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Abstract. To find broken links in networks we use the cut-set space. Information on 

which nodes can talk, or not, to which other nodes allows reduction of the problem to 

that of decoding the cut-set code of a graph. Special classes of such codes are known to 

have polynomial-time decoding algorithms. We present a simple algorithm to achieve the 

reduction and apply it in two examples. 

1To appear in Discrete Mathematics. 



Suppose in a network used for communication it becomes impossible to send messages 

between certain pairs of nodes. How could one find the broken links? 

The model considered here is a connected undirected graph in which the vertices stand 

for the nodes of the network and the edges for the communication links between nodes. 

Notation. The graph G = (V, E) has n edges, and F:= GF(2). We are working in the 

space Fn, in which the coordinate-places are identified with the edges (in other words, in 

FE.) Each subset of edges of G is the support of a unique element of Fn. We will freely 

identify subsets of E with their corresponding elements of Fn. For example, if X, Y ~ E, 

then IX n Yl reduced mod 2 is the dot product of the elements of Fn corresponding to X 

andY. 

If M is a matrix over F, *M denotes the row-space of M and M * the column-space. 

By a trail in G we mean a walk with no repeated edges. A circuit is a trail in which 

the first and last vertices are the same. A trail starting at x and ending at y is called an 

x-y trail. The set of edges of a trail W is (identified with) a vector in Fn, and we shall also 

denote it as W. 

A simple coding-theoretic approach is useful in a special case of the problem mentioned 

at the outset. The circuit-space C of a graph, the vector space over GF(2) spanned by the 

circuits considered as subsets of edges, was first viewed as a code by Kasami [6] in 1961. 

(See also [5] for other independent discoverers.) The cut-set space of the graph is the code 

CJ. orthogonal to C. CJ. consists of cut-sets and unions of mutually disjoint cut-sets [7]. 

Problem 1. In the first problem we consider, we assume that any failure of communi

cation is caused by broken links. We suppose that for certain 2-subsets of nodes we know 

the "communication status" of the network; that is, between various nodes x, y we know 

that communication is possible, and for various others that it is not possible. 

Suppose communication is not possible between nodes x and y. This means that the set 

B of all broken links includes some cut-set J( of edges separating x and y. 

We now make a simplifying assumption, that B includes only one cut-set. This assump

tion is reasonable if breaks in edges occur with a Poisson distribution and if we sample the 

communication status of pairs often enough to detect an x, y failure very soon after it first 
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occurs. 

Cut-sets have the following property. 

Proposition 1 Let K be a cut-set of G, and denote by G1 and G2 the components of G-K. 

Let x and y be vertices of G1 and z a vertex of G2 • Then every x-y trail has dot-product 0 

with K, and every x-z trail has dot-product 1 with K. 

Proof. If W denotes the x-y trail, then IW n Kl is even, because each edge of Kin W 

causes a change to the other component. If W goes from x to z, then IK n lVI must be odd. 

0 

This simple Proposition dictates our strategy. There is an unknown cut-set K ~ B, 

and we know the communication status of certain pairs of nodes. These pairs allow us to 

conclude that K is included in a proper subset of the cut-set code Cl., in fact, in a coset of 

a subcode of Cl.. We may then decode according to an appropriate criterion dictated by the 

probability distribution of edge-breaks. 

The incidence matrix M of G is a 0, 1 matrix with rows indexed by the vertices of G 

and columns by the edges. For each vertex v of G, R(v) :=row v of M is the vector ofF" 

consisting of the edges of G with v as an endpoint. Sometimes we abuse the notation by 

writing v instead of R(v). We know that *M = Cl.. Since the sum of the rows of M is 0, 

Cl. is an [n, k] code, where k = lVI - 1. 

We shall use the following result. 

Lemma 1 Let x andy be any distinct vertices of G. Let W be any x-y trail. Then for all 

vertices z =1- x,y R(z) · W = 0; and R(x) · W = R(y) · W = 1. 

