple filter A which has the form

A := [α, β],

where α, β ∈ R. Let fA := (I2N−1 ⊗A)f . We will show that the filtered 1/f signal, fA,

is again 1/f signal for most of the filters of this form. We first need several technical

lemmas.

From the definition of 1/f noise, we need to consider the Fourier transform of the

filtered signal fA, which is

f̂A = FN−1(I2N−1 ⊗ A)f . (2.23)

Since f = F−1
N FN f , equation (3.12) may be rewritten as

f̂A = FN−1(I2N−1 ⊗ A)F−1
N FN f ,

where F−1
N is the inverse discrete Fourier transform which has the form

F−1
N := [eiθNkℓ : k ∈ Z2N , ℓ ∈ Z2N ].

We shall express the Fourier transform of the filtered signal in terms of the Fourier

transform of the original signal. To this end, we investigate the matrix

Ã := FN−1(I2N−1 ⊗ A)F−1
N . (2.24)

In the next lemma, we express Ã in terms of two diagonal matrices

D+ := diag[d+k : k ∈ Z2N−1 ]
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and

D− := diag[d−k : k ∈ Z2N−1 ],

where

d+k := α + βeiθNk, d−k := α− βeiθNk, k ∈ Z2N−1 .

Lemma 2.9. For any positive integer N , there holds

Ã = [D+, D−]. (2.25)

Proof. From the definition of F−1
N and A, for ℓ ∈ Z2N−1 , k ∈ Z2N it is straightforward

to compute that

[(I2N−1 ⊗ A)F−1
N ]ℓ,k = eiθN−1ℓk(α + βeiθNk). (2.26)

Letting D := diag[D+, D−] and F̃N := [αF−1
N−1, βF

−1
N−1], it follows from (2.26) that

(I2N−1 ⊗ A)F−1
N = F̃ND. (2.27)

From (2.27) we have that

Ã = [IN−1, IN−1]D. (2.28)

Formula (2.25) is then obtained by substituting the expression of D into (2.28).

The discrete Fourier transform of a real vector is a complex vector. When analyz-

ing 1/f noise, it is convenient to separate the real and imaginary parts of the discrete

Fourier transform of a signal. Considering the symmetry property of the discrete

Fourier transform, we define two operators T1 and T2. The operator T1 projects a
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vector of length 2N to the vector of length 2N−1 consisting of the first 2N−1 compo-

nents of the original vector and the operator T2 projects a vector of length 2N to the

vector of length 2N−1 consisting of the last 2N−1 components of the original vector.

For a real vector x of length 2N , we write its discrete Fourier transform as x̂ := x̃+iỹ,

where x̃ and ỹ are two real vectors of length 2N . We let

x̃1 := T1x̃, x̃2 := T2x̃, ỹ1 := T1ỹ, ỹ2 := T2ỹ.

In the next lemma, we express the discrete Fourier transform x̂A of xA := (I2N−1⊗

A)x in terms of x̃1, x̃2, ỹ1 and ỹ2. To simplify the notation, we introduce three

diagonal matrices

A+ := diag[α + β cos(θNk) : k ∈ Z2N−1 ],

A− := diag[α− β cos(θNk) : k ∈ Z2N−1 ],

and

B = diag[β sin(θNk) : k ∈ Z2N−1 ].

Moreover, we denote by Re(x̂A) and Im(x̂A) the real part and imaginary part of x̂A,

respectively.

Lemma 2.10. If x is a real vector of length 2N , then

Re(x̂A) := A+x̃1 + A−x̃2 −Bỹ1 + Bỹ2

and

Im(x̂A) := A+ỹ1 + A−ỹ2 + Bx̃1 −Bx̃2.
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That is,

x̂A = Re(x̂A) + iIm(x̂A). (2.29)

Proof. According to the definition of x̂, x̂A and xA, we have that

x̂A = FN−1Ax = FN−1AF
−1
N x̂ = Ãx̂. (2.30)

Applying Lemma 2.9 to (2.30) yields that

x̂A = (D+, D−)x̂. (2.31)

We partition the real and imaginary parts of the vector x̂ as

x̂ =

 x̃1

x̃2

 + i

 ỹ1

ỹ2

 (2.32)

and notice that the definition of D+, D−, A+, A− and B gives us

D+ = A+ + iB, D− = A− − iB. (2.33)

The desired formula (2.29) may be obtained by substituting (2.33) and (2.32) into

(2.31).

The next lemma states that the independence of components of x̂ determines the

independence of components of x̂A.

Lemma 2.11. Suppose that x is a real random vector of length 2N . If the first

2N−1 + 1 components of x̂ are independent, then the first 2N−2 + 1 components of x̂A

are independent.



CHAPTER 2. FILTER-BASED MULTISCALE ENTROPY 32

Lemma 2.11 is a straightforward extension of a known result, Lemma 4.3 of [38].

We thus omit the proof.

We next recall a known result that describes the statistical property of the linear

combinations of two independent complex Gaussian random variables. Its proof can

be found in [38].

Lemma 2.12. If z1 and z2 are independent complex Gaussian random variables with

mean 0 and standard derivation δ1 and δ2, respectively, then for each pair of complex

numbers a := a1 + ia2, b := b1 + ib2 with a1, a2, b1, b2 ∈ R, az1 + bz2 is a complex

Gaussian random variable with mean 0 and standard derivation

δ := (a21δ
2
1 + a22δ

2
1 + b21δ

2
2 + b22δ

2
2)1/2. (2.34)

In the next lemma, we describe x̂A in terms of x̂.

Lemma 2.13. If the first 2N−1 + 1 components of x̂ are independent complex Gaus-

sian random variables, then the first 2N−2 + 1 components of x̂A are independent

complex (except the first and the (2N−2 + 1)th components which are real) Gaussian

random variables. Moreover, for each k ∈ Z2N−1+1, if the mean of the (k + 1)th com-

ponent of x̂ is 0 and its standard deviation is δk, then the mean of each component

of x̂A is 0 and the standard deviation of the (k + 1)th component of x̂A is

δA,k = [(α2 + β2 + γk)δ2k + (α2 + β2 − γk)δ22N−1−k]1/2, (2.35)

where γk := 2αβ cos(θNk).
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Proof. The description of the components of x̂A relies on Lemma 2.10. We write

x̂ := [zk : k ∈ Z2N ] and x̂A := [zA,k : k ∈ Z2N−1 ]. We first prove that zA,0 and zA,2N−2

are real Gaussian random variables. By Lemma 2.10, we have that

zA,0 = α(z0 + z2N−1). (2.36)

Since z0 and z2N−1 are real Gaussian random variables, from (2.36) and Lemma 2.1

we know that zA,0 is a real Gaussian random variable. Noting 2N−1 − 2N−2 = 2N−2,

it also follows from Lemma 2.10 that

zA,2N−2 = α(x2N−2 − y2N−2), (2.37)

where x2N−2 and y2N−2 are respectively the real part and the image part of z2N−2 .

Hence, we conclude that zA,2N−2 is also a real Gaussian random variable. By Lemma

2.10, we have that

zA,k = (α + βeiθNk)zk + (α− βeiθNk)z2N−1+k. (2.38)

Thus, by Lemma 2.12 zA,k is a complex Gaussian random variable. The independence

of the random variables zA,k, k ∈ Z2N−2+1, is ensured by Lemma 2.11 from the fact

that the random variables zk, k ∈ Z2N−1+1, are independent. By applying Lemma 2.12

to equation (2.38) with the symmetric property (2.22) and Lemma 2.1 to equations

(2.36) and (2.37), we obtain (2.35).

Now we are are ready to give the result that the filtered 1/f signal, fA, is again 1/f

signal for most of the filters of this form. To present this result, we let δk, δA,k denote

the standard derivations of the (k + 1)th random variable of f̂ and Âf , respectively.
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Proposition 2.14. If f is a 1/f random vector and (α, β) satisfies the condition

α + β ̸= 0, (2.39)

then Af is also a 1/f random vector. Moreover, if there exists a positive constant c

such that for all k ∈ Z2N−1+1, δ
2
k ≤ c

1+k
, then for all k ∈ Z2N−2+1, δ

2
A,k ≤ c′

k+1
, where

c′ = 2(α2 + β2)c.

Proof. We denote by Âf the discrete Fourier transform of Af . To prove Âf is a 1/f

random vector, we need to show that the first 2N−2+1 elements of Âf are independent

Gaussian random variables with mean 0, and for all k ∈ Z2N−2+1, δA,k ≤ c′

1+k
for some

constant c′.

Since f is a 1/f random vector, from the definition of a 1/f random vector we

know that the first 2N−1+1 elements of f̂ are independent Gaussian random variables

with mean 0. Thus, from Lemma 2.13, we have that the first 2N−2 + 1 elements of

Âf are independent Gaussian random variables with mean 0.

We next show that for all k ∈ Z2N−1+1, δA,k ≤ c′

1+k
for some constant c′. Let

γ+
k := α2 + β2 + 2αβ cos(θNk)

and

γ−
k := α2 + β2 − 2αβ cos(θNk).

When α + β ̸= 0, we have that γ+
k ̸= 0 and γ−

k ̸= 0 for all k ∈ Z2N−1+1. Thus, from
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(2.35), we have for all k ∈ Z2N−2+1 that

δ2A,k = γ+
k δ

2
k + γ−

k δ
2
2N−1−k

≤ γ+
k

c

1 + k
+ γ−

k

c

1 + 2N−1 − k

=
c

1 + k

(1 + 2N−1 − k)γ+
k + (1 + k)γ−

k

1 + 2N−1 − k
. (2.40)

Note that k ∈ Z2N−2+1 and thus 0 ≤ cos(θNk) ≤ 1. Then the second fraction in the

last term of formula (2.40) is an increasing function of k, which has the maximum

value 2(α2 + β2) when k = 2N−2. This gives the desired estimate.

Note that the special case of Proposition 2.14 with [α, β] := [1
2
, 1
2
] was proved

in [38]. If (α, β) does not satisfy the condition (2.39), then α = −β. In this case,

(I2N−1 ⊗ A)f may not be 1/f noise. For example, when A is the high pass Haar

filter, that is, A := [1
2
,−1

2
], it was verified in [38] by a numerical experiment that

(I2N−1 ⊗ A)f is not 1/f noise and the entropy value of the filtered 1/f signal will

decrease as the scale increases. In addition, if we take A := [1, 0] (resp. A := [0, 1]) in

Proposition 2.14, we can see that the random vector consisting of the odd components

(resp. the even components) of a 1/f random vector is still a 1/f random vector.

This result is summarized in the next corollary.

