
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

7-1996

Efficient Heuristic Search Algorithms for Soft-Decision Decoding Efficient Heuristic Search Algorithms for Soft-Decision Decoding

of Linear Block Codes of Linear Block Codes

Ching-Cheng Shih
Syracuse University

C. R. Wulff

Carlos R.P. Hartmann
Syracuse University, chartman@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shih, Ching-Cheng; Wulff, C. R.; Hartmann, Carlos R.P.; and Mohan, Chilukuri K., "Efficient Heuristic Search
Algorithms for Soft-Decision Decoding of Linear Block Codes" (1996). Electrical Engineering and
Computer Science - Technical Reports. 147.
https://surface.syr.edu/eecs_techreports/147

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/147?utm_source=surface.syr.edu%2Feecs_techreports%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CI8-96-3

EfBcient Heuristic Search
Algorithms for Soft-Decision Decoding

of Linear Block Codes

C.-C. Shih, C. R. Wulff,
C. R. P. Hartmann, and C. K. Mohan

July 1996

School of Computer and Information Science
Syracuse University

Suite !l-120, Center for Science and Technology
Syracuse, New York 13244-4100

Efficient Heuristic Search Algorithms for Soft-Decision
Decoding of Linear Block Codes1

Ching-Cheng Shih

Christopher R. Wulff

Carlos R. P. Hartmann

Chilukuri K. Mohan

School of Computer and Information Science

Syracuse University, Syracuse, NY 13244-4100, USA

Email: ccshih/crwulff/hartmann/mohan@top.cis.syr.edu

Telephone: (315) 443-2368

Fax: (315) 443-1122

1This work was partially supported by the National Science Foundation under Grant NCR-9205422.

Abstract

This paper deals with maximum-likelihood soft-decision decoding as well as suboptimal soft­

decision decoding of linear block codes. In this paper we present a novel and efficient

hybrid decoding algorithm for (n, k) linear block codes. This algorithm consists of three new

decoding algorithms: M A*, H*, and Directed Search. It hybridizes these three algorithms to

take advantage of their strengths and make the decoding more efficient. The first algorithm,

MA*, is a modified Algorithm A* that conducts a heuristic search through a code tree of

the transmitted code when the decoding problem is transformed into a problem of graph­

search through a code tree. M A* takes into consideration more properties of the code and is

considerably more efficient than the original A* algorithm presented by Han, Hartmann, and

Chen. The second algorithm, H*, is a new decoding algorithm that determines the value of

every component of a minimum-cost codeword by estimating the cost of the minimum-cost

codeword, which has a fixed value at one of the k most reliable, linearly independent bit

positions when the decoding problem is transformed into a minimum-cost problem among

all codewords of the transmitted code. The suboptimal version of this algorithm can be

incorporated with other decoding algorithms to reduce the search space during the decoding

process. The third algorithm, Directed Search, is a novel heuristic approach designed to

enhance the performance of soft-decision decoding by searching in continuous space. This

approach explores the search space between a given vector and the received vector and finds

the closest codeword to the received vector in the space explored. Simulation results for this

hybrid algorithm are presented for the {128, 64), the (256, 131), and the (256, 139) binary­

extended BCH codes. This hybrid algorithm can efficiently decode the {128, 64) code for any

signal-to-noise ratio and has near-optimal to optimal performance. Previously, no practical

decoder could have decoded this code with such a performance for all ranges of signal-to-noise

ratio.

Index terms: block codes, soft-decision, decoding, code tree, graph-search, BCH code

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Decoding as a Discrete Optimization Problem 4

2.2 Decoding as a Continuous Optimization Problem 5

3 Modified Algorithm A* (MA*) 6

4 New Decoding Algorithm- H* 12

5 Directed Search (DS) 15

6 Hybrid Decoding Algorithm 17

7 Simulation Results for the AWGN Channel 20

8 Conclusion 27

lll

1 Introduction

The use of block codes is a well-known error-control technique for reliable transmission of

digital information over noisy communication channels. Linear block codes with good coding

gains have been known for many years; however, these block codes have not been used in

practice due to the unavailability of an efficient soft-decision decoding algorithm.

This paper deals with maximum-likelihood soft-decision (MLSD) decoding as well as

suboptimal soft-decision (SOSD)_ decoding of linear block codes. By maximum-likelihood

decoding (MLD), we mean the minimization of the probability of decoding to an incorrect

codeword when all codewords have equal probability of being transmitted. By soft-decision

we mean the use of real numbers (e.g., the analog output of filters matched to signals)

associated with every component of the codeword in the decoding procedure. Soft-decision

decoding can provide about 2 dB of additional coding gain when compared with hard-decision

decoding [4].

Several researchers [1, 34, 30] have presented techniques for decoding linear block codes

that convert the decoding problem into a problem of graph-search on a trellis derived from

the parity-check matrix of the code. Thus the MLD rule can be implemented by applying the

Viterbi Algorithm [33] to this trellis. In practice, however, this breadth-first search scheme

can be applied only to codes with small redundancy or to codes with a small number of

codewords (25].

The decoding problem has been converted into a problem of search through a code tree

for an equivalent code of the transmitted code [14]. In [28, 29, 7, 20, 13, 17, 11, 14] several

decoding algorithms for linear block codes were proposed. These algorithms are efficient

for codes of short-to-moderate lengths, but become impractical for codes of long lengths

transmitted over channels with low SNR; so we still lack an efficient decoding algorithm

for long linear block codes. The use of long block codes in the design of communication

channels is important because with noise averaging we expect codes of greater lengths to be

more "effective" than codes of shorter lengths [4, Sec. 1.1].

In this paper we present a novel and efficient hybrid decoding algorithm for linear block

1

codes. This algorithm consists of three new decoding algorithms: M A*, H*, and Directed

Search. It hybridizes M A*, H*, and Directed Search to take advantage of their strengths

and make decoding more efficient. The first algorithm, MA*, is a modified Algorithm A*

which searches through a code tree of the transmitted code when the decoding problem is

converted into a problem of graph-search through a code tree. M A* takes into consideration

more properties of the code and is considerably more efficient than the original A* algorithm

[14). The second algorithm, H*, is a new decoding algorithm which determines the value of

every component of a minimum-cost codeword by estimating the cost of the minimum-cost

codeword, which has a fixed value at one of the first k most reliable, linearly independent bit

positions when the decoding algorithm is transformed into a minimum-cost problem among

all codewords of the transmitted code. The suboptimal version of this algorithm can be

incorporated with other decoding algorithms to reduce the search space during the decoding

process. The third algorithm, Directed Search, is a novel iterative procedure designed to

enhance the performance of soft-decision decoding by searching in continuous space. This

approach explores the search space between a given vector and the received vector and finds

the closest codeword to the received vector in the space explored. In each iteration of the

procedure, real vectors successively closer to the received vector are examined, simultaneously

constructing the corresponding codewords at local minima of the cost function, and storing

the most recent and closest codewords to the received vector examined so far. When the

decoding problem is converted into a continuous optimization problem, Directed Search

overcomes the main problems of simple hill-climbing and gradient-descent algorithms [6), as

well as those of simulated annealing [21] and Tabu Search [10], and directs the search toward

the received vector while escaping from a local minimum. This approach takes advantage of

the properties of the code and successfully works on both k-dimensional and n-dimensional

spaces to make the search more efficient.

We emphasize that the decoding algorithms presented in this paper are suitable for

decoding any linear block codes. We present simulation results for the codes with length

equal to 128 or 256. For linear block codes with length smaller than 128 and dimension

smaller than 64, such as the (104, 52) binary-extended quadratic residue code, M A* achieves

2

near-optimal to optimal performance for any signal-to-noise ratio value as we have presented

in our previous work (29].

In Section 2 we review maximum-likelihood decoding of linear block codes. The trans­

formations of the decoding problem into a problem of graph-search, as well as a continuous

optimization problem, are also presented in this section. M A* is described in Section 3, H* is

described in Section 4, and Directed Search is presented in Section 5. The hybrid algorithm

is presented in Section 6. Simulation results of this hybrid algorithm for the (128, 64), the

(256, 131), and the (256, 139) binary extended BCH codes are given in Section 7. Concluding

remarks are presented in Section 8.

2 Preliminaries

Let C be a binary (n, k) linear code with generator matrix G, and let c =(eo, c17 ••• , Cn-t) be

a codeword of C transmitted over a time-discrete, memoryless channel with output alphabet

B. Furthermore, let r = (To, Tt, ... , Tn-t), Tj E B denote the received vector, and assume

that Pr(r;ICi) > 0 for Tj E Band Ci E GF(2). The MLSD decoding rule for a time-discrete,

memoryless channel can be formulated as [19]: given a received vector r =(To, Tt, ... , Tn-t),

find a codeword c = (eo, Ct, ••• , Cn-t) E C that minimizes Ej,:-J (</>; - (-1 y;)2 , where </>; =

In ~~~:;:~~ . We may therefore consider that the "received vector" is cfJ = (</Jo, cPh ... , cPn-1)·
Furthermore, the MLSD decoding problem is equivalent to the minimum distance problem if

we define the distance between cfJ and a codeword c E C as the Euclidean distance between

cP and the binary n-tuple vector ((-l)co,(-1Y1 , ••• ,(-1Y"-1) E {-1,1}n. We say that a

codeword c E C is "closer" to cfJ than another codeword c' = (G,, ~, ... , ~-1) E C if and

only if Ej;J (c/J; - (-1 y;)2 ~ Ej;J (c/J; - (-1 yi) 2 •

Simulation results [6, 14] showed that it is very important that we select the "best" set

of linearly independent codeword variables, and this best set corresponds to the set of the k

most reliable, linearly independent positions in the received vector c/J, where cPi is said to be

more reliable than c/J; if and only if I cPi I > I c/J; I· It is important to note that each time a new

vector is received, the k most reliable, linearly independent positions must be determined

3

anew. For simplicity of notation and without loss of generality, we will henceforth take

</>o, c/>1, •.• , c/>~c- 1 to be the set of k most reliable, linearly independent positions with I c/>; I ;::::
I cPi+1 I for j = 0, 1, ... k- 2. Furthermore, we will assume that the first k columns of the

generator matrix G form a k x k identity matrix, i.e., G = [I,.A), where I,. is the k x k

identity matrix.

