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ABSTRACT 
 

 

A new methodology for detection and identification of unknown objects in free 

space or on ground, or under the ground is presented in this dissertation. The Singularity 

Expansion Method (SEM) is introduced because it is possible to find the natural resonant 

frequencies of a scatterer from the scattered fields and use the resonant frequencies for 

identification. Many techniques to extract singularities of the EM response of an object 

are studied and then the Cauchy and the Matrix Pencil (MP) methods are chosen to carry 

out the processing. In the first part of the dissertation, a methodology for the computation 

of the natural poles of an object in the frequency domain is presented. The main 

advantage of this methodology is that there is no need to differentiate between the early 

time and the late time response of the object as required in the SEM and the Cauchy 

method can be applied directly to the frequency domain data to extract the SEM poles. 

Thus, one can generate a library of poles of various objects using the Cauchy method. 

In the second part of the dissertation, the methodology for detecting and 

identifying an unknown object in the time domain is also presented. For the simulation 

model, one transmitter and two receivers (dipole antennas) are utilized to obtain the 

object response. The received currents of the unknown object are computed by using the 

deconvolving procedure. The MP method is applied for extracting natural poles of the 

late time response of the unknown object and the Time-Difference-of-Arrival (TDOA) 

technique is utilized to obtain the location of the objects. Therefore, by generating the 

pole library using the frequency domain data and simultaneous use of the actual poles 

computed using the time domain data, the correlation between the two pole sets obtained 

using totally different methodologies can provide a robust identification procedure. 
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1. INTRODUCTION 
 

 

1.1. Background  
 

The history of the radar system starts with experiments to verify the theory of 

Maxwell by Heinrich Hertz in 1886 showed that radio waves could be reflected by 

metallic and dielectric bodies. Even though several investigators simultaneously had 

made advancements in the field of a radar prior to World War II, the research and 

development of the true radar systems spurred during World War II because a radar must 

both detect a target and provide range information for a target [1]. Thus, the radar system 

has long been used for detection and identification of objects using the reflected scattered 

energy from the illuminated target of a radar system. The current problem to solve for the 

scattered electromagnetic (EM) field is to detect and identify various objects with 

different shapes, made of composite materials and may be buried underground. Multiple 

studies to solve these problems have been performed using the resonance phenomena 

produced by the EM field from an object because it is possible to find its natural resonant 

frequencies for identification of an object. The Singularity Expansion Method (SEM) 

introduced by C. E. Baum [2] was to find the natural resonant frequencies of an object 

from the late time response.  

There are the well-known relationships between the resonant signature of an 

object and its late time response. If we illuminate an object with a plane wave then, the 

backscattered energy from the object contains important information which can be used 

for identification. If we consider the mechanisms of backscattering from an object, the 

backscattered energy is composed of two parts. The first part is the impulsive part 

corresponding to the early time response, i.e. it is the direct reflection of the incident 
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wave from the surface of the object. The second part is the oscillatory part corresponding 

to the late time response, i.e. it consists of surface creeping wave (external resonances) 

and cavity wave (internal resonances) related to the resonance phenomena. In the case of 

perfectly conducting objects (PEC), only external resonances exist. Hence, one can obtain 

object signatures (dimension, shape, constitution, etc.) using the SEM poles. Therefore, 

the SEM methodology can provide a pair of complex conjugate poles corresponding to 

the damped sinusoids from typical transient temporal response of various objects (e.g., 

antennas, canonical objects, and aircrafts). 

Many techniques to extract singularities of the EM response of an object have 

been developed by studying either the impulse response of an object in the time domain 

or its transfer function in the frequency domain [3]-[27]. In the time domain, the most 

popular techniques of poles extractions are based on Prony’s method [6]-[10] and the 

Matrix Pencil (MP) method [11]-[15]. Generally, the signal model of the observed late 

time of an EM scattered response from an object can be represented by a sum of complex 

exponentials with parameters (poles and residues). Prony’s method introduced by R. 

