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Abstract 

This paper deals with maximum-likelihood soft-decision decoding as well as suboptimal soft­

decision decoding of linear block codes. In this paper we present a novel and efficient 

hybrid decoding algorithm for ( n, k) linear block codes. This algorithm consists of three new 

decoding algorithms: M A*, H*, and Directed Search. It hybridizes these three algorithms to 

take advantage of their strengths and make the decoding more efficient. The first algorithm, 

MA*, is a modified Algorithm A* that conducts a heuristic search through a code tree of 

the transmitted code when the decoding problem is transformed into a problem of graph­

search through a code tree. M A* takes into consideration more properties of the code and is 

considerably more efficient than the original A* algorithm presented by Han, Hartmann, and 

Chen. The second algorithm, H*, is a new decoding algorithm that determines the value of 

every component of a minimum-cost codeword by estimating the cost of the minimum-cost 

codeword, which has a fixed value at one of the k most reliable, linearly independent bit 

positions when the decoding problem is transformed into a minimum-cost problem among 

all codewords of the transmitted code. The suboptimal version of this algorithm can be 

incorporated with other decoding algorithms to reduce the search space during the decoding 

process. The third algorithm, Directed Search, is a novel heuristic approach designed to 

enhance the performance of soft-decision decoding by searching in continuous space. This 

approach explores the search space between a given vector and the received vector and finds 

the closest codeword to the received vector in the space explored. Simulation results for this 

hybrid algorithm are presented for the {128, 64), the (256, 131), and the (256, 139) binary­

extended BCH codes. This hybrid algorithm can efficiently decode the {128, 64) code for any 

signal-to-noise ratio and has near-optimal to optimal performance. Previously, no practical 

decoder could have decoded this code with such a performance for all ranges of signal-to-noise 

ratio. 

Index terms: block codes, soft-decision, decoding, code tree, graph-search, BCH code 
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1 Introduction 

The use of block codes is a well-known error-control technique for reliable transmission of 

digital information over noisy communication channels. Linear block codes with good coding 

gains have been known for many years; however, these block codes have not been used in 

practice due to the unavailability of an efficient soft-decision decoding algorithm. 

This paper deals with maximum-likelihood soft-decision (MLSD) decoding as well as 

suboptimal soft-decision (SOSD)_ decoding of linear block codes. By maximum-likelihood 

decoding (MLD), we mean the minimization of the probability of decoding to an incorrect 

codeword when all codewords have equal probability of being transmitted. By soft-decision 

we mean the use of real numbers (e.g., the analog output of filters matched to signals) 

associated with every component of the codeword in the decoding procedure. Soft-decision 

decoding can provide about 2 dB of additional coding gain when compared with hard-decision 

decoding [4]. 

Several researchers [1, 34, 30] have presented techniques for decoding linear block codes 

that convert the decoding problem into a problem of graph-search on a trellis derived from 

the parity-check matrix of the code. Thus the MLD rule can be implemented by applying the 

Viterbi Algorithm [33] to this trellis. In practice, however, this breadth-first search scheme 

can be applied only to codes with small redundancy or to codes with a small number of 

codewords (25]. 

The decoding problem has been converted into a problem of search through a code tree 

for an equivalent code of the transmitted code [14]. In [28, 29, 7, 20, 13, 17, 11, 14] several 

decoding algorithms for linear block codes were proposed. These algorithms are efficient 

for codes of short-to-moderate lengths, but become impractical for codes of long lengths 

transmitted over channels with low SNR; so we still lack an efficient decoding algorithm 

for long linear block codes. The use of long block codes in the design of communication 

channels is important because with noise averaging we expect codes of greater lengths to be 

more "effective" than codes of shorter lengths [4, Sec. 1.1]. 

In this paper we present a novel and efficient hybrid decoding algorithm for linear block 
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codes. This algorithm consists of three new decoding algorithms: M A*, H*, and Directed 

Search. It hybridizes M A*, H*, and Directed Search to take advantage of their strengths 

and make decoding more efficient. The first algorithm, MA*, is a modified Algorithm A* 

which searches through a code tree of the transmitted code when the decoding problem is 

converted into a problem of graph-search through a code tree. M A* takes into consideration 

more properties of the code and is considerably more efficient than the original A* algorithm 

[14). The second algorithm, H*, is a new decoding algorithm which determines the value of 

every component of a minimum-cost codeword by estimating the cost of the minimum-cost 

codeword, which has a fixed value at one of the first k most reliable, linearly independent bit 

positions when the decoding algorithm is transformed into a minimum-cost problem among 

all codewords of the transmitted code. The suboptimal version of this algorithm can be 

incorporated with other decoding algorithms to reduce the search space during the decoding 

process. The third algorithm, Directed Search, is a novel iterative procedure designed to 

enhance the performance of soft-decision decoding by searching in continuous space. This 

approach explores the search space between a given vector and the received vector and finds 

the closest codeword to the received vector in the space explored. In each iteration of the 

procedure, real vectors successively closer to the received vector are examined, simultaneously 

constructing the corresponding codewords at local minima of the cost function, and storing 

the most recent and closest codewords to the received vector examined so far. When the 

decoding problem is converted into a continuous optimization problem, Directed Search 

overcomes the main problems of simple hill-climbing and gradient-descent algorithms [6), as 

well as those of simulated annealing [21] and Tabu Search [10], and directs the search toward 

the received vector while escaping from a local minimum. This approach takes advantage of 

the properties of the code and successfully works on both k-dimensional and n-dimensional 

spaces to make the search more efficient. 

We emphasize that the decoding algorithms presented in this paper are suitable for 

decoding any linear block codes. We present simulation results for the codes with length 

equal to 128 or 256. For linear block codes with length smaller than 128 and dimension 

smaller than 64, such as the (104, 52) binary-extended quadratic residue code, M A* achieves 
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near-optimal to optimal performance for any signal-to-noise ratio value as we have presented 

in our previous work (29]. 

In Section 2 we review maximum-likelihood decoding of linear block codes. The trans­

formations of the decoding problem into a problem of graph-search, as well as a continuous 

optimization problem, are also presented in this section. M A* is described in Section 3, H* is 

described in Section 4, and Directed Search is presented in Section 5. The hybrid algorithm 

is presented in Section 6. Simulation results of this hybrid algorithm for the (128, 64), the 

(256, 131), and the (256, 139) binary extended BCH codes are given in Section 7. Concluding 

remarks are presented in Section 8. 

2 Preliminaries 

Let C be a binary (n, k) linear code with generator matrix G, and let c =(eo, c17 ••• , Cn-t) be 

a codeword of C transmitted over a time-discrete, memoryless channel with output alphabet 

B. Furthermore, let r = (To, Tt, ... , Tn-t), Tj E B denote the received vector, and assume 

that Pr(r;ICi) > 0 for Tj E Band Ci E GF(2). The MLSD decoding rule for a time-discrete, 

memoryless channel can be formulated as [19]: given a received vector r =(To, Tt, ... , Tn-t), 

find a codeword c = (eo, Ct, ••• , Cn-t) E C that minimizes Ej,:-J ( </>; - ( -1 y; )2 , where </>; = 

In ~~~:;:~~ . We may therefore consider that the "received vector" is cfJ = ( </Jo, cPh ... , cPn-1)· 
Furthermore, the MLSD decoding problem is equivalent to the minimum distance problem if 

we define the distance between cfJ and a codeword c E C as the Euclidean distance between 

cP and the binary n-tuple vector ((-l)co,(-1Y1 , ••• ,(-1Y"-1 ) E {-1,1}n. We say that a 

codeword c E C is "closer" to cfJ than another codeword c' = ( G,, ~, ... , ~-1 ) E C if and 

only if Ej;J ( c/J; - ( -1 y; )2 ~ Ej;J ( c/J; - ( -1 yi) 2 • 

Simulation results [6, 14] showed that it is very important that we select the "best" set 

of linearly independent codeword variables, and this best set corresponds to the set of the k 

most reliable, linearly independent positions in the received vector c/J, where cPi is said to be 

more reliable than c/J; if and only if I cPi I > I c/J; I· It is important to note that each time a new 

vector is received, the k most reliable, linearly independent positions must be determined 
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anew. For simplicity of notation and without loss of generality, we will henceforth take 

</>o, c/>1, •.• , c/>~c- 1 to be the set of k most reliable, linearly independent positions with I c/>; I ;:::: 
I cPi+1 I for j = 0, 1, ... k- 2. Furthermore, we will assume that the first k columns of the 

generator matrix G form a k x k identity matrix, i.e., G = [I,.A), where I,. is the k x k 

identity matrix. 

2.1 Decoding as a Discrete Optimization Problem 

When the decoding problem is converted into a problem of graph-search through a code tree 

for code C, we attempt to find a minimum-cost path from the start node to a goal node in 

the code tree. A code tree is a way to represent every codeword of an ( n, k) linear code C as 

a path through a code tree containing n + 1 levels. The root is called the start node, which is 

at level -1. There are two branches, labeled 0 and 1, respectively, that leave each node at the 

first k levels. After the first k levels, there is only one branch leaving each node. The 2k leaves 

are called goal nodes, which are at level n - 1. Let eo, c17 ••• , c~c_1 be the sequence of labels 

encountered when traversing a path from the start node to a node mat level k- 1. Then 

c~c, Ck+l, ••• , Cn-1, the sequence of labels encountered when traversing a path from node m to 

a goal node, can be obtained as follows: (Co,Ct, ••• ,c~c_17 c~c, ... ,Cn-1) = (eo,c~, ... ,ck-1) G. 