2.1 Decoding as a Discrete Optimization Problem

When the decoding problem is converted into a problem of graph-search through a code tree

for code C, we attempt to find a minimum-cost path from the start node to a goal node in

the code tree. A code tree is a way to represent every codeword of an (n, k) linear code C as

a path through a code tree containing n + 1 levels. The root is called the start node, which is

at level -1. There are two branches, labeled 0 and 1, respectively, that leave each node at the

first k levels. After the first k levels, there is only one branch leaving each node. The 2k leaves

are called goal nodes, which are at level n - 1. Let eo, c17 ••• , c~c_1 be the sequence of labels

encountered when traversing a path from the start node to a node mat level k- 1. Then

c~c, Ck+l, ••• , Cn-1, the sequence of labels encountered when traversing a path from node m to

a goal node, can be obtained as follows: (Co,Ct, ••• ,c~c_17 c~c, ... ,Cn-1) = (eo,c~, ... ,ck-1) G.

We now specify the arc cost in the code tree of C. The arc from a node at level t -1 to its

immediate successor in a path is assigned cost (cf>t - (-1)c')2 , where Ct is the label of the arc.

This arc is called the t'h arc of the path. Thus, the decoding problem is equivalent to finding

an "optimal" path from the start node to a goal node in the code tree which corresponds to

a codeword c = (eo, c1, ••• , Cn-1) such that Ej;J (c/>; - (-1)c;)2 is minimum among all paths

from the start node to the goal nodes.

We note that an optimal path in the code tree corresponds to a codeword that minimizes

Ej;J { c/>; - (-1 y;)2 , where the label for the lh arc of a path corresponds to the value of the

lh component of a codeword. If we define the cost for the i'h component of a codeword as

the cost of the i'h arc of the corresponding path in the code tree and the cost for a codeword

as the sum of the cost for all components of this codeword, the decoding problem becomes

4

equivalent to the minimum-cost problem among all codewords inC, i.e., finding a codeword

c E C that minimizes the cost Ej;J (</>; - (-1 y;)2•

2.2 Decoding as a Continuous Optimization Problem

We would like to transform the decoding problem into a continuous optimization problem to

take advantage of more information provided by the received vector and the inherent prop­

erties of the transmitted code that cannot be taken into consideration when the decoding

problem is solved as a discrete optimization problem. Furthermore, it is often easier to opti­

mize a function over a continuous domain (using the tools of calculus or linear programming)

than over a discrete domain [26, Sec. 4.4], [27].

In order to transform the decoding problem into a continuous optimization problem [6],

we apply the mapping z --+ (-1)• from G F(2) to the real field R. Then C is mapped to C',

where a { -1, 1 }-vector c' = (C:,, ~, ... , c'n-t) is a codeword of C' if and only if Ilj;J (cj)hi; = 1

fori= 0, 1, ... , n-k-1, where H =[hi;] is the parity check matrix of C. In this formulation,

the MLSD decoding rule for a time-discrete, memoryless channel becomes: Given a received

vector t/J = (</>o, 4>11 ••• , <f>n-t), find a codeword c' E C' that minimizes Ej;J (</>; - cj)2•

Note that Ej;J(</>;- cj)2 = Ej;J <P; + n- 2Ej;J </>;cj, since Ej;J(cj)2 = n for all c'

E C'. Furthermore, the dependent codeword variables c'k, c'k+l, ... , ~-t are related to the

linearly independent codeword variables C:,, ~' ..• ,Ge-t by

k-t

~ = 11'i(G,,~, ... ,~-t) = II(cj)Pi;, fori= k,k+ l, ... ,n -1,
j=O

(I)

where the Pij E {0, 1} are determined from the n- k parity product equations, which

correspond to the first k most reliable, linearly independent positions of t/J. Thus, for a

codeword c' E C' we may write Ej;J </>;cj = Ej;J </>;cj + Ej;l</>;11';(C:,, ~' ..• ,Ge-t), which

is a function of the k most reliable, linearly independent codeword variables C:,, ~, ... ,

Ge-t· Then the optimization problem in Rk is: Given a received vector t/J, find a vector

(C:,,~, ... ,4_t) E {-l,+l}k that minimizes the cost function f. defined as

n-1 k-1 n-1

h(C:.,c~, .•. ,c~_1) =I: <P; + n- 2 I: </>;cj- 2 I: </>;11';(C:.,c~, ... ,c~_1).
j=O j=O j=k

5

When we restrict attention to the discrete space, { -1, + 1 }k, over all vertices of the solid

k-cube of length two centered at the origin, we have established that if (~' t;, ... , ck-I)

minimizes Jq,, then the codeword generated by ~' c~, ... , ck-I according to Equation (1) is

the closest codeword to the received vector l/J. This is still a discrete optimization problem,

but if the cost function Jq, is allowed to range over all points in the solid k-cube defined

by I Xj I :::; 1, j = 0, 1, ... , k- 1, it still takes its minimum at a vertex. This follows from

the fact that fq,(x 0 , x~, ... , XJc-d is linear in each Xi. Therefore, every local minimum of fq,

corresponds to a codeword inC', and the value of Jq, at every local minimum is equal to the

square of the Euclidean distance between the received vector and the codeword corresponding

to the local minimum. In this way we arrived at the MLSD decoding rule in Rk: Given a

received vector c/J, find a real vector (x0 , Xt, ••• , X Je-d in the solid k-cube defined by I Xj I
:::; 1, j = 0, 1, ... , k- 1 that minimizes the cost function Jq,. We note that a real vector

(xo, Xt, ..• , XJc-d has a one-to-one corresponding real vector (x0 , x~, ... , XJc-b ••• , Xn-d E

~ such that the last n - k components are obtained from equation (I).

First we describe the algorithms which compose the hybrid decoding algorithm.

3 Modified Algorithm A* (MA*)

In this section we describe M A •, a new decoding algorithm that searches through a code tree

of the transmitted code when the decoding problem is converted into a problem of graph­

search through a code tree. M A • takes into consideration more properties of the code and

is considerably more efficient than the original A* algorithm [14].

When the decoding problem is converted into a problem of graph-search through a code

tree, we are interested in finding an optimal path from the start node to a goal node in this

code tree. M A., which uses a priority-first search strategy, is employed to search through

this code tree. For a fixed positive integer q, two functions, f 9 and low9 , are defined for

every node in the code tree to take advantage of the information provided by the received

vector and the inherent properties of the transmitted code. In M A •, search is guided by

the evaluation function f 9 • The algorithm maintains a list C, of nodes of the code tree that

6

are candidates to be expanded. The algorithm selects for expansion the node in C with

minimum values of function /q· If it selects a goal node for expansion, it has found an

"optimal" path from the start node to a goal node whose labels correspond to a codeword

that minimizes the error probability when we assume all codewords have equal probability

of being transmitted. Function lowq is a new lower bound on the cost of an optimal path

that goes through a node in the code tree. The value of low9 is always greater than or equal

to the value of /q, i.e., for every node m, lowq(m) 2:: f 9 (m). This algorithm also keeps an

upper bound (U B) on the cost of an optimal path. If the value of lowq for a node is greater

than or equal to the U B, no further search through this node is necessary and this node can

be discarded.

For every node m in the code tree and a fixed positive integer q, functions / 9 and low9

are defined as

Jq(m) = g(m) + hq(m)

and

low9(m) = g(m) + h~(m),

where g(m) is the actual cost of the path from the start nodes to node m, hq(m) estimates

the cost of the minimum-cost path from node m to a goal node, and h'9 (m) estimates the

cost of the minimum-cost path from node m to a goal node that takes into consideration the

parity check property of the code.

For a positive integer q, we now give a definition for this new heuristic function h9 , which

takes into consideration q binary n-tuple vectors

1. that satisfy the Hamming weight constraints,

2. whose corresponding paths from level 0 to level k - 1 in the code tree go through node

m, and

3. that are closer to the received vector </J than any other binary n-tuple vectors.

7

Let HW = {wilD :::; i :::; J} be the set of all J + 1 distinct Hamming weights that

codewords of C may have. Furthermore, assume w0 < w1 < · · · < WJ. Our new heuristic

function hq is defined to take into consideration the linear property of C and the fact that

the Hamming distance between any two codewords of C must belong to HW. Heuristic

function hq is defined with respect to a codeword C 6 eed E C which is called the seed of the

decoding algorithm.

1. For nodes at levels, 0 :::; s < k:

Let m be a node at level s and let v0 , Vt, ... , V6 be the labels of the path P m from

the start node to node m. Let T(m) be the set of all binary n-tuple vectors v whose

firsts+ 1 entries are the labels of Pm and dy(v,c6eed) E HW, where dy(z,y) is the

Hamming distance between z and y. That is,

We will construct a sequence of q finite nonempty subsets of T(m), T1(m) 2 T2(m) 2

... 2 Tq(m), and for every Ti(m) we define Vi = (vo, Vt, ... , v., Vi(•+t), •.. , Vi(n-t) E

Ti(m) as the vector that satisfies

For 1 :::; i:::; q, Ti(m) is now recursively defined as

(a) T1(m) = T(m);

(b) for 1 :::; i < q,

The heuristic function hq is defined as

n-1

if Vi is a codeword;

otherwise.

hq(m) = E {c/>j- {-1)"9i)2 , where Vq = (v0,v~, ... ,v.,vq(•+l),···,Vq(n-l))·
j=•+l

Note that Ti(m) ::F 0, since u G is a codeword in T(m), where u = (v0 , v., ... ,

v., 0, ... , 0) is a binary k-tuple vector.

8

2. For nodes at level s, k - 1 < s < n:

Let m be a node at levels. We define h9(m) as the actual cost of the unique path from

node m to a goal node, i.e., h 9(m) = Ei:;.,\1 (tPi- (-1)11qi)2 , where v9 = (vo, v1, ••• , v.,,

v9(•+1), ••• , v9(n-1)) = (vo, v~, ... , 'V1c-1) G, and Vq(•+l), v9(•+2h ••• , v9(n-1) are the se­

quence of labels of the unique path P m from node m to a goal node.

Function h~ is defined analogously as h9 , except that it takes into consideration the

fact that components in the redundancy part of a codeword can be determined by parity

checks. Let H = [h,;) be the parity check matrix of code C in canonical form, i.e., the

last n- k columns of H form an identity matrix. Let SH = {ho, h~, ... , hn-1c-1 I ~ =
(hio, h11, ••• , hi(n-1)) is the i'" row of H}. For a node m at level s, 0 < s < k, such that

v'o, v'~, ... , v'. is the sequence of labels of the path Pm from the start node to node m, we

define SH(m) = {hi I ~ e SH, h,; = 0 for j = 8 + l,s + 2, ... ,k- 1}. According to the

linear property of the code, if SH(m) =/:- 0, then for any codeword c= (C(),c~, ... ,Cn-1) E C

such that C() = v'0 , c1 = v'~, ... , c. = v'., we have clc+i = v'0h,0 ffi v'1hi1 ffi ... ffi v' .hi• for all

h, E SH(m), where ffi denotes the module 2 addition operator.

