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Abstract.  

A  new evolutionary multi-objective crowding algorithm (EMOCA) is evaluated using nine benchmark multi-
objective optimization problems, and shown to produce non-dominated solutions with significant diversity, 
outperforming state-of-the-art multi-objective evolutionary algorithms viz., Non-dominated Sorting Genetic Algorithm 
– II (NSGA-II), Strength Pareto Evolutionary algorithm II (SPEA-II) and Pareto Archived Evolution Strategy (PAES) 
on most of the test problems. The key new approach in EMOCA is to use a diversity-emphasizing probabilistic 
approach in determining whether an offspring individual is considered in the replacement selection phase, along with 
the use of a non-domination ranking scheme.  This approach appears to provide a useful compromise between the two 
concerns of dominance and diversity in the evolving population. 

 
 

1. Introduction 

Many scientific and engineering applications require simultaneous consideration of two or more 
objectives that must be optimized together while evaluating the tradeoffs between these objectives. 
Considerable research efforts have recently been devoted to developing efficient algorithms for solving 
such Multi-Objective Optimization (MOO) problems. 

 
       Classical optimization methods suggest converting the multi-objective optimization problem into a 

single objective optimization problem, e.g., by attempting to minimize a weighted sum of the various 
objective functions, using weights that represent relative “preference strengths.”  However, this approach 

yields only a single solution rather than a collection of non-dominated or Pareto-optimal solutions1 
corresponding to different tradeoff points.  In addition, this approach cannot be used if the relative 
importance or weights associated with different objectives are not known. Iterating the weighted approach 
with different weight values is also unsuccessful in discovering the non-dominated solutions if the Pareto-
optimal front is non-convex [5]. Considerable success in solving MOO problems has been obtained in 
recent years by using Multi-Objective Evolutionary Algorithms (MOEAs), e.g., [1], [2], [3], [4], [6];  a 
comprehensive introduction to evolutionary multi-objective optimization is given in [5]. Their success in 
addressing MOO problems arises from the fact that they work with a population of candidate solutions, 

                                                           
1 If each objective function  fj  is to be maximized, then a solution vector a dominates b, written a»b, if and only   if∀ i 

∈ {1,….m} :   fi(a) ≥  fi(b), and  ∃ j ∈ {1,….m} : fj(a) >  fj(b). A solution is Non-dominated or Pareto-optimal if it is 
not dominated by any other candidate solution.  The Pareto-optimal front or Pareto set is the collection of all Pareto-
optimal solutions for a problem. 



exploring multiple non-dominated solutions in parallel, whereas traditional approaches are crippled by 
focusing on one solution at a time. MOEAs have been found to be successful in handling complex problem 
features such as discontinuity, multi-modality and disjoint objective spaces, and are evaluated based on 
their ability to find Pareto-optimal solutions, as well as discover well-distributed and widely spread 
solutions that represent the variety of tradeoff points inherent in the problem description. 

 
Recently, we formulated some practical path planning problems as MOO problems and explored 

their solution using MOEAs; in the process, we formulated a new evolutionary multi-objective crowding 
algorithm (EMOCA),  using a probabilistic approach that considers both domination and diversity criteria 
in determining whether an offspring individual is considered for the replacement selection phase [7,8].  
This approach appears to provide a useful compromise between the two concerns of dominance and 
diversity in the evolving population, and we subsequently found that it was successful in other real world 
applications such as sensor placement and mobile agent routing in sensor networks [9,10]. This led to the 
question of whether EMOCA is of general applicability, and how it compares to other well-known and 
established MOEAs on benchmark problems.  This paper addresses this question, evaluating the 
performance of EMOCA on several test functions suggested by Deb et al. [5] and Zitzler et al. [11]. We 
compare the performance of EMOCA with NSGA-II, SPEA-II and PAES using metrics that evaluate 
convergence and diversity of solutions, on nine benchmark problems used elsewhere to compare MOEAs.   
Our simulation results indicate that EMOCA outperforms the other algorithms in most of the test problems. 
In the light of the “No-Free-Lunch”  theorems, it is impossible to argue for the superiority of any single 
algorithm over others, but we suggest that EMOCA is an important first candidate to be considered when 
one is hungry for a good algorithm to a difficult MOO problem. 

