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ABSTRACT: 
Networks with sigmoid node functions have been shown to be universal 
approximators, and can use straightforward implementations of learning al­
gorithms. Mathematically, what is common to different sigmoid functions 
used by different researchers? We establish a common representation of 
inverse sigmoid functions in terms of the Guass Hypergeometric function, 
generalizing different node function formulations. We also show that the 
continuous Hopfield network equation can be transformed into a Legendre 
differential equation, without assuming the specific form of the node func­
tion; this establishes a link between Hop field nets and the method of function 
approximation using Legendre polynomials. 

Main Category: Neural network theory 
Sub-Categories: Dynamical Systems, Approximation Theory. 
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1 Introduction 

A sigmoid function produces an "S-shaped" or, sigmoid curve. The tanh() 
is a good example. The inverses of such functions have Gauss Hypergeo­
metric (GH) expansions with many common features. We present a generic 
representation for inverse sigmoids in terms of the GH function, and apply 
it to the study of the continuous Hopfield equation. We show that it may be 
reduced to the non-homogeneous associated Legendre differential equation. 
This result is particularly interesting, because it is independent of the form 
of the sigmoid function chosen to model the input-output characteristics of 
a neuron in the Hopfield network. 

The main reason why we chose to study inverse sigmoids rather than 
sigmoid functions themselves, is based on the fact that there is at least 
one inverse sigmoid function, (for example, tanh - 1()), characterized by a 
differential equation with regular singular points at 0, 1 (with at least one 
zero exponent at each of these two points), and at oo. Topologically we 
would expect every inverse sigmoid curve to possess the same "footprint". 
It was shown by Riemann that the solutions to such equations are always 
characterizable in terms of the GH function (4](pages 211-214). Simple series 
inversion may always be done to get the corresponding sigmoid expansion, 
in any particular case. 
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2 Anatomy of an Inverse Sigmoid function 

What curves qualify to be inverse sigmoids? The function tanh- 1{) is a 
good example of such a function. Definition 2.1 formalizes our notion of a 
standard inverse sigmoid function. 

Definition 2.1 A function 1J : ( -1, 1) -+ R is said to be a canonical inverse 
sigmoid function iff it satisfies the following five conditions, 

I 

1. TJ( -x) = -TJ( x ). 1J is an odd function. 

2. x; ~ x; ~ TJ(x;) ~ TJ(x;). 1J is a non-decreasing function. 

3. limx-±1 TJ(x) is unbounded. 1J approaches the lines x = ±1 asymp­
totically. 

4. 1J is continuous in its domain; 

5. The first derivative of 1J exists. 

The definition refers to canonical inverse sigmoid functions, and hence the 
conditions are somewhat stricter than is strictly necessary. For example, it 
is not essential that 1J be an odd function. Similarly, we have restricted the 
domain to be the open interval (-1,1), while any open interval (-K, K), with 
K a real number, would have served equally well. However, not only do 
these minor additional assumptions simplify analysis, but also introduces a 
certain degree of standardization to the curves being studied. H a function 
has to be an inverse sigmoid curve, then we henceforth assume it has to 
necessarily satisfy the above conditions. Inverse of functions that satisfy 
these conditions correspond to the widely accepted meaning of "sigmoid" 
functions in the neural network literature. 

It is interesting to note that a sigmoid function satisfies all of the above 
conditions, except condition 3. In fact, if we were to consider a function 
u(x) defined over the open interval (-oo,oo), as satisfying conditions 1, 2, 
4, 5, and additionally, the condition that limx _ ±oo u( x) is bounded, then 
we have a characterization of sigmoid functions that is more or less, quite 
reasonable. Sigmoid functions and their inverses differ only in their behavior 
at the endpoints of their intervals. 
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3 Gauss Hypergeometric Representations 

We seek a. representation of inverse sigmoid functions in terms of the three 
parameter Gauss Hypergeometric ( GH) function defined below, 

a {3 

'Y 
I z) = F(a,f3;"t;z) 

_ E (a)n(f3)n z" 
- n~O ('Y)n n! 