Function h~ can now be defined analogously to h9 except that it is with respect to T'(m)

which is the set of all binary n-tuple vectors v'

1. whose first s + 1 entries are v'0 , v'~, ... , v'.,

3. which satisfy the Hamming weight constraints, i.e., dH(v', Caeed) E HW, where Caeed is

the seed of the decoding algorithm.

for all hiE SH(m), and dH(v,caeed) E HW}. Note that T'(m) =/:- 0 since the codeword u G

is also in T'(m), where u = (v0 ,'Vt, ... ,v.,O, ... ,O) is a binary k-tuple vector. Therefore,

if v~ = (v'9o, v19t, .•• , v~(n- 1)) is the vector used to calculate h~(m), then v~0 = v'o, v~1 =
V 1t, •.• , v~. = v'., and whenever SH(m) =/:- 0, then v~(k+i) = (v'ohio ffi v'1hi1 ffi ... ffi v'.,hi.) for

all h, E SH(m).

9

Note that if the vector v~ used to calculate h~(m) and the vector Vq used to calculate

hq(m) have different values at hit position k+i for some i, where hiE SH(m) when SH(m) #
0, then h~(m) > hq(m); otherwise, h~(m) = hq(m). Furthermore, if node m is a goal node,

then h~(m) = hq(m) = 0. We now give our MA* decoding algorithm.

M A* decoding algorithm

1. Let q he a positive integer and m_1 he the start node in the code tree. Generate

a nonempty set of codewords S C C. For each codeword c E S, set Cseed = c and

calculate lowq(m_1). Select the codeword c E S that maximizes lowq(m_t) as the initial

seed of the decoding algorithm.

2. For each codeword in S, calculate the cost of the corresponding path from the start

node to a goal node in the code tree. Let c he the codeword in S that corresponds to

the minimum-cost path P among all paths corresponding to codewords in S. Let U B

he the cost of P. Set list .C, = 0.

3. Create a subtree that contains only the start node m_1. Calculate Jq(m_t). Note that

Jq(m_t) = lowq(m-1). Put m_1 in list .C.

4. If list C is empty, the algorithm terminates and P is an optimal path.

5. Remove the node m from list .C, which has minimal value of fq· If lowq(m);:::: UB, go

to step 4.

6. Start expanding node m. Assume that node m is at level s in the code tree. Let Vq =
(vqo, Vqt, .. . , Vq(k- 1), •• • , Vq(n-1)) he the vector used to calculate Jq(m). Generate two

codewords c' = (vqo,vql, ... ,vq(k-I}) G and c" = (vqa,v91! ... ,vq(k-2),Vq(k-I) ill 1) G.

Let U B' he the cost of path P' in the code tree that corresponds to c' and let U B" he

the cost of path P" in the code tree that corresponds to c". If min{U B', U B"} < U B,

set U B = min{U B', U B"} and set c to be the codeword whose corresponding path

has cost min{U B', U B"}.

10

7. Set S = {caeed, c', c"}. Calculate low9(m-t) for every codeword in S. Set C 6 eed to be

the one that maximizes low9(m_1) among all codewords inS.

8. Generate the set M which contains all nodes at level i that are not in path P' and are

immediate successors of nodes at level i - 1 in path P' for i = s + 1, s + 2, ... , k - 2,

i.e., M = {mi I s < i < k- 1, mi is a node at level i that is not in path P' and is an

immediate successor of the node at level i - 1 in path P'.}.

9. Calculate lowq{mi) for every node mi E M. If low9(mi) ~ U B, discard it from M. If

M = 0, go to step 4.

10. Calculate / 9(mi) for every node mi E M. Insert every node mi E Minto list £,and

reorder2 nodes so that all nodes in list£, are sorted according to the values of / 9 • Set

M=0.

11. Go to step 4.

We note that M A* is a depth-first search algorithm as is the original A* algorithm. The

proof of this property is similar to that given in Appendix E in [14]. Therefore, upper bounds

(U Bs) on the cost of an optimal path are obtained every time a codeword is generated. The

size of list £, can be reduced by discarding nodes whose values of low9 are greater than

or equal to the best U B obtained so far by the algorithm. Furthermore, if M A* doesn't

discard any node from an optimal path in step 9, it will find an optimal path before the

algorithm terminates, since the code tree is finite and the algorithm keeps the minimum-cost

path found so far. The optimality of MA* is shown in Appendix A. We also note that the

values of the low9 of nodes from the start node to a goal node along a path in the code tree

are monotonically nondecreasing, i.e., if m. is an immediate successor of node m•-h then

low9(m._I) :5 low9(m.). Therefore, if a node is discarded in step 9 of the algorithm, all of

its successors can also be discarded. The proof of this property is also given in Appendix A.

2We implement list C. using a B-tree, a data structure that efficiently deals with the insertion and deletion

of nodes (32].

11

From the description of M A*, it is clear that the most important factor in the efficiency

of M A* is the selection of the evaluation function f 9 and function lowq. These two functions

are used to reduce drastically the search space and to make the decoding efforts of this

decoding algorithm adaptable to the noise level. An algorithm to calculate h9 with time

complexity 0(qn + q log(q)) is given in Appendix B. We note that the evaluation function

used in the original Algorithm A* [14] is a special case of function f 9 where q is equal to 1.

If no restriction is placed on the size of list C., then the decoding algorithm based on M A*

is an MLSD decoding algorithm even if in the computation of f 9 and low9 the algorithm

considers the Hamming weights in a superset of HW. Simulation results have shown that

this algorithm drastically reduces the search space; however, it becomes impractical for long

linear block codes transmitted over channels with low SNR, since the number of nodes needed

to be stored in list C, is still too large. Simulation results have shown that the number of nodes

needed to be stored in list C, before an optimal path is found is considerably smaller than

the total number of nodes stored before the algorithm terminates. Therefore, as proposed in

[16, 13, 11, 15], we may limit the search by setting an upper bound on the size of list C, with

small degradations in the performance of the algorithm. In our SOSD decoding algorithm

we limit the size of list C., MB, according to the following criterion.

If a node m needs to be stored in list C, when the size of list C, has reached a given upper

bound MB, then we discard the node with larger f 9 value between node m and the node with

the maximum value of function fq in list C..

4 New Decoding Algorithm - H*

In this section we describe H*, a new decoding algorithm that determines the value of every

component of a minimum-cost codeword by estimating the cost of a minimum-cost codeword

with a fixed value at one of the first k most reliable, linearly independent bit positions.

In H*, an upper bound U B on the cost of a minimum-cost codeword is used to determine

the value of every component in the first k-hit positions of this codeword. This algorithm

12

constructs a lower bound on the cost of codewords whose ith. component, 0 ~ i < k, has

a fixed value of o, o E {0, 1}. H this lower bound is greater than or equal to UB, we may

conclude that the value of the ith. component of a minimum-cost codeword is o Ea 1. This

process repeats until the values of the first k components of a minimum-cost codeword have

been determined.

Assume that c* = (c(j, ci, ... , c:_1) is a minimum-cost codeword. Let c = (&,, c1, ... , Cn-1)

be the closest codeword to the received vector found so far by the algorithm. Let U B be

the cost of c. For simplicity of symbols, let 1 C {0, 1, ... , n- 1} be the set of indices t such

that the value of the tth. component of a minimum-cost codeword has been determined, i.e.,

c; is already determined. Let I = {0, 1, ... , k- 1} -7 be the set of indices i, 0 < i < k, in

which ci is still undetermined. For every index i E I, function lowj is defined as

where j is a positive integer, g'(J) = E;ei(tP;- (-1Yi)2, and hj(i) estimates the sum of the

cost for all other undetermined components of c*. Let c.eetl E C be the seed of the decoding

algorithm. For a positive integer j and every index i E I, function hj is defined analogously

to the heuristic function hj described in Section 3, except that it is with respect to T"(i),

the set of all binary n-tuple vectors tl'

1. whose ith. component is Ci Ea 1 for some i E I,

2. whose tth component is c; for every t E 7,

3. that satisfy the Hamming weight constraints.

That is, T"(i) = {v"l v" = (vg,vf, ... ,v:_1), v~' = Ci Ea 1, v;'- c; for all t E 7, and

dH(v",c•eed) E HW}. Note that T"(i) f;. 0, since u' G is a codeword in T"(i) where u' =
(u~, u~, ... , uL 1) is a binary k-tuple vector such that u~ = Ci e 1, u~ = c; for all t E 7, and

u~ = 0 for all t E {0, 1, ... , k - 1} - { i}- 7. We also note that function hj is defined for

every index i E I, while function hj is defined for every node in the code tree. We now give

our new decoding algorithm H*.

13

H* decoding algorithm

1. Let p be a positive integer. Generate a nonempty set of codewords S C C. For every

codeword c in S, set C 1eed = c and calculate low,(m_I). Select the codeword c E S

that maximizes low,(m_t) as the seed of the decoding algorithm.

2. Calculate the cost for every codeword in S. Let c be the minimum-cost codeword

among all codewords in S. Set U B to be the cost of c. Set 7 = 0.

3. Set I= {0, 1, ... , k- 1}- 7.

4. If I = 0, the algorithm terminates and c is the minimum-cost codeword; otherwise,

select an index i E I.

5. Set j = 1.

6. Calculate lowj(i,e;). If lowj(i,C;) ~ UB, set c; = & and 7 = 7u {i}. Go to step 3.

7. If the vector v'j used to calculate h'J(i) is not a codeword, then set j = j + 1 and go to

step 6; otherwise, set c = v'J and U B = lowj(i, e;).

8. If the minimum-cost codeword whose ith component is C; has been generated by the

algorithm, then the algorithm terminates and c is the minimum-cost codeword.

9. Let S = {v'J, c}. For each codeword c E S, set Caeed = c and calculate low,(m-t)·

Select the codeword c E S that maximizes low,(m_1) as the seed of the decoding

algorithm. Go to step 5.

During the decoding process, the search space shrinks by half when the value for one

component of the minimum-cost codeword is determined and fixed. The optimality of this

algorithm is given in Appendix C. We note that the number of vectors needed to be generated

before the algorithm finds a minimum-cost codeword is of order 0{2n). In our suboptimal

version of the H* algorithm, we limit the number of vectors generated in determining the

value of a component of a minimum-cost codeword such that the algorithm generates at most

14

p vectors in determining the value of a fixed component, where pis a fixed positive integer.

This suboptimal H* algorithm can be incorporated with other decoding algorithms to reduce

the search space during the decoding process and to make the decoding more efficient.