 
In Section 2, we review existing literature on some recently proposed multi- objective 

evolutionary algorithms. In Section 3, we describe EMOCA in detail. The benchmark test problems used in 
our simulations are given in Section 4. Simulation results and conclusions are presented in Sections 5 and 
6, respectively. 

2. Evolutionary Multi-objective Optimization Algorithms 

MOEAs usually employ Pareto-based fitness assignment to guide the search towards the true Pareto-
optimal front. Density estimation methods such as crowding distance and squeeze factor are used to 
preserve population diversity [6].  We briefly review three state-of-the-art MOEAs – PAES, NSGA-II and 
SPEA-II which incorporates these features.  For details, readers are encouraged to refer to the original 
studies. 

2.1 Pareto Archived Evolutionary Strategy (PAES) 

Knowles et al. [1] developed a MOEA called PAES. PAES uses a (1+1)-ES.  PAES is a local search 
algorithm that simulates a random mutation hill climbing strategy. In PAES, the offspring is compared with 
the parent in each iteration. If the offspring dominates the parent, the offspring is accepted as the parent for 
the next iteration. If the parent dominates the offspring, the offspring is discarded and a new mutated 
solution is created. If the parent and offspring are mutually non-dominating, the decision is made by 
comparing the parent and offspring with an archive of best solutions found so far. PAES performs better in 
problems having search space with non-uniformly dense solutions. For our simulations, we used PAES 
code from the following website: http://www.rdg.ac.uk/~ssr97jdk/multi/PAES.html 

2.2 Strength Pareto Evolutionary Algorithm II (SPEA-II) 

Zitzler et al. have proposed SPEA-II [4] as an improved version of SPEA [3] and showed that SPEA-II 
obtains better performance than SPEA over all test problems considered in [4]. Each individual in SPEA-II 
is assigned a strength value which represents the number of solutions it dominates. The  fitness of an 



individual is the sum of strengths of the individuals that dominate the current one. Binary tournament 
selection is employed to generate the mating population. The individuals with identical fitness are 
compared based on the density,  a decreasing function of the distance to the kth nearest data point. SPEA-II 
is a generational algorithm with an elitist strategy which maintains an archive of non-dominated individuals 
at each generation. A truncation method is used in the elitist archive to maintain a constant number of 
elitists. For our simulations, we used SPEA-II code from the following website: 
http://www.tik.ee.ethz.ch/pisa/ 

2.3. Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

NSGA –II [2] assigns a Pareto rank to each individual based on a non-dominated sorting approach. This 
approach performs a non-dominated sorting of individuals in the population and identifies different non-
dominated fronts F1,F2,…Fk., where elements of F1 are non-dominated, and each element of Fi+1 is dominated 
only by some elements of F1,F2,…,Fi. NSGA-II employs binary tournament selection based on Pareto rank 
of the individuals with ties broken based on the crowding distance. The crowding distance method is 
employed to estimate the diversity of a solution.  The algorithm combines attractive features such as 
elitism, fast non-dominated sorting and parameter less fitness sharing. NSGA- II has been widely used in 
several real world optimization problems.  For our simulations, we used NSGA-II code from the following 
website: www.iitk.ac.in/kangal/soft.htm 

3. Evolutionary multi-objective crowding algorithm (EMOCA) 

An efficient MOEA should produce several widely spread and uniformly spaced solutions while 
guaranteeing convergence to Pareto-optimal front. Figure 1 shows the general overview of EMOCA.   The 
individual steps of EMOCA are then described below. 

 
 
 
 
 
 
 
 
 
 

Figure 1: EMOCA algorithm overview 

3.1 Mating Population Generation 

EMOCA employs binary tournament selection to fill the mating population . Each solution is assigned a 
fitness value equal to its total rank defined as the sum of its non-domination rank and diversity rank, 
defined below: 

 Non-domination rank: 
The non-dominated sorting procedure suggested by Deb et al. [2] is employed to calculate the non-

domination rank of individuals in the population. According to this approach, each individual in the 
population is compared with every other individual to find if it is dominated. This process yields the 
solutions belonging to the first non-dominated front. The solutions of the first front are temporarily 
discounted and the above procedure is repeated to find the solutions of the next front. The process is 
repeated until all non-dominated fronts are identified. A non-domination rank j is assigned to each element 
of front Fj.  Hence, solutions belonging to the same non-dominated front are assigned the same rank. 