Proof. If z =1- x, y, then either W does not pass through z, or W uses two edges of R(z) at 

each passage through z. 0 

We denote by T [J] the set of all pairs of nodes of G between which we know commu

nication is possible [not possible] despite [because of] broken links. We shall write xTy for 

(x, y) E T, and xJy for (x, y) E J. Under our assumption, edges of B- K have no effect on 

J. (See Example 2 below.) 
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A First Case 

We begin with a simple case: T := {(x, y)} and J := {(x, z)}. Our cut-set K is in Ci = *M, 

but for all x-y trails W, K · W = 0 and for all x-z trails W', K · W' = 1. So we consider only 

the subset S of *M having these properties. (We do not use these trails for communication, 

soW' exists in the model G, not as an intact path in a network with broken edges.) 

To find S, consider an x-y trail W. If v is any vertex other than x or y, then by the 

Lemma, W · R( v) = 0. But W · R( x) = W · R(y) = 1. Therefore the set of all cut-sets having 

dot-product 0 with every x-y trail is a subset of *M', where M' is M with R( x) and R(y) 

removed, but a new row, R(x) + R(y), inserted. Thus K E *M'. 

Now consider an x-z trail W'. With all rows of M', other than R(z) and R(x) + R(y), 

W' has dot-product 0. We form a matrix M" by removing these two rows and inserting their 

sum as a new row R(x) + R(y) + R(z). The subspace of Ci having dot-product 0 with all 

x-y trails and with all x-z trails is *M". The subset of Ci having dot-product 0 with all x-y 

trails and 1 with all x-z trails is a coset of the subcode *M", namely, 

R(z) + *M". 

The cut-set K that we seek is some element of this coset. 

Comment. Notice that the passage from M toM' amounts to merging the two vertices 

x and y to make a new graph G' with incidence matrix M'. If there is an edge between x 

and y it disappears in G', and *M' is in that case the sub code of Ci of all vectors 0 on that 

edge. If we eliminate that column we have a shortened subcode of Ci. 

M" is the incidence matrix of the graph G" obtained from the merger of the three vertices 

x, y, and z (again with the understanding that no loops are produced). 

The General Case 

We give here a running account of our algorithm. Our data consist of two relations T and J 

on V. We take J as symmetric. 

Since communicability is reflexive, symmetric, and transitive, in Step 1 we use the 

polynomial-time union-find algorithm (UFA) [1, p. 110) to find the equivalence closure 
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of T. The result is a partition P of V, among the cells of which appear as singletons the 

points of V not related by T to other points of V. 

Step 1. Let P = U F A(T, V). 

Define 1r : V ---t P by the rule 

Vx E V, x E 1r(x). 

Thus 1r(x) is the cell of P containing x. We now adapt J toP. 

Step 2. ( i) While 3x, y, z, w E V such that 

xJy and wJz and 1r(x) = 1r(w) and 1r(y) #- 1r(z) 

do P := P- {1r(y),1r(z)}, 

P := P U {1r(y) U 1r(z)}. 

Note that 1r changes as P changes. 

( ii) If 3x, y E V such that 

1r(x) = 1r(y) and xJy, then halt 

with an error report: the unique cut-set 

property does not hold. 

The reason for Step 2( i) is that since xTw, both y and z are on the other side of the cut 

from x; hence we infer that y and z can talk to each other. Step 2 (ii) stops the procedure 

with a failure, which might occur if we do not read the data soon enough after a cut-set of 

broken edges exists. 

Define J as the following relation on P: 

VD,D' E P, DJD' iff 3x ED, x' ED' such that xJx'. 

Step 3. Define, using mod-2 summation, a new matrix M': 

VD E P, R(D) := I:R(x) is a row of M'. 
:r:ED 

M' has no other rows. 

M' is the incidence matrix of the graph G' we obtain from G when we merge all vertices 

that we know are able to talk to each other into a single vertex. 

Because of Step 2 the relation J is now a matching on P, i.e., VD,D',D" E P if DJD' 

and DJ D", then D' = D". 