5 Directed Search (DS)

In this section, we describe a novel iterative procedure designed to enhance the performance

of soft-decision decoding by searching in continuous space. This approach explores the

search space between a given vector and the received vector and finds the codeword closest

to the received vector in the space explored. In each iteration of the procedure, real vectors

successively closer to the received vector are examined, simultaneously constructing the

corresponding codewords at local minima of the cost function J~, and storing the most

recent and closest codewords to the received vector examined so far.

For the decoding problem that is converted into a continuous optimization problem, a

decoding scheme that applies the simple hill-climbing or gradient-descent algorithm to solve

the decoding problem was proposed in [6]. The obvious pitfalls of that approach are the

large number of local minima of the function being optimized and the fact that the algorithm

always gets trapped in the first local minimum encountered. Many optimization techniques

such as Dynamic Hill Climbing (24], simulated annealing [21] and Tabu Search (10], which

have been applied successfully in solving diverse optimization problems [21, 2, 9, 10, 24],

have been used to overcome the main problem of simple hill-climbing or gradient-descent

algorithms, and do not get trapped in local optima of the function being optimized. However,

those algorithms are not guaranteed to find the global optima quickly, and may wander all

around the search space. Directed Search (DS) overcomes the main problems of those

approaches and effectively directs the search toward the received vector, which provides a

global guidance to the search while escaping from local minima.

When the decoding problem is transformed into a continuous optimization problem, we

attempt to minimize the cost function J~, i.e., to find a codeword inC' that is closest to the

received vector c/J. In DS the search is guided by two functions, f~ and dE, where f~ is the

15

cost function and dE is the Euclidean distance function. The Euclidean distance function,

dE, is used to explore regions successively closer to the received vector, and the cost function

h is used to guide the search for local minima in the regions explored. The procedure keeps

an upper bound (U B) on the minimum values of h calculated so far by the procedure. Every

time the procedure finds a new local minimum, it generates the codeword corresponding to

this local minimum and U B is updated if necessary.

The choice of the initial vector in every iteration may be made using the history as

well as the information provided by the received vector and the inherent properties of the

code, attempting to begin from a "good" part of the search space. In the main loop of the

procedure, the search is first guided by the cost function h, and a small modification is

repeatedly made to the current vector, (x0 , Xt, ••• , Xk-t) E Rk, to move the vector closer to

a local minimum, thus reducing the values of the continuous optimization function h· H a

local minimum is reached, the codeword with respect to this local minimum is generated

and U B is updated if necessary. We note that DS will find a local minimum of the cost

function, /q,, before this loop stops since Jq, is bounded for any linear block codes.

In order to escape from the local minimum of Jq, and progress along the direction

towards the received vector in R!', the search is then guided by the Euclidean distance

function dE. The Euclidean distance between the received vector and the real vector z =
(xo, Xt, ••• , Xk-t, ••• , Xn-t) E R!' is also calculated, where (x0 , x~, ... , Xk-t) E Rk is the vec­

tor examined and the last n- k components of z are obtained according to equation (1). A

small modification is repeatedly made to the current vector, (x0 , x17 ••• , Xk-t) E Rk, to move

the vector whose corresponding vector in R!' is closer to the received vector. This process

continues until either the values of h of the vectors visited in Rk start to decrease, or no

further improvement on the distance between the received vector and the vectors examined

in R!' can be made. The loop continues until no improvement can be made in this iteration.

We note that except for the last loop of the current iteration, DS will explore a new region

in the search space before this loop stops since both dE and h are bounded for any linear

block codes.

A new iteration is then started with a different initial vector. The termination criterion

16

imposes an upper bound on the number of iterations. It may also depend on whether recent

iterations have yielded any improvement in the quality of the best codeword found so far.

We note that every local minimum of the cost function fq, defined in Section 2.2 is a vertex

of the solid k-cube of length two centered at the origin and corresponds to a codeword in

C'. However, a codeword in C' is an n-dimensional vector. Any algorithms working in

k-dimensional space will have no control on the redundant n - k components of the code.

Furthermore, the decoding complexity grows exponentially, and there is no easy way to

guarantee that a real vector in the n-dimensional space is a codeword unless we check it.

DS takes advantage of properties of the code and successfully works on both k-dimensional

and n-dimensional spaces to make the search more efficient.

6 Hybrid Decoding Algorithm

In this section we describe a new decoding algorithm that hybridizes M A*, H*, and DS. This

hybrid algorithm takes advantage of the strengths of these decoding algorithms and makes

decoding more efficient than with the original MA*, H*, and DS decoding algorithms.

When the decoding problem is converted into a problem of graph-search through a code

tree, we are interested in finding an optimal path from the start node to a goal node in

the code tree of the transmitted code. The corresponding codeword of an optimal path

in the code tree is a minimum-cost codeword when the decoding problem is transformed

into a minimum-cost problem among codewords of the transmitted code. Furthermore, as

described in Section 2.2, the minimum-cost codeword also corresponds to a codeword inC'

that is closest in Euclidean distance to the received vector when the decoding problem is

transformed into a continuous optimization problem.

The hybrid algorithm starts by finding a codeword whose cost is the initial upper bound

U B of the decoding algorithm. A suboptimal version of the H* algorithm is then applied

to determine the values of some components among the first k most reliable, linearly in­

dependent components of a minimum-cost codeword. For every index i E {0, 1, ... , k - 1}

such that the value of component i of the minimum-cost codeword is still undetermined, the

17

suboptimal H* generates at most p binary n-tuple vectors in T"(i) to estimate the cost of

a minimum-cost codeword, where pis a fixed positive integer. If some components of the

minimum-cost codeword are determined, the code tree is pruned and the search space is

reduced. M A* is then applied to search for an optimal path through this subtree. During

the decoding process, when M A* finds a codeword whose cost is within a threshold d of U B,

DS is applied to search for an even better upper bound, and the suboptimal H* is again

applied to determine the values of more components of a minimum-cost codeword. This

process repeats until list £, in M A* is empty or the values of the first k components of a

minimum-cost codeword have been determined by the suboptimal H*. The hybrid decoding

algorithm is described below' where we assume that c* = (c;;, cr' 0 0 0 'c:-1) is a minimum-cost

codeword in C.

Hybrid decoding algorithm

1. Let p and q be two positive integers and d a real number, d > 0. Generate a nonempty

set of codewords S C C. For every codeword c E S, set Caeed = c and calculate

low9(m_1). Select the codeword c E S that maximizes low9(m_t) as the initial seed of

the decoding algorithm.

2. For every codeword in S, calculate the cost of the corresponding path from the start

node to a goal node in the code tree. Let c be the codeword in S that corresponds to

the minimum-cost path P among all paths corresponding to codewords in S. Let U B

be the cost of P.

3. Apply DS with ((-l)q,,(-1)c1 , ... ,(-l)crc-1) as the initial vector. Set c to be the

codeword returned by DS and update U B if necessary. Set list C. = 0.

4. Set 1 = 0 to be the set that consists of all indices t such that c; have been determined.

Let I = {0, 1, ... , k - 1} - 1 be the set of indices i, 0 ~ i < k, such that c; is still

undetermined. Apply the suboptimal H* to determine the values of components of c*.

For every i E /,the suboptimal H* generates at most p binary n-tuple vectors in T"(i).

18

If the values of the first k components of c• have been determined, the minimum-cost

codeword is (cij, ct, ... , ct_1) G, and the algorithm terminates.

5. Apply MA* to search for an optimal path through the pruned code tree of the trans­

mitted code.

(a) Let m be the node with least / 9 value in list C,, Assume that node m is at levels

in the pruned code tree. Let v0, vh ... , v. be the labels of the path P m from the

start node to node m. If there exists an index t such that Vt =/: C:, t ~ s and t E

7, then this node can be discarded before it is expanded by M A •.

(b) For the codewords c' and c" generated at step 6 in the algorithm of M A*, cal­

culate dE(<P, c') and dE(<P, c"). If dE(q,, c') - dE(<P, c) < A, then DS is

applied with ((-1)c:[,, (-1)4, ... , (-1)d,-t) as the initial vector and U B is up­

dated if necessary. If dE(<P, c") - dE(<P, c) ~ A, then DS is applied with

((-l)C::, (-1)cr, ... , (-1)C:-t) as the initial vector, and U B is updated if neces-

sary.

(c) If the hybrid algorithm has found a better upper bound, the suboptimal H* is

applied again. For all i E I such that c; is determined by the suboptimal H*

during this decoding process, 7 is set to be 7 U { i}. If 7 = {0, 1, ... , k- 1 }, then

(cij, ci, ... , ct_1) G is the minimum-cost codeword and the algorithm terminates;

otherwise, M A • continues to search for an optimal path in the pruned code tree

until list C, is empty.

We note that, during the decoding, every time the suboptimal H* determines the value

of a component of c•, the code tree is halved. Since the suboptimal H* is invoked only when

the algorithm finds a better upper bound, we may set p » q without substantially increasing

the time complexity of the algorithm. We also note that the hybrid algorithm is an MLSD

decoding algorithm if no restriction is placed on the size of list C, in M A* in step 5 of the

hybrid algorithm. However, we may limit the search by setting an upper bound on the size

of list C, in M A*, as described in Section 3. In this case the hybrid algorithm is an SOSD

19

decoding algorithm. Simulation results for the hybrid MLSD and SOSD decoding algorithms

are given in the next section.

7 Simulation Results for the AWGN Channel

We present simulation results for our hybrid MLSD and SOSD decoding algorithms for the

(128, 64), the (256, 131), and the (256, 139) binary-extended BCH codes transmitted over

AWG N channels. As described in Section 6, if we don't limit the size of list C, in M A*,

our hybrid algorithm is an MLSD decoding algorithm; otherwise, it is an SOSD decoding

algorithm. We emphasize that the decoding algorithms presented in this paper are suitable

for decoding any linear block codes. For linear block codes with length smaller than 128 and

dimension smaller than 64, such as the (104, 52) binary-extended quadratic residue code,

M A* achieves near-optimal to optimal performance for any signal-to-noise ratio value, as we

have presented in our previous work (29].

We assume that antipodal signaling is used in the transmission so that the j'h components

of the transmitted codeword c and received vector rare c; = (-1Yi VE and r; = (-1YiVE+
e;, respectively, where E is the signal energy per channel bit and e; is a noise sample of a

Gaussian process with single-sided noise power No per hertz. The variance of e; is No/2

and the SNR for the channel is "Y = E / N0 • In order to account for the redundancy in codes

of different rates, we use the SNR per transmitted information bit "Yb = Eb/No = "Yn/k in

our simulation. For AWGN channels, t/J = 4'tf r [19], so we can substitute r for t/J in our

decoding algorithm.