Prony [6] was based on the fact that the poles are roots of a polynomial whose 

coefficients satisfy a set of linear prediction equations, whereas the MP method 

developed by Y. Hua and T. K. Sarkar [11] can directly solve for the poles and residues 

by using the generalized eigenvalues of a matrix pencil generated from the scattered data. 

The MP method is more robust to noise present in the sampled data and computationally 

more efficient than Prony’s method [12].  

The frequency domain techniques to extract poles and residues can be more 

advantageous than the time domain techniques because one can directly use the 
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frequency domain data of an object without transforming the frequency domain data into 

the time domain data. A. L. Cauchy was the first to propose a rational function 

approximation to interpolate the signal data [16]. Then it was modified (Cauchy method) 

to extract poles and residues based on the approximation of the given data by a transfer 

function consisting of a ratio of two polynomials [17]-[20]. Also, many papers have been 

published for its application in signal modeling, filter design, analysis of scattering from 

an object [21]-[25] and so on.   

Each of the technique has advantages and disadvantages. The advantage of the 

frequency domain techniques is that it is not necessary to identify the early time and the 

late time region. The disadvantage of the frequency domain techniques is that one can get 

only the object signature. It means one cannot get any information where the object is 

located. The time domain techniques can provide us with the location of a detected object 

using the Time-Difference-of-Arrival (TDOA). But the time domain techniques have the 

restriction that only the late time response can be used to extract natural poles of an 

object.   
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1.2. Objectives 
 

The first objective of this dissertation is to illustrate that information about the 

SEM poles can also be obtained in the frequency domain where the restriction of the late 

time response to the SEM formulation is non-existent. Therefore we generate the library 

of poles for different objects entirely in the frequency domain using the Cauchy method. 

Thus, in this procedure for pole extraction, it is not necessary to identify the early time 

and the late time regions where the SEM formulation has this requirement. The Cauchy 

method is based on the approximation of a transfer function of a Linear Time Invariant 

System (LTI) in the frequency domain using a rational function approximation. The 

computations of the poles are carried out using the Cauchy method by approximating the 

transfer function as a ratio of two polynomials. This is different from the usual way of 

obtaining the SEM poles by applying the MP method to the late time response. The 

unique feature of the Cauchy method is that it is not necessary to distinguish between the 

early and the late time responses as all the computations are carried out in the time 

domain and this may make this procedure accurate and efficient. Thus, one can generate a 

library of poles of various objects using the Cauchy method.   

The second objective is to describe that by observing the complete impulse 

response, the presence of a single object or multiple objects can be determined. Then the 

MP method can be applied to the late time response of this transient temporal impulse 

response. In the time domain it is relatively easier to locate the late time response 

corresponding to the resonant region. The MP method approximates a time domain 

function by a sum of complex exponentials and this approximation is valid only for the 

late time response. By generating the pole library using the frequency domain data and 
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the actual poles computed using the time domain data, we illustrate that the correlation 

between the two pole sets obtained using totally different methodologies provide a robust 

identification procedure [26], [27]. The poles using responses from data generated in 

different domains can be used for comparison purposes. It is important to note that in the 

time domain one has to be careful about the early time and the late time response, only 

the late time domain response data can be utilized.   

The third objective is to illustrate a procedure to obtain the accurate coordinates 

(radial distance and azimuthal angle) of an unknown object using the time difference 

between the impulses from two receivers. The specific time of each impulse represents 

the time delay from each receiver for the unknown object, which has the information of 

the distance of the illuminated surface of the object from each receiver.  

Hence, the goal of this research is to propose the use of a robust methodology to 

generate a library of poles of various objects and then these signatures can now be 

compared by using data from the time domain to replicate essentially the same results. 

Therefore, one can not only identify the number of unknown objects to be discriminated  

but also the coordinates of the location of the objects using the proposed robust 

identification procedure.  
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1.3. The Scope of the Dissertation  
 

The dissertation is divided into six chapters. The first chapter provides a short 

background including a survey of the present state of knowledge about the use of the 

frequency and time domain techniques to extract the SEM poles for various objects. 