4 



Step 4. Define the matrix M" as follows: 

(i) M" := M' 

(ii) VD,D' E P, if DJD' then remove rows R(D) 

and R( D') from M" and insert a new row 

R(D) + R(D') into M". 

Step 5. Choose one of each pair (D, D') E J; i.e., choose a 

maximal set S of elements of P such that 

Vx, yES (x,y) ¢ J but x andy 

are the first coordinates of pairs in J. 

Step 6. Find K as an element of the coset Z, where 

Z := L R(x) + *M". 
xES 

Steps 4 and 5 take account of the information in J. (To avoid redundancy, if Step 4 is 

done for (D, D') E J, then it should not be done for (D', D) E J.) The coset Z is a subset of 

the set Y of all elements of Cl. which have dot-product 0 with every x-y trail if (x, y) E T, 

and dot-product 1 with every x-y trail if (x, y) E J. Z is a proper subset of Y if we have 

used Step 2 (i) to modify P. 

To find K in Step 6 requires a decoding procedure for the cut-set code *M". This 

problem is NP-complete [2, II A]. If the graph G is planar, however, it has a dual graph D, 

the circuit code of which is the cut-set code of G. Since there is a polynomial-time algorithm 

for decoding the circuit code of a graph [8], [10], then there is one for cut-set codes of 

planar graphs. Recent papers [4, (6.6)], [9] have extended this result to other special classes 

of graphs. (To adapt [4, (6.6)] to our situation, set the "cost" function c to be 1 on the 

coordinate-positions of the received word u, and -1 on the other coordinate-positions. If v 

is a codeword, then 

c(v) = wt(u)- d(u, v); 

maximizing c( v) over codewords v minimizes d( u, v ), producing a v closest to u.) 

Problem 2. Here we do not know of any pairs in J, but we deliberately break edges. 
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If that produces pairs in J, we then proceed as in the first problem. Breaking an edge 

corresponds to puncturing the code Cl. at that coordinate, so we eliminate those columns 

from M. As shown in Example 2 below, it is sometimes necessary to choose more than one 

subset of edges to break in order to determine the unknown subset of broken edges. 

Problem 3. Suppose nodes may also fail. Failure of node x could be viewed as a case 

of Problem 1 in which all edges incident to x had failed. But it would be simpler in this 

problem to check node x as soon as several pairs (x, y1), •.. , (x, Ys) appeared in J. 

Examples. Here are two examples at the level of puzzles. Both are taken from [3]. 

Because the graphs are small the only decoding procedure needed is exhaustion. 

1. Consider the graph of Figure 1. 

1 v 

2 

___ 6 ___ 0~ 

3 X 

4 7 

y 

Figure 1 

It has incidence matrix M1 when the vertices are ordered as a~, ... , a4 , b17 ~' b3 , v, w, x, y, z: 

where B is the 5 x 13 matrix 
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v 1 0 0 0 1 0 0 1 0 0 0 0 1 

w 1 0 1 1 1 

B= X 1 0 0 1 1 

y 1 0 1 0 1 1 1 0 

z 0 1 1 1 

We are given the data a1Tbt, a2Tbt, aaTb2, a4Tb3, a1Jb2, and aaJb1. The problem is to 

find the smallest set of broken edges that fit the data. This is a case of Problem 1. 

Since the "a" and "b" vertices all have degree 1 and each can talk to another vertex, we 

infer that all edges to those vertices are unbroken. Hence we infer a1Tv, a2Tw, etc. The 

result of Step 1 is then 

P = at,a2,b17 v,wla3,b2,x,zla4,b3,Y; 
D1 D2 Da 

and from the data we see that D1JD2 • The result of Step 3 is the 3 x 13 matrix M{ = OB', 

where B' is the 3 X 5 matrix of columns 9, ... , 13: 

R(D1 ) 1 0 1 0 1 

B' - R( D2 ) 1 1 0 1 1 

R(D3) 0 1 1 1 0 

Step 4 produces R(Dt) + R(D2) = R(Da) as the first row, so the upshot is that 

Zt - R(Dt) + *[R(D3)] 

{R(DI), R(Dt) + R(Da)} 

- {{9,11,13}, {9,10,12,13}}. 