Corollary 2.15. If f := [f0, f1, . . . , fN−1] is a 1/f random vector, then u := [um :

m ∈ ZN/2+1] with um = f2m and v := [vm : m ∈ ZN/2+1] with vm = f2m+1 are also

1/f random vectors.

Though the result in Proposition 2.14 is only for filters of a simple form, it can
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be utilized (together with Corollary 2.15) to establish below that a filtered 1/f noise

is still 1/f noise.

Proposition 2.16. If f is 1/f random vector and the matrix A is defined as in (2.1),

then (I2N−2 ⊗ A)f is also a 1/f random vector.

To prove Proposition 2.16, we need several lemmas. We first recall a known fact

of the discrete Fourier transform, whose proof may be found in [26] (Lemma 2.37).

Lemma 2.17. Suppose M ∈ N, and N = 2M . Let z ∈ ℓ2(ZN). Define u,v ∈ ℓ2(ZM)

by

uk = z2k for k ∈ ZM ,

and

vk = z2k+1 for k ∈ ZM .

Let ẑ denote the discrete Fourier transform of z defined on N points. Let û, v̂ denote

the discrete Fourier transform of u and v respectively, defined on M = N/2 points.

Then for m ∈ ZM ,

ẑm = ûm + e−2πim/N v̂m. (2.41)

Also, for m = M,M+1,M+2, . . . , N−1, let ℓ = m−N . Note that the corresponding

values of ℓ are ℓ = 0, 1, . . . ,M − 1. Then

ẑm = ẑℓ+M = ûℓ − e−2πim/N v̂ℓ. (2.42)

From Lemma 2.17, we shall show in the next lemma that the vector obtained by

interlacing two 1/f random vectors is again a 1/f random vector.
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Lemma 2.18. If g and h are 1/f random vectors of length n, then the random vector

f defined by

f := [g0, h0, g1, h1, . . . , gn−1, hn−1]

is also a 1/f random vector.

Proof. Since g and h are 1/f random vectors, by the definition of the 1/f random

vector we know that ĝk and ĥk, k ∈ Zn, are independent Gaussian random variables

with mean 0 and there exist positive constants c, c′ such that their standard deviations

δg,k and δh,k satisfy

δg,k ≤
c

1 + k
and δh,k ≤

c′

1 + k
, (2.43)

for any k ∈ Zn.

It follows from Lemma 2.17 that for m ∈ Zn,

f̂m = ĝm + e−2πim/N ĥm, (2.44)

and for m = n, n + 1, n + 2, . . . , 2n− 1,

f̂m = ĝm−n − e−2πim/N ĥm−n. (2.45)

By applying Lemma 2.12 to equations (2.44) and (2.45) and using conditions (2.43),

we know for m ∈ Z2n that f̂m is a Gaussian random vector with mean 0 and the

standard deviation of f̂m, δf,m, satisfies

δf,m ≤ c′′

1 + m
,
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where c′′ =
√

(1 + n)(2c2 + (c′)2). The independence of f̂m,m ∈ Z2n can be proved

by using a similar computation used in the proof of Lemma (2.5) for proving the inde-

pendence considering that [1, e−2πim/N ] and [1,−e−2πim/N ] are orthogonal. Therefore,

f is a 1/f random vector.

We next recall a known fact that the sum of two 1/f random vectors is also a 1/f

random vector. Its proof can be found in [63].

Lemma 2.19. If f1 and f2 are 1/f random vectors, then f1 + f2 is also a 1/f random

vector.

We are now ready to prove Proposition 2.16. The filtered 1/f random vector

through the piecewise linear filter A defined in (2.1) is again a 1/f random vector. In

the remaining part of this section, A is referred to the piecewise linear filter defined

in (2.1).

Proof of Proposition 2.16: Let A1 and A2 denote the matrices formed respectively

by the first row and the second row of A. Since (I2N−2 ⊗ A)f may be obtained by

interlacing (I2N−2 ⊗ A1)f and (I2N−2 ⊗ A2)f , according to Lemma 2.18, it suffices to

prove that (I2N−2 ⊗ A1)f and (I2N−2 ⊗ A2)f are 1/f random vectors.

Let

f1 := [f0, f2, . . . , fN−2],

f2 := [f0, f1, f4, f5, . . . , fN−4, fN−3]
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and

f3 := [f2, f3, f6, f7, . . . , fN−2, fN−1].

Since f is a 1/f random vector, it follows from Lemma 2.18 and Corollary 2.15 that

f1, f2 and f3 are 1/f random vectors. By Proposition 2.14, (I2N−2 ⊗ [1/2, 1/2])f1 is a

1/f random vector. Since

(I2N−2 ⊗ A1)f = (I2N−2 ⊗ [1/2, 1/2])f1,

we conclude that (I2N−2 ⊗ A1)f is a 1/f random vector. Note that

(I2N−2 ⊗ A2)f = (I2N−2 ⊗ [−
√

3/4, 1/4])f2 + (I2N−2 ⊗ [
√

3/4, 1/4])f3. (2.46)

By Proposition 2.14, both (I2N−2⊗[−
√

3/4, 1/4])f2 and (I2N−2⊗[
√

3/4, 1/4])f3 are 1/f

random vectors. Hence, by Lemma 2.19 and (2.46), (I2N−2 ⊗ A2)f is a 1/f random

vector. �

Numerical results from MSE and PLFME for 1/f noise are presented in Fig. 2.1.

Results from both of these methods are consistent with the fact that 1/f noise con-

tains complex structures across multiple scales [25,71].
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Figure 2.1: MSE and PLFME for Gaussian white noise (mean 0, variance 1) and

1/f noise, N = 8 × 104.

2.3 Application to Human Heartbeat Interval Time

Series

We apply FME to HHITS to study the loss of complexity, a generic feature of patho-

logic dynamics. Specifically, we apply the piecewise linear filter recursively to HHITS

of healthy young subjects (YOUNG), healthy old subjects (OLD), subjects with the

cardiac arrhythmia, atrial fibrillation (AF) and subjects with severe congestive heart

failure (CHF), and compute BSE of the resulting signals of multiple scales. We test

the hypothesis that healthy interbeat interval dynamics are more complex than those

with pathology. Our numerical results also suggest that aging may reduce the com-

plexity of the heart interbeat interval more than CHF. This finding is robust to data

of different lengths.

In this consideration, the use of the piecewise linear filter in FME is motivated
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by a study of the biological mechanism of the cardiac system described by HRT [59].

HRT describes short-term fluctuations in the sinus cycle length that follow sponta-

neous ventricular premature complexes (VPCs). The physiologic pattern described

in HRT consists of brief heart rate acceleration, which is followed by more gradual

heart deceleration before the rate returns to a pre-ectopic level. Following singular

VPCs, the HRT pattern is frequently masked by heartbeat interval time series. Con-

sequently, HRT is usually assessed from Holter recordings as an average response to

VPCs over longer periods (e.g., 24 hours). From such recordings, the VPC tachogram

is constructed, by aligning and averaging sequences of heartbeat interval time series

surrounding isolated VPCs. Fig. 2.2 from [8] is VPCs tachograms showing normal

(left) and abnormal (right) HRT. From Fig. 2.2, we observe that different heart con-

ditions show distinguished differences in HRT pattern.

Several parameters characterizing the HRT pattern were proposed [9, 35, 59, 69].

Among these parameters, turbulence onset (TO) and turbulence slope (TS) [59] quan-

tify two phases of HRT, early acceleration and late deceleration. These two param-

eters are meaningful in the clinical use, especially in risk prediction and monitoring

of disease progression in several pathologies (see [8] and the references therein). For

example, compared to healthy control patients, patients with congestive heart failure

have significantly depressed HRT indexes [39]. Also, increasing age is associated with

a decrease in the HRT index [60]. It is reported in [67] that TO is significantly less

negative before AF occurs than during the remaining part of recordings. TO and TS
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represent the regression slope of the corresponding sequences of HHITS (acceleration

and deceleration) surrounding isolated VPCs. The acceleration phase surrounding an

isolated VPC is characterized by a negative value of TO and the deceleration phase

surrounding an isolated VPC is characterized by a positive value of TS. TO and TS

are constants for each sequence of HHITS surrounding VPCs and representing the

acceleration and deceleration phase, respectively. This implies that regression slops

of the acceleration and deceleration sequences of HHITS surrounding VPCs have a

piecewise constant pattern. Therefore, sequences of HHITS surrounding VPC may

have a piecewise linear pattern. This inspires us to use piecewise linear filter for the

cardiac signal to capture its piecewise linear pattern. Though HRT only describes

sequences of HHITS surrounding VPCs, we use piecewise linear filter for the entire

HHITS assuming that the piecewise linear pattern represents the entire HHITS bet-

ter than the piecewise constant pattern, which is captured by the piecewise constant

filter used in MSE. In Fig. 2.3, we compare the HHITS with their piecewise linear rep-

resentations, where the signals in column (b) are obtained from the original HHITS

in column (a) by the linear filter 1
4
[1, 2, 1]. This shows that HHITS may be well

represented by a piecewise linear curve.

According to the discussion above, we use PLFME for the cardiac signal. Specif-

ically, in PLFME, the original time series is filtered by the piecewise linear filter A

defined in (2.1) recursively at multiple scales. That is, we define

y1 := x, yτ := (Inτ−1 ⊗ A)yτ−1
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Figure 2.2: VPC tachograms showing normal (left) and abnormal (right) HRT.

Orange curves show single VPC tachograms. Bold brown curves show the averaged

VPC tachogram over 24 hours.

where nτ−1 := ⌊Nτ−1

4
⌋ and Nτ−1 is the length of the time series yτ−1.

We next present numerical results of PLFME. We compare MSE and PLFME of

the time series of consecutive heart beat intervals derived from 20 YOUNG, 20 OLD,

7 AF and 20 CHF subjects of data lengths N = t × 104 where t = 3, 4, . . . , 8. The

entropy value of each group shown in Fig. 2.4 and Fig. 2.5 is the mean entropy value

of the group. MSE values are computed using the software provided in [28]. We see

that PLFME improves the robustness of MSE to the data of different lengths.

The most significant difference between the results of MSE and PLFME occurs in

the OLD and CHF groups.

We first look at the results of MSE (Fig. 2.4). When N = 3 × 104, the same

data length as used in [21, 22], we obtain the same results as those in [21, 22]. There

is an inconsistency in the results for data of different lengths. As N increases, the

curve representing entropy values at different scales of the OLD group (BLACK)
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Figure 2.3: The comparison of the original signal (column (a)) and their piecewise

linear representations (column (b)).