(3.1) 

where (z)n is Pocha.mmer's symbol, or the rising factorial, and defined to be 
the the product [J~- 1 (z + k). Note that z is in general a. complex variable, 
unless explicitly stated to the contrary. The following two properties are 
important. 

dy 
Proposition 1 If y = F(a, {3; "fi z), then dz 

1; z) I 

a{3 
- F( a + 1, {3 + 1; 'Y + 

'Y 

Proposition 2 (Raabe's test) If a and {3 are different from 0, -1, ... , 
then F(a, {3; "fi z) converges absolutely for lzl < 1. For lzl = 1, z f:: 1, 
F(a, {3; 'Yi z) converges conditionally iff 0 ~ Re(a + {3 - 'Y) < 1, where 
Re(z) denotes the real part of z. I 

Proofs for both propositions may be found in any standard reference. For a. 
complete list of related results see [2]. Let x be a real variable, and ,.\ denote 
the derivative of an inverse sigmoid function y = "'( x ). Since "' is a.n odd 
function we may write, 

y = x<f>(x) 

</>( x) = C F( a, {3; 'Yi x2) 
(3.2) 

where Cis some constant, </>(x) is a.n even function of x, and we have rep­
resented it a.s a. GH expression, in a. real variable x. Introducing the trans­
formation z = x2, 

d</> dz 
.X(x) = </>(x) + x dz dx 

d</> 
= </>( x) + 2z dz 
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Proposition 1 allows us to conclude that dd</> = C a{3 F(a + 1, {3 + 1; -y + 
z 'Y 

1; z) and hence, 

A(x) = C { F(a, {3; -y; z) + 2a.: zF(a + 1, {3 + 1; -y + 1; z)} 

= C { L: (a)n(f3)n zn + 2 L: (a)n(f3)n zn } 
n~O ('Y)n n! n~l ('Y)n (n- 1)! 

= C {1 + L (a)n(f3)n {.!. + 2} zn} (3.4) 
n~l (n-1)!(-y)n n 

= C { L: (a)n(f3)n (2n + 1) z~ } 
n~o ('Y)n n. 

_ C { L: (a)n(f3)n (3/2)n zn } 
- n~O ('Y)n (1/2)n n! 

H we make the argument that A should also be representable by a GH 
function with three parameters, then we may make the identification, {3 = 
1/2 and-y = 3/2. From symmetry properties of the GH function, we need 
not consider the case when a = 1/2, -y = 3/2. We get 

y = C x F(a, 1/2; 3/2; x 2) 

1 
A= CF(a,{3';{3';x2) = (1- z2)a 

(3.5) 

So far the only property we have used is that TJ has to be an odd function. 
It remains to establish constraints on a (if any). Now, from Definition 2.1, 
conditions 1, 2, 4 and 5, the following three facts may be concluded, 

1. A: (-1,1)-+ 3?+. 

2. A(x) = A(-x). 

3. lim~~>-+±l A(x) is unbounded. 

These three facts in conjunction with equation(3.5) imply that a ~ 0, 
otherwise A would be bounded in the limit. 

Finally, from Raabe's theorem, we find that 2 > a ~ 1 for TJ to be 
unbounded at the endpoints of its intervals, and conditionally convergent 
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elsewhere in its domain. Continuity and smoothness follow from the conti­
nuity and smoothness of the GH function. 

Note that in equation(3.2), we could have chosen 4>( x) = F( a, {J; li -x2), 

rather than +x2 and our conclusions would not have been affected in any 
essential way. 

To summarize, the three parameter Gauss Hypergeometric function sat­
isfying all five conditions (up to constants) stated in Definition 2.1 is, 

a l 
3 2 

2 

where 2 > a ~ 1. We list a few examples: 

• tanh- 1(x) = x F(l, 1/2; 3/2; x 2 ) 

• tan-1(x) = x F(l, 1/2; 3/2; -x2 ) 

x2 
• 17(x) = 2x tan[sin-1 ( '2 )] = 2xF(1/2, 1/2; 3/2; x2 ) 

(3.6) 

"Exponential" sigmoid functions of form, c + b 1 ( ) , have inverses, 
+ exp -ax 

.! log ( x b- c b ) , and are also special cases of this model. For instance, 
a 1+c-y 
choosing a= 2, b = 1/2, and c = 1, yields, tanh- 1(x ). 