The second chapter presents the Cauchy method and illustrates its use for 

generating a library of poles of various objects (a wire, a disk, an ellipsoid, a cone, two 

spheres, and a cylinder). Simulation examples illustrate this novel and accurate way for 

finding the SEM poles. Each example is selected considering the characteristic size. It 

also addresses criteria needed for the extraction of the SEM poles.  

The third chapter discusses a proposed methodology for detecting and identifying 

the unknown object based on the MP method and the TDOA in the time domain. It also 

presents different criteria needed for an object identification using a simulation example. 

The fourth chapter deals entirely with a proposed methodology for simultaneous 

identification of multiple PEC objects in free space. Various examples of multiple objects 

for identification are presented and discussed.  

The fifth chapter deals with identification of a single object located on an urban 

ground. It shows that the proposed methodology can be applied not only to characterize 

unknown objects in free space but also detects an unknown object on ground. This 

chapter also discusses the proposed methodology for identification of an unknown object 

under the ground. Some simulation examples related to identification of an object are 

presented. The sixth chapter provides a conclusion to the current research. 
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2. PROCEDURE TO MAKE A LIBRARY OF POLES OF OBJECTS 

IN THE FREQUENCY DOMAIN 
 

 

 

2.1. Overview 
 

The procedure to make a library of poles of objects based on the Cauchy method 

is presented in this chapter. The Cauchy method is a well-known technique for 

interpolation and extrapolation of data using a ratio of two polynomials. The origin of the 

Cauchy method starts from interpolating data with a ratio of two polynomials (numerator 

and denominator polynomials) [16]. This concept is then extended to extrapolate and/or 

interpolate the wide-band response of Electromagnetic (EM) systems using narrow-band 

data [17]-[18]. It means that the Cauchy method can be used to speed up the numerical 

computations of parameters (residues and poles) related to the impedance, currents, and 

the scattering data from any linear time-invariant (LTI) EM systems.  

From the basic methodology of the Cauchy method, one can find poles of the EM 

response using denominator polynomials in the frequency domain. The extracted poles 

from denominator polynomials are directly related to the resonance characteristics of the 

object. Thus, one methodology to find the natural poles of an object is to use the Cauchy 

method in the frequency domain. The important advantage of the Cauchy method is that 

since the computation of the SEM poles is carried out in the frequency domain, there is 

no need to differentiate between the early time and the late time response of the object.  

This chapter starts with the procedure of the Cauchy method and then explains 

how to extract the natural poles of the PEC sphere. Finally, this chapter shows a library of 

poles of various objects obtained by applying this technique.. 
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2.2. Application of the Cauchy Method to Find Natural Poles 
 

The Cauchy method starts by assuming that the parameter of interest which is to 

be extrapolated and/or interpolated, as a function of frequency, can be performed using a 

ratio of two polynomials. This procedure holds for an LTI system [28]. Let us assume 

that the system response is from an LTI system. The transfer function H(f) for the LTI 

system, as a rational function of frequency, can be characterized by     

    0

0

( )
( ) , 1,2,

( )

P k

k ii k
i Q k

i k ik

a fA f
H f i N

B f b f





  



                          (2.1) 

where the numerator and denominator polynomials are given by A(f) and B(f), 

respectively. For convenience and computational simplicity, we assume  

1Q P                                                             (2.2) 

where P is the order of the numerator polynomial and Q is the order of the denominator 

polynomial. As seen from (2.1), the unknown coefficients ak and bk can be put into the 

following form: 

( 1) ( 1) 1 ( 1) ( 1) 1[ ] [ ]N P P N Q QA a B b                                               (2.3) 

or 

( 2) ( 2)

( 2) 1 ( 2) 1

[ ] 0 [ ] 0N P Q N P Q

P Q P Q

a a
A B C

b b
     

     

   
      

   
            (2.4) 

where 

 0 1 2[ ] , , , ,
T

Pa a a a a                                                  (2.5) 

0 1 2[ ] , , , ,
T

Qb b b b b                                                     (2.6) 

and 
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[A] [-B] 

1 1 1 11 1 1

2 2 2 22 2 2

( ) ( )1 ( )

( ) ( )1 ( )
[ ]

( ) ( )1 ( )

P Q

P Q

P Q
N N N NN N N

f H f H f ff H f f

f H f H f ff H f f
C

f H f H f ff H f f

  
 

   
 
 

    

                (2.7) 

 

 

Here, the superscript T denotes the transpose of a matrix. The size of the matrix [C] is 

( 2),N P Q    so the solution of [a] and [b] are unique only if the total number of the 

frequency sample points are greater than or equal to the number of unknown coefficients 

P+Q+2.  