CHAPTER 2. FILTER-BASED MULTISCALE ENTROPY 45

2 4 6 8 10 12 14 16 18 20

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scale Factor

E
n
t
r
o
p
y
 
M
e
a
s
u
r
e

 

 

(a) N = 3× 104 CHF

OLD

YOUNG

AF

2 4 6 8 10 12 14 16 18 20

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scale Factor

E
n
t
r
o
p
y
 
M
e
a
s
u
r
e

 

 

(b) N = 4× 104 CHF

OLD

YOUNG

AF

2 4 6 8 10 12 14 16 18 20

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scale Factor

E
n
t
r
o
p
y
 
M
e
a
s
u
r
e

 

 

(c) N = 5× 104 CHF
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(d) N = 6× 104 CHF
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(e) N = 7× 104 CHF
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Figure 2.4: The MSE analysis for human cardiac interbeat interval time series with

data of various lengths.
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(b) N = 4× 104 CHF
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(d) N = 6× 104 CHF

OLD

YOUNG

AF

1 2 3 4 5 6 7 8 9

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scale Factor

E
n
t
r
o
p
y
 
M
e
a
s
u
r
e

 

 

(e) N = 7× 104 CHF
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Figure 2.5: The PLFME analysis for human cardiac interbeat interval time series

with data of various lengths.
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gradually drops below that representing entropy values of the CHF group (BLUE).

In particular, the curve BLACK is above the curve BLUE at scales 4 to 12 when

N = 5 × 104. The curve BLUE exceeds beyond the curve BLACK at all scales when

N = 8×104, suggesting the cardiac system from the CHF group is more complex than

that from the OLD group. This contradicts the conclusion made in [21]. It is known

that both disease and aging will reduce the biological complexity [29]. However, which

condition loses the complexity more remains inconclusive from MSE, which provides

different results from data of different lengths.

Next we look at the results of PLFME. Notice that for data of the OLD and

CHF groups of different lengths, the results of FLFME are more robust than those

of MSE. For all of the values of N reported in Fig. 2.5, the curve BLUE is above the

curve BLACK at all scales. It suggests that the cardiac interbeat intervals may lose

more complexity from aging than from the CHF group. This result is consistent with

that of MSE when N = 8× 104. Moreover, the curves representing entropy values at

different scales of the OLD and CHF groups are better separated by PLFME than

by MSE. This is further confirmed by the classification result presented in section .

Several additional observations for the PLFME method from the Fig. 2.5 are

made: The entropy values of the AF group have a decreasing pattern similar to

that of the white noise. The entropy values at all scales of the YOUNG group are

constantly higher than those of other groups, except the first 5 scales in the AF

group. The entropy values of the OLD group have a pattern similar to that of 1/f
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signal. Moreover, we point out that the difference of the entropy measures among

each group varies on different scales in the PLFME method. For example, As seen

in Fig. 2.5(f), the largest difference between the YOUNG group and the CHF group

is from scales 2 to 4 while the OLD group and the CHF group are separated best

at scales 5 and 6 when N = 8 × 104. Therefore, as in the original MSE analysis,

both of the entropy values and their dependence on resolution have to be taken into

consideration to better characterize a physiologic process.

Obtaining long time series may be difficult and expensive in practical applications.

Data analysis with short time series is highly desirable. Applications of MSE to

short term physiological recordings were recently studied in [1, 65]. We compare the

performance of MSE and PLFME for shorter HHITS with data lengths N = 4, 8×103.

The numerical results shown in Fig. 2.6 from the shorter data are consistent with those

shown in Fig. 2.4 and Fig. 2.5 from the longer data.

To close this section, we compare PLFME with two refinements of MSE proposed

by [36,66]. In [66], the averaging process of MSE was interpreted as the finite-impulse

filter (FIR) and a refined MSE (RMSE) was proposed based on the replacement of the

FIR filter with a low-pass Butterworth filter, which aims to reduces aliasing when the

filtered series are downsampled. In [36], adaptive MSE (AMSE) method was proposed

by using empirical mode decomposition to extract the lower frequency components

of the time series at different scales. We performed both RMSE and AMSE methods

on our data (Fig. 2.7). Both of these methods do not provide satisfactory numerical
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Figure 2.6: MSE and PLFME for shorter HHITS data.
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results. Numerical results of RMSE (Fig. 2.7(a)) do not give any evidence that cardiac

systems from healthy young subjects are more complex than those from pathologic

subjects. Numerical results of AMSE (Fig. 2.7(b)) do not discriminate OLD and

CHF groups as well as those from MSE and PLFME, especially when the length of

the time series is small. The reason that PLFME and MSE give better description of

the complexity of heartbeat interval time series than RMSE and AMSE may be due

to the fact that PLFME and MSE filter the time series more “locally” than RMSE

and AMSE.

2.4 Adaptive Filters

When prior knowledge of the system that generates a time series is not available, we

propose to use adaptive filters constructed from the time series to compute its FME.

Since traditional entropy methods quantify the degree of regularity of a time series by

evaluating the appearance of its repetitive patterns and since consecutive components

which are close to each other (measured by r in sample entropy) are considered as a

repetitive pattern, one may consider these repetitive patterns as single units which

will present the regularity of the whole system. We further consider the multiscale

structure of these patterns to measure the complexity of the physiological system by

using adaptive filters. To illustrate the process of constructing an adaptive filter,

we present below APCFME as an example. The idea is applicable to constructing

adaptive piecewise polynomial filters of order k.
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Figure 2.7: RMSE and AMSE for HHITS data.
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Given a time series, we group it according to its repetitive patterns. Specifically,

for a time series x of length N , we write x = {x0, . . . ,xn−1} with disjoint xj, being

a repetitive pattern of x. Each xj sequence consisting of several consecutive compo-

nents of x and the distance between any two components in xj is not bigger than a

preselected tolerance r. For each xj, we use |xj| to denote the number of its elements.

A new coarse-grained time series y of length n is generated by

y(k) :=
1

|xk|
∑

x(j)∈xk

x(j), k ∈ Zn. (2.47)

In other words, x is filtered by an n × n block diagonal matrix, whose jth diagonal

block is the 1 × |xj| matrix

[
1

|xj|
,

1

|xj|
, . . . ,

1

|xj|

]
.

This adaptive piecewise constant filter (APCF) is different from the piecewise con-

stant filter used in MSE. We choose m = 1 and an increasing sequence {r0, r1 . . . , }

at different scales to compute sample entropy. APCFME is then computed by the

procedure:

(1) Compute S1(x, r0).

(2) At scale τ ≥ 1, a new time series yτ is generated from yτ−1 with y0 := x using

APCF. The parameter r used to construct APCF is chosen as rτ−1.

(3) Compute S1(y
τ , rτ ).

We now discuss the choice of the parameters rj used in APCFME. Constructing

coarse-grained time series as described in (3.6) is equivalent to averaging several
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Figure 2.8: APCFME results for simulated Gaussian white noise when the parameters

rj are constant.

consecutive components of the original time series among which any two components

are close to each other (measured by the tolerance r). Thus the distance between

any two components in the coarse-grained time series is potentially bigger than that

in the original time series. In order to further construct the coarse time series, a

bigger tolerance in the next coarse-grained procedure is desired. We present the

numerical results of APCFME applied to Gaussian white noise when the parameters

rj are chosen as a constant (rj = 0.15) at all scales in Fig. 2.8. It shows that the

entropy value of the coarse-grained time series remains a constant after scale 3, which

indicates that the construction of the coarse-grained time series fails when the scale

is bigger than 3.

According to the discussion above, we choose parameters r0 = 0.15, rj+1 = 1.1×rj

for 0 ≤ j ≤ 5 and rj+1 = 1.05 × rj for j > 5 in the numerical results shown in the

remaining part of this section. We present in Fig. 2.9(a) results of APCFME applied

to Gaussian white noise and 1/f noise. The results are similar to those in Fig. 2.1.
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Figure 2.9: APCFME results for simulated Gaussian white noise, 1/f noise and

HHITS.

In Fig. 2.9(b), we present numerical results of APCFME applied to HHITS of length

N = 3 × 104 for the CHF, YOUNG and OLD groups. We find that YOUNG is

most complex when the scale is bigger than 3. Moreover, CHF is more complex than

OLD, which is consistent with the results of PLFME (Fig. 2.5). This example shows

that APCFME without using any prior information is comparable to PLFME whose

construction uses prior information of HHITS.



Chapter 3

Wavelet Packet Transform Entropy

Analysis

Both MSE analysis and PLFME analysis discussed in previous chapter measure the

complexity of a time series at different scales. When we apply MSE or PLFME

method to the human heartbeat interval time series, we measure the complexity of

the time series by looking at entropy values at different scales, which tell us which

cardiac system is more complex than others at certain scales. Entropy values at

different scales can also be used as extracted features to classify different cardiac

systems. Fish discriminant analysis and support vector machine methods were applied

to the classification of heartbeat interval time series using entropy values from MSE

as features in [18] and [46] respectively.

In terms of classification, we want to have as many distinct features as we can

55
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on different systems. Except the lower frequency components extracted by MSE

or PLFME, higher frequency components of the time series may also provide useful

information. The hierarchical entropy (HE) analysis introduced in [38] extracted both

lower and higher frequency components of the time series by two different operators.

Wavelet packet transform [17] provides us with a systematic way to decompose the

original time series into lower and higher frequency components. Following the idea of

HE, we propose wavelet packet transform entropy (WPTE) analysis in this chapter.

In wavelet packet transform entropy analysis we decompose the original time series

using wavelet packet transform at different scales and compute the (blockwise) sample

entropy of each filtered time series.

We still consider human heartbeat interval time series in this chapter as our main

study case. We have seen in the last chapter that human heartbeat interval time series

may be well represented by a piecewise linear curve. Thus in this application, we will

use lower and higher piecewise linear filters in the WPTE analysis. Piecewise poly-

nomial wavelets filters has been applied to image denoising problems in [43]. Details

constructing lower and higher piecewise polynomial filters will also be given in this

chapter. Using entropy values as extracted features and following from multi-category

classification support vector machine (SVM), we develop several classifiers for human

heartbeat interval time series. Classification rates will be given and compared when

we use entropy values from MSE, PLFME, HE and WPTE using piecewise linear

filters. Among these classifiers, we will see that if we use entropy values from WPTE
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using piecewise linear filters, we have the highest classification rates.

This chapter is organized into six sections. In section 2.1, we review wavelet packet

transform. Section 2.2 presents the piecewise polynomial wavelet filters following from

wavelets on invariant sets. Section 2.3 is devoted to describing the wavelet packet

transform entropy analysis. In section 2.4, we apply wavelet packet transform entropy

analysis with piecewise linear wavelet filters to HHITS. For comparison reason, theo-

retical results for Gaussian white noise and numerical results for both Gaussian white

noise and 1/f noise are also given in this section. Multi-category classification SVM

is reviewed in section 2.5 and at the end, classification results for human heartbeat

interval time series are reported in section 2.6.