1. Initialize; 
2. For the number of iterations determined by computational bounds, do: 

2.1. Generate Mating Population; 
2.2. Generate offspring by crossover followed by mutation; 
2.3. Create a new pool consisting of parents and some offspring; 
2.4. Trim new pool to generate the population for the next iteration; 

                  2.5. Update archive to contain all non-dominated solutions 
 



Diversity rank:  
The crowding density of each solution is determined by using the crowding distance measure employed 

in NSGA-II. To estimate the density of solutions surrounding a particular solution xi in a front, we compute 
the average distance of two solutions on either side of solution xi along each of the objectives. A very large 
value of crowding distance is assigned to the boundary solutions in a front. For all other solutions within a 
front, the following procedure is used to assign the crowding distance [6]. 

 
 
 
 
 
 
 
 
 
A solution with a higher crowding distance indicates better diversity. The solutions in the population are 

sorted and ranked based on the crowding distance. The solution with the highest crowding distance is 
assigned the best (lowest) diversity rank.  

3.2 New Pool Generation 

A “New Pool”  is generated consisting of all the parents and some of the offspring, following a 
comparison of each offspring with its parents, considering both domination and crowding density. There 
are three possible cases: 

Case 1:  If the offspring dominates the parent, the offspring is added to the new pool. 
Case 2:  If the parent dominates the offspring, the crowding distance measure is used to calculate the 

probability of acceptance of the offspring. If the offspring has a higher crowding distance than the parent, it 
is added to the new pool with a probability P  given by 

P = 1- exp (ψ  (parent)- ψ (offspring)) 

where ψ  denotes the crowding distance of a solution. An offspring with a higher crowding distance 

(better diversity) than the parent has a high probability of acceptance. This strategy rewards solutions with 
higher diversity by allowing them to survive in future generations.  

Case 3:  If the parent and offspring are mutually non-dominating, then the offspring is added to the new 
pool if it has a higher crowding distance than the parent. 

3.3. Trimming New Pool 

The new pool is sorted based on the primary criterion of non-domination rank and the secondary 
criterion of diversity rank. In other words, solutions with the same non-domination rank are compared 
based on diversity rank.   The new population will consist of the first µ elements of the sorted list 
containing solutions grouped into different fronts: F1, F2,… Fn where elements of Fi+1 are dominated only by 
elements in F1, F2 ,,…..Fi..  EMOCA maintains an archive of non-dominated solutions at every generation. 

 
       The above procedure indicates that EMOCA is a simple algorithm which maintains a balance 

between convergence and diversity.  Convergence is emphasized by the concept of non-domination rank. 
Diversity is maintained in the population by using diversity rank in the tournament selection and population 
reduction phase. The crowding distance can also be implemented in the parameter space [12]. However, in 
our approach we calculate the crowding distance in the objective space.  The computational complexity of 
NSGA-II  and PAES are O(MN2 ) [2]  and O(MN2d) [1]  per iteration respectively where M is the number of 
objectives, N is the population size and d is the depth parameter. SPEA-II has a computational complexity 

of O(
2

N log N ) [4]  per iteration where N is the sum of population size and archive size. The 
computational complexity of EMOCA is similar to NSGA-II of the order of O(MN2 ) per iteration. 

For each solution xi of front F, initialize crowding distance d(xi) to be 0; 
For each objective function fm do: 

Sort the solutions in F along objective fm; 
d(xi) = d(xi) + fm(the individual that precedes xi in the sorted sequence)  
 - fm(the individual that follows xi in the sorted sequence) 

  
 



4. Test Problems 

We choose four widely used test problems called FON, POL, KUR and SCH from [15] and five test 
problems called ZDT1, ZDT2, ZDT3, ZDT4, ZDT5 and ZDT6 from [11]. These bi-objective problems are 
summarized in Table 1.  
 