During the simulation we incorporate the criterion introduced in [31] to check if the

minimum-cost codeword has been found and no further decoding is necessary.

Since we do not know the HW for each of these codes, we use a superset for it. Even

though we use supersets of the HW for these codes, the following simulation results show

that our hybrid algorithms still achieve optimal or near-optimal performance. We believe our

hybrid algorithms will be able to decode longer codes with similar performance if we have

better knowledge concerning the weight distribution of the code, which is another interesting

20

topic of research.

Since we do not know the HW for the (128, 64) binary-extended BCH code, we use a

superset for it. We know that dmin = 22 for the (128, 64) code and that the Hamming weight

of any codeword is divisible by 2 [22]. Thus for this code the superset used is {xl (xis even

and 22 < x $ 106) or (x = 0) or (x = 128)}.

0.1

i
i 0.01

~
2i

0.001

------------------------------~------------------------------~-------------------------------.
••••• ·------------------------ ·EJ •• ••••• ··-····-········

---·-----.... __
·::·.:::::-.::.:.-..::::::-·- -------.... __ _

·undeooded" -
•auantizec:J• ---·

"ChaseAig2" ·B···
•on:tar-3•­

.A .. ~--
•Hybrid• ._.._

•LowerBOund• ·•· ••

1.2 1.6 1.8 2
signal to noi- ratio

································-a

Figure 1: Comparison of the hybrid SOSD decoding algorithm with other algorithms for the (128, 64) code

'Yb l.OdB 1.5dB 2.0dB 2.5dB

max ave max ave max ave max ave

N(r) 201088 108680.766 190484 92844.945 203610 65945.297 225437 41528.496

C(r) 114661 45644.414 106641 36529.672 107812 23945.756 120457 13785.361

M(r) 10000 8818.749 10000 7687.217 10000 5611.436 10000 3605.018

p 256 256 128 128

Table 1: Performance of the hybrid SOSD decoding algorithm for the (128, 64) code

Simulation results of our hybrid SOSD decoding algorithm for the (128, 64) code for 76 =

1.0 dB, 1.5 dB, 2.0 dB, and 2.5 dB are given in Figure 1 (Hybrid) and Table 1, where q is

21

set to be 4 and Ms = 10,000. Furthermore, we set~= 0 as our threshold to apply DS in

our simulation. The following notations are used in the tables:

N { r) = number of nodes visited during the decoding of r,

C(r) = number of codewords constructed during the decoding of r,

M(r) = number of nodes stored in list C, during the decoding of r,

max = maximum value among samples tried,

ave = average value among samples tried, and

p = the maximum number of vectors generated by H* in order to fix the value of one of

the first k components during the decoding process.

During the decoding process, N (r) nodes in the code tree are checked to see if they should

be opened, expanded, or deleted by the algorithm. Even though the algorithm visits N(r)

number of nodes, it actually stores no more than M(r) nodes and tries only C(r) codewords

which are visited either by M A* or DS during the decoding process.

For the (128, 64) code (Figure 1), the performance of our hybrid SOSD decoding algorithm

is within 0.10 dB of the lower bound of the performance of the MLSD decoding algorithm.

Thus, for the samples tried, limiting the size of list C, to 10,000 nodes introduced only a

small degradation on the performance of the algorithm for the {128, 64) code. Furthermore,

for the samples tried, the average number of codewords constructed is approximately 15

orders of magnitude smaller than the total number of codewords, (264 ~ 1.85 x 1019), and in

the worst case the maximum number of codewords constructed is approximately 14 orders

of magnitude smaller than the total number of codewords.

For comparison purposes (Figure 1), we also give the bit error probability of the quan­

tized received vector (Quantized) and an estimate of the performance of Chase Algorithm 2

22

(ChaseAlg2) [3]. The "Quantized" data is obtained as follows: we quantize the k most re­

liable, linearly independent components of the received vector and obtain a k-tuple, which

is then multiplied with the generator matrix G to obtain a codeword which is returned as

the result of the decoding process. It would be impractical to simulate Chase Algorithm 2,

because there is no practical decoder for the (128, 64) code that corrects ten digital errors.

The estimate of Chase Algorithm 2 was obtained as follows: for a given r, if the number of

errors in the (n- L(dmin/2)J) most reliable positions is less than or equal to L(dmin- 1)/2J,

then we will assume there is no decoding error, since the transmitted codeword would be

generated in the decoding procedure of r. Otherwise, the decoder output is the quantized

version of r. A lower bound on the bit error probability of the MLSD decoding algorithm

(LowerBound) [5] and the bit error probability for undecoded data (Undecoded) are also

given.

In addition, we also give the simulation results of the A* decoding algorithm provided in

[15] (A*) and simulation results of the "Order-3" decoding procedure provided in [7] (Order-

3). As indicated in Figure 1, the performance of our hybrid SOSD decoding algorithm

is better than those of the Chase Algorithm 2 (ChaseAlg2), A* algorithm (A*), and the

"Order-3" decoding procedure (Order-3).

We note that in [15] simulation results of the A* decoding algorithm are not provided for

2.5 dB :5 "Yb :5 4.5 dB, since the performance of the A* algorithm deteriorates substantially

for those ranges of signal-to-noise ratio. In [7], simulation results of the error performance

for the "Order-3" decoding procedure for this code are provided for 2.22 dB :5 "Yb :$ 3.4 7

dB. For 3.47 dB < "Yb :::; 5.23 dB, only Union bounds on the error probability are provided.

As pointed out in [7], the number of simulated samples are far too small to obtain reliable

information for those ranges of signal-to-noise ratio. In (7] it is also shown that the error

performance of the "Order-4" decoding procedure is similar to the performance of our hybrid

SOSD algorithm for 1.55 dB :::; "Yb :5 2.5 dB; however, both the maximum and the average

number of computations of the "Order-4" decoding procedure are enormous. For example,

for "Yb = 2.5 dB the maximum number of computations of the "Order-4" decoding processing

(Nmax4 in [7]) is equal to 43,464, 512, and the average number of computations of the "Order-

23

4" decoding processing (NatJe4 in [7]) is approximately 106 ·5 (~ 3.16 x 106). Very recently

some improvements to this decoding process were proposed to allow computation savings

or decoding speedup with little error performance degradation (8]. However, in order to

obtain near-optimal performance for the (128, 64) code, the modified decoding procedure

still requires a tremendous number of computations (Nmax = 34,932, 480) [8].

"Yb 3dB 4 dB 5 dB 6dB 7dB 8 dB

max ave max ave max ave max ave max ave max ave

N(r) 206961 19725.561 155333 1697.749 123027 38.377 2081 0.796 379 0.047 0 0.000

C(r) 167235 6046.271 77230 412.087 43504 8.873 133 1.439 57 1.190 2 1.123

M(r) 10000 1727.780 10000 150.837 10000 4.796 380 0.211 50 0.010 0 0.000

p 64 32 8 4 4 4

Table 2: Performance of the hybrid SOSD decoding algorithms for the (128,64} code

Simulation results of our hybrid SOSD decoding algorithm for the (128, 64) code for "'(b

equal to 3.0 dB, 4.0 dB, 5.0 dB, 6.0 dB, 7.0 dB, and 8.0 dB are given in Table 2. These

results were obtained by simulating 35, 000 samples for each SNR when q is set to be 4 and

MB is set to be 10,000. Furthermore, we set Ll equal to 20 as our threshold to apply DS in

our simulation for "Yb equal to 3 dB. Among the 35, 000 samples tried we found one sample

such that the decoded codeword is closer to the received vector than to the transmitted

codeword. No other decoding error occurred during simulation. For the other cases, i.e., 4.0

dB ::; "Yb ::; 8.0 dB, we set Ll = 0 as our threshold to apply DS. No decoding error occurred

during simulation for these cases.

We note that for the (128, 64) code with "Yb ~ 6 dB the memory bound MB is never

reached for the samples tried. In this case the performance of our hybrid algorithm is the

same as that of the MLSD decoding algorithm.

Since we do not know the HW for the (256, 131) binary-extended BCH code, we use a

superset for it. We know that dmin = 38 and that the Hamming weight of any codeword is

divisible by 2. Thus for this code the superset used is {xl (xis divisible by 2 and 38 ::; x ::;

218), or (x = 0), or (x = 256)}.

24

lb 5 dB 6 dB 7 dB 8 dB

max ave max ave max ave max ave

N(r) 351717 274.215 4786 4.743 1750 0.407 0 0

C(r) 105828 40.764 197 1.992 119 1.251 3 1.115

M(r) 15000 37.353 2765 2.320 625 0.093 0 0

p 16 8 8 8

Table 3: Performance of the hybrid SOSD decoding algorithms for the (256, 131) code

The simulation results of our hybrid SOSD decoding algorithm for the (256, 131) code

for lb equal to 5.0 dB, 6.0 dB, 7.0 dB, and 8.0 dB are given in Table 3, where q is set to be

8 and MB is set to be 15,000. Furthermore, we set Ll = 0 as our threshold to apply DS in

our simulation. These results were obtained by simulating 35,000 samples for each SNR. No

decoding error occurred during simulation.

We note that simulation results show that for lb;::: 6 dB the memory bound MB is never

reached for the samples tried. In this case the performance of our hybrid algorithm is the

same as that of the MLSD decoding algorithm. Both the maximum number of codewords

and the average number of codewords constructed by our hybrid decoding algorithm are

insignificant compared with the total number of codewords, (2131 ~ 2. 72 x 1039).

In order to compare our hybrid MLSD decoding algorithm with the MLSD decoder

presented in (20), we also simulate our hybrid MLSD decoding algorithm for the (256, 139)

binary-extended BCH code. Since we do not know the HW for the (256, 139), we use a

superset for it. We know that dmin = 32 and that the Hamming weight of any codeword is

divisible by 2. Thus for this code the superset used is {xI (x is divisible by 2 and 32 ~ x ~

224), or (x = 0), or (x = 256)}.