3.1 Wavelet Packet Transform

In this section, we first set up the general form of wavelets following from the mul-

tiresolution analysis [45]. A multiresolution analysis of the space L2(R) consists of a

sequence of nested subspaces

{0} · · · ⊂ F0 ⊂ F1 ⊂ · · · ⊂ FN ⊂ FN+1 ⊂ · · · ⊂ L2(R). (3.1)

Let Wk be the orthogonal complement of Fk in Fk+1; symbolically we write

Fk+1 = Fk ⊕⊥ Wk, k = 0, 1, . . . .
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The spaces Wk, k = 0, 1, . . . are called the wavelets spaces. Due to the relation of

spaces Fk, k = 0, 1, . . .in (3.1), we have that

L2(R) = F0 ⊕⊥ W0 ⊕⊥ W1 ⊕⊥ W2 · · · .

We denote the set of the orthonormal basis functions in Fk by fk and the set of the

orthonormal basis functions in Wk by wk for k = 0, 1, . . .. Since F0 ⊂ F1, each

element in f0 can be written as a linear combination of the elements in f1. Therefore,

we have the matrix representation

f0 = Af1 (3.2)

for some m×n matrix A where m is the number of elements in f0 and n is the number

of elements in f1. Similarly, we have

w0 = Bf1 (3.3)

for some m×p matrix where p is the number of elements in w0. Since F1 = F0⊕W0,

we have that p + n = m. The matrix A in (3.2) is called high-pass filter and the

matrix B in (3.3) is called low-pass filter. From the orthonormality of elements in

f0,w0 and f1, it is easy to check that rows of the matrix A are orthonormal, and so

are the rows of the matrix B.

In the discipline of digital signal precessing , the sampled data set is passed through

the low-pass filter and the high-pass filter. In other words, for a given signal x of

length N ∈ N with N = m× q for some integer q, we compute

xA := (Iq ⊗ A)x (3.4)
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and

xB := (Iq ⊗B)x (3.5)

respectively. The high-passed filtered data set xB is the wavelet transform detail co-

efficients and the low-pass filtered data set xA is the wavelet transform approximation

coefficients. Of note, the original signal x can be fully recovered from xA and xB. We

state this result in the following Proposition.

Proposition 3.1. Let matrices A and B be defined in (3.2) and (3.3). Given signal

x, if xA and xB are defined as in (3.4) and (3.5), then

x = [AT BT ]

 xA

xB

 . (3.6)

Proof. From (3.2) and (3.3), we have that F0

W0

 =

 A

B

F1.

From the orthonormality of elements in F0, W0 and F1, we know that the matrix

[A B]T is orthonormal. From (3.4) and (3.5), we have that xA

xB

 =

 A

B

x.

Therefore, we obtain (3.6) from last equation.

Both of the approximation and detail coefficients can be used as the sampled data

input for another pair of wavelet filters, identical to the first pair, generating another
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set of detail and approximation coefficients at the next lower level of scale. This

process can be continued until the limit of the unit interval is reached. This process

is called the wavelet packet transform, originally proposed in [17].

We will focus on the filters derived from wavelets on invariant sets in this chapter,

especially the one dimension case.

3.2 Piecewise Polynomial Wavelets Filters on In-

variant Sets

In this section, we present the piecewise polynomial wavelets filters on invariant sets

in Rd, initially introduced in [49]. We start from the matrix representation for con-

struction of wavelets on invariant sets introduced in [49, 50]. For a given positive

integer m, let

ϕi : Rd → Rd, i ∈ Zm,

be m contractive affine maps. Suppose the compact set E ⊂ Rd satisfies

E =
m−1∪
i=0

ϕi(E)

and

m
(
ϕi(E)

∩
ϕj(E)

)
= 0, i ̸= j,

where m(E) denotes the measure of the set E. Then the set E is called the invariant

set with respect to ϕi, i ∈ Zm. For some orthogonal matrix Q ∈ Rm×m, we define a
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set of linear operator Ti : L2(E) → L2(E) , i ∈ Zm by

(Tig)(t) :=
m−1∑
j=0

qijg(ϕ−1
j (t))χEi

(t), t ∈ E, (3.7)

where χ is the characteristic function. Furthermore, the adjoint operator T ∗
i can be

verified as

T ∗
i =

1

m

m−1∑
ℓ=0

qℓiGℓ, (3.8)

where the matrix Gi, i ∈ Zm, satisfies

Gif := f ◦ ϕi, i ∈ Zm, f ∈ L2(E). (3.9)

The vector valued function f := [f0, . . . , fn−1] is called a refinable curve if it satisfies

a refinement equation

Gif = AT
i f , i ∈ Zm, (3.10)

for some given matrices Ai. Then we can define a family of subspaces Fk, k = 0, 1, . . .

in L2(E) recursively by

Fk+1 =
m−1⊕
i=0

TiFk, k = 0, 1, . . . . (3.11)

It was shown in [49] that

Fk ⊂ Fk+1, k = 0, 1 . . .

and
∞∪
k=0

Fk = L2(E).

Therefore, the sequence of subspaces {Fn, n ∈ Z+} forms a multiresolution analysis

of L2(E) corresponding to (3.1). Let Wk−1 be an orthogonal complement of Fk−1 in
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Fk, i.e.,

Fk = Fk−1 ⊕Wk−1.

Then we have

L2(E) = F0 ⊕⊥
k∈Z+

Wk−1,

which gives a multiscale decomposition for the space L2(E). The subspaces Wk are

the wavelet spaces for L2(E) and in particular, the space W0 is called the initial

wavelet space. The general construction of the initial wavelet space W0 was formu-

lated in [50] in terms of a general solution of a matrix completion problem and a

particular solution was given there. As usual, we denote by dimX the dimension of

a finite dimensional space X. Since we have that

Wk+1 =
m−1⊕
i=0

TiWk,

it is easy to check that dim Wk−1 = n(m− 1)mk−1 and dim Fk−1 = pmk−1.

We can see that the contractive maps ϕi, the scaling operators Ti and the or-

thogonal matrix Q are the three main ingredients in the abstract construction of

wavelets on invariant sets. Now we consider a special case when Q =
√
mIm, which

will generate a set of orthonormal basis in the wavelet spaces. This result is stated

in Proposition 3.3. In this case, the operator Ti defined in (3.7) will be

(Tig)(t) :=
√
m

m−1∑
j=0

g(ϕ−1
j (t))χEi

(t), t ∈ E. (3.12)

In the following context, we will use δi,j to denote the Kronecker delta function,
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that is,

δi,j =


1 if i = j,

0 otherwise.

We also use I to denote the identity operator and (f, g) to denote the inner product

of f and g in L2(E). In the following Proposition, we present the relation of operator

T ∗
i and Tj for any any i, j ∈ Zm.

Proposition 3.2. If Q =
√
mIm in (3.7), then

T ∗
i Tj = δi,jI (3.13)

for any i, j ∈ Zm. Moreover, for any f, g ∈ L2(E), it holds that

(Tf , Tjg) = δi,j(f, g). (3.14)

Proof. For any i, j ∈ Zm and f ∈ L2(E), we know from (3.8) and (3.12) that

(T ∗
i Tjf)(x) =

√
m(Tj)(ϕi(x)).

Then it follows from the definition of Tj that T ∗
i Tj = 0 if i ̸= j and T ∗

i Tj = I if i = j.

For any f, g ∈ L2(E), it follows from 3.13 that

(Tf , Tjg) = (T ∗
i Tjf, g) = δi,j(f, g).

Proposition 3.3. If f0 is as an orthonormal basis of F0, then the set fn+1 defined as

fn+1 :=
∪
i∈Zm

Tifn, n ∈ N

is an orthonormal basis of Fn+1.
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Proof. We will prove this by induction on n. When n = 0, f0 is an orthonormal basis

of F0 by hypothesis. Now we assume that fj is an orthonormal basis of Fj for some

j ≥ 1, then fj+1 being an orthonormal basis for Fj+1 follows from the way which the

space Fj+1 is constructed in (3.11), the orthonormal property of fj and the equation

(3.14).

Now we are ready to present the piecewise polynomial wavelets filters based on the

construction of wavelet on invariant sets, specifically using the matrix Q =
√
mIm.

Given a refinable vector field f satisfying (3.10) for some matrices Ai, we assume that

elements in f are orthonormal. Let f1 =
∪

i∈Zm
Tif . Then if follows from Proposition

3.3 that functions in f1 is an orthonormal basis of the space F1. From equations (3.7)

and (3.9), we have that

f = Ãf1, (3.15)

where Ã = 1√
m

[AT
0A

T
1 · · ·AT

m−1]. Let w be an orthonormal basis of the space W0.

Since W0 ⊂ F1, there is an mn× (m− 1)n matrix B̃ such that

f = B̃f1. (3.16)

The matrices Ã and B̃ in (3.15) and (3.16) will be the low-pass and high-pass filters

according to (3.2) and (3.3) introduced in the multiresulution analysis.

We will pay our special attention to the set E := [0, 1]. Note that E is the invariant

set with respect to the contractive affine maps ϕα(t) = t+α
2

, α ∈ Z2. We also define

the refinable vector field f := [fj, j ∈ Nn], where fj is the Legendre polynomial of
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degree j on E. We give several examples of piecewise polynomial wavelet filters of

different orders.

• Piecewise Constant Wavelets Filters.

We choose f = [f0] where f0(t) := 1, t ∈ E. The corresponding orthogonal

matrix Q is the 1 × 1 matrix [
√

2]. An orthonormal basis of W0 is given by

w0 =


1, if t ∈ [0, 1/2],

−1, t ∈ (1/2, 1].

In this case, one can compute that the low-pass filter Ã is

Ã := [
1√
2
,

1√
2

] (3.17)

and the high-pass filter B̃ is

B̃ := [
1√
2
,− 1√

2
]. (3.18)

We can see that they are actually the Haar Wavelets filters.

• Piecewise Linear Wavelets Filters.

We choose f = [f0, f1] where f0(t) := 1, and f1(t) :=
√

3(2t−1), t ∈ E. Then the

corresponding orthogonal matrix Q is the 2 × 2 matrix
√

2I2. An orthonormal

basis of W0 is given by

w0 =


1 − 6t, tif ∈ [0, 1/2],

5 − 6t, if t ∈ (1/2, 1],

and w1 =


√

3(1 − 4t), if t ∈ [0, 1/2],

√
3(5 − 6t), if t ∈ (1/2, 1].
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In this case, one can compute that the low-pass filter Ã is given by

Ã :=
1

2

 1 0 1 0

−
√
3
2

1
2

√
3
2

1
2

 , (3.19)

and the high-pass filter B̃ is given by

B̃ :=
1

2

 0 −1 0 1

−1
2

−
√
3
2

1
2

−
√
3
2

 . (3.20)

• Piecewise Quadratic Wavelets Filters.