2N P Q                                                            (2.8) 

The singular value decomposition (SVD) [29] of the matrix [C] will give us an 

estimate for the required values of P and Q. A SVD of the matrix [C] results in  

[ ][ ][ ] 0H
a

U V
b

 
  

 
                                                (2.9) 

where the matrices [U] and [V] are unitary matrices, i.e., 

[ ] [ ] [ ]

[ ] [ ] [ ]

H

H

U U I

V V I




                                                    (2.10) 

The superscript H denotes the conjugate transpose of a matrix. [Σ] is a diagonal matrix 

with the singular values of the matrix [C] in descending order as its entries.  

1

2

1 2 0

0

R

R





  


 
 
 
 

     
 
 
 
 

                 (2.11) 
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The columns of the matrix [U] are the left singular vectors of the matrix [C] or the 

eigenvectors of the matrix [C][C]
H
. The columns of the matrix [V] are the right singular 

vectors of matrix [C] or the eigenvectors of the matrix [C]
H
[C]. The singular values are 

the square roots of the eigenvalues of the matrix [C]
H
[C]. Therefore, the singular values 

of any matrix are real and positive. The number of nonzero singular values of the matrix 

[C] is the rank (R) of the matrix [C] and they contain the information content of the 

system transfer function H(f). Therefore, the knowledge of the number of nonzero 

singular values does provide useful information for the rank of the system.   

For the validation of this approximation given by (2.4), the smallest singular value 

should be less than or equal to the number of accurate significant decimal digits of the 

data. It means that if the data is corrupted by additive noise including numerical noise, 

the parameters P and Q are estimated by observing the ratio of the various singular values 

to the largest one as defined by [30] 

max

10 wR



                                                      (2.12) 

where w is the number of accurate significant decimal digits of the system response data. 

Based on w, one can choose the required parameters P and Q to interpolate or extrapolate 

the data. The computed number of nonzero singular values from the selected parameter P 

and Q is the rank of the matrix in (2.9), so it provides an idea about the information in 

this system of simultaneous equations. Since the rank R is the number of nonzero singular 

values, the dimension of the right null space of [C] is P+Q+2‒R. The solution vector 

belongs to this null space. Therefore, to make this solution unique, one needs to make the 

dimension of this null space approximately 1 so that only one vector defines this space. 

Hence, P and Q must satisfy the relation  
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1 2R P Q                                                      (2.13) 

Using (2.13), better estimates for the parameter P and Q are obtained. Letting P and Q 

represent these new estimates of the polynomial orders, one can regenerate the matrix [C] 

using (2.7) resulting in 

( 2) ( 2)

( 2) 1 ( 2) 1

[ ] [ ] 0N P Q N P Q

P Q P Q

a a
C A B

b b
     

     

   
     

   
                 (2.14) 

where matrix [C] is a rectangular matrix with more rows than columns. The above 

equation can be solved by using the total least squares (TLS) method [31]. In the matrix 

equation of (2.14), the submatrix [A] is a function of the frequency only, and does not 

depend on the data being observed or measured as illustrated in (2.7). Hence, this matrix 

is not affected by measurement errors and noise. However, the submatrix [B] is affected 

by the measurement and computational errors in the evaluation of the transfer function. 

To take this non-uniformity of noise in the data into account, we first need to perform a 

QR decomposition [29] of the matrix [A -B] up to its first P+1 columns. First, we 

perform a QR decomposition of the submatrix [A] to consider the measurement and 

computational errors because submatrix [A] is the samples of the frequency variable only 

and does not include any noise. A QR decomposition of the matrix results in   

        [ ] [ ][ ]A Q R                                                      (2.15) 

[ ] [ ] [ ]T TA B Q A B R Q B                                    (2.16) 

11 12

22

[ ] 0
0

T
R Ra a

R Q B
Rb b

    
      

    
                                 (2.17) 
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where Q is a n-by-n orthogonal matrix and R is a n-by-m upper triangular matrix. [R11] is 

upper triangular matrix and both [R12] and [R22] are affected by the noise in the data. 