We now specify the arc cost in the code tree of C. The arc from a node at level t -1 to its 

immediate successor in a path is assigned cost ( cf>t - ( -1 )c' )2 , where Ct is the label of the arc. 

This arc is called the t'h arc of the path. Thus, the decoding problem is equivalent to finding 

an "optimal" path from the start node to a goal node in the code tree which corresponds to 

a codeword c = (eo, c1, ••• , Cn-1) such that Ej;J ( c/>; - ( -1 )c; )2 is minimum among all paths 

from the start node to the goal nodes. 

We note that an optimal path in the code tree corresponds to a codeword that minimizes 

Ej;J { c/>; - ( -1 y; )2 , where the label for the lh arc of a path corresponds to the value of the 

lh component of a codeword. If we define the cost for the i'h component of a codeword as 

the cost of the i'h arc of the corresponding path in the code tree and the cost for a codeword 

as the sum of the cost for all components of this codeword, the decoding problem becomes 
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equivalent to the minimum-cost problem among all codewords inC, i.e., finding a codeword 

c E C that minimizes the cost Ej;J ( </>; - ( -1 y; )2• 

2.2 Decoding as a Continuous Optimization Problem 

We would like to transform the decoding problem into a continuous optimization problem to 

take advantage of more information provided by the received vector and the inherent prop­

erties of the transmitted code that cannot be taken into consideration when the decoding 

problem is solved as a discrete optimization problem. Furthermore, it is often easier to opti­

mize a function over a continuous domain (using the tools of calculus or linear programming) 

than over a discrete domain [26, Sec. 4.4], [27]. 

In order to transform the decoding problem into a continuous optimization problem [6], 

we apply the mapping z --+ ( -1 )• from G F(2) to the real field R. Then C is mapped to C', 

where a { -1, 1 }-vector c' = ( C:,, ~, ... , c'n-t) is a codeword of C' if and only if Ilj;J ( cj )hi; = 1 

fori= 0, 1, ... , n-k-1, where H =[hi;] is the parity check matrix of C. In this formulation, 

the MLSD decoding rule for a time-discrete, memoryless channel becomes: Given a received 

vector t/J = ( </>o, 4>11 ••• , <f>n-t ), find a codeword c' E C' that minimizes Ej;J ( </>; - cj )2• 

Note that Ej;J(</>;- cj)2 = Ej;J <P; + n- 2Ej;J </>;cj, since Ej;J(cj)2 = n for all c' 

E C'. Furthermore, the dependent codeword variables c'k, c'k+l, ... , ~-t are related to the 

linearly independent codeword variables C:,, ~' ..• ,Ge-t by 

k-t 

~ = 11'i(G,,~, ... ,~-t) = II(cj)Pi;, fori= k,k+ l, ... ,n -1, 
j=O 

(I) 

where the Pij E {0, 1} are determined from the n- k parity product equations, which 

correspond to the first k most reliable, linearly independent positions of t/J. Thus, for a 

codeword c' E C' we may write Ej;J </>;cj = Ej;J </>;cj + Ej;l</>;11';(C:,, ~' ..• ,Ge-t), which 

is a function of the k most reliable, linearly independent codeword variables C:,, ~, ... , 

Ge-t· Then the optimization problem in Rk is: Given a received vector t/J, find a vector 

(C:,,~, ... ,4_t) E {-l,+l}k that minimizes the cost function f. defined as 

n-1 k-1 n-1 

h(C:.,c~, .•. ,c~_1 ) =I: <P; + n- 2 I: </>;cj- 2 I: </>;11';(C:.,c~, ... ,c~_1 ). 
j=O j=O j=k 
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When we restrict attention to the discrete space, { -1, + 1 }k, over all vertices of the solid 

k-cube of length two centered at the origin, we have established that if ( ~' t;, ... , ck-I) 

minimizes Jq,, then the codeword generated by ~' c~, ... , ck-I according to Equation (1) is 

the closest codeword to the received vector l/J. This is still a discrete optimization problem, 

but if the cost function Jq, is allowed to range over all points in the solid k-cube defined 

by I Xj I :::; 1, j = 0, 1, ... , k- 1, it still takes its minimum at a vertex. This follows from 

the fact that fq,(x 0 , x~, ... , XJc-d is linear in each Xi. Therefore, every local minimum of fq, 

corresponds to a codeword inC', and the value of Jq, at every local minimum is equal to the 

square of the Euclidean distance between the received vector and the codeword corresponding 

to the local minimum. In this way we arrived at the MLSD decoding rule in Rk: Given a 

received vector c/J, find a real vector (x0 , Xt, ••• , X Je-d in the solid k-cube defined by I Xj I 
:::; 1, j = 0, 1, ... , k- 1 that minimizes the cost function Jq,. We note that a real vector 

(xo, Xt, ..• , XJc-d has a one-to-one corresponding real vector (x0 , x~, ... , XJc-b ••• , Xn-d E 

~ such that the last n - k components are obtained from equation (I). 

First we describe the algorithms which compose the hybrid decoding algorithm. 

3 Modified Algorithm A* (MA*) 

In this section we describe M A •, a new decoding algorithm that searches through a code tree 

of the transmitted code when the decoding problem is converted into a problem of graph­

search through a code tree. M A • takes into consideration more properties of the code and 

is considerably more efficient than the original A* algorithm [14]. 

When the decoding problem is converted into a problem of graph-search through a code 

tree, we are interested in finding an optimal path from the start node to a goal node in this 

code tree. M A., which uses a priority-first search strategy, is employed to search through 

this code tree. For a fixed positive integer q, two functions, f 9 and low9 , are defined for 

every node in the code tree to take advantage of the information provided by the received 

vector and the inherent properties of the transmitted code. In M A •, search is guided by 

the evaluation function f 9 • The algorithm maintains a list C, of nodes of the code tree that 
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are candidates to be expanded. The algorithm selects for expansion the node in C with 

minimum values of function /q· If it selects a goal node for expansion, it has found an 

"optimal" path from the start node to a goal node whose labels correspond to a codeword 

that minimizes the error probability when we assume all codewords have equal probability 

of being transmitted. Function lowq is a new lower bound on the cost of an optimal path 

that goes through a node in the code tree. The value of low9 is always greater than or equal 

to the value of /q, i.e., for every node m, lowq(m) 2:: f 9 (m). This algorithm also keeps an 

upper bound (U B) on the cost of an optimal path. If the value of lowq for a node is greater 

than or equal to the U B, no further search through this node is necessary and this node can 

be discarded. 

For every node m in the code tree and a fixed positive integer q, functions / 9 and low9 

are defined as 

Jq(m) = g(m) + hq(m) 

and 

low9(m) = g(m) + h~(m), 

where g(m) is the actual cost of the path from the start nodes to node m, hq(m) estimates 

the cost of the minimum-cost path from node m to a goal node, and h'9 (m) estimates the 

cost of the minimum-cost path from node m to a goal node that takes into consideration the 

parity check property of the code. 

For a positive integer q, we now give a definition for this new heuristic function h9 , which 

takes into consideration q binary n-tuple vectors 

1. that satisfy the Hamming weight constraints, 

2. whose corresponding paths from level 0 to level k - 1 in the code tree go through node 

m, and 

3. that are closer to the received vector </J than any other binary n-tuple vectors. 
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Let HW = {wilD :::; i :::; J} be the set of all J + 1 distinct Hamming weights that 

codewords of C may have. Furthermore, assume w0 < w1 < · · · < WJ. Our new heuristic 

function hq is defined to take into consideration the linear property of C and the fact that 

the Hamming distance between any two codewords of C must belong to HW. Heuristic 

function hq is defined with respect to a codeword C 6 eed E C which is called the seed of the 

decoding algorithm. 

1. For nodes at levels, 0 :::; s < k: 

Let m be a node at level s and let v0 , Vt, ... , V6 be the labels of the path P m from 

the start node to node m. Let T(m) be the set of all binary n-tuple vectors v whose 

firsts+ 1 entries are the labels of Pm and dy(v,c6eed) E HW, where dy(z,y) is the 

Hamming distance between z and y. That is, 

We will construct a sequence of q finite nonempty subsets of T(m), T1(m) 2 T2(m) 2 

... 2 Tq(m), and for every Ti(m) we define Vi = (vo, Vt, ... , v., Vi(•+t), •.. , Vi(n-t) E 

Ti( m) as the vector that satisfies 

For 1 :::; i:::; q, Ti(m) is now recursively defined as 

(a) T1(m) = T(m); 

(b) for 1 :::; i < q, 

The heuristic function hq is defined as 

n-1 

if Vi is a codeword; 

otherwise. 

hq(m) = E {c/>j- {-1)"9i)2 , where Vq = (v0,v~, ... ,v.,vq(•+l),···,Vq(n-l))· 
j=•+l 

Note that Ti(m) ::F 0, since u G is a codeword in T(m), where u = (v0 , v., ... , 

v., 0, ... , 0) is a binary k-tuple vector. 
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2. For nodes at level s, k - 1 < s < n: 

Let m be a node at levels. We define h9(m) as the actual cost of the unique path from 

node m to a goal node, i.e., h 9(m) = Ei:;.,\1 (tPi- ( -1)11qi)2 , where v9 = (vo, v1, ••• , v.,, 

v9(•+1), ••• , v9(n-1)) = (vo, v~, ... , 'V1c-1) G, and Vq(•+l), v9(•+2h ••• , v9(n-1) are the se­

quence of labels of the unique path P m from node m to a goal node. 