We choose f = [f0, f1, f2] where f0(t) = 1, f1(t) =
√

3(2t − 1) and f3(t) =

√
5(6t2 − 6t + 1) for any t ∈ E. The corresponding orthogonal matrix Q is the

3 × 3 matrix
√

3I2. And an orthonormal basis of W0 is given by

w0 =


1 − 6t, if t ∈ [0, 1/2],

5 − 6t, if t ∈ (1/2, 1],

w1 =


√
93
31

(240t2 − 116t + 9), if t ∈ [0, 1/2],

√
93
31

(3 − 2t), if t ∈ (1/2, 1],

and w2 =


√
93
31

(4t− 1), if t ∈ [0, 1/2],

√
93
31

(240t2 − 364t + 133), if t ∈ (1/2, 1].

In this case, one can compute that the low-pass filter Ã is given by

Ã :=
1

2


1 0 0 1 0 0

−
√
3
2

1
2

0
√
3
2

1
2

0

0 −
√
15
4

1
4

0
√
15
4

1
4

 , (3.21)
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and the high-pass filter B̃ is given by

B̃ :=
1

2


0 −1 0 0 1 0

−1
2

−
√
3
2

0 1
2

−
√
3
2

0

0 −1
4

−
√
15
4

0 1
4

√
15
4

 . (3.22)

3.3 Wavelet Packet Transform Entropy Analysis

In this section, we introduce the wavelet packet transform entropy analysis. Wavelet

packet transform extracts both lower and higher frequency components of the original

signal at different scales. The original signal can be fully recovered from wavelet

packet transform at each scale. Thus we can examine the complexity of both lower and

higher frequency components of the signal at different scales if we apply (blockwise)

sample entropy to the filtered signals obtained from wavelet packet transform.

We first present a hierarchical decomposition of the signal based on wavelet packet

transform. This idea was initially introduced in [38] based on lower and higher Haar

wavelet filters. Given a one-dimensional time series, x := {x0, x1, . . . , xN−1}, positive

integer m and positive number r, let Sm(x, r) be the sample entropy of x defined

in (2.1). Let A and B be a low-pass and high-pass filter, respectively. We assume

that the size of A and B are the same. We see from last section that all piecewise

polynomial wavelet filters satisfy this assumption. We further suppose that A,B ∈

Rp×q and N = np, n ∈ N, for simplicity. We define two operators Q0 and Q1 on x

where

Q0(x) := (A⊗ I)x (3.23)
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and

Q1(x) := (B ⊗ I)x. (3.24)

The size of the identity matrix I is chosen based on the integer p and the length of x.

On the one hand, for any n ∈ Z+
N and [ℓ1, ℓ2, . . . , ℓn] ∈ {0, 1}n, the integer e defined

by

e :=
n∑

j=1

ℓj2
n−1 (3.25)

is nonnegative. On the other hand, when the integer n is fixed, given a nonnegative

integer e, there is a unique vector [ℓ1, ℓ2, . . . , ℓn] ∈ {0, 1}n corresponding to e through

equation (3.25). Thus for any n ∈ Z+
n and nonnegative integer e, we define the

hieratical components of the time series x by

xn,e := Qℓn ◦Qℓn−1 ◦ · · · ◦Qℓ1(x). (3.26)

For any k ∈ Z+
N+1, we call the signal xk,e, e ∈ Z2k , the wavelet packet transform

of x at the level k. From Proposition 3.1 and the way of constructing xn,e, we

know that given any level n ∈ Zk, the decomposition xk,e, e ∈ Z2k , gives us a full

description for the original signal x. For any k ∈ Z+
N+1, we define an index set

Jk := {(n, e) : n ∈ Zk, e ∈ Z2n}. Let x0,0 := x. Then the signals xn,e, (n, e) ∈ Jk, are

called the hierarchical decomposition of the signal x up to k levels.

With a hierarchical decomposition xn,e, (n, e) ∈ Jk, in place, we compute the

sample entropy of the original signal x0,0, Sm(x0,0, r), and the blockwised sample

entropy of the filtered signal xn,e, S̃m(xn,e, r) defined in (2.4), when n ≥ 1 to measure
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the complexity of the biological system which has the time series x as its output

variables. We call this process the wavelet pocket transform entropy analysis. When

the filters A and B are chosen as (3.17) and (3.18), it is the hierarchical entropy

analysis introduced in [38]. Thus hierarchical entropy is a special case of the wavelet

packet transform entropy analysis.

3.4 Application to Human Heartbeat Interval Time

Series

In this section, we apply the wavelet packet transform entropy analysis to human

heartbeat interval time series, the same data set we used in Section 1.3. We have

seen from Section 1.3 that piecewise linear wavelets give a good description for the

heartbeat time series. Thus we will choose the lower and higher piecewise linear

wavelets filters in WPTE in this application.

For comparison reason, we present the results of sample wavelet packet transform

entropy analysis with lower and higher piecewise linear wavelet filters for the Gaus-

sian white noise and 1/f noise first. We present a theoretical result for the Gaussian

white noise and numerical results for the Gaussian white noise and 1/f noise. In

this section, the matrices A and B refer to the lower frequency and higher frequency

piecewise linear wavelet filters defined in (3.19) and (3.22) respectively. Accordingly,

operators Q0 and Q1 in (3.23) and (3.24) are defined from lower frequency and higher
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frequency piecewise linear wavelet filters, which are further used to define the hierat-

ical components of the time series x, xn,e, for any n ∈ Z+
n and nonnegative integer e

via (3.26).

For the Gaussian white noise, any filtered time series in the hierarchical decom-

position is still a Gaussian white noise. Specifically, we have the following result.

Lemma 3.4. If for a positive integer N , g := [gj : j ∈ Z2N ] denotes a real Gaussian

random vector with mean 0 and standard deviation δ, then for each (n, e) ∈ JN+1,

gn,e is a real Gaussian random vectors with mean 0 and standard deviation δ/2
n
2 .

Proof. Fox a fixed positive integer N , we prove this result by induction on n where

1 ≤ n ≤ N .

Suppose that n = 1. Since ATA = 1
2
I and BTB = 1

2
I, it was shown in Lemma 2.5

and Lemma 2.7 that g1,0 is a real Gaussian random vectors with mean 0 and standard

deviation δ/2
1
2 . Thus the statement holds for n = 1.

Now suppose that the statement holds for some integer k, 1 ≤ k < N . Thus

for each (k, e), e ∈ Z2k , gk,e is a real Gaussian random vectors with mean 0 and

standard deviation δ/2
k
2 . Since gk+1,e′ = Qi(gk,e), for some e ∈ Z2k and i ∈ Z2,

applying Lemma 2.5 and Lemma 2.7 to gk,e with matrix A (when i = 0) and matrix

B (when i = 1) concludes that gk+1,e′ is a real Gaussian random vectors with mean 0

and standard deviation δ/2
k+1
2 for any (k + 1, e′), e′ ∈ Z2k+1 . Therefore we finish the

induction and the proof.

Since each gn,e in the hierarchical decomposition is a real Gaussian random vector,
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it enables us to establish a relation of the (blockwise) sample entropy of each filtered

time series. A result similar to Theorem 3.2 in [38] can be obtained.

Theorem 3.5. Suppose that g := [gj : j ∈ Z2N ] with N ∈ N is a real Gaussian

random vector with mean 0 and standard deviation δ and m ∈ Z+
2N−1

. Then the

following statements hold:

1. For all r > 0 and (n, e) ∈ JN+1,

S̃m(gn,e, r) = − ln
( 1

2δ
√

2π

∫
R
D(y)e−y2/δ2

)2

, (3.27)

where D(y) = erf(y+2n/2r
δ

) − erf(y−2n/2r
δ

).

2. For fixed r and n, S̃m(gn,e, r) = S̃m(gn,e′ , r), for all e, e′ ∈ Z2n.

3. For fixed r, if n > n′, then S̃m(gn,e, r) < S̃m(gn′,e′ , r) for all e ∈ Z2n and

e′ ∈ Z2n
′
.

Proof. It follows from Lemma 3.4 that for each (n, e) ∈ JN+1, gn,e is a real Gaussian

random vectors with mean 0 and standard deviation δ/2
n
2 . The first two conclusions

can be obtained following from the same argument used in Theorem 2.8. The last

conclusion can be immediately drawn from Theorem 2.8 and the second conclusion.

In Fig. 3.1, we present the numerical results when we apply WPTE using lower and

higher piecewise linear wavelet filters to Gaussian white noise and 1/f noise. From

Fig. 3.1(a), we can see that for a fixed scale factor n, the (blockwise) sample entropy
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(a) Gaussian White Noise (b)1/f Noise

Figure 3.1: WPTE analysis with lower and higher piecewise linear wavelet filters

results for simulated Gaussian white noise and 1/f noise.

of S̃n,e, e ∈ Z2n , is a constant with respect to e, and the value of S̃n,e are decline

as the scale factor n increases. From Fig. 3.1(b), we see that the higher frequency

components of 1/r noise presents the similar pattern to the Gaussian white noise in

terms of blockwise sample entropy.

Now we show numerical results when we apply the wavelet pocket transform en-

tropy analysis with lower and higher piecewise linear wavelet filters on human heart-

beat interval time series. Results are shown in Fig. 3.2. For comparison reasons,

we also give the numerical results that we apply hierarchical entropy analysis on the

heartbeat time series [38]. The results are shown in Fig. 3.3.

From Fig. 3.2 and 3.3, we can see that higher frequency components do provide

useful information for different classes of time series. For groups CHF and OLD, which

show similar patterns in both methods, piecewise linear wavelets filters give a better

discrimination than piecewise constant wavelets. We will give a more a accurate result
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(a) AF (b) YOUNG

(c) CHF (d) OLD

Figure 3.2: The wavelet packet transform entropy analysis with lower and higher

piecewise linear filter results for human cardiac interbeat interval time series with

data of length N = 8 × 104.
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(a) AF (b) YOUNG

(c) CHF (d) OLD

Figure 3.3: The hierarchical entropy analysis results for human heartbeat interval

time series with data of length N = 8 × 104.
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for the classification in next section. Moreover, we can see that most of entropy values

of the higher frequency components in the wavelet packet transform with piecewise

linear wavelets filters are relatively small compared to those from hierarchical entropy

entropy analysis, which also indicates that piecewise linear wavelets have a better

approximation for the heartbeat interval time series than piecewise constant wavelets.