25

"'(b 5.5 dB 6.0 dB 6.5 dB 7.0 dB

max ave max ave max ave max ave

N(r) 57635 19.644 4699 3.342 2763 0.892 1238 0.154

C(r) 4570 3.384 195 1.827 149 1.402 99 1.228

M(r) 5436 6.772 3016 1.549 998 0.257 153 0.037

p 16 16 8 8

Table 4: Performance of the hybrid MLSD decoding algorithm for the (256, 139) code

The simulation results of our hybrid MLSD decoding algorithm for the (256, 139) code

for "'(b equal to 5.5 dB, 6.0 dB, 6.5 dB, and 7.0 dB are given in Table 4, where q is set to

be 8. These results were obtained by simulating 35,000 samples for each SNR. No decoding

error occurred during simulation. Furthermore, for the examples tried, both the maximum

number of codewords and the average number of codewords constructed by our hybrid MLSD

decoding algorithm are insignificant compared with the total number of codewords, (2139 ~

6.97 X 1042).

Table 4 attests to the fact that the complexity of our hybrid MLSD decoding algorithm

is much less than that of the MLSD decoder presented in [20). For example, for "'(b equal to

5.5 dB the maximum number of codewords tried in [20] is 2,097, 152, while the maximum

number of codewords tried in our hybrid MLSD decoder is only 4, 570, which is about

three orders of magnitude better in maximum decoding complexity; the average number of

codewords tried in [20) is 76.21, while the average number of codewords tried in our hybrid

MLSD decoding algorithm is only 3.384, which is approximately 20 times better in average

decoding complexity. Furthermore, as shown in Table 4, the memory requirement of our

hybrid MLSD decoding algorithm is small for the (256, 139) code for "'(b greater than or

equal to 5.5 dB.

26

8 Conclusion

We have proposed three decoding techniques and a hybrid of these techniques. M A* is a

graph-search algorithm that originates from A* in Artificial Intelligence (18, 26]. Simulation

results have shown that M A* is very efficient and has near-optimal to optimal performance

for codes of short-to-moderate lengths [28], but becomes impracticalfor codes oflong lengths

transmitted over channels with low SNR, since the memory requirement is large. H* is a new

algorithm that is very flexible and can be incorporated with other techniques to reduce the

search space during the decoding process. For example, simulation results for the {128,64)

code transmitted over channels with /b ~ 6 dB show that all the values of the first k

components of a minimum-cost codeword are determined by H* with p equal to 4 for the

35000 samples tried during the decoding process, and the search space is reduced to the

minimum, i.e. from 264 to 264- 64 = 1. However, for long codes transmitted over channels

with low SNR, the number of vectors generated to fix the value of a component of the

minimum-cost codeword grows exponentially.

DS is a novel heuristic approach that explores the search space between a given vector

and the received vector. It directs the search toward the received vector while escaping from

a local minimum. In DS the search is guided by global information provided by the received

vector. The beauty of this approach is that it takes advantage of properties of the code and

successfully works on both k-dimensional and n-dimensional spaces and efficiently finds the

best solution in the space between a real vector and the received vector. Furthermore, DS

requires no memory. It is simple to implement and can be incorporated with other decoding

algorithms.

The hybrid algorithm takes advantage of the strengths of these three algorithms and

makes the decoding more efficient. The strength of H* can overcome the weakness of MA*,

and vice versa. For codes of long lengths transmitted over low SNR, the memory requirement

of M A* is impractical, while the memory requirement of H* is small. Furthermore, the

number of vectors that must be generated before H* can fix the value of a component of the

minimum-cost codeword depends on how close the upper bound is to the received vector, and

27

MA* gives this upper bound during decoding process. H* works well with MA*, since the

tendency of M A* is to find successfully better upper bounds during the decoding process.

DS is applied to obtain an even better upper bound when MA* explores a new region in

the search space. It efficiently finds the closest codeword to the received vector in the region

between the received vector and a codeword obtained by M A*. Simulation results show that

this hybrid algorithm can efficiently decode the (128, 64) binary-extended BCH code for

any signal-to-noise ratio value and has near-optimal to optimal performance. Previously, no

practical decoder could have decoded this code with such a performance for all these ranges

of signal-to-noise ratio. We ca.n also decode very efficiently the (256, 131) and the (256, 139)

binary-extended BCH codes for signal-to-noise ratio ('YII) greater than or equal to 5 dB. We

emphasize that for most practical communication systems the probability of error is less

than 10-3 (1', greater than 6.8 dB).

We would like to emphasize here the flexibility of this decoding algorithm. For example,

(1) it is applicable to any linear block code; (2) it does not require the availability of a

hard decision decoder; (3) in order to make it more efficient to decode a particular code,

we can design heuristic functions that take advantage of the specific properties of this code;

(4) any termination criterion can be easily incorporated into it. For example, the criterion

proposed in [31] can be incorporated to determine the termination condition of our decoding

algorithm.

In addition, we would like to point out that the algorithms presented in this paper

are suitable for parallel implementations. M A* can be parallelized analogously to Algo­

rithm A*, in which a very good speed-up was obtained [11]. H* can be parallelized easily,

since the heuristic functions for the k most reliable, linearly independent components of a

minimum-cost codeword can be calculated simultaneously and independently. DS can also

be parallelized, since the generation of real vectors. reachable from a current vector ca.n be

implemented independently. This will substantially reduce the idle time of processors and

the overhead due to processor communication; thus we expect a very good speed up from a

parallel version of our hybrid algorithm.

Note that we used only one seed for computing the heuristic functions h9 , h~, and h;.

28

However, we can generalize the procedure to calculate function h with respect to several

seeds. Details of this approach can be found in [12].

We note that even though the heuristic functions we use in M A* and H* depend on

the weight distribution of the code, which may remain unknown, our hybrid algorithm still

achieves optimal or near-optimal performance when we use supersets of the HW for the

codes with length less than or equal to 256. We believe our hybrid algorithm will be able

to decode longer codes with similar performance if we have better knowledge concerning the

weight distribution of the code, which is another interesting topic of research. Furthermore,

the performance of the H* algorithm depends on the heuristic functions and the quality of

U Bs obtained during the decoding process. In this paper we have focused on the design of

algorithms. The performance analysis of the H* algorithm remains to be studied.

We also note that DS is a heuristic approach. In future work, we plan to work out a

general theory of the approach, and examine its complexity and performance.

Another important line of research could be to investigate the use of other optimization

techniques to design efficient SOSD decoding algorithms for long block codes. Optimization

techniques such as simulated annealing [21], Tabu Search [10], and genetic algorithms [23]

have been used with great success in important practical applications. These optimization

techniques may be modified to take into consideration the properties of linear block codes

and applied to the design of efficient SOSD decoding algorithms for long block codes.

29

Appendices

Appendix A- The Optimality of MA*

In this appendix we show the optimality of M A* and a corollary used in the design of the

algorithm. Theorem 1 guarantees that M A* still finds an optimal path if it discards those

nodes whose values of lowq are greater than or equal to U B. Corollary 1 shows that if a

node is discarded according to Theorem 1, then the optimal path that goes through this

node must have a cost greater than or equal to U B. Therefore, Corollary 2 shows that

from the start node to a goal node along a path in the code tree, the values of the lowq

are monotonically non-decreasing, i.e., if m. is an immediate successor of node ms-b then

lowq(m8 _t) ::5 lowq(m8). It follows that if a node is discarded according to Theorem 1, then

all successors of this node must have values of lowq greater than or equal to U B and can

be discarded. Note that Theorem 1 and Corollary 2 are used in the design of our decoding

algorithm to reduce the size of list C. In order to show the proofs of the theorem and

corollaries, we first give the following lemmas. Corollary 2 follows directly from Lemma 4.

The proofs of Theorem 1 and Corollary 1 are also given in this appendix.

Lemma 1

Let m be a node in the code tree. For any two positive integers i and j, if i < j, then

hHm) :::; hj(m).

Proof of Lemma 1:

Let vH m) E Tf (m) be the vector used to calculate hi(m) and let vj (m) E TJ (m) be the

vector used to calculate hj(m). According to the definitions of hHm) and hj(m), since i < j,

it follows that Tf(m) :::> TJ(m), which implies that hi(m) ~ hj(m).

Lemma 2

For a positive integer q and for any node m in the code tree,

h~(m) ~ h*(m),

where h*(m) is the actual cost of a minimum-cost path from node m to a goal node.

30

Proof of Lemma 2:

We prove by contradiction that h~(m) $ h*(m). Let m be a node at level l and let

Uo, U1, ••• , Ut be the labels of the path P m from the start node to node m. Let c =
{eo, c1, ... , Cn-1) be the codeword that corresponds to the labels of the minimum-cost path

from the start node to a goal node that goes through node m, i.e., c E C and eo =

Uo, c1 = U11 ... , c1 = u,. Then, c E T'(m) and h*{m) = Ej;J {c/>;- (-1Yi)2 • Assume

that h~{m) > h*(m). Let's consider two cases, namely q = 1 and q > 1.

1. Case 1: q = 1. According to the definition of h~(m), if q = 1, then hi(m) = minv'eT{(m)

{ Ej;J (¢;- {-1r'i) 2
} > h*(m) = Ej;J (4>;- {-1Yi)2 which is a contradiction that

c E T{(m);

2. Case 2: q > 1. If q > 1, then according to the definition of h~(m) it follows from the

assumption that h~(m) > h*(m) and from Lemma 1 that there exists a positive integer

i, 1 $ i < q such that hHm) = h*(m). Since the vector used to calculate hHm) is

the codeword c, by the definition of h~(m), h~(m) = hHm) = h*(m), which is also a

contradiction to the assumption that h~{m) > h*(m).

Lemma 3

For a positive integer q, function h9 is monotonic [26], i.e., for any integers, 0 $ s < n,

if node m, at level s is an immediate successor of node m,_1 in the code tree, then

(2)

where c(ms-1! m,) is the arc cost between node m,_1 and node m,.

Proof of Lemma 3:

Let Uo, U1, ... , Va-l be the labels of the path P m._1 from the start node to node m8 _ 1. Let C8

be the label of the arc from node m 8 _ 1 to node m,. Then c(ms-1! m 8) = (c/>,- (-l)c•)2 • We

will prove that h9(ms-d $ c(ms-b m 8) + h9(m8) by considering the following three cases:

31

1. 0 ~ s < k -1:

Let v9 = (v0 , v., ... , Va-h c., ... , Vq(n-1)) E T9(m.) be the vector that satisfies

2. s = k -1:

Since h9(m._!) ~ h*(ma-1) and h9(m.) = h*(m.), it follows that h9(ma-1) < h*(ma-1)

~ c(m._1, m.) + h*(m.) = c(m._., m.) + h9(m.).

3. k -1 < s < n:

Since h9(m._1) = h*(m._1) and h9(m.) = h*(m.), it follows that h9(m._1) = h*(m._I)

~ c(m._., m.) + h*(m.) = c(ma-h m.) + h9(m.).

Lemma4

For a positive integer q, function h~ is also monotonic, i.e., for any integers, 0 ~ s < n,

if node m. at level s is an immediate successor of node ma-l in the code tree, then

(3)

where c(ma-h m.) is the arc cost between node ma-l and node m •.