Function h~ is defined analogously as h9 , except that it takes into consideration the 

fact that components in the redundancy part of a codeword can be determined by parity 

checks. Let H = [h,;) be the parity check matrix of code C in canonical form, i.e., the 

last n- k columns of H form an identity matrix. Let SH = {ho, h~, ... , hn-1c-1 I ~ = 
(hio, h11, ••• , hi(n-1)) is the i'" row of H}. For a node m at level s, 0 < s < k, such that 

v'o, v'~, ... , v'. is the sequence of labels of the path Pm from the start node to node m, we 

define SH(m) = {hi I ~ e SH, h,; = 0 for j = 8 + l,s + 2, ... ,k- 1}. According to the 

linear property of the code, if SH(m) =/:- 0, then for any codeword c= (C(),c~, ... ,Cn-1) E C 

such that C() = v'0 , c1 = v'~, ... , c. = v'., we have clc+i = v'0h,0 ffi v'1hi1 ffi ... ffi v' .hi• for all 

h, E SH(m), where ffi denotes the module 2 addition operator. 

Function h~ can now be defined analogously to h9 except that it is with respect to T'(m) 

which is the set of all binary n-tuple vectors v' 

1. whose first s + 1 entries are v'0 , v'~, ... , v'., 

3. which satisfy the Hamming weight constraints, i.e., dH( v', Caeed) E HW, where Caeed is 

the seed of the decoding algorithm. 

for all hiE SH(m), and dH(v,caeed) E HW}. Note that T'(m) =/:- 0 since the codeword u G 

is also in T'(m), where u = (v0 ,'Vt, ... ,v.,O, ... ,O) is a binary k-tuple vector. Therefore, 

if v~ = (v'9o, v19t, .•• , v~(n- 1)) is the vector used to calculate h~(m), then v~0 = v'o, v~1 = 
V 1t, •.• , v~. = v'., and whenever SH(m) =/:- 0, then v~(k+i) = (v'ohio ffi v'1hi1 ffi ... ffi v'.,hi.) for 

all h, E SH(m). 
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Note that if the vector v~ used to calculate h~(m) and the vector Vq used to calculate 

hq(m) have different values at hit position k+i for some i, where hiE SH(m) when SH(m) # 
0, then h~(m) > hq(m); otherwise, h~(m) = hq(m). Furthermore, if node m is a goal node, 

then h~(m) = hq(m) = 0. We now give our MA* decoding algorithm. 

M A* decoding algorithm 

1. Let q he a positive integer and m_1 he the start node in the code tree. Generate 

a nonempty set of codewords S C C. For each codeword c E S, set Cseed = c and 

calculate lowq(m_1). Select the codeword c E S that maximizes lowq(m_t) as the initial 

seed of the decoding algorithm. 

2. For each codeword in S, calculate the cost of the corresponding path from the start 

node to a goal node in the code tree. Let c he the codeword in S that corresponds to 

the minimum-cost path P among all paths corresponding to codewords in S. Let U B 

he the cost of P. Set list .C, = 0. 

3. Create a subtree that contains only the start node m_1. Calculate Jq(m_t). Note that 

Jq(m_t) = lowq(m-1 ). Put m_1 in list .C. 

4. If list C is empty, the algorithm terminates and P is an optimal path. 

5. Remove the node m from list .C, which has minimal value of fq· If lowq(m);:::: UB, go 

to step 4. 

6. Start expanding node m. Assume that node m is at level s in the code tree. Let Vq = 
(vqo, Vqt, .. . , Vq(k- 1), •• • , Vq(n-1)) he the vector used to calculate Jq(m). Generate two 

codewords c' = (vqo,vql, ... ,vq(k-I}) G and c" = (vqa,v91! ... ,vq(k-2),Vq(k-I) ill 1) G. 

Let U B' he the cost of path P' in the code tree that corresponds to c' and let U B" he 

the cost of path P" in the code tree that corresponds to c". If min{U B', U B"} < U B, 

set U B = min{U B', U B"} and set c to be the codeword whose corresponding path 

has cost min{U B', U B"}. 
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7. Set S = {caeed, c', c"}. Calculate low9(m-t) for every codeword in S. Set C 6 eed to be 

the one that maximizes low9(m_1 ) among all codewords inS. 

8. Generate the set M which contains all nodes at level i that are not in path P' and are 

immediate successors of nodes at level i - 1 in path P' for i = s + 1, s + 2, ... , k - 2, 

i.e., M = {mi I s < i < k- 1, mi is a node at level i that is not in path P' and is an 

immediate successor of the node at level i - 1 in path P'.}. 

9. Calculate lowq{mi) for every node mi E M. If low9(mi) ~ U B, discard it from M. If 

M = 0, go to step 4. 

10. Calculate / 9(mi) for every node mi E M. Insert every node mi E Minto list £,and 

reorder2 nodes so that all nodes in list£, are sorted according to the values of / 9 • Set 

M=0. 

11. Go to step 4. 

We note that M A* is a depth-first search algorithm as is the original A* algorithm. The 

proof of this property is similar to that given in Appendix E in [14]. Therefore, upper bounds 

( U Bs) on the cost of an optimal path are obtained every time a codeword is generated. The 

size of list £, can be reduced by discarding nodes whose values of low9 are greater than 

or equal to the best U B obtained so far by the algorithm. Furthermore, if M A* doesn't 

discard any node from an optimal path in step 9, it will find an optimal path before the 

algorithm terminates, since the code tree is finite and the algorithm keeps the minimum-cost 

path found so far. The optimality of MA* is shown in Appendix A. We also note that the 

values of the low9 of nodes from the start node to a goal node along a path in the code tree 

are monotonically nondecreasing, i.e., if m. is an immediate successor of node m•-h then 

low9(m._I) :5 low9(m.). Therefore, if a node is discarded in step 9 of the algorithm, all of 

its successors can also be discarded. The proof of this property is also given in Appendix A. 

2We implement list C. using a B-tree, a data structure that efficiently deals with the insertion and deletion 

of nodes (32]. 
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From the description of M A*, it is clear that the most important factor in the efficiency 

of M A* is the selection of the evaluation function f 9 and function lowq. These two functions 

are used to reduce drastically the search space and to make the decoding efforts of this 

decoding algorithm adaptable to the noise level. An algorithm to calculate h9 with time 

complexity 0( qn + q log( q)) is given in Appendix B. We note that the evaluation function 

used in the original Algorithm A* [14] is a special case of function f 9 where q is equal to 1. 

If no restriction is placed on the size of list C., then the decoding algorithm based on M A* 

is an MLSD decoding algorithm even if in the computation of f 9 and low9 the algorithm 

considers the Hamming weights in a superset of HW. Simulation results have shown that 

this algorithm drastically reduces the search space; however, it becomes impractical for long 

linear block codes transmitted over channels with low SNR, since the number of nodes needed 

to be stored in list C, is still too large. Simulation results have shown that the number of nodes 

needed to be stored in list C, before an optimal path is found is considerably smaller than 

the total number of nodes stored before the algorithm terminates. Therefore, as proposed in 

[16, 13, 11, 15], we may limit the search by setting an upper bound on the size of list C, with 

small degradations in the performance of the algorithm. In our SOSD decoding algorithm 

we limit the size of list C., MB, according to the following criterion. 

If a node m needs to be stored in list C, when the size of list C, has reached a given upper 

bound MB, then we discard the node with larger f 9 value between node m and the node with 

the maximum value of function fq in list C.. 

4 New Decoding Algorithm - H* 

In this section we describe H*, a new decoding algorithm that determines the value of every 

component of a minimum-cost codeword by estimating the cost of a minimum-cost codeword 

with a fixed value at one of the first k most reliable, linearly independent bit positions. 

In H*, an upper bound U B on the cost of a minimum-cost codeword is used to determine 

the value of every component in the first k-hit positions of this codeword. This algorithm 
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constructs a lower bound on the cost of codewords whose ith. component, 0 ~ i < k, has 

a fixed value of o, o E {0, 1}. H this lower bound is greater than or equal to UB, we may 

conclude that the value of the ith. component of a minimum-cost codeword is o Ea 1. This 

process repeats until the values of the first k components of a minimum-cost codeword have 

been determined. 

Assume that c* = ( c(j, ci, ... , c:_1) is a minimum-cost codeword. Let c = (&,, c1, ... , Cn-1) 

be the closest codeword to the received vector found so far by the algorithm. Let U B be 

the cost of c. For simplicity of symbols, let 1 C {0, 1, ... , n- 1} be the set of indices t such 

that the value of the tth. component of a minimum-cost codeword has been determined, i.e., 

c; is already determined. Let I = {0, 1, ... , k- 1} -7 be the set of indices i, 0 < i < k, in 

which ci is still undetermined. For every index i E I, function lowj is defined as 

where j is a positive integer, g'(J) = E;ei(tP;- ( -1Yi)2, and hj(i) estimates the sum of the 

cost for all other undetermined components of c*. Let c.eetl E C be the seed of the decoding 

algorithm. For a positive integer j and every index i E I, function hj is defined analogously 

to the heuristic function hj described in Section 3, except that it is with respect to T"(i), 

the set of all binary n-tuple vectors tl' 

1. whose ith. component is Ci Ea 1 for some i E I, 

2. whose tth component is c; for every t E 7, 

3. that satisfy the Hamming weight constraints. 