3.5 Multi-category classification SVM

In this section, we review multi-category classification. Learning can be thought of

as inferring regularities from a set of training examples. There are various learning

algorithms which allow the extraction of these underlying regularities, which will

usually be represented in the values of some parameters of a statistic. Traditional

neural network approaches for learning have suffered difficulties with generalization,

producing models that can over-fit the data. Support Vector Machine (SVM) related

to the statistical learning theory [48] was first introduced in [13]. SVM employs the

structural risk minimization principle, which has great ability to generalize. SVM

was developed firstly to solve the classification problem, but it is also applied to

the domain of regression problems. It becomes popular because of its success in

many applications, such as handwriting recognition [7], image clustering [44], text

categorization [40], gene classification [34], protein structure prediction [33], etc.

The mathematical model of SVM is to parameterize training examples into vec-

tors and then construct hyperplanes to separate different categories of vectors. This
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is formulated and solved as an optimization problem. The solution to the related

optimization problem is described as hyperplanes with maximal margins which are

supported by some vectors among all vectors derived from training examples. When

training vectors can not be separated by hyperplanes sometimes, their images through

a feature map may separated by linear classifiers. And those vectors are separated by

hyper-surfaces instead of hyperplanes. Such feature maps are related to reproducing

kernels [3]. By choosing different reproducing kernels, SVM allows the construction

of various hyper-surfaces. It is called a kernel trick.

We consider the following model of classification problem. There are k classes of

vectors in Rd for some integer d > 0, denoted by {Ci : i ∈ Z+
k }. We want to find some

functions to separate those k classes from each other. A natural thought of multi-

category classification based on SVM can be described as the model one-versus-rest:

for a given class {Ci} for some i ∈ Z+
k , we construct a hyperplane to separate {Ci}

from other k − 1 classes. We obtain k such hyperplanes. This strategy has been

widely used to handle the multi-category classification problem. Another model of

SVM is one-versus-one: for each pair {i, j} such that 1 ≤ i ≤ j ≤ k, we construct a

hyperplane to separate {Ci} and {Cj} . Totally there are k(k−1)
2

hyperplanes, see [27].

In this section we employ the one-versus-one model for two reasons: (i) If we obtain

the best separation for each pair of classes locally, then we believe that we get the

best separation globally; (ii) It reduces the scale of solving the related optimization

problem. Each time we only consider vectors of two classes instead of vectors from
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all categories.

Suppose that the training set consists of N vectors {xn : x ∈ ZN+} ⊂ Rd and

these vectors belong to d different classes {Ci : i ∈ Z+
k }. We first assume that

all these classes of vectors can be separated by hyperplanes. We now consider the

classification problem for two classes. Given two classes {Ci} and {Cj} for some

1 ≤ i ≤ j ≤ k. We suppose that there exists a wij ∈ Rd and a constant bij ∈ R

such that wT
ijx + bij = 0, which is a hyperplane separating {Ci} and {Cj}. We can

adjust wij and bij so that wT
ijx + bij ≥ 1 if x ∈ Ci and wT

ijx + bij ≤ 1 if x ∈ Cj. The

distance between two hyperplanes wT
ijx + bij = 1 and wT

ijx + bij = −1 are called the

directional margin between Ci and Cj. In order to obtain an optimal separation, we

find the maximal directional margin, which is formulated as an optimization problem

as follows: Finding a wij ∈ Rd and a constant bij ∈ R to

maximize 1
∥wij∥

subject to wT
ijx + bij ≥ 1 if xn ∈ Ci for any n ∈ Z+

N ,

wT
ijx + bij ≤ −1 if xn ∈ Cj for any n ∈ Z+

N ,

where ∥wij∥ is the Euclidian norm of the vector wij.

Now we consider all classes at one time. We want to obtain the maximal total

of all directional margins, which is called the total margin. We get the following

optimization problems: Finding {wij : 1 ≤ i ≤ j ≤ k} ⊂ Rd and {bij : 1 ≤ i ≤ j ≤
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k} ⊂ R to

maximize
∑

1≤i≤j≤k
1

∥wij∥ (3.28)

subject to wT
ijx + bij ≥ 1 if xn ∈ Ci for any n ∈ Z+

N ,

wT
ijx + bij ≤ −1 if xn ∈ Cj for any n ∈ Z+

N ,

For any 1 ≤ i ≤ j ≤ k and n ∈ Z+
N , let

δi,j,n =


−1 if xn ∈ Ci

1 if xn ∈ Cj

0 otherwise

(3.29)

Applying Lagrange multiplier method, we obtain the Lagrangian

L :=
∑

1≤i≤j≤k

1

∥wij∥
+

∑
1≤i≤j≤k

∑
n∈Z+

n

λi,j,n(δi,j,n(wT
ijx + bij) + 1), (3.30)

where additional variables {λi,j,n : 1 ≤ i ≤ j ≤ k, n ∈ Z+
N} take nonnegative values.

Taking gradient of L and let it be the zero vector, we get

wij =
yij

∥yij∥3/2
, where yij :=

∑
n∈Z+

N

λi,j,nδi,j,nxn, (3.31)

and

bij = −δi,j,n − wT
ijxn, ifλi,j,n ̸= 0 and δi,j,n ̸= 0. (3.32)

Each non-zero λi,j,n indicates that the corresponding xn is a support vector in classing

Ci and Cj. Substituting (3.31) into (3.30), we derive the dual problem of (3.28):
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Finding {λi,j,n : 1 ≤ i ≤ j ≤ k, n ∈ Z+
N} ⊂ R to

minimize 2
∑

1≤i≤j≤k

(∑
m,n∈Z+

N
λi,j,nλi,j,mδi,j,nδi,j,mx

T
nxm

)1/4

+
∑

1≤i≤j≤k,n∈Z+
N
λi,j,n (3.33)

subject to
∑

n∈Z+
N
λi,j,nδi,j,n = 0 for 1 ≤ i ≤ j ≤ k,

λi,j,n ≥ 0 for 1 ≤ i ≤ j ≤ k, n ∈ Z+
N .

Suppose that the solutions to (3.33) are {λ∗
i,j,n : 1 ≤ i ≤ j ≤ k, n ∈ Z+

N}. Then

the solutions {w∗
ij : 1 ≤ i ≤ j ≤ k} to (3.28) can be given by (3.31) if we replace λi,j,n

by λ∗
i,j,n. And then b∗ij to (3.28) for any 1 ≤ i ≤ j ≤ k with λi,j,n ̸= 0 and δi,j,n ̸= 0

can be given via (3.32). If λi,j,n = 0, b∗ij takes the value so that it gets the highest

correction rate in classifying groups Ci and Cj by the hyperplane wT
ijx + bij = 0.

Note that to get the solution to (3.28) and (3.33), we assume that there exists

such hyperplanes to separate those classes. If such hyperplanes do not exist, we have

to modify the optimization problem (3.28) through introducing the ’slack variables’

{ξn : n ∈ Z+
N}. Given a constant C > 0 , find {wij : 1 ≤ i ≤ j ≤ k} ⊂ R, and

{ξn : n ∈ Z+
N} ⊂ R to

maximize
∑

1≤i≤j≤k
1

∥wij∥ − C
∑

n∈Z+
N
ξn, (3.34)

subject to δi,j,n(wn
ijxn + bij) + 1 − ξn ≤ 0 ∀1 ≤ i ≤ j ≤ k, n ∈ Z+

N ,

ξn ≥ 0 ∀n ∈ Z+
N .

The constant C is a trade-off parameter between error and margin. The solution to

(3.34) is called a soft margin. The dual optimization problem of (3.34) is: Finding
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{λi,j,n : 1 ≤ i ≤ j ≤ k, n ∈ Z+
N} ⊂ R to

minimize 2
∑

1≤i≤j≤k

(∑
m,n∈Z+

N
λi,j,nλi,j,mδi,j,nδi,j,mx

T
nxm

)1/4

+
∑

1≤i≤j≤k,n∈Z+
N
λi,j,n (3.35)

subject to
∑

n∈Z+
N
λi,j,nδi,j,n = 0 for 1 ≤ i ≤ j ≤ k,

0 ≤ λi,j,n ≤ C for 1 ≤ i ≤ j ≤ k, n ∈ Z+
N .

If the solutions to (3.35) are {λ∗
i,j,n : 1 ≤ i ≤ j ≤ k, n ∈ Z+

N}, then the solutions to

(3.34) are given by

wij =
yij

∥yij∥3/2
, where yij :=

∑
n∈Z+

N

λi,j,nδi,j,nxn, (3.36)

and b∗ij takes the value to get the minimum of the target function in (3.35), for all

1 ≤ i ≤ j ≤ k.

If vectors {xn : n ∈ Z+
N} are mapped to a feature space, we hope in the feature

space those classes can be separated better. Thus reproducing kernels come to the

stage. Instead of calculating the inner product of xn and xn via xT
nxm in the target

function in (3.35), we let the inner product of xn and xm be K(xn, xm) where K is

a reproducing kernel function. This is the so-called kernel trick. The modified dual

problem reads like: Finding {λi,j,n : 1 ≤ i ≤ j ≤ k, n ∈ Z+
N} ⊂ R to

minimize 2
∑

1≤i≤j≤k

(∑
m,n∈Z+

N
λi,j,nλi,j,mδi,j,nδi,j,mK(xn, xm)

)1/4

+
∑

1≤i≤j≤k,n∈Z+
N
λi,j,n (3.37)

subject to
∑

n∈Z+
N
λi,j,nδi,j,n = 0 for 1 ≤ i ≤ j ≤ k,

0 ≤ λi,j,n ≤ C for 1 ≤ i ≤ j ≤ k, n ∈ Z+
N ,
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where C is a positive parameter. In this case, we use hyper-surfaces K(w∗
ij, x)+b∗ij = 0

instead of hyperplanes (w∗
ij)

Tx + b∗ij = 0 for classification.

We explain specifically how to use problem (3.37) to solve multi-category classi-

fication problem. Suppose that there is a new vector z, we can predict the class of

this new vector through those hyper-surfaces K(w∗
ij, x) + b∗ij = 0 obtained by solving

(3.37). First we determine whether z is in C1. If K(w∗
1j, x) + b∗1j ≥ 0 for all 2 ≤ j ≤ k,

then we say z ∈ C1. If not, we check K(w∗
2j, x) + b∗2j for all 3 ≤ j ≤ k to see whether

z belongs to C2. If they are all nonnegative, z ∈ C2; otherwise, repeat this process

until we find the class z belongs to.