Proof of Lemma 4:

Let V'o, V'1,. •• , Va-l be the labels of the path Pm._1 from the start node to node ma-l· Let

c. be the label of the arc from node ms-1 to node m •. Then, c(ma-t,m.) = (<P.- (-1Y•)2 •

According to the definitions of SH(m._I) and SH(m.), we have SH(m._1 ~ SH(m.). The

proof that h~(m._1) ~ c(m._.,m.) + h~(m.) when SH(m._t) = SH(m.) is similar to that of

Lemma3. We now prove that h~{m._t) ~ c(ms-hm.)+h~(ms) when SH(m6)-SH(m._t) f:.
0. Without loss of generality, we may assume that h1 is the only parity check in SH(m.)-

32

SH(m,_t). Let v~ = {Uo, Ut, ... 'u,_t, c, v~(•+l)' ••. 'v~(n-1)) E r:(m,) be the vector that sat­

isfies that

'E ((h- < -l)"~j) 2 = ,mJn { 'E (<Pj- < -t)"ir};
j=s+l V eT9 (m,) j=s+l

then v~(A:+t) = (vohto EB U1h11 EB ... EB v',-tht(s-1) EB c,h,,). Since v~ = {Uo, u~, ... , U,-1, c,,

v~(•+l)' •.. 'v~(A:+l)! ... ' v~(n-1)) is also in r:(m,-1), it follows that

Theorem 1

Let P be a path from the start node to a goal node found by M A*. Let U B be the cost

of P. M A* still finds an optimal path if it discards from the code tree any node m for which

low9(m) ~ U B.

Proof of Theorem 1:

Let P* = (m_t, m 0, ... , mi, ... , ... , m:_1) be an optimal path. Let mi be the first node in

path P* that is in list C,. According to Lemma 1,

low9 (mi) = g(mi) + h~(mi) ~ g(mi) + h*(mi) = f*(mi),

where f*(mi) = f*(m:_ 1) is the cost of the optimal path. It follows that

Therefore, if low9(mi) < U B, node m; will not be discarded; otherwise, if low9(mi) = U B,

then the algorithm has already found an optimal path and node mi can be discarded.

Corollary 1

Let m be a node in the code tree. For any positive integer q, if low9(m) ~ U B, then the

cost of the optimal path that goes through node m is greater than or equal to U B.

33

Proof of Corollary 1:

Let f*(m) = g*(m) + h*(m) be the actual cost of the optimal path that goes through

node m, where g*(m) is the actual cost of the path from the start node to node m and

h*(m) is the actual cost of the optimal path from node m to a goal node. Assume that

lowq(m) ~ U B. This theorem follows directly from Lemma 2 and the definition of lowq since

f*(m) = g*(m) + h*(m) = g(m) + h*(m) ~ g(m) + h'(m) = lowq(m) ~ UB.

Corollary 2

For a positive integer q, if mi is an immediate successor of a node mi-t in the code tree,

Proof of Corollary 2:

According to Lemma 4, h~(m,_1) ::5 c(m,_., m,) + h~(m,). It follows that lowq(m,_t) =
g(m,_t) + h~(m,_t) ::5 g(m,_t) + c(m,_1 , m,) + h~(m,) ::5 g(m,) + h~(m,) = lowq(m,).

34

Appendix B- Algorithm for the Calculation of Function hq(m)

In this appendix we give an algorithm for the calculation of heuristic function h9 • The

complexity of this algorithm is 0(qn + q log(q)). In the algorithm we assume that l/J' =
(4>~, 4>~, ... , 4>~_ 1) is the received vector, which is sorted in nondecreasing order, i.e., 4>j1 $; 4>j2

if j 1 < j 2 • Let HW = { wdO $; i $; J} be the set of all J + 1 distinct Hamming weights that

codewords of C may have. Assume that w is the Hamming weight of the quantized received

vector. Let HEAP be a binary tree such that each node in HEAP stores a vector in {0, 1 }n

and the vector stored in each node of HEAP is closer to l/J' than any of the vectors stored

in its children. In this algorithm, "l" represents a string of 1s whose length is greater than

or equal to 0, i.e., (l) = ()or (1, 1, ... , 1). Analogously, (0) = ()or (0, 0, ... , 0).

1. Set HEAP = 0 and j = 0. 0(1)

2. Let Wt E HW be the largest Hamming weight smaller than or equal to w and let

Wt+t E HW be the smallest Hamming weight greater than w. Assume that v =
(1, 1, ... , 1, 0, ... , 0) E {0, 1 }n is the vector with Hamming weight Wt and v' = (1, 1,

... , 1,0, ... ,0) E {0,1}n is the vector with Hamming weight Wt+t· If dE(lfJ', v) $;

dE(c/>', v'), then the closest vector to c/J' in {0, 1}n that satisfies the Hamming weight

constraint is v; otherwise, v' is the closest vector to l/J' in {0, 1 }n that satisfies the

Hamming weight constraint. Without loss of generality, we may assume that v is the

closest vector to 4>' that satisfies the Hamming weight constraint. Set v to be the first

vector in group 1 with weight Wt, i.e., p 1(1, Wt) = v. Put p 1(1, Wt) into HEAP. Let n9

be the number of groups that have been created. Set n9 = 1. 2 x O(n).

3. Heapify all vectors in HEAP such that the vector stored in the root of HEAP is the

closest vector to 4>' among all vectors stored in HEAP. Let p0 ({3, w,) be the vector

stored in root of HEAP. Set j = j + 1. O(log(q))

4. Pa(/3, w) is the jfh closest vector to 4J' that satisfies the Hamming weight constraint.

If j = q, the closest q vectors to 4>' that satisfy the Hamming weight constraint have

35

been generated and the algorithm terminates; otherwise, set v = (v0 , v~, ... , Vn-d to

be Pa(/3, wi)· O(n)

5. If a> 1, go to step 7. 0(1)

6. If Wi-1 E HW, set n9 = n9 + 1 and generate the first vector of group n9 that is the

closest vector to l/J' with weight w,_1 • Put p 1(n9 , w,) into HEAP. If Wi+l E HW, set

n9 = n9 + 1 and generate the first vector of group n9 that is the closest vector to </>'

with weight Wi+I· Put p 1(n9 , Wi) into HEAP. 2 x O(n)

7. If Pa(/3, Wi) = (... '0, 0, r, 1), then delete Pa(/3, Wi) from HEAP and go to step 3. 0(1)

8. If Pa(/3, w,) = (... ' 1, o,f, 1), then set Pa(/3, Wi) = (... '0, 1,1, 1). Set a = a+ 1. Put

Pa(/3, wi) into HEAP and go to step 3. 0(1)

9. Let v., be the last component of Pa(/3, w,) whose value is 1, i.e., v. = 1 and v•+l = V4 +2

=, • • ., = Vn-1 = 0. O(n)

10. Shift the last 1 in Pa{/3, Wi) right to generate the next vector, Pa+1(/3, wi), i.e., set

(v.,,v.,+I) = {0,1) and a= a+ 1. Put Pa(f3,w,) into HEAP. 0{1)

11. If Pa(f3,wi) is equal to(... , 1, 0, f, 0, 1, 0, 0), then create a new group such that the

vector(... , 0, 1, r, 1, 0, 0, 0) is the first vector in this group, i.e., set ng = ng + 1 and

P1(ng, Wi) = (... , 0, 1, r, 1, 0, 0, 0). Put Pt(ng, Wi) into HEAP. Go to step 3. 0(1)

The complexity of the algorithm is O(qn + qlog(q)).

36

Appendix C - The Optimality of H*

In this appendix we show the optimality of the H* algorithm. Let c = (~, Ct, ... , Cn-t) he

the codeword whose cost is the upper hound U B and assume that c* = (~' cr, ... , c:_1) is a

minimum-cost codeword. Let 7 he the set that contains all indices t E {0, 1, ... , n -1} such

that the value of the tth component of a minimum-cost codeword has been determined, i.e.,

c; is already determined. Let I = { 0, 1, ... , k- 1} -7 he the set of indices i in which cf is still

undetermined. For an index i E I, Theorem 2 guarantees that H* will find a minimum-cost

codeword whose ith component is <;Eel. If the cost ofthis minimum-cost codeword is less than

U B, the algorithm has found a codeword whose cost is less than U B and U B is updated;

otherwise, the value of the ith component of a minimum-cost codeword could he determined.

Theorem 3 guarantees that if lowj(i, q) :2: U B, then the ith component of the minimum-cost

codeword is C;. These two theorems guarantee that H* will find a minimum-cost codeword

before it terminates. In order to show the proofs of these two theorems, we first give the

following lemma.

Lemma 5

For an index i E I and any positive integers j 1 and j 2, if j 1 < j 2, then h'J1 (i) ~ h'J2 (i) and

lowj1 (i, C;) ~ lowj2 (i, q).

Proof of Lemma 5:

Let v'j1 = {v~ 0,v~ 1 , ••• ,v~(n-1)) he the vector used to calculate h'J1{i) and let v'j2 = (v%0,

v% 1 , ••• , v%(n-l)) he the vector used to calculate h'J2 (i). Sincej1 < j2, we have TJ:(i) 2 TJ;(i).

It follows from the definition of h'J1 (i) and h'J2 (i) that

Furthermore, lowj1 (i, <;) = g(I) + h'J1 (i) ~ g(I) + h'j2 (i) = lowj2 (i, 'Ci).

Theorem 2

For an index i E I, there exists a positive integer j such that the vector v'j E Tj'(i) used

to calculate h'J(i) is a minimum-cost codeword whose ith component is C; EB 1 and whose tth

37

components are C: for all t E 7.

Proof of Theorem 2:

Suppose that for every positive integer j, the vector vJ = (vj0,vj1, ... ,vj(n-l)) E TJ'(i) used

to calculate hj(i) is not a codeword. Let j 1 < j 2 be two positive integers. Let vj1 be

the vector used to calculate hJ1 (i) and "h be the vector used to calculate h'h(i). Then

TJ:(i) ::> Tb(i) and TJ:(i) ::/: Tb(i), which implies that vj1 ::/: vj,. Furthermore, T"(i) is a

finite set of n-tuple vectors and u' G is a codeword in T"(i), where u' = (u~, u~, ... , u~_1)

is a binary k-tuple vector such that u~ = 'Ci EB 1, u~ = C: for all t E 7, and u~ = 0 for all s E

{0, 1, ... , k -1}- { i}- 7. It follows that there exists a positive integer j such that the vector

vJ = (vj0 , vj1, ... , vj(n-t)) E TJ'(i) used to calculate hj(i) is equal to u' G E T"(i), which

is a contradiction to the assumption. Therefore, there exists some integer j such that the

vector vJ E TJ'(i) used to calculate hj(i) is a codeword. Let j be the smallest positive integer

such that the vector vJ used to calculate hj(i) is a codeword. We now prove that vJ(i) is a

minimum-cost codeword whose i'" component is 'Ci EB 1. If j = 1, then according to Lemma 5,

v; is a minimum-cost codeword to the received vector in TJ'(i). If j > 1, assume there

exists another positive integer j', 0 < j' < j such that the vector vj, = (v;'o, Vj'h ••• , Vj'(n-d

E TJ:(i) used to calculate hj,(i) is also a codeword. According to the definition of hj,(i),

TJ'(i) = TJ:(i), which implies that vJ = vj, and hj(i) = hj,(i). It follows from Lemma 5 that

vj(i) is a minimum-cost codeword whose i'" component is 'Ci e 1.