That is, T"(i) = {v"l v" = (vg,vf, ... ,v:_1), v~' = Ci Ea 1, v;'- c; for all t E 7, and 

dH(v",c•eed) E HW}. Note that T"(i) f;. 0, since u' G is a codeword in T"(i) where u' = 
( u~, u~, ... , uL 1 ) is a binary k-tuple vector such that u~ = Ci e 1, u~ = c; for all t E 7, and 

u~ = 0 for all t E {0, 1, ... , k - 1} - { i}- 7. We also note that function hj is defined for 

every index i E I, while function hj is defined for every node in the code tree. We now give 

our new decoding algorithm H*. 
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H* decoding algorithm 

1. Let p be a positive integer. Generate a nonempty set of codewords S C C. For every 

codeword c in S, set C 1eed = c and calculate low,(m_I). Select the codeword c E S 

that maximizes low,(m_t) as the seed of the decoding algorithm. 

2. Calculate the cost for every codeword in S. Let c be the minimum-cost codeword 

among all codewords in S. Set U B to be the cost of c. Set 7 = 0. 

3. Set I= {0, 1, ... , k- 1}- 7. 

4. If I = 0, the algorithm terminates and c is the minimum-cost codeword; otherwise, 

select an index i E I. 

5. Set j = 1. 

6. Calculate lowj(i,e;). If lowj(i,C;) ~ UB, set c; = & and 7 = 7u {i}. Go to step 3. 

7. If the vector v'j used to calculate h'J(i) is not a codeword, then set j = j + 1 and go to 

step 6; otherwise, set c = v'J and U B = lowj(i, e;). 

8. If the minimum-cost codeword whose ith component is C; has been generated by the 

algorithm, then the algorithm terminates and c is the minimum-cost codeword. 

9. Let S = {v'J, c}. For each codeword c E S, set Caeed = c and calculate low,(m-t)· 

Select the codeword c E S that maximizes low,(m_1) as the seed of the decoding 

algorithm. Go to step 5. 

During the decoding process, the search space shrinks by half when the value for one 

component of the minimum-cost codeword is determined and fixed. The optimality of this 

algorithm is given in Appendix C. We note that the number of vectors needed to be generated 

before the algorithm finds a minimum-cost codeword is of order 0{2n). In our suboptimal 

version of the H* algorithm, we limit the number of vectors generated in determining the 

value of a component of a minimum-cost codeword such that the algorithm generates at most 
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p vectors in determining the value of a fixed component, where pis a fixed positive integer. 

This suboptimal H* algorithm can be incorporated with other decoding algorithms to reduce 

the search space during the decoding process and to make the decoding more efficient. 

5 Directed Search (DS) 

In this section, we describe a novel iterative procedure designed to enhance the performance 

of soft-decision decoding by searching in continuous space. This approach explores the 

search space between a given vector and the received vector and finds the codeword closest 

to the received vector in the space explored. In each iteration of the procedure, real vectors 

successively closer to the received vector are examined, simultaneously constructing the 

corresponding codewords at local minima of the cost function J~, and storing the most 

recent and closest codewords to the received vector examined so far. 

For the decoding problem that is converted into a continuous optimization problem, a 

decoding scheme that applies the simple hill-climbing or gradient-descent algorithm to solve 

the decoding problem was proposed in [6]. The obvious pitfalls of that approach are the 

large number of local minima of the function being optimized and the fact that the algorithm 

always gets trapped in the first local minimum encountered. Many optimization techniques 

such as Dynamic Hill Climbing (24], simulated annealing [21] and Tabu Search (10], which 

have been applied successfully in solving diverse optimization problems [21, 2, 9, 10, 24], 

have been used to overcome the main problem of simple hill-climbing or gradient-descent 

algorithms, and do not get trapped in local optima of the function being optimized. However, 

those algorithms are not guaranteed to find the global optima quickly, and may wander all 

around the search space. Directed Search (DS) overcomes the main problems of those 

approaches and effectively directs the search toward the received vector, which provides a 

global guidance to the search while escaping from local minima. 

When the decoding problem is transformed into a continuous optimization problem, we 

attempt to minimize the cost function J~, i.e., to find a codeword inC' that is closest to the 

received vector c/J. In DS the search is guided by two functions, f~ and dE, where f~ is the 
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cost function and dE is the Euclidean distance function. The Euclidean distance function, 

dE, is used to explore regions successively closer to the received vector, and the cost function 

h is used to guide the search for local minima in the regions explored. The procedure keeps 

an upper bound (U B) on the minimum values of h calculated so far by the procedure. Every 

time the procedure finds a new local minimum, it generates the codeword corresponding to 

this local minimum and U B is updated if necessary. 

The choice of the initial vector in every iteration may be made using the history as 

well as the information provided by the received vector and the inherent properties of the 

code, attempting to begin from a "good" part of the search space. In the main loop of the 

procedure, the search is first guided by the cost function h, and a small modification is 

repeatedly made to the current vector, (x0 , Xt, ••• , Xk-t) E Rk, to move the vector closer to 

a local minimum, thus reducing the values of the continuous optimization function h· H a 

local minimum is reached, the codeword with respect to this local minimum is generated 

and U B is updated if necessary. We note that DS will find a local minimum of the cost 

function, /q,, before this loop stops since Jq, is bounded for any linear block codes. 

In order to escape from the local minimum of Jq, and progress along the direction 

towards the received vector in R!', the search is then guided by the Euclidean distance 

function dE. The Euclidean distance between the received vector and the real vector z = 
(xo, Xt, ••• , Xk-t, ••• , Xn-t) E R!' is also calculated, where (x0 , x~, ... , Xk-t) E Rk is the vec­

tor examined and the last n- k components of z are obtained according to equation (1). A 

small modification is repeatedly made to the current vector, (x0 , x17 ••• , Xk-t) E Rk, to move 

the vector whose corresponding vector in R!' is closer to the received vector. This process 

continues until either the values of h of the vectors visited in Rk start to decrease, or no 

further improvement on the distance between the received vector and the vectors examined 

in R!' can be made. The loop continues until no improvement can be made in this iteration. 

We note that except for the last loop of the current iteration, DS will explore a new region 

in the search space before this loop stops since both dE and h are bounded for any linear 

block codes. 

A new iteration is then started with a different initial vector. The termination criterion 
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imposes an upper bound on the number of iterations. It may also depend on whether recent 

iterations have yielded any improvement in the quality of the best codeword found so far. 

We note that every local minimum of the cost function fq, defined in Section 2.2 is a vertex 

of the solid k-cube of length two centered at the origin and corresponds to a codeword in 

C'. However, a codeword in C' is an n-dimensional vector. Any algorithms working in 

k-dimensional space will have no control on the redundant n - k components of the code. 

Furthermore, the decoding complexity grows exponentially, and there is no easy way to 

guarantee that a real vector in the n-dimensional space is a codeword unless we check it. 

DS takes advantage of properties of the code and successfully works on both k-dimensional 

and n-dimensional spaces to make the search more efficient. 

6 Hybrid Decoding Algorithm 

In this section we describe a new decoding algorithm that hybridizes M A*, H*, and DS. This 

hybrid algorithm takes advantage of the strengths of these decoding algorithms and makes 

decoding more efficient than with the original MA*, H*, and DS decoding algorithms. 

When the decoding problem is converted into a problem of graph-search through a code 

tree, we are interested in finding an optimal path from the start node to a goal node in 

the code tree of the transmitted code. The corresponding codeword of an optimal path 

in the code tree is a minimum-cost codeword when the decoding problem is transformed 

into a minimum-cost problem among codewords of the transmitted code. Furthermore, as 

described in Section 2.2, the minimum-cost codeword also corresponds to a codeword inC' 

that is closest in Euclidean distance to the received vector when the decoding problem is 

transformed into a continuous optimization problem. 

The hybrid algorithm starts by finding a codeword whose cost is the initial upper bound 

U B of the decoding algorithm. A suboptimal version of the H* algorithm is then applied 

to determine the values of some components among the first k most reliable, linearly in­

dependent components of a minimum-cost codeword. For every index i E {0, 1, ... , k - 1} 

such that the value of component i of the minimum-cost codeword is still undetermined, the 
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suboptimal H* generates at most p binary n-tuple vectors in T"( i) to estimate the cost of 

a minimum-cost codeword, where pis a fixed positive integer. If some components of the 

minimum-cost codeword are determined, the code tree is pruned and the search space is 

reduced. M A* is then applied to search for an optimal path through this subtree. During 

the decoding process, when M A* finds a codeword whose cost is within a threshold d of U B, 

DS is applied to search for an even better upper bound, and the suboptimal H* is again 

applied to determine the values of more components of a minimum-cost codeword. This 

process repeats until list £, in M A* is empty or the values of the first k components of a 

minimum-cost codeword have been determined by the suboptimal H*. The hybrid decoding 

algorithm is described below' where we assume that c* = ( c;;, cr' 0 0 0 'c:-1) is a minimum-cost 

codeword in C. 

Hybrid decoding algorithm 

1. Let p and q be two positive integers and d a real number, d > 0. Generate a nonempty 

set of codewords S C C. For every codeword c E S, set Caeed = c and calculate 

low9(m_1 ). Select the codeword c E S that maximizes low9(m_t) as the initial seed of 

the decoding algorithm. 

2. For every codeword in S, calculate the cost of the corresponding path from the start 

node to a goal node in the code tree. Let c be the codeword in S that corresponds to 

the minimum-cost path P among all paths corresponding to codewords in S. Let U B 

be the cost of P. 

3. Apply DS with ((-l)q,,(-1)c1 , ... ,(-l)crc-1 ) as the initial vector. Set c to be the 

codeword returned by DS and update U B if necessary. Set list C. = 0. 

4. Set 1 = 0 to be the set that consists of all indices t such that c; have been determined. 

Let I = {0, 1, ... , k - 1} - 1 be the set of indices i, 0 ~ i < k, such that c; is still 

undetermined. Apply the suboptimal H* to determine the values of components of c*. 