Table 1:Summary of test problems and the associated Pareto optimal fronts 
 

Problem n, range Objective functions and their parameters Characteristics 
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2 1: convex , 1 : non-convex , 2:connected, 2: disconnected, 3: numerous local Pareto-optimal solutions 
 



 
The test problems chosen by us span a wide variety of characteristics of the Pareto-optimal front such as 

non-convexity and disconnectivity. We have used a real coded representation for individuals. In the 
implementation of NSGA-II [2], simulated binary crossover (SBX) and parameter based mutation have 
been used. The studies in [13] showed that SBX outperforms binary coded genetic algorithms for 
continuous search space problems. Since the test problems in this study have continuous search space, we 
have employed SBX and parameter based mutation for EMOCA, NSGA-II, SPEA-II and PAES. 

 

5. Simulation Results 

In this section, we present the simulation results of EMOCA, NSGA-II, SPEA-II and PAES for the 
different test problems. For fairness of comparison with the work in [2], we have used a population size of 
100. The algorithms were simulated for 250 generations over 30 trials. No further improvements in the 
performance of the algorithms were observed after 250 generations.   The crossover probability was 0.9 and 
mutation probability was chosen to be 1/n where n is the number of decision variables. The algorithms 
exhibited similar performances for small variations in population size, crossover and mutation probabilities. 
We have used distribution indices of 20 for the simulated binary crossover and mutation [2]. For PAES, we 
have used a depth value of 4. We have used an archive size of 100 for all approaches. We performed 
experiments on an Intel Pentium 4 processor (3.2 GHz, 2 GB RAM). All approaches required an average 
computational time of 1 second  per trial. 

 
Performance comparison of MOEAs is a very difficult task as discussed in [14]. Several 

performance metrics have been proposed. According to the study in [14], no single satisfactory metric 
exists. While evaluating the performance of MOEAs, we should take into account both convergence to the 
Pareto optimal front and diversity. However, for benchmark test function study, certain metrics have been 
found to be appropriate for performance comparison [2]. As suggested in [2], we use the generational 
distance and the spread metric to evaluate the performance of different algorithms. 

5.1. Generational Distance 

Veldhuizen et al. [15] proposed the generational distance (GD) metric which evaluates the convergence 
of the non-dominated solutions obtained by the algorithm to the true Pareto-optimal front. A lower value of  

the metric indicates a better convergence. The GD metric is defined as GD = 5.0
||

1

2 )(�
=

Q

i
id   where Q 

indicates the set of non-dominated solutions obtained by the algorithm and di  is the Euclidean distance 
between the solution i∈Q and the nearest solution of the Pareto-optimal front P*  .   The generational 
distance measures the extent of convergence to the Pareto-optimal front.  Since the Pareto-optimal solutions 
for the test functions are known, we find a set of 500 uniformly spaced solutions [2] from the true Pareto-
optimal front in the objective space. For each solution obtained with the algorithm, we compute the 
minimum Euclidean distance of it from the solutions of the Pareto-optimal front. The average of these 
distances gives the generational distance. A lower value of the generational distance indicates a better 
performance.  
       Table 2 shows the mean and variance of the generational distance values obtained over 30 trials. The 
results clearly indicate that EMOCA outperforms NSGA-II in all test problems except in FON. EMOCA 
outperforms SPEA-II and PAES in all test problems except ZDT3. The performance of EMOCA is 
identical to SPEA-II and PAES in ZDT3 as observed from Table 1. These results confirm that EMOCA 
performs the best in a majority of the test problems. In particular, for problems ZDT4 and ZDT6, EMOCA 
obtains much lower generational distance values as compared to the other algorithms.  

 
 
 



 
Table 2: Mean and variance of generational distance over 30 trials 

 

 
           

 
5.2. Set Coverage Metric 
 
Zitzler et al. [16] have proposed the set coverage metric (C-metric). The  C metric calculates the fraction 

of solutions in one non-dominated set (obtained by one algorithm) that are dominated by those obtained by 
the other algorithm. The C metric is defined as 

 
C(A,B)= | {b∈B|∃ a∈ A:a»b}| /|B|.   