3.6 Classification for Heartbeat Interval Time Se-

ries

In this section, we develop the MSE-classifier, PLFME-classifier, HE-classifier and

WPTE-classifier by using entropy values at all scales of MSE, PLFME, HE and

WPTE with lower and higher piecewise linear wavelets filters respectively as features

to classify different cardiac systems via the multi-category classification support vec-

tor machine. This heartbeat data set consists of 43 CHF subjects, 9 AF subjects, 46

YOUNG subjects and 26 OLD subjects. Since there are only 9 AF subjects and time

series from AF subject has a clear decreasing signature as we see in previous sections,

our target is to classify the CHF, YOUNG and OLD groups. We randomly select a
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Labeled as

Recognized as Old CHF YOUNG

Old 16 4 3

CHF 2 18 0

YOUNG 2 1 10

Table 3.1: Classification result from the MSE-classifier.

Labeled as

Recognized as Old CHF YOUNG

Old 17 3 3

CHF 2 18 0

YOUNG 2 1 10

Table 3.2: Classification result from the PLFME-classifier.

half of time series to make the training set. The training set consists of 22 CHF, 23

OLD and 13 YOUNG. The remaining time series make up a test set. In this experi-

ment, we use the data of length 8 × 104 and polynomial kernel K(x, y) = (1 + xTy)2

in SVM.

From Table 4.1 to 4.4, we can see that the WPTE-classifier has the best accuracy,

followed by HE-classifier, PLFME-classifier and MSE-classifier. Of note, even piece-
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Labeled as

Recognized as Old CHF YOUNG

Old 19 2 2

CHF 2 18 0

YOUNG 1 1 11

Table 3.3: Classification result from the HE-classifier.

Labeled as

Recognized as Old CHF YOUNG

Old 20 2 1

CHF 2 18 0

YOUNG 1 0 12

Table 3.4: Classification result from the WPTE-classifier.
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wise linear wavelets have a better approximation than piecewise constant wavelets,

HE-classifier is better than PLFME-classifier. Thus we can see that, in terms of

classification, higher frequency components of the time series from wavelets packet

transform does provide us useful information in the classification.



Chapter 4

Application of FME on DNA

The previous two chapters focus on filter-based sample entropy on time series derived

from a continuous process. In this chapter, we discuss the application of FME on

discrete time series. We propose a new scheme of FME to measure the complexity of

a specific discrete time series, DNA sequences.

In both PLFME and WPTE, filtering the original time series can be viewed as

approximation via continuous wavelets functions. It may not work if we approximate

the discrete time series by continuous wavelets functions due to the finite number of

values that each component of the discrete time series can take. For example, when

we apply MSE on DNA sequences, there is an oscillation artifact [22]. We examine

the unique properties of the sample entropy on discrete time series. Based on these

properties, a multiscale ‘eliminating’ process is introduced via a special filter designed

especially for the discrete time series. As usual, the sample entropy is then evaluated

85
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on the filtered time series at multiscale.

In this chapter we use DNA sequences as our main study case. Through the

dynamic process of evolution, the DNA sequence is likely to be the most sophisticated

information database created by nature. The building blocks for DNA sequences are

called nucleotides. Each nucleotide contains a phosphate group, a deoxyribose sugar

moiety and either a purine or a pyrimidine base. Two purines and two pyrimidines are

found in DNA. The two purines are adenine (A) and guanine (G); the two pyrimidines

are cytosine (C) and thymine (T). Furthermore, the purine-pyrimidine rule maps

bases A and G to the number 1, and bases C and T to the number -1 given the

original DNA sequence. Thus each component of the time series derived from DNA

sequences by the purine-pyrimidine rule only has two possible values. So we consider

the discrete time series x such that

x(i) ∈ Θ := {α, β}, (4.1)

where α, β ∈ R in this chapter. Discriminated by encoding protein or not, there are

two different kinds of DNA sequences, coding DNA and noncoding DNA. We will

examine and compare the complexity of both coding and noncoding DNA sequences.

This chapter is organized into three sections. In section 3.1, we explore the prop-

erties of sample entropy on discrete time series. Section 3.2 discusses the oscillation

artifact of MSE on discrete time series. Section 3.3 is devoted to introducing a new

‘eliminating’ algorithm to measure the complexity of DNA sequences at multiple

scales. Numerical results of ‘eliminating’ algorithm on DNA sequences are also given.
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4.1 Sample Entropy on Discrete Time Series

In this section, we discuss the special properties of the sample entropy on the discrete

time series x as defined in (4.1). To this end, we write

x = (x1,x2, . . . ,xn), (4.2)

where xi, i ∈ Z+, is a segment from x and each component in xi has the same value,

α or β. For the convenience of notation, we write xi = xj if elements in xi and xj

have the same value and x(i) ≺ xj if the value of x(i) is the same as the value of

elements in xj. We also denote |xj| by the number of elements in xj. We will see

in the following propositions that given time series x as in (4.1), Sm(x, r) is only

determined by the form (4.2) for a proper choice of r. Since we are only interested

in small values of m in real applications, we consider the the value of Sm(x, r) when

m = 1, 2 in this section. From the expression of Sm(x, r), it is enough to compute

Cm(x, r) when m = 1, 2, 3. For a given segment xs and a positive number N , we

define

D(xs, N) :=


|xs| −N if N < |xs|,

0 otherwise.

Proposition 4.1. If the discrete time series x is defined as in (4.1) and r satisfies

r < |α− β|, then

C1(x, r) =
∑

1≤s≤n−1

[
|xs|D(xs, 1)

2
+ |xs|

∑
t>s,xt=xs

|xt|

]
+

|xn|D(xn, 1)

2
. (4.3)
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Proof. From the definition of Cm(x, r) in (2.3), we have

C1(x, r) =
#{(x(i), x(j))|(x(i) = x(j))}

N
. (4.4)

We consider the numerator in (4.4). If x(i) and x(j) are both in the segment xs, then

the total number of pairs of x(i), x(j) that satisfies x(i) = x(j) is given by

(|xs|)(|xs| − 1|)
2

. (4.5)

If x(i) ∈ xs and x(j) ∈ xt with s < t, the total number of pairs of (x(i), x(j)) that

satisfies x(i) = x(j) is given by

|xs|
∑

t>s,xt=xs

|xt|. (4.6)

Therefore, the total number of pairs of (x(i), x(j)) that satisfies x(i) = x(j) is the

sum of (4.5) and (4.6). We further make the summation for s, which gives us the

numerator in (4.4).

Proposition 4.2. If the discrete time series x is defined as in (4.1) and r satisfies

r < |α− β|, then

C2(x, r) =
∑

1≤s≤n−1

[
#{xt|xt = xs, t > s}+

D(xs, 1)D(xs, 2)

2
+D(xs, 1)

∑
t>s,xt=xs

D(xt, 1)

]

+
D(xn, 1)D(xn, 2)

2
. (4.7)

Proof. From the definition of Cm(x, r) in (2.3), we have

C2(x, r) =
#{(x(i), x(j))|(x(i) = x(j)) ∧ (x(i + 1) = x(j + 1))}

N − 1
. (4.8)
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We compute the numerator in (4.8) first. Suppose x(i) is fixed and x(i) ∈ xs, 1 ≤

i ≤ N − 1, 1 ≤ s ≤ n. We need to find the number of elements x(j) such that

j ≥ i, x(i) = x(j) and x(i + 1) = x(j + 1). To satisfy the condition that x(i) = x(j),

we must have x(j) ≺ xs. There are two cases when xi+1 = xj+1 is also satisfied.

Case 1: x(i + 1) ̸= x(i) and x(j + 1) ̸= x(j). In this case, x(i) must be the last

component in xs. Suppose x(j) ∈ xt, then x(j) is also the last components in xt.

Thus xi, xj can not be in the same segment. So in this case, the total number of pairs

of (x(i), x(j)) that satisfies (x(i) = x(j)) ∧ (x(i + 1) = x(j + 1)) is

#{xt|xt = xs, t > s}. (4.9)

Case 2: x(i + 1) = x(i) and x(j + 1) = x(j). In this case, x(i) can not be the

last component in xs. Suppose x(j) ∈ xt, then x(j) is not the last component in xt.

When s = t, |xs| can not be less than 3. The total number of pairs of (x(i), x(j))

that satisfies (x(i) = x(j)) ∧ (x(i + 1) = x(j + 1)) in xs is

(|xs| − 1)(|xs| − 2)

2
. (4.10)

When s < t, the total number of pairs of (x(i), x(j)) that satisfies (xi = xj)∧ (xi+1 =

xj+1) is

(|xs| − 1)
∑

t>s,xt=xs

(|xt| − 1). (4.11)

Therefore, the total number of pairs of (x(i), x(j)) that satisfies (x(i) = x(j)) ∧

(x(i+ 1) = x(j + 1)) is the sum of (4.9), (4.10) and (4.11) for given x(i). At the end,

making the summation for s gives us the numerator in (4.8).



CHAPTER 4. APPLICATION OF FME ON DNA 90

Let N2 := #{xs||xs| ≥ 2}. We have the following proposition for the value of

C3(x, r).

Proposition 4.3. If the discrete time series x is defined as in (4.1) and r satisfies

r < |α− β|, then

C3(x, r) = 1
N−2

{
∑

1≤s≤n−1

[
D(|xs|, 2)(D(|xs|,3)

2

+
∑

t>s,xt=xs

D(|xt|, 2))
]

+
D(|xn|, 1)D(|xn|, 2)

2
+ K1 + K2},

where K1, K2 = N2(N2−1)
2

or (N2−1)(N2−2)
2

.

Proof. From the definition of Cm(x, r) in (2.3), we have

C3(x, r) =
#{(x(i), x(j))|(x(i) = x(j)) ∧ (x(i + 1) = x(j + 1)) ∧ (x(i + 2) = x(j + 2))}

N − 2
.

(4.12)

Now we compute the numerator in (4.12). We consider the following cases.