For every i E /,the suboptimal H* generates at most p binary n-tuple vectors in T"(i). 
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If the values of the first k components of c• have been determined, the minimum-cost 

codeword is ( cij, ct, ... , ct_1) G, and the algorithm terminates. 

5. Apply MA* to search for an optimal path through the pruned code tree of the trans­

mitted code. 

(a) Let m be the node with least / 9 value in list C,, Assume that node m is at levels 

in the pruned code tree. Let v0, vh ... , v. be the labels of the path P m from the 

start node to node m. If there exists an index t such that Vt =/: C:, t ~ s and t E 

7, then this node can be discarded before it is expanded by M A •. 

(b) For the codewords c' and c" generated at step 6 in the algorithm of M A*, cal­

culate dE( <P, c') and dE( <P, c"). If dE( q,, c') - dE( <P, c) < A, then DS is 

applied with ( ( -1 )c:[,, ( -1 )4, ... , ( -1 )d,-t) as the initial vector and U B is up­

dated if necessary. If dE(<P, c") - dE(<P, c) ~ A, then DS is applied with 

( ( -l)C::, ( -1 )cr, ... , ( -1 )C:-t) as the initial vector, and U B is updated if neces-

sary. 

(c) If the hybrid algorithm has found a better upper bound, the suboptimal H* is 

applied again. For all i E I such that c; is determined by the suboptimal H* 

during this decoding process, 7 is set to be 7 U { i}. If 7 = {0, 1, ... , k- 1 }, then 

( cij, ci, ... , ct_1) G is the minimum-cost codeword and the algorithm terminates; 

otherwise, M A • continues to search for an optimal path in the pruned code tree 

until list C, is empty. 

We note that, during the decoding, every time the suboptimal H* determines the value 

of a component of c•, the code tree is halved. Since the suboptimal H* is invoked only when 

the algorithm finds a better upper bound, we may set p » q without substantially increasing 

the time complexity of the algorithm. We also note that the hybrid algorithm is an MLSD 

decoding algorithm if no restriction is placed on the size of list C, in M A* in step 5 of the 

hybrid algorithm. However, we may limit the search by setting an upper bound on the size 

of list C, in M A*, as described in Section 3. In this case the hybrid algorithm is an SOSD 
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decoding algorithm. Simulation results for the hybrid MLSD and SOSD decoding algorithms 

are given in the next section. 

7 Simulation Results for the AWGN Channel 

We present simulation results for our hybrid MLSD and SOSD decoding algorithms for the 

(128, 64), the (256, 131 ), and the (256, 139) binary-extended BCH codes transmitted over 

AWG N channels. As described in Section 6, if we don't limit the size of list C, in M A*, 

our hybrid algorithm is an MLSD decoding algorithm; otherwise, it is an SOSD decoding 

algorithm. We emphasize that the decoding algorithms presented in this paper are suitable 

for decoding any linear block codes. For linear block codes with length smaller than 128 and 

dimension smaller than 64, such as the (104, 52) binary-extended quadratic residue code, 

M A* achieves near-optimal to optimal performance for any signal-to-noise ratio value, as we 

have presented in our previous work (29]. 

We assume that antipodal signaling is used in the transmission so that the j'h components 

of the transmitted codeword c and received vector rare c; = ( -1Yi VE and r; = ( -1YiVE+ 
e;, respectively, where E is the signal energy per channel bit and e; is a noise sample of a 

Gaussian process with single-sided noise power No per hertz. The variance of e; is No/2 

and the SNR for the channel is "Y = E / N0 • In order to account for the redundancy in codes 

of different rates, we use the SNR per transmitted information bit "Yb = Eb/No = "Yn/k in 

our simulation. For AWGN channels, t/J = 4'tf r [19], so we can substitute r for t/J in our 

decoding algorithm. 

During the simulation we incorporate the criterion introduced in [31] to check if the 

minimum-cost codeword has been found and no further decoding is necessary. 

Since we do not know the HW for each of these codes, we use a superset for it. Even 

though we use supersets of the HW for these codes, the following simulation results show 

that our hybrid algorithms still achieve optimal or near-optimal performance. We believe our 

hybrid algorithms will be able to decode longer codes with similar performance if we have 

better knowledge concerning the weight distribution of the code, which is another interesting 

20 



topic of research. 

Since we do not know the HW for the (128, 64) binary-extended BCH code, we use a 

superset for it. We know that dmin = 22 for the (128, 64) code and that the Hamming weight 

of any codeword is divisible by 2 [22]. Thus for this code the superset used is {xl (xis even 

and 22 < x $ 106) or (x = 0) or (x = 128)}. 
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Figure 1: Comparison of the hybrid SOSD decoding algorithm with other algorithms for the (128, 64) code 

'Yb l.OdB 1.5dB 2.0dB 2.5dB 

max ave max ave max ave max ave 

N(r) 201088 108680.766 190484 92844.945 203610 65945.297 225437 41528.496 

C(r) 114661 45644.414 106641 36529.672 107812 23945.756 120457 13785.361 

M(r) 10000 8818.749 10000 7687.217 10000 5611.436 10000 3605.018 

p 256 256 128 128 

Table 1: Performance of the hybrid SOSD decoding algorithm for the (128, 64) code 

Simulation results of our hybrid SOSD decoding algorithm for the (128, 64) code for 76 = 

1.0 dB, 1.5 dB, 2.0 dB, and 2.5 dB are given in Figure 1 (Hybrid) and Table 1, where q is 
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set to be 4 and Ms = 10,000. Furthermore, we set~= 0 as our threshold to apply DS in 

our simulation. The following notations are used in the tables: 

N { r) = number of nodes visited during the decoding of r, 

C( r) = number of codewords constructed during the decoding of r, 

M( r) = number of nodes stored in list C, during the decoding of r, 

max = maximum value among samples tried, 

ave = average value among samples tried, and 

p = the maximum number of vectors generated by H* in order to fix the value of one of 

the first k components during the decoding process. 

During the decoding process, N ( r) nodes in the code tree are checked to see if they should 

be opened, expanded, or deleted by the algorithm. Even though the algorithm visits N(r) 

number of nodes, it actually stores no more than M( r) nodes and tries only C( r) codewords 

which are visited either by M A* or DS during the decoding process. 

For the (128, 64) code (Figure 1 ), the performance of our hybrid SOSD decoding algorithm 

is within 0.10 dB of the lower bound of the performance of the MLSD decoding algorithm. 

Thus, for the samples tried, limiting the size of list C, to 10,000 nodes introduced only a 

small degradation on the performance of the algorithm for the {128, 64) code. Furthermore, 

for the samples tried, the average number of codewords constructed is approximately 15 

orders of magnitude smaller than the total number of codewords, (264 ~ 1.85 x 1019), and in 

the worst case the maximum number of codewords constructed is approximately 14 orders 

of magnitude smaller than the total number of codewords. 

For comparison purposes (Figure 1 ), we also give the bit error probability of the quan­

tized received vector (Quantized) and an estimate of the performance of Chase Algorithm 2 
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(ChaseAlg2) [3]. The "Quantized" data is obtained as follows: we quantize the k most re­

liable, linearly independent components of the received vector and obtain a k-tuple, which 

is then multiplied with the generator matrix G to obtain a codeword which is returned as 

the result of the decoding process. It would be impractical to simulate Chase Algorithm 2, 

because there is no practical decoder for the (128, 64) code that corrects ten digital errors. 

The estimate of Chase Algorithm 2 was obtained as follows: for a given r, if the number of 

errors in the (n- L(dmin/2)J) most reliable positions is less than or equal to L(dmin- 1)/2J, 

then we will assume there is no decoding error, since the transmitted codeword would be 

generated in the decoding procedure of r. Otherwise, the decoder output is the quantized 

version of r. A lower bound on the bit error probability of the MLSD decoding algorithm 

(LowerBound) [5] and the bit error probability for undecoded data (Undecoded) are also 

given. 

In addition, we also give the simulation results of the A* decoding algorithm provided in 

[15] (A*) and simulation results of the "Order-3" decoding procedure provided in [7] (Order-

3). As indicated in Figure 1, the performance of our hybrid SOSD decoding algorithm 

is better than those of the Chase Algorithm 2 (ChaseAlg2), A* algorithm (A*), and the 

"Order-3" decoding procedure (Order-3). 

We note that in [15] simulation results of the A* decoding algorithm are not provided for 

2.5 dB :5 "Yb :5 4.5 dB, since the performance of the A* algorithm deteriorates substantially 

for those ranges of signal-to-noise ratio. In [7], simulation results of the error performance 

for the "Order-3" decoding procedure for this code are provided for 2.22 dB :5 "Yb :$ 3.4 7 

dB. For 3.47 dB < "Yb :::; 5.23 dB, only Union bounds on the error probability are provided. 

As pointed out in [7], the number of simulated samples are far too small to obtain reliable 

information for those ranges of signal-to-noise ratio. In (7] it is also shown that the error 

performance of the "Order-4" decoding procedure is similar to the performance of our hybrid 

SOSD algorithm for 1.55 dB :::; "Yb :5 2.5 dB; however, both the maximum and the average 

number of computations of the "Order-4" decoding procedure are enormous. For example, 

for "Yb = 2.5 dB the maximum number of computations of the "Order-4" decoding processing 

( Nmax4 in [7]) is equal to 43,464, 512, and the average number of computations of the "Order-
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4" decoding processing (NatJe4 in [7]) is approximately 106 ·5 (~ 3.16 x 106 ). Very recently 

some improvements to this decoding process were proposed to allow computation savings 

or decoding speedup with little error performance degradation (8]. However, in order to 

obtain near-optimal performance for the (128, 64) code, the modified decoding procedure 

still requires a tremendous number of computations (Nmax = 34,932, 480) [8]. 