 
C(A,B)=1 indicates that every solution in B is dominated by solutions in A and C(A,B)=0 means that 

none of the solutions in B is dominated by any element in A. Since the C metric is asymmetric, it is 
necessary to examine both C(A,B) and C(B,A) .  It can be argued that evolutionary algorithm A is better 
than evolutionary algorithm B, if over many trials we repeatedly and consistently observe that C(A,B) is 
significantly higher than C(B,A). Table 3 shows the mean and variance of the C metric values for different 
algorithms over 30 trials. The results show that C(other algorithm, EMOCA) is consistently low, with 
relatively high values for C(EMOCA, other algorithm), confirming the superior performance of EMOCA.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Problem EMOCA 
 
 
mean          variance                                                    

           NSGA-II      
 
 
mean          variance  

           SPEA-II 
 
 
mean        variance 

           PAES 
 
 
mean       variance 

KUR 0.018 0.0006 0.029 0.00034 0.097 0.033 1.669 0.0005 

FON 0.0061 0.00007 0.0021 0 0.044 0.0001 0.030 0 

SCH 0.0019 0.00016 0.0034 0.0002 0.003 0.0003 0.111 0.00007 

POL 0.013 0.00029 0.015 0.00012 1.11 0.0081 0.92 0.017 

ZDT1 0.029 0.0082 0.034 0.0055 0.0432 0 0.032 0.00001 

ZDT2 0.016 0 0.075 0.00001 0.033 0.00001 0.029 0.00001 

ZDT3 0.039 0.0004 0.11 0.0006 0.04 0 0.04 0 

ZDT4 0.022 0.0001 0.523 0.001 0.15 0.0015 0.338 0.00001 

ZDT6 0.024 0 0.3 0.0002 0.12 0.0007 0.335 0.00006 



Table 3: Mean and variance of C metric values comparing EMOCA with various algorithms: all results 
are averages over 30 trials 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
5.3. Domination Metric 
We have proposed a symmetric metric called the domination metric (Dom metric) to evaluate the 

relative performance of two MOEAs [8]. This metric is based on the number of solutions (obtained by one 
algorithm) dominated by each solution obtained by the other algorithm. The Dom metric is defined as: 

Dom(A,B) =  d(A,B)/(d(A,B)+d(B,A)),  where d(X,Y)= �
x

| {y∈ Y| x»y} |. 

                         
Mutually non-dominating solutions are ignored while evaluating the dominance factor d(A,B) so that 

Dom (B,A)=1-Dom (A,B). Consequently, for two algorithms A and B, it is sufficient to measure the 
performance in terms of  Dom(A,B).  If each solution of algorithm A dominates every solution of algorithm 
B, then Dom (A,B)=1 and Dom(B,A)=0. Table 4 shows Dom-metric values comparing EMOCA with other 
algorithms.   

 
 
 
 
 
 
 
 
 
 
 
 

Problem C(NSGA-II,EMOCA) 
C(EMOCA,NSGA-II) 
 
 
 
mean          variance 

C(SPEA-II, EMOCA) 
C(EMOCA, SPEA-II) 
 
 
 
mean                 variance  

C(PAES,EMOCA) 
C(EMOCA,PAES) 

 
 
 

mean          variance 

KUR 0.12 
0.40 

0.0017 
0.0004 

0.09 
0.72 

0.0001 
0.016 

0.13 
0.69 

0.18 
0.0012 

FON 0.63 
0.104 

0.0012 
0.0003 

0.01 
0.68 

0.0002 
0.008 

0.12 
0.89 

0.001 
0.001 

SCH 0.01 
0.521 

0.0052 
0.003 

0.02 
0.9 

0 
0.02 

0.017 
0.83 

0.005 
    0.00003 

POL 0.07 
0.627 

0.0017 
0.0002 

0.06 
0.6 

0.02 
0.004 

0.08 
0.85 

0.014 
0 

ZDT1 0.03  
0.619           

    0.0091 
    0.0006 

0.00 
0.64 

0 
0.01 

0.058 
0.72 

0.0031 
0.0017 

ZDT2 0.02 
0.41           

0.0005 
0.001 

0.001 
0.6 

0 
0.01 

0.05 
0.75 

0.003 
0.001 

ZDT3 0.05 
0.85 

0.0026 
0.0006 

0.003 
0.12 

0 
0.01 

0.053 
0.16 

0.01 
0.003 

ZDT4 0.04 
0.91 

0.032 
0.001 

0.003 
0.66 

0 
0.02 

0.043 
0.79 

0.003 
0.014 

ZDT6 0.01 
0.93 

0.0073 
0.0211 

0.01 
0.65 

0.009 
0.12 

0.1 
0.83 

0.005 
0.0003 



 
 