Thus the answer is that edges 9, 11, 13 are broken. 

2. Now for an example of Problem 2. Consider the graph of Figure 2. 
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v 

u 

y 

Figure 2 

It has incidence matrix M 2: 

1 2 3 

u 1 1 1 

v 

M2= w 1 

X 1 

y 1 

z 

For data we have 

( i) If we break edges 2, 3, 4, then uJ z. 

(ii) If we break edges 3, 4, then uTz. 

4 

1 

1 

(iii) If we break edges 3, 4, 8, 9, then uJz. 

(iv) If we break edges 4, 8, 9, then uTz. 

5 

1 

1 

6 7 8 9 10 

1 

1 1 

1 1 

1 1 

1 1 1 

Problem: Find the smallest set of broken edges consistent with these data. 
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From ( i) and ( ii) we infer that edge 2 is unbroken, from ( iv) and the graph that edge 7 

is unbroken. Hence uTx and wTz. These inferences are the only conclusions we draw from 

(ii) and (iv). 

In ( i) and (iii) we have possibly different cut-sets, since the subsets of edges that we 

break are different. Therefore we treat them as different problems. But in both problems 

we know that wT z, so we have from Step 3 

u 1 1 1 1 

v 1 1 1 

M'-2- X 1 1 1 

y 1 1 1 

w+z 1 1 1 1 1 

Subproblem ( i): The datum is uJ z, with incidence matrix M~ punctured at columns 2, 

3, 4. We do Step 4; the result is 

v 0 0 0 1 1 

X 0 0 0 1 1 
M~' = t 

y 1 0 0 0 1 1 

u+w+z 1 0 0 0 1 1 1 1 

*Mf' is a [6, 3, 2] code, since column 7 is 0. The coset Zi is, with subscript 0 denoting 

puncturing on 2, 3, 4, 

which has a unique leader of weight 1, namely, R(u) 0 = 100000000. It corresponds to edge 

1. 

Remembering that Zi is the subset of Cl· of all elements separating u and z in the graph 

"of" Mf', we see that edge 1 is at least a candidate as part of the solution to our original 

problem. 

Subproblem (iii): The data are uTx and uJ z with incidence-matrix M~ punctured at 

columns 3, 4, 8, 9. We perform Step 3, adding rows u and x. The result is 
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v 0 0 1 

u+x 1 0 0 1 
M~··= lU 

y 1 0 0 

w+z 0 0 1 1 

Since uJ z, we add rows 2 and 4 of Mfii to get from Step 4 

M~~. = 
lU 

v 

y 1 

u+x+w+z 1 

0 0 1 

0 0 

0 0 1 

0 

0 

0 

0 

0 

0 1 

0 1 

0 

0 0 

0 0 1 

0 0 1 

All the nonzero elements of *Mffi appear as rows of the matrix, which tells us that the 

coset Ziii := (R(w) + R(z))o + *Mffi is 

{{5,6}, {6}, {1,5,6,10}, {1,6,10}}. 

The leader is {6}, and it is a cut-set of the graph "of" Mf:i separating u and z. Thus {6} is 

a candidate for part of our overall solution. 

In fact, since {6} solves (iii) and {1} solves (i), their union {1,6} must solve both 

problems. We then check that if edges 1 and 6 are broken, both ( ii) and ( iv) are satisfied. 

Therefore {1, 6} is a smallest solution. It is the only solution of size 2 because {5, 6} is not 

a solution to (i). 

Remark. We invoke the algorithm as soon as we have enough elements of T and J, say 

at timet. Breaks occurring after timet will not affect the data (namely, T and J) on which 

the algorithm operates. Those breaks eventually contribute to data for the next running of 

the algorithm. 

Future Work. We plan to consider questions of decoding and implementability in 

future work in this area. 
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