"Yb 3dB 4 dB 5 dB 6dB 7dB 8 dB 

max ave max ave max ave max ave max ave max ave 

N(r) 206961 19725.561 155333 1697.749 123027 38.377 2081 0.796 379 0.047 0 0.000 

C(r) 167235 6046.271 77230 412.087 43504 8.873 133 1.439 57 1.190 2 1.123 

M(r) 10000 1727.780 10000 150.837 10000 4.796 380 0.211 50 0.010 0 0.000 

p 64 32 8 4 4 4 

Table 2: Performance of the hybrid SOSD decoding algorithms for the (128,64} code 

Simulation results of our hybrid SOSD decoding algorithm for the (128, 64) code for "'(b 

equal to 3.0 dB, 4.0 dB, 5.0 dB, 6.0 dB, 7.0 dB, and 8.0 dB are given in Table 2. These 

results were obtained by simulating 35, 000 samples for each SNR when q is set to be 4 and 

MB is set to be 10,000. Furthermore, we set Ll equal to 20 as our threshold to apply DS in 

our simulation for "Yb equal to 3 dB. Among the 35, 000 samples tried we found one sample 

such that the decoded codeword is closer to the received vector than to the transmitted 

codeword. No other decoding error occurred during simulation. For the other cases, i.e., 4.0 

dB ::; "Yb ::; 8.0 dB, we set Ll = 0 as our threshold to apply DS. No decoding error occurred 

during simulation for these cases. 

We note that for the (128, 64) code with "Yb ~ 6 dB the memory bound MB is never 

reached for the samples tried. In this case the performance of our hybrid algorithm is the 

same as that of the MLSD decoding algorithm. 

Since we do not know the HW for the (256, 131) binary-extended BCH code, we use a 

superset for it. We know that dmin = 38 and that the Hamming weight of any codeword is 

divisible by 2. Thus for this code the superset used is {xl (xis divisible by 2 and 38 ::; x ::; 

218), or (x = 0), or (x = 256)}. 
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lb 5 dB 6 dB 7 dB 8 dB 

max ave max ave max ave max ave 

N(r) 351717 274.215 4786 4.743 1750 0.407 0 0 

C(r) 105828 40.764 197 1.992 119 1.251 3 1.115 

M(r) 15000 37.353 2765 2.320 625 0.093 0 0 

p 16 8 8 8 

Table 3: Performance of the hybrid SOSD decoding algorithms for the (256, 131) code 

The simulation results of our hybrid SOSD decoding algorithm for the (256, 131) code 

for lb equal to 5.0 dB, 6.0 dB, 7.0 dB, and 8.0 dB are given in Table 3, where q is set to be 

8 and MB is set to be 15,000. Furthermore, we set Ll = 0 as our threshold to apply DS in 

our simulation. These results were obtained by simulating 35,000 samples for each SNR. No 

decoding error occurred during simulation. 

We note that simulation results show that for lb;::: 6 dB the memory bound MB is never 

reached for the samples tried. In this case the performance of our hybrid algorithm is the 

same as that of the MLSD decoding algorithm. Both the maximum number of codewords 

and the average number of codewords constructed by our hybrid decoding algorithm are 

insignificant compared with the total number of codewords, (2131 ~ 2. 72 x 1039). 

In order to compare our hybrid MLSD decoding algorithm with the MLSD decoder 

presented in (20), we also simulate our hybrid MLSD decoding algorithm for the (256, 139) 

binary-extended BCH code. Since we do not know the HW for the (256, 139), we use a 

superset for it. We know that dmin = 32 and that the Hamming weight of any codeword is 

divisible by 2. Thus for this code the superset used is {xI ( x is divisible by 2 and 32 ~ x ~ 

224), or (x = 0), or (x = 256)}. 
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"'(b 5.5 dB 6.0 dB 6.5 dB 7.0 dB 

max ave max ave max ave max ave 

N(r) 57635 19.644 4699 3.342 2763 0.892 1238 0.154 

C(r) 4570 3.384 195 1.827 149 1.402 99 1.228 

M(r) 5436 6.772 3016 1.549 998 0.257 153 0.037 

p 16 16 8 8 

Table 4: Performance of the hybrid MLSD decoding algorithm for the (256, 139) code 

The simulation results of our hybrid MLSD decoding algorithm for the (256, 139) code 

for "'(b equal to 5.5 dB, 6.0 dB, 6.5 dB, and 7.0 dB are given in Table 4, where q is set to 

be 8. These results were obtained by simulating 35,000 samples for each SNR. No decoding 

error occurred during simulation. Furthermore, for the examples tried, both the maximum 

number of codewords and the average number of codewords constructed by our hybrid MLSD 

decoding algorithm are insignificant compared with the total number of codewords, (2139 ~ 

6.97 X 1042 ). 

Table 4 attests to the fact that the complexity of our hybrid MLSD decoding algorithm 

is much less than that of the MLSD decoder presented in [20). For example, for "'(b equal to 

5.5 dB the maximum number of codewords tried in [20] is 2,097, 152, while the maximum 

number of codewords tried in our hybrid MLSD decoder is only 4, 570, which is about 

three orders of magnitude better in maximum decoding complexity; the average number of 

codewords tried in [20) is 76.21, while the average number of codewords tried in our hybrid 

MLSD decoding algorithm is only 3.384, which is approximately 20 times better in average 

decoding complexity. Furthermore, as shown in Table 4, the memory requirement of our 

hybrid MLSD decoding algorithm is small for the (256, 139) code for "'(b greater than or 

equal to 5.5 dB. 
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8 Conclusion 

We have proposed three decoding techniques and a hybrid of these techniques. M A* is a 

graph-search algorithm that originates from A* in Artificial Intelligence (18, 26]. Simulation 

results have shown that M A* is very efficient and has near-optimal to optimal performance 

for codes of short-to-moderate lengths [28], but becomes impracticalfor codes oflong lengths 

transmitted over channels with low SNR, since the memory requirement is large. H* is a new 

algorithm that is very flexible and can be incorporated with other techniques to reduce the 

search space during the decoding process. For example, simulation results for the {128,64) 

code transmitted over channels with /b ~ 6 dB show that all the values of the first k 

components of a minimum-cost codeword are determined by H* with p equal to 4 for the 

35000 samples tried during the decoding process, and the search space is reduced to the 

minimum, i.e. from 264 to 264- 64 = 1. However, for long codes transmitted over channels 

with low SNR, the number of vectors generated to fix the value of a component of the 

minimum-cost codeword grows exponentially. 

DS is a novel heuristic approach that explores the search space between a given vector 

and the received vector. It directs the search toward the received vector while escaping from 

a local minimum. In DS the search is guided by global information provided by the received 

vector. The beauty of this approach is that it takes advantage of properties of the code and 

successfully works on both k-dimensional and n-dimensional spaces and efficiently finds the 

best solution in the space between a real vector and the received vector. Furthermore, DS 

requires no memory. It is simple to implement and can be incorporated with other decoding 

algorithms. 

The hybrid algorithm takes advantage of the strengths of these three algorithms and 

makes the decoding more efficient. The strength of H* can overcome the weakness of MA*, 

and vice versa. For codes of long lengths transmitted over low SNR, the memory requirement 

of M A* is impractical, while the memory requirement of H* is small. Furthermore, the 

number of vectors that must be generated before H* can fix the value of a component of the 

minimum-cost codeword depends on how close the upper bound is to the received vector, and 

27 



MA* gives this upper bound during decoding process. H* works well with MA*, since the 

tendency of M A* is to find successfully better upper bounds during the decoding process. 

DS is applied to obtain an even better upper bound when MA* explores a new region in 

the search space. It efficiently finds the closest codeword to the received vector in the region 

between the received vector and a codeword obtained by M A*. Simulation results show that 

this hybrid algorithm can efficiently decode the (128, 64) binary-extended BCH code for 

any signal-to-noise ratio value and has near-optimal to optimal performance. Previously, no 

practical decoder could have decoded this code with such a performance for all these ranges 

of signal-to-noise ratio. We ca.n also decode very efficiently the (256, 131) and the (256, 139) 

binary-extended BCH codes for signal-to-noise ratio ( 'YII) greater than or equal to 5 dB. We 

emphasize that for most practical communication systems the probability of error is less 

than 10-3 (1', greater than 6.8 dB). 

We would like to emphasize here the flexibility of this decoding algorithm. For example, 

(1) it is applicable to any linear block code; (2) it does not require the availability of a 

hard decision decoder; (3) in order to make it more efficient to decode a particular code, 

we can design heuristic functions that take advantage of the specific properties of this code; 

(4) any termination criterion can be easily incorporated into it. For example, the criterion 

proposed in [31] can be incorporated to determine the termination condition of our decoding 

algorithm. 

In addition, we would like to point out that the algorithms presented in this paper 

are suitable for parallel implementations. M A* can be parallelized analogously to Algo­

rithm A*, in which a very good speed-up was obtained [11]. H* can be parallelized easily, 

since the heuristic functions for the k most reliable, linearly independent components of a 

minimum-cost codeword can be calculated simultaneously and independently. DS can also 

be parallelized, since the generation of real vectors. reachable from a current vector ca.n be 

implemented independently. This will substantially reduce the idle time of processors and 

the overhead due to processor communication; thus we expect a very good speed up from a 

parallel version of our hybrid algorithm. 