Table 4: Mean and variance of Dom metric values comparing EMOCA with NSGA-II, PAES and 
SPEA-II : all results are averages over 30 trials. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consistently, we find that Dom(EMOCA, other algorithm) > 0.5, except for problem FON for 

which NSGA-II has better performance according to this metric, and ZDT3 for which SPEA-II and PAES 
have better performance.   In other words, the solutions obtained by EMOCA tend to dominate those 
obtained by the other algorithms, more than the latter dominate EMOCA. 

5.4. Spread Metric 

 To evaluate the diversity of the solutions obtained, Deb et al. [2] suggested the spread metric. The 
spread metric is defined as: 
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where  di  is the Euclidean distance between neighboring solutions and d  is the mean value of the 

distances. The parameter 
e

md  is the distance between extreme solutions of the Pareto-optimal front and 

the nearest solution of Q corresponding to the mth objective function. For an ideal distribution of solutions, 
∆ = 0. A value of ∆ close to zero indicates that the non-dominated solutions obtained by the algorithm are 
uniformly spaced.  

 
 
 
 
 
 
 
 
 

 
 

Problem Dom (EMOCA,NSGA-II) 
 

 
 
mean          variance                                             

Dom(EMOCA,SPEA-
II) 

 
 

mean        variance 

Dom (EMOCA,PAES) 
 

 
 
mean             variance                                                      

KUR 0.59 0.59 0.97 0.008 0.99 0.0003 
FON 0.40 0.021 0.98 0.0001 0.73 0.046 
SCH 0.63 0.63 1 0 0.75 0.026 
POL 0.65 0.061 0.91 0.009 0.73 0.037 
ZDT1 0.78          0.035            1 0 0.82 0.03 
ZDT2 0.8 0.037 0.99 0 0.76 0.041 
ZDT3 0.83 0.009 0.42 0.0003 0.46 0.054 
ZDT4 0.80 0.082 0.99 0.002 0.70 0.008 
ZDT6 0.96 0.0332 0.99 0.0001 0.85 0.049 



 
Table 5: Mean and variance of the spread metric: all results are averages over 30 trials 

 

 
 

Table 5  shows the mean and variance of the diversity metric (spread) obtained over 30 trials. The results 
indicate that EMOCA outperforms NSGA-II and PAES in all test problems in terms of the spread. In 
problem ZDT4, SPEA-II performs the best in terms of spread. In all other test problems EMOCA performs 
better than SPEA-II. These results show that EMOCA obtains a more uniformly spaced and a better spread 
of solutions compared to the other algorithms. EMOCA incorporates diversity preservation as an integral 
part of the algorithm. The ∆ values obtained by EMOCA are much lower than those obtained by the other 
algorithms. This shows that EMOCA discovers a diverse set of non-dominated solutions with near- uniform 
spacing.  

 

5.5. Plots of Non-Dominated Solutions Obtained 

The averages and variances of the performance metrics give a clear indication of the performance of 
different algorithms. To appreciate the nature of solutions obtained by EMOCA, we plot the Pareto surfaces 
obtained by different algorithms for a few selective examples. Figure 2 shows the Pareto plots obtained by 
EMOCA, NSGA-II, SPEA-II and PAES on ZDT6. ZDT6 has a non-convex Pareto-optimal front with non-
uniform spacing between the solutions. The plot shows that EMOCA performs the best for ZDT6. EMOCA 
obtains a better spread and convergence compared to the other algorithms. SPEA-II performs slightly worse 
than EMOCA while PAES has the worst performance on ZDT6. We can also observe that the Pareto front 
obtained by EMOCA covers a wider region of the objective space compared to the Pareto fronts obtained 
by the other algorithms. 