Case 1: x(i) = x(i + 1) = x(i + 2). In this case, we must have x(j) = x(j + 1) =

x(j + 2). It implies that x(i), x(i + 1), x(i + 2) are in the same segment xs and

(x(j), x(j+1), x(j+2)) is also in the same segment. If x(j) ∈ xs, then the total number

of (x(i), x(j)) that satisfies (x(i) = x(j))∧ (x(i+ 1) = x(j+ 1))∧ (x(i+2) = x(j+ 2))

is given by

(D(x, 2))(D(x, 3))

2
. (4.13)

If x(j) ∈ xt with t > s, then the total number of (x(i), x(j)) that satisfies (x(i) =

x(j)) ∧ (x(i + 1) = x(j + 1)) ∧ (x(i + 2) = x(j + 2)) is

∑
t>s,xt=xs

D(|xs|, 2)D(|xt|, 2). (4.14)
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Adding (4.13) and (4.14) together and making the summation for s, we have the total

number of (x(i), x(j)) that satisfies (x(i) = x(j))∧ (x(i+ 1) = x(j + 1))∧ (x(i+ 2) =

x(j + 2)) in this case is

∑
1≤s≤n−1

[
D(|xs|, 2)(

D(|xs|, 3)

2
+

∑
t>s,xt=xs

D(|xt|, 2))
]

+
D(|xn|, 1)D(|xn|, 2)

2
. (4.15)

Case 2: x(i) = x(i + 1), x(i + 1) ̸= x(i + 2). In this case, we also have x(j) =

x(j + 1), x(j + 1) ̸= x(j + 2). Suppose x(j) ∈ xt, then we have t > s. Since

x(i+1) ̸= x(i+2) and x(j+1) ̸= x(j+2), x(i), x(i+1) must be the last two components

of xs and x(j), x(j + 1) must be the last two components of xt. The total number of

(x(i), x(j)) that satisfies (x(i) = x(j)) ∧ (x(i + 1) = x(j + 1)) ∧ (x(i + 2) = x(j + 2))

in this case is N2(N2−1)
2

if |x1| ≥ 2 and is N2(N2−1)
2

if |x1| ≤ 2.

Case 3: x(i) ̸= x(i + 1), x(i + 1) = x(i + 2). In this case, we also have x(j) ̸=

x(j + 1), x(j + 1) = x(j + 2). Suppose x(j) ∈ xt, then we have t > s. Since

x(i+1) ̸= x(i) and x(j+1) ̸= x(j), x(i+1), x(i+2) must be the first two components

of xs and (x(j+1), x(j+2)) must be the first two components of xt. The total number

of (x(i), x(j)) that satisfies (x(i) = x(j))∧ (x(i+ 1) = x(j+ 1))∧ (x(i+2) = x(j+ 2))

in this case is N2(N2−1)
2

if |xn| ≥ 2 and is N2(N2−1)
2

if |xn| ≤ 2.

Considering all cases together, we get the numerator in (4.12).

From Proposition 4.1, 4.2 and 4.3, we can see that the sample entropy of the

discrete time series x is completely determined by the form (x1,x2, . . . ,xn).
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4.2 MSE on DNA

Using sample entropy to explore the complexity of DNA sequences was firstly studied

in [22] via the MSE analysis. There is an important artifact, oscillation, that affecters

the MSE analysis for DNA sequences. This artifact was briefly discussed in [22] and

we will describe it more thoroughly in this section.

For a given discrete time series, all components in the time series take value from

a finite set. We call this finite set alphabet. We think the oscillation artifact in the

MSE analysis is due to the increases size of alphabet as scales increases. At each scale

new values, which are not in the original time series, are added to alphabet.

We consider an uncorrelated random variable, X, with alphabet Θ1 := {α, β}, α, β ≥

0, α ̸= β. We assume that both symbols α and β occur with probability 1/2. For

simplicity, we first consider the time series with two components. There are only four

possible different two-component sequences built from the binary series, which are

αα, αβ, βα and ββ. At the scale 2, we take the average of every two components in

the original time series. Thus a new value, (α+β)/2, is created. Therefore the alpha-

bet of the coarse-grained time series corresponding to scale 2 is Θ2 : {α, (α+β)/2, β}.

The probabilities associated with the occurrence of these three different values are

1/4, 1/2 and 1/4, respectively. If we use r := (α + β)/2 to calculate the sample

entropy, only the distance between the coarse-grained values α and β (and not be-

tween values α and (α + β)/2, and between values (α + β)/2 and β) is higher than

r. Therefore, the probability of distinguishing two data points randomly chosen from
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the coarse-grained time series is obtained by

Pr(|xa − xb| > r) = p(α) × p(β) =
1

4
× 1

4
=

1

16
.

Similarly, we consider the time series with there components. There are eight

possible different three-component sequences built form the binary series, which

are ααα, ααβ, αβα, βαα, ββα, αββ, βαβ and βββ. At the scale 3, two new values,

(α + β)/3, 2(α + β)/3, are created. Consequently, the alphabet of the coarse-grained

time series corresponding to scale 3 is Θ3 := {α, (α + β)/3, 2(α + β)/3, β} and the

probability associated with the occurrence of each value are 1/8, 3/8, 3/8 and 1/8,

respectively. If we use r := (α + β)/2 to calculate the sample entropy, only the dis-

tances between the coarse-grained data points 0 and 2(α + β)/3, (α + β)/3 and β,

and α and β are higher that r. Therefore, the probability of distinguishing two data

points randomly chosen from the coarse-grained time series is obtained by

Pr(|xa − xb| > r) = p(α) × p(2(α + β)/3) + p((α + β)/3) × p(β) + p(α) × p(β) =
7

64
.

Note that the probability of distinguishing two data points of the coarse-grained

time series increases from scale 2 to scale 3. As a consequence, the sample entropy

also increases. For larger scales, a general result was provided in [22]. This artifact is

due to the fact that the size of the alphabet of the coarse-grained time series increases

with scales.

Due to the artifact we discussed above, MSE may not be suitable to DNA se-

quences well. In Fig. 4.2, we present the numerical results of MSE analysis on DNA
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Figure 4.1: MSE results for coli DNA sequences with 4000 base pairs.

sequences. In this experiment, we take 3 coli coding DNA sequences and 3 coli non-

coding DNA sequences. The entropy value of coding and noncoding DNA sequences

shown in the figure is the mean entropy value of 3 DNA sequences. The oscillation

artifact is shown on the MSE output curve and coding and noncoding DNA sequences

are not well separated from Fig. 4.2.

In [22], several approaches are proposed to overcome this oscillation artifact. We

will introduce a new algorithm to measure the complexity of DNA sequences in next

section.

4.3 ‘Eliminating’ Algorithm for DNA sequences

From section 2.1, we can see that the sample entropy of the discrete time series x is

completely determined by the form (x1,x2, . . . ,xn). If we filter the discrete time series

x by filters derived from continuous functions, we may have the oscillation artifact

that MSE exhibits. We will introduce a new filter and a new algorithm in this section
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based on the segment structure (x1,x2, . . . ,xn) to measure the complexity of DNA

sequences at different scales and the oscillation artifact can be avoided.

We first define a ‘eliminating’ filter for x, which aims to modify the segment

structure (4.2).

Definition 4.1. Given a discrete time series x as defined in (4.1), we write it as the

segment presentation as in (4.2). An ‘eliminating’ filter is defined as a block diagonal

matrix as

Ax :=


A1

. . .

An

 ,

where As, s ∈ Z+ is the matrix of the form (I|bxs|−1, 0) if |xs| > 1 and is the 1 × 1

identity matrix if |xs| = 1.

Algorithm 1:

1. Compute SE1(x, r).

2. At scale τ ≥ 1, a new time series yτ is generated from yτ−1 (y0 := x) by

yτ := Ayτ−1yτ−1.

3. Compute SE1(y
τ , r).

The largest number of τ we can take is max{|x1|, |x2|, . . . , |xn|}−1. We next prove

a decreasing property of the above algorithm. We first need the following technical

lemma.
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Lemma 4.4. Let a, b, a1, b1 be positive numbers. If a < b and a − a1 > b − b1 > 0,

then a
b
< a1

b1
.

Proof. It follows from the following calculation directly.

a

b
− a1

b1
=

ab1 − a1b

bb1
=

a(b1 − b) − b(a1 − a)

bb1

<
a[
¯
(b1 − b) − (a1 − a))]

bb1
< 0.

Theorem 4.5. If x is a discrete time series as defined in (4.1) and let y = Axx,

then SE1(x, r) ≥ SE1(y, r). Moreover, SE1(x, r) = SE1(y, r) if and only if x =

(α, β, α, . . .) or x = (β, α, β, . . .).

Proof. To prove SE1(x, r) > SE1(y, r), it suffices to show that

C2(x, r)

C1(x, r)
<

C2(y, r)

C1(y, r)
. (4.16)

Let Ax, Ay be the numerator of C2(x, r) and C2(y, r). Let Bx, By be the numerator

of C1(x, r) and C1(y, r). Then Ax −Bx is the number of pairs (x(i), x(j)) such that

x(i) = x(i)∧ x(i+ 1) ̸= x(j + 1) and Ay −By is the number of pairs (y(i), y(j)) such

that y(i) = y(i)∧y(i+1) ̸= y(j+1). Suppose the length of x is N and the length of y

is M. From the construction of y, we have Ax−Bx < y(i) = y(i)∧ y(i+ 1) ̸= y(j + 1)

and N > M . Thus

Ax −Bx

N
<

Ay −By

M
,

which implies

Ax

N
− Ay

M
<

Bx

N
− By

M
. (4.17)
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It follows from inequality (4.17), the fact Ax

N
< Bx

N
and Lemma 4.4 that (4.16) holds.

From the construction of y, we have SE1(x, r) = SE1(y, r) if and only x and y

are the same sequence. x and y are the same sequence if and only if x = (α, β, α, . . .)

or x = (β, α, β, . . .).

Now we apply Algorithm 1 introduced above to the analysis of DNA sequences,

likely one of the most complex natural information databases.

The role of genomic DNA sequences in coding for protein structure is well known

[37]. The genomic sequence is likely to be the most sophisticated information database

created by nature through the dynamic process of evolution. Equally remarkable is

the precise transformation of information (duplication, decoding, etc.) that occurs in

a relatively short time interval.

The DNA building units are called nucleotides. Two of them contain a purine base,

adenine (A) or guanine (G), and the other two contain a pyrimidine base, cytosine

(C) or thymine (T). There are different ways of mapping the DNA sequences to a

numerical sequence that take into different properties of DNA sequences ( [11, 42],

etc.). In this application, we use the purine-pyrimidine rule [14, 53, 54]. Recent

work [52] indicates that the original purine-pyrimidine rule provides the most robust

results in the study of some statistical properties of DNA sequences, probably due to

the purine-pyrimidine chemical complementarity. Given the original DNA sequences,

bases A and G are mapped to number 1, and bases C and T are mapped to number

-1.
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Figure 4.2: Numerical results for DNA sequences.

In Fig.4.2, we present the numerical results for selected coding and noncoding coli

sequences. The results support the view that noncoding sequences contain important

biological information. As pointed out by others [5, 6, 12, 47], biological complexity

and phenotype variations should related not only to proteins, which are the main

effectors of cellular activity, but also to the organizational structure of the control

mechanism responsible for the networking and integration of gene activity.

This verification that noncoding DNA sequences are more complex than coding

DNA sequences implies the applicability of FME on discrete time series. One may

design other special filters when the alphabet of the discrete time series has a bigger

size.
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