Note that we used only one seed for computing the heuristic functions h9 , h~, and h;. 
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However, we can generalize the procedure to calculate function h with respect to several 

seeds. Details of this approach can be found in [12]. 

We note that even though the heuristic functions we use in M A* and H* depend on 

the weight distribution of the code, which may remain unknown, our hybrid algorithm still 

achieves optimal or near-optimal performance when we use supersets of the HW for the 

codes with length less than or equal to 256. We believe our hybrid algorithm will be able 

to decode longer codes with similar performance if we have better knowledge concerning the 

weight distribution of the code, which is another interesting topic of research. Furthermore, 

the performance of the H* algorithm depends on the heuristic functions and the quality of 

U Bs obtained during the decoding process. In this paper we have focused on the design of 

algorithms. The performance analysis of the H* algorithm remains to be studied. 

We also note that DS is a heuristic approach. In future work, we plan to work out a 

general theory of the approach, and examine its complexity and performance. 

Another important line of research could be to investigate the use of other optimization 

techniques to design efficient SOSD decoding algorithms for long block codes. Optimization 

techniques such as simulated annealing [21], Tabu Search [10], and genetic algorithms [23] 

have been used with great success in important practical applications. These optimization 

techniques may be modified to take into consideration the properties of linear block codes 

and applied to the design of efficient SOSD decoding algorithms for long block codes. 
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Appendices 

Appendix A- The Optimality of MA* 

In this appendix we show the optimality of M A* and a corollary used in the design of the 

algorithm. Theorem 1 guarantees that M A* still finds an optimal path if it discards those 

nodes whose values of lowq are greater than or equal to U B. Corollary 1 shows that if a 

node is discarded according to Theorem 1, then the optimal path that goes through this 

node must have a cost greater than or equal to U B. Therefore, Corollary 2 shows that 

from the start node to a goal node along a path in the code tree, the values of the lowq 

are monotonically non-decreasing, i.e., if m. is an immediate successor of node ms-b then 

lowq(m8 _t) ::5 lowq(m8 ). It follows that if a node is discarded according to Theorem 1, then 

all successors of this node must have values of lowq greater than or equal to U B and can 

be discarded. Note that Theorem 1 and Corollary 2 are used in the design of our decoding 

algorithm to reduce the size of list C. In order to show the proofs of the theorem and 

corollaries, we first give the following lemmas. Corollary 2 follows directly from Lemma 4. 

The proofs of Theorem 1 and Corollary 1 are also given in this appendix. 

Lemma 1 

Let m be a node in the code tree. For any two positive integers i and j, if i < j, then 

hHm) :::; hj(m). 

Proof of Lemma 1: 

Let vH m) E Tf ( m) be the vector used to calculate hi( m) and let vj ( m) E TJ ( m) be the 

vector used to calculate hj(m). According to the definitions of hHm) and hj(m), since i < j, 

it follows that Tf(m) :::> TJ(m), which implies that hi(m) ~ hj(m). 

Lemma 2 

For a positive integer q and for any node m in the code tree, 

h~(m) ~ h*(m), 

where h*(m) is the actual cost of a minimum-cost path from node m to a goal node. 
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Proof of Lemma 2: 

We prove by contradiction that h~(m) $ h*(m). Let m be a node at level l and let 

Uo, U1, ••• , Ut be the labels of the path P m from the start node to node m. Let c = 
{eo, c1, ... , Cn-1) be the codeword that corresponds to the labels of the minimum-cost path 

from the start node to a goal node that goes through node m, i.e., c E C and eo = 

Uo, c1 = U11 ... , c1 = u,. Then, c E T'(m) and h*{m) = Ej;J {c/>;- ( -1Yi)2 • Assume 

that h~{m) > h*(m). Let's consider two cases, namely q = 1 and q > 1. 

1. Case 1: q = 1. According to the definition of h~(m), if q = 1, then hi(m) = minv'eT{(m) 

{ Ej;J (¢;- {-1r'i) 2
} > h*(m) = Ej;J (4>;- {-1Yi)2 which is a contradiction that 

c E T{(m); 

2. Case 2: q > 1. If q > 1, then according to the definition of h~(m) it follows from the 

assumption that h~(m) > h*(m) and from Lemma 1 that there exists a positive integer 

i, 1 $ i < q such that hHm) = h*(m). Since the vector used to calculate hHm) is 

the codeword c, by the definition of h~(m), h~(m) = hHm) = h*(m), which is also a 

contradiction to the assumption that h~{m) > h*(m). 

Lemma 3 

For a positive integer q, function h9 is monotonic [26], i.e., for any integers, 0 $ s < n, 

if node m, at level s is an immediate successor of node m,_1 in the code tree, then 

(2) 

where c(ms-1! m,) is the arc cost between node m,_1 and node m,. 

Proof of Lemma 3: 

Let Uo, U1, ... , Va-l be the labels of the path P m._1 from the start node to node m8 _ 1. Let C8 

be the label of the arc from node m 8 _ 1 to node m,. Then c(ms-1! m 8 ) = (c/>,- ( -l)c•)2 • We 

will prove that h9(ms-d $ c(ms-b m 8 ) + h9(m8 ) by considering the following three cases: 
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1. 0 ~ s < k -1: 

Let v9 = (v0 , v., ... , Va-h c., ... , Vq(n-1)) E T9(m.) be the vector that satisfies 

2. s = k -1: 

Since h9(m._!) ~ h*(ma-1) and h9(m.) = h*(m.), it follows that h9(ma-1) < h*(ma-1) 

~ c(m._1, m.) + h*(m.) = c(m._., m.) + h9(m.). 

3. k -1 < s < n: 

Since h9(m._1 ) = h*(m._1 ) and h9(m.) = h*(m.), it follows that h9(m._1 ) = h*(m._I) 

~ c(m._., m.) + h*(m.) = c(ma-h m.) + h9(m.). 

Lemma4 

For a positive integer q, function h~ is also monotonic, i.e., for any integers, 0 ~ s < n, 

if node m. at level s is an immediate successor of node ma-l in the code tree, then 

(3) 

where c(ma-h m.) is the arc cost between node ma-l and node m •. 

Proof of Lemma 4: 

Let V'o, V'1,. •• , Va-l be the labels of the path Pm._1 from the start node to node ma-l· Let 

c. be the label of the arc from node ms-1 to node m •. Then, c(ma-t,m.) = (<P.- (-1Y•)2 • 

According to the definitions of SH(m._I) and SH(m.), we have SH(m._1 ~ SH(m.). The 

proof that h~(m._1 ) ~ c(m._.,m.) + h~(m.) when SH(m._t) = SH(m.) is similar to that of 

Lemma3. We now prove that h~{m._t) ~ c(ms-hm.)+h~(ms) when SH(m6 )-SH(m._t) f:. 
0. Without loss of generality, we may assume that h1 is the only parity check in SH(m.)-
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SH(m,_t). Let v~ = {Uo, Ut, ... 'u,_t, c, v~(•+l)' ••. 'v~(n-1)) E r:(m,) be the vector that sat­

isfies that 

'E ((h- < -l)"~j ) 2 = ,mJn { 'E (<Pj- < -t)"ir}; 
j=s+l V eT9 (m,) j=s+l 

then v~(A:+t) = (vohto EB U1h11 EB ... EB v',-tht(s-1) EB c,h,,). Since v~ = {Uo, u~, ... , U,-1, c,, 

v~(•+l)' •.. 'v~(A:+l)! ... ' v~(n-1)) is also in r:(m,-1), it follows that 

Theorem 1 

Let P be a path from the start node to a goal node found by M A*. Let U B be the cost 

of P. M A* still finds an optimal path if it discards from the code tree any node m for which 

low9(m) ~ U B. 

Proof of Theorem 1: 

Let P* = ( m_t, m 0, ... , mi, ... , ... , m:_1) be an optimal path. Let mi be the first node in 

path P* that is in list C,. According to Lemma 1, 

low9 (mi) = g(mi) + h~(mi) ~ g(mi) + h*(mi) = f*(mi), 

where f*(mi) = f*(m:_ 1) is the cost of the optimal path. It follows that 

Therefore, if low9(mi) < U B, node m; will not be discarded; otherwise, if low9(mi) = U B, 

then the algorithm has already found an optimal path and node mi can be discarded. 

Corollary 1 

Let m be a node in the code tree. For any positive integer q, if low9(m) ~ U B, then the 

cost of the optimal path that goes through node m is greater than or equal to U B. 
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Proof of Corollary 1: 

Let f*(m) = g*(m) + h*(m) be the actual cost of the optimal path that goes through 

node m, where g*(m) is the actual cost of the path from the start node to node m and 

h*(m) is the actual cost of the optimal path from node m to a goal node. Assume that 

lowq(m) ~ U B. This theorem follows directly from Lemma 2 and the definition of lowq since 

f*(m) = g*(m) + h*(m) = g(m) + h*(m) ~ g(m) + h'(m) = lowq(m) ~ UB. 