 
 
 
 
 
 

Problem EMOCA 
 
mean         variance                  

        NSGA-II 
 
mean          variance                       

SPEA-II 
 
mean        variance          

PAES 
 

mean         variance          

KUR 0.1032 0.00087 0.4347 0.00092 0.3034 0.041 0.371 0.001 
FON 0.1593 0.0041 0.3978 0.0073 0.6634 0.0207 0.562 0.054 
SCH 0.2321 0.00309 0.4891 0.0047 0.981 0.002 0.286 0.012 
POL 0.1077 0.0029 0.4561 0.00294 0.2359 0.059 0.251 0.032 
ZDT1 0.4024           0.0047 0.4109 0.0018 0.6404 0.014 0.531 0.038 
ZDT2 0.2482 0.0023 0.4476 0.0052 0.6437 0.019 0.581 0.066 
ZDT3 0.4853 0.00169 0.6898 0.0096 0.7282 0.034 0.634 0.037 
ZDT4 0.3072 0.0086 0.7451 0.00178 0.195 0.113 0.412 0.07 
ZDT6 0.5399 0.0016 0.6981 0.0029 0.6543 0.056 0.831 0.054 



 
      

Figure 2: Performance comparison of EMOCA, NSGA-II, SPEA-II and PAES on ZDT6. 
 

The remaining figures show pairwise comparisons of EMOCA with other algorithms to reduce clutter. 
Figure 3 shows the non-dominated solutions obtained by EMOCA and NSGA-II on KUR. The problem 
KUR has discontinuous regions in the Pareto-optimal front. The plots show that EMOCA is able to 
discover several diverse non-dominated solutions compared to NSGA-II. 

 

 
 

Figure 3: Performance comparison of EMOCA and NSGA-II on KUR 
 
The problem ZDT2 has a non-convex Pareto-optimal front. Figure 4 shows the non-dominated solutions 

obtained by EMOCA and NSGA-II on ZDT2.  The plot indicates that EMOCA obtains uniformly spaced 



diverse set of non-dominated solutions compared to NSGA-II. This observation is confirmed by a very low 
value of the spread metric for EMOCA as shown in Table 4.  

 

 
 

Figure 4: Non-dominated solutions obtained by EMOCA on ZDT2 
 
              
Figure 5 shows the performance comparison of EMOCA and NSGA-II on ZDT4. The problem ZDT4 

has 219 different local Pareto-optimal fronts [6]. This is a challenging problem for MOEAs. The plots 
clearly show that EMOCA has a better convergence and diversity compared to NSGA-II.  

 

 
 

Figure 5: Performance comparison of EMOCA and NSGA-II on ZDT4 



 
Figure 6 shows the Pareto plots obtained by EMOCA and SPEA-II on POL. The function POL has a 

non-convex and disconnected Pareto-optimal front.  From the plot, we observe that EMOCA obtains 
solutions with better convergence and spacing compared to the solutions obtained by SPEA-II. 

 

 
 

Figure 6: Performance comparison of EMOCA and SPEA-II on POL 
 
Figure 7 shows the Pareto plots obtained by EMOCA and PAES on SCH. The plots show that EMOCA 

obtains a better convergence towards the Pareto-optimal front than PAES. 
 

 
 

Figure 7: Performance comparison of EMOCA and PAES on SCH 



7. Conclusions 

We have proposed a new MOEA called EMOCA which employs a stochastic replacement selection 
strategy that considers both non-domination and diversity.  EMOCA was successful in several real world 
applications such as path planning, sensor placement and mobile agent routing in wireless sensor networks 
[7, 8, 9, 10]. In this paper, we have compared the  performance of EMOCA with NSGA-II, SPEA-II and 
PAES on nine difficult test problems with distinct features. Several performance measures were used to 
compare the algorithms. The simulation results show that EMOCA outperforms the other algorithms in 
eight out of the nine test problems in terms of convergence and diversity, consistently discovering a widely 
spread set of non-dominated solutions.  The successful performance of EMOCA in these test problems 
shows that EMOCA is an efficient multi-objective optimization algorithm which should find extensive 
applications in optimization problems spanning a wide variety of areas from path planning to wireless 
networks.  
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