Theorem 3

For any i E I, if there exists some positive integer j such that lowj(i,Cj) ~ UB, then

c; = q.

Proof of Theorem 3:

For any i E I, let j be the smallest positive integer such that lowj(i,q) ~ UB. According

to Theorem 2, there exists some positive integer t such that the vector"~ E r:'(i) used to

calculate h~(i) is the minimum-cost codeword whose ith component is ~ ffi 1 and whose zth.

38

component is cj for every l E 7. According to the definition of h~(i), h~Hi) = h~(i) for all

positive integer t' ~ t. It follows from Lemma 5 that t ~ j and lowHi, 'Ci) ~ lowj(i, 'Ci) ~ U B.

Since low:(i, C;) is the cost of the minimum-cost codeword whose ith component is 'Ci EB 1, any

codeword whose ith component is~ EB 1 must have a cost greater than or equal to low~(i, ~)

(which is greater than or equal to U B). Therefore, either cis a. minimum-cost codeword or

the value of the ith component of a. minimum-cost codeword cannot be 'Ci EB 1. It follows that

ct =~.

39

References

[1] R. W. D. Booth, M.A. Herro, and G. Solomon, "Convolutional Coding Techniques for

Certain Quadratic Residue Codes," Proc. 1975 Int. Telemetering Conf., pp. 168-177,

1975.

[2) P. Carnevalli, L. Coletti, and S. Patarnello, "Image Processing by Simulated Annealing,"

IBM J. Res. Dev., vol. 29, pp. 569-579, 1985.

[3] D. Chase, "A Class of Algorithms for Decoding Block Codes with Channel Measurement

Information," IEEE Transactions on Information Theory, pp. 170-181, January 1972.

[4) G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital Communications.

New York, NY: Plenum Press, 1981.

[5] B. G. Dorsch, "A Decoding Algorithm for Binary Block Codes and J-ary Output

Channels," IEEE Transactions on Information Theory, pp. 391-394, May 1974.

[6] K. H. Farrell, L. D. Rudolph, C. R. P. Hartmann, and L. D. Nielsen, "Decoding by Local

Optimization," IEEE Transactions on Information Theory, pp. 740-743, September

1983.

[7) Marc P. C. Fossorier and Shu Lin, "Soft Decision Decoding of Linear Block Codes Based

on Ordered Statistics," IEEE Transactions on Information Theory, September 1995.

[8) Marc P. C. Fossorier and Shu Lin, "Computationally Efficient Soft Decision Decoding of

Linear Block Codes Based on Ordered Statistics," IEEE Transactions on Information

Theory, May 1996.

[9) F. Glover, "Tabu Search Methods in Artificial Intelligence and Operations Research,"

ORSA Artificial Intelligence Newsletter, vol. 1, no. 2, pp. 6, 1987.

40

(10) F. Glover, "Tabu Search-Part 1," ORSA Journal on Computing, Vol. 1, No. 9, pp.

190-206, Summer 1989.

[11] Y. S. Han, C.-T. Chiu, C. R. P. Hartmann, and C. K. Mohan, "Efficient Subopti­

mal Decoding Linear Block Codes," {invited paper) Proceedings of the 92nd Allerton

Conference on Communication, Control, and Computing, University of Illinois, Urbana­

Champaign, September 1994.

(12) Y. S. Han and C. R. P. Hartmann, "Designing Efficient Maximum-Likelihood Soft­

Decision Decoding Algorithms for Linear Block Codes Using Algorithm A*," Technical

Report SU-CIS-92-10, School of Computer and Information Science, Syracuse Univer­

sity, Syracuse, NY 13244, June 1992.

[13] Y. S. Han and C. R. P. Hartmann, "Efficient Optimal and Suboptimal Decoding of

Linear Block Codes," Proceedings of the 199./ SBT /IEEE International Telecommuni­

cations Symposium (ITS '9./}, Rio de Janeiro, Brazil, August 1994.

(14) Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, "Efficient Priority-First Search

Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes," IEEE 71-ans­

actions on Information Theory, pp. 1514-1523, September 1993.

(15] Y. S. Han, C. R. P. Hartmann, and K. G. Mehrotra, "Decoding Linear Block Codes

Using a Priority-First Search: Performance Analysis and Suboptimal Version," accepted

for publication in IEEE 71-ansactions on Information Theory.

[16] Y. S. Han, C. R. P. Hartmann, and K. G. Mehrotra, "Efficient Suboptimal Soft-Decision

Decoding of Linear Block Codes Using a Gereralization of Algorithm A*," presented at

the Recent Results Session of the 1993 IEEE International Symposium on Information

Theory, San Antonio, Texas, January 1993.

[17) Y. S. Han, C. R. P. Hartmann, and K. G. Mehrotra, "Further Results on Decoding

Linear Block Codes Using a Generalized Dijkstra's Algorithm," Proceedings of the 199./

41

IEEE International Symposium on Information Theory, p. 342, Trondheim, Norway,

June 1994.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic Determi­

nation of Minimum Cost Paths," IEEE Transations on SSG, vol. SSC-4, pp. 100-107,

1968.

[19] T.-Y. Hwang, "Decoding Linear Block Codes for Minimizing Word Error Rate," IEEE

Transactions on Information Theory, pp. 733-737, November 1979.

[20] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, "An Efficient Maximum­

Likelihood-Decoding Algorithm for Linear Block Codes with Algebraic Decoder," IEEE

Transactions on Information Theory, pp. 320-327, March 1994.

[21] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by Simulated An­

nealing," Science, vol. 220, no. 4598, pp. 671-680, May 1983.

[22] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. New

York, NY: Elsevier Science Publishing Company, Inc., 1977.

[23] H. Maini, K. Mehrotra, C. K. Mohan, and S. Ranka, "Genetic Algorithms for Soft­

Decision Decoding of Linear Block Codes," Journal of Evolutionary Computation, vol. 2,

pp. 145-164, January 1994.

[24] H. Maini, K. Mehrotra, C. K. Mohan, and S. Ranka, "Knowledge-Based Nonuniform

Crossover," Complex Systems, vol. 8, pp. 257-293, 1994.

[25) K. R. Matis and J. W. Modestino, "Reduced-Search Soft-Decision Trellis Decoding of

Linear Block Codes," IEEE Transactions on Information Theory, pp. 349-355, March

1982.

[26] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving. Read­

ing, MA: Addison-Wesley Publishing Company, Inc., 1984.

42

[27) J. F. Shapiro, Heuristics: Intelligent Search Strategies for Computer Problem Solving.

New York, NY: John Wiley & Sons, Inc., 1979.

[28) C.-C. Shih, C. R. Wulff, C. R. P. Hartmann, and C. K. Mohan, "Decoding Linear

Block Codes Using Optimization Techniques," Proceedings of the 1995 IEEE Interna­

tional Symposium on Information Theory, p. 414, Whistler, British Columbia, Canada,

September 1995.

[29) C.-C. Shih, C. R. Wulff, C. R. P. Hartmann, and C. K. Mohan, "Heuristic Search

Algorithms for Soft-Decision Decoding," (invited paper) Proceedings of the 33rd Allerton

Conference on Communication, Control, and Computing, pp. 690-699, University of

Illinois, Urbana-Champaign, October 1995.

[30) G. Solomon and H. C. A. van Tilborg, "A Connection Between Block and Convolutional

Codes," SIAM J. Appl. Math., pp. 358-369, 1979.

[31) D. J. Taipale and M. B. Pursley, "An Improvement to Generalized-Minimum-Distance

Decoding," IEEE Transactions on Information Theory, pp. 167-172, January 1991.

[32) A. M. Tenenbaum and M. J. Augenstein, Data Structures Using Pascal. Englewood

Cliffs, NJ: Prentice-Hall, Inc., second edition, 1986.

[33) A. J. Viterbi, "Error Bound for Convolutional Codes and an Asymptotically Optimum

Decoding Algorithm," IEEE Transactions on Information Theory, pp. 260-269, April

1967.

[34) J. K. Wolf, "Efficient Maximum Likelihood Decoding of Linear Block Codes Using a

Trellis," IEEE Transactions on Information Theory, pp. 76-80, January 1978.

43

	Efficient Heuristic Search Algorithms for Soft-Decision Decoding of Linear Block Codes
	Recommended Citation

	SU-CIS-96-03_001c
	SU-CIS-96-03_002c
	SU-CIS-96-03_003c
	SU-CIS-96-03_004c
	SU-CIS-96-03_005c
	SU-CIS-96-03_006c
	SU-CIS-96-03_007c
	SU-CIS-96-03_008c
	SU-CIS-96-03_009c
	SU-CIS-96-03_010c
	SU-CIS-96-03_011c
	SU-CIS-96-03_012c
	SU-CIS-96-03_013c
	SU-CIS-96-03_014c
	SU-CIS-96-03_015c
	SU-CIS-96-03_016c
	SU-CIS-96-03_017c
	SU-CIS-96-03_018c
	SU-CIS-96-03_019c
	SU-CIS-96-03_020c
	SU-CIS-96-03_021c
	SU-CIS-96-03_022c
	SU-CIS-96-03_023c
	SU-CIS-96-03_024c
	SU-CIS-96-03_025c
	SU-CIS-96-03_026c
	SU-CIS-96-03_027c
	SU-CIS-96-03_028c
	SU-CIS-96-03_029c
	SU-CIS-96-03_030c
	SU-CIS-96-03_031c
	SU-CIS-96-03_032c
	SU-CIS-96-03_033c
	SU-CIS-96-03_034c
	SU-CIS-96-03_035c
	SU-CIS-96-03_036c
	SU-CIS-96-03_037c
	SU-CIS-96-03_038c
	SU-CIS-96-03_039c
	SU-CIS-96-03_040c
	SU-CIS-96-03_041c
	SU-CIS-96-03_042c
	SU-CIS-96-03_043c
	SU-CIS-96-03_044c
	SU-CIS-96-03_045c
	SU-CIS-96-03_046c
	SU-CIS-96-03_047c