Corollary 2 

For a positive integer q, if mi is an immediate successor of a node mi-t in the code tree, 

Proof of Corollary 2: 

According to Lemma 4, h~(m,_1 ) ::5 c(m,_., m,) + h~(m,). It follows that lowq(m,_t) = 
g(m,_t) + h~(m,_t) ::5 g(m,_t) + c(m,_1 , m,) + h~(m,) ::5 g(m,) + h~(m,) = lowq(m,). 
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Appendix B- Algorithm for the Calculation of Function hq(m) 

In this appendix we give an algorithm for the calculation of heuristic function h9 • The 

complexity of this algorithm is 0( qn + q log( q)). In the algorithm we assume that l/J' = 
( 4>~, 4>~, ... , 4>~_ 1 ) is the received vector, which is sorted in nondecreasing order, i.e., 4>j1 $; 4>j2 

if j 1 < j 2 • Let HW = { wdO $; i $; J} be the set of all J + 1 distinct Hamming weights that 

codewords of C may have. Assume that w is the Hamming weight of the quantized received 

vector. Let HEAP be a binary tree such that each node in HEAP stores a vector in {0, 1 }n 

and the vector stored in each node of HEAP is closer to l/J' than any of the vectors stored 

in its children. In this algorithm, "l" represents a string of 1s whose length is greater than 

or equal to 0, i.e., (l) = ()or (1, 1, ... , 1). Analogously, (0) = ()or (0, 0, ... , 0). 

1. Set HEAP = 0 and j = 0. 0(1) 

2. Let Wt E HW be the largest Hamming weight smaller than or equal to w and let 

Wt+t E HW be the smallest Hamming weight greater than w. Assume that v = 
(1, 1, ... , 1, 0, ... , 0) E {0, 1 }n is the vector with Hamming weight Wt and v' = (1, 1, 

... , 1,0, ... ,0) E {0,1}n is the vector with Hamming weight Wt+t· If dE(lfJ', v) $; 

dE(c/>', v'), then the closest vector to c/J' in {0, 1}n that satisfies the Hamming weight 

constraint is v; otherwise, v' is the closest vector to l/J' in {0, 1 }n that satisfies the 

Hamming weight constraint. Without loss of generality, we may assume that v is the 

closest vector to 4>' that satisfies the Hamming weight constraint. Set v to be the first 

vector in group 1 with weight Wt, i.e., p 1(1, Wt) = v. Put p 1(1, Wt) into HEAP. Let n9 

be the number of groups that have been created. Set n9 = 1. 2 x O(n). 

3. Heapify all vectors in HEAP such that the vector stored in the root of HEAP is the 

closest vector to 4>' among all vectors stored in HEAP. Let p0 ({3, w,) be the vector 

stored in root of HEAP. Set j = j + 1. O(log(q)) 

4. Pa(/3, w) is the jfh closest vector to 4J' that satisfies the Hamming weight constraint. 

If j = q, the closest q vectors to 4>' that satisfy the Hamming weight constraint have 
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been generated and the algorithm terminates; otherwise, set v = ( v0 , v~, ... , Vn-d to 

be Pa(/3, wi)· O(n) 

5. If a> 1, go to step 7. 0(1) 

6. If Wi-1 E HW, set n9 = n9 + 1 and generate the first vector of group n9 that is the 

closest vector to l/J' with weight w,_1 • Put p 1(n9 , w,) into HEAP. If Wi+l E HW, set 

n9 = n9 + 1 and generate the first vector of group n9 that is the closest vector to </>' 

with weight Wi+I· Put p 1(n9 , Wi) into HEAP. 2 x O(n) 

7. If Pa(/3, Wi) = ( ... '0, 0, r, 1), then delete Pa(/3, Wi) from HEAP and go to step 3. 0(1) 

8. If Pa(/3, w,) = ( ... ' 1, o,f, 1), then set Pa(/3, Wi) = ( ... '0, 1,1, 1). Set a = a+ 1. Put 

Pa(/3, wi) into HEAP and go to step 3. 0(1) 

9. Let v., be the last component of Pa(/3, w,) whose value is 1, i.e., v. = 1 and v•+l = V4 +2 

=, • • ., = Vn-1 = 0. O(n) 

10. Shift the last 1 in Pa{/3, Wi) right to generate the next vector, Pa+1(/3, wi), i.e., set 

(v.,,v.,+I) = {0,1) and a= a+ 1. Put Pa(f3,w,) into HEAP. 0{1) 

11. If Pa(f3,wi) is equal to( ... , 1, 0, f, 0, 1, 0, 0), then create a new group such that the 

vector( ... , 0, 1, r, 1, 0, 0, 0) is the first vector in this group, i.e., set ng = ng + 1 and 

P1(ng, Wi) = ( ... , 0, 1, r, 1, 0, 0, 0). Put Pt(ng, Wi) into HEAP. Go to step 3. 0(1) 

The complexity of the algorithm is O(qn + qlog(q)). 
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Appendix C - The Optimality of H* 

In this appendix we show the optimality of the H* algorithm. Let c = (~, Ct, ... , Cn-t) he 

the codeword whose cost is the upper hound U B and assume that c* = ( ~' cr, ... , c:_1 ) is a 

minimum-cost codeword. Let 7 he the set that contains all indices t E {0, 1, ... , n -1} such 

that the value of the tth component of a minimum-cost codeword has been determined, i.e., 

c; is already determined. Let I = { 0, 1, ... , k- 1} -7 he the set of indices i in which cf is still 

undetermined. For an index i E I, Theorem 2 guarantees that H* will find a minimum-cost 

codeword whose ith component is <;Eel. If the cost ofthis minimum-cost codeword is less than 

U B, the algorithm has found a codeword whose cost is less than U B and U B is updated; 

otherwise, the value of the ith component of a minimum-cost codeword could he determined. 

Theorem 3 guarantees that if lowj(i, q) :2: U B, then the ith component of the minimum-cost 

codeword is C;. These two theorems guarantee that H* will find a minimum-cost codeword 

before it terminates. In order to show the proofs of these two theorems, we first give the 

following lemma. 

Lemma 5 

For an index i E I and any positive integers j 1 and j 2, if j 1 < j 2, then h'J1 ( i) ~ h'J2 ( i) and 

lowj1 ( i, C;) ~ lowj2 ( i, q). 

Proof of Lemma 5: 

Let v'j1 = {v~ 0,v~ 1 , ••• ,v~(n-1)) he the vector used to calculate h'J1{i) and let v'j2 = (v%0, 

v% 1 , ••• , v%(n-l)) he the vector used to calculate h'J2 (i). Sincej1 < j2, we have TJ:(i) 2 TJ;(i). 

It follows from the definition of h'J1 ( i) and h'J2 ( i) that 

Furthermore, lowj1 (i, <;) = g(I) + h'J1 (i) ~ g(I) + h'j2 (i) = lowj2 (i, 'Ci). 

Theorem 2 

For an index i E I, there exists a positive integer j such that the vector v'j E Tj'(i) used 

to calculate h'J( i) is a minimum-cost codeword whose ith component is C; EB 1 and whose tth 
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components are C: for all t E 7. 

Proof of Theorem 2: 

Suppose that for every positive integer j, the vector vJ = (vj0,vj1, ... ,vj(n-l)) E TJ'(i) used 

to calculate hj(i) is not a codeword. Let j 1 < j 2 be two positive integers. Let vj1 be 

the vector used to calculate hJ1 (i) and "h be the vector used to calculate h'h(i). Then 

TJ:(i) ::> Tb(i) and TJ:(i) ::/: Tb(i), which implies that vj1 ::/: vj,. Furthermore, T"(i) is a 

finite set of n-tuple vectors and u' G is a codeword in T"(i), where u' = (u~, u~, ... , u~_1 ) 

is a binary k-tuple vector such that u~ = 'Ci EB 1, u~ = C: for all t E 7, and u~ = 0 for all s E 

{0, 1, ... , k -1}- { i}- 7. It follows that there exists a positive integer j such that the vector 

vJ = (vj0 , vj1, ... , vj(n-t)) E TJ'(i) used to calculate hj(i) is equal to u' G E T"(i), which 

is a contradiction to the assumption. Therefore, there exists some integer j such that the 

vector vJ E TJ'(i) used to calculate hj(i) is a codeword. Let j be the smallest positive integer 

such that the vector vJ used to calculate hj(i) is a codeword. We now prove that vJ(i) is a 

minimum-cost codeword whose i'" component is 'Ci EB 1. If j = 1, then according to Lemma 5, 

v; is a minimum-cost codeword to the received vector in TJ'(i). If j > 1, assume there 

exists another positive integer j', 0 < j' < j such that the vector vj, = (v;'o, Vj'h ••• , Vj'(n-d 

E TJ:(i) used to calculate hj,(i) is also a codeword. According to the definition of hj,(i), 

TJ'(i) = TJ:(i), which implies that vJ = vj, and hj(i) = hj,(i). It follows from Lemma 5 that 

vj(i) is a minimum-cost codeword whose i'" component is 'Ci e 1. 

Theorem 3 

For any i E I, if there exists some positive integer j such that lowj(i,Cj) ~ UB, then 

c; = q. 

Proof of Theorem 3: 

For any i E I, let j be the smallest positive integer such that lowj(i,q) ~ UB. According 

to Theorem 2, there exists some positive integer t such that the vector"~ E r:'(i) used to 

calculate h~( i) is the minimum-cost codeword whose ith component is ~ ffi 1 and whose zth. 
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component is cj for every l E 7. According to the definition of h~(i), h~Hi) = h~(i) for all 

positive integer t' ~ t. It follows from Lemma 5 that t ~ j and lowHi, 'Ci) ~ lowj(i, 'Ci) ~ U B. 

Since low:(i, C;) is the cost of the minimum-cost codeword whose ith component is 'Ci EB 1, any 

codeword whose ith component is~ EB 1 must have a cost greater than or equal to low~(i, ~) 

(which is greater than or equal to U B). Therefore, either cis a. minimum-cost codeword or 

the value of the ith component of a. minimum-cost codeword cannot be 'Ci EB 1. It follows that 

ct =~. 
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