4 The Continuous Hopfield Equation 

Consider the continuous Hopfield network model with N neurons [3], 

ui and Vi are the net input and net output of the i1h neuron, respectively, 
and Ji is a constant external excitation. We could relate the two variables, 
vi and tt;, by a sigmoid function ofthe form vi = tanh( ui), as Hopfield did 
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[3]. We choose however, to use the generic form ui = fJ(vi), where '70 is 

defined as in the last section. It follows then, that ddui = 1/(1 - vl)a. 
Vi 

Hopfteld 's equation becomes, 

1 dvi 
1 _ v~ dt + 9iUi = Ei 

I 

(4.2) 

Applying the following sequence of operations to equation(4.2), 

1. Put Yi = ~~i and differentiate with respect to Vi. 

2. Multiply throughout by (1 - vl)a+t. 

3. Differentiate once more with respect to vi. 

yields the following equation, 

(4.3) 

dvi 
where Yi = Tt· Recall that the associated Legendre differential equation 

is of the form, 

(1 - z2 ) ~~ - 2(n + 1)z :: + [m(m + 1) - n(n + 1)]y = 0 (4.4) 

We see that the left hand side in equation( 4.3), is the associated Legendre 
differential equation with parameters n = -a and m( m + 1) = a( a + 
1). equation(4.3) is just a hair's breadth away from being an equation of 
the type found in Sturm-Liouville problems. To cast the left hand side of 
equation( 4.3) into this form, make the transformation zi = 11i(1 - vl)"l2 = 
Yi(1 - vl)-a/2 • Then, equation(4.3) becomes, 

which is the non-homogeneous Sturm-Liouville equation. Further simplifi­
cation is possible by transforming the right hand side of equation( 4.3) as 
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follows, 

d [( 2)a + 1 dEi] - 1- Vj - + 2givi 
dv; dv; 

2a{c 2)d2E; ( )dEi} = (1 - v;) 1 - V; dv'f - 2v; a + 1 dv; + 2g;v; (4.5) 

By substituting E; = (1 - vl)-a/2 F;, in equation(4.5), we get, 

d [( 2)a + 1 dE;] - 1- v; - + 2g;v; 
dv; dv; 

{ d dF.· = (1- v[)a/2 -d [(1- vl)-d '] + (a(a + 1)-
V; V; 

Then from equation( 4.3) and equation( 4.6), we have, 

d~; [(1 - vi) d~; (z; - F;)] + [a( a+ 1) - 1 ~2 v[](z; - F;) 

2v;g; 
- (1 - vl)a/2 (4.7) 

Or, writing 1/J; for z; - F;, 

d [ 2 ) d'ljJ;] [ ) a 2 ] 2v;g; - ( 1 - V; - + a(a + 1 - 1 _ v? 1/J; = -:-----=---:-:­
dv; dv; • (1 - vl)a/2 

(4.8) 

Equation(4.8) is the associated Legendre equation in its Sturm-Liouville 
incarnation. Note that in deriving this result we have not explicitly assumed 
the form of the inverse sigmoid function. For u; = tanh - 1 ( v;), a = 1, and 
equation( 4.8) has a particularly simple form. 

The appearance of Legendre's differential equation is intriguing. It sug­
gests a link with function approximation via Legendre polynomials. Recall 
that the best least squares approxination to a function f( x) defined on the 
interval -1 ~ x ~' 1, by a polynomial of degree ~ some given n, is pre­
cisely the sum of the first n + 1 terms of the Legendre series (4] (pages 
226-230). Results along the lines of this observation have been found for 
feedforward networks (5, 1]. 
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5 Conclusion 

We have obtained a Gauss Hypergeometric representation for inverse sig­
moid functions. It was used to show that the continuous Hopfield equation 
may be viewed as a non homogeneous Legendre differential equation. This 
result is robust i.e. it does not depend on the form of the sigmoid function 
chosen to model the input output characteristics of a single neuron. 

Acknowledgements : This work was supported in part by NSF under 
CCR-9110812. 
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