From (2.17), we now equate 

22[ ][ ] 0R b                                                            (2.18) 

1

11 12 11 12[ ][ ] [ ][ ] [ ] [ ] [ ][ ]R a R b a R R b                             (2.19) 

A SVD of [R22] results in 

 [ ][ ][ ] 0HU V b                                                 (2.20) 

By the theory of TLS, the solution vector [b] is proportional to the last column of 

the matrix [ ]V   as shown. 

  1[ ]Qb V 
                                                       (2.21) 

This is the optimal solution for the coefficients of the denominator polynomial 

under the given conditions. Using (2.21) and (2.19), coefficients of the numerator 

polynomial can be computed and one can interpolate or extrapolate the system response 

from the numerator and denominator polynomials. Finally, the transfer function H(f) can 

be rewritten as 
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2 2
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m m

m m m
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 
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





 

 
 
  
    

       
    


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                (2.22)  

where mR  is the residue ( mR  is the complex conjugate of mR ), m  is the damping factor, 

and mf  is the natural frequency for the mth pole.  
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2.3. Extracting Natural Poles of a PEC Sphere Using the Cauchy Method 
 

We compute the EM scattering data from a 0.15-m-diameter Perfectly Electric 

Conductor (PEC) sphere in free space as shown in Figure 2.1 using the Higher Order 

Basis Based Integral Equation Solver (HOBBIES) simulation program [32]. HOBBIES 

can be used for solution of various types of electromagnetic field analysis involving 

electrically large objects of arbitrary shapes composed of complex metallic and dielectric 

structures in the frequency domain. In this case, a plane wave is applied as an incident 

wave ( 0 ,   0 ,   0,E  1E  ) and for three different observation angles 

( 0 ,   0 ;   0 ,   30 ;   and 0 ,   60   ). The observed responses are shown 

in Figure 2.2. In Figure 2.1, the horizontal arrow is the propagation vector corresponding 

to the incident wave and the vertical arrow is the orientation for the incident E-field 

vector.  The result is generated for the frequency range from 0.01 GHz to 5 GHz (Δf = 

0.01 GHz), and the number of samples selected is 500. We used not only the results from 

the positive frequency data generated by HOBBIES, but also complement it with the 

response for the negative frequency (conjugate) to reflect its mirror image in the 

frequency domain.  

If we utilize the Cauchy method to get the natural poles of the 0.15-m-diameter 

PEC sphere without transforming the frequency domain data into the time domain data, 

we can obtain eight natural poles corresponding to the physical resonances after applying 

three different criteria to filter out the spurious poles. Perhaps, most of these spurious 

poles correspond to the early time response of the object. 

The first criterion removes the poles having very high damping factors, i.e., 

( 8m  ). A pole having high damping factor implies high radiation energy loss in case 
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of a perfectly conducting target and it has little contribution to the target response. The 

second criterion allows one to remove single poles located on the real axis, poles having 

positive σ, and poles in the frequency range of  fm  < 0.01 GHz and fm > 5 GHz. The 

natural poles occur in complex conjugate pairs. They generally have a negative damping 

factor corresponding to a causal and stable system, and since the computed frequency 

range is from 0.01 GHz to 5 GHz. It means the poles with positive damping factor or 

single poles have no physical meaning. The third criterion removes the poles having 

4/ 10m mR    because it has very little contribution to the target response. Figure 2.3 

shows the natural poles of the 0.15-m-diameter PEC sphere for three different 

observation angles using the Cauchy method. One can notice that the poles from these 

three different realizations corresponding to three different observation angles almost 

overlap each other because the natural poles are directly related to the late time response 

(creeping wave) of the PEC object. 

Table 2.1 presents the natural poles of the 0.15-m-diameter sphere using the SEM 

method in the time domain and the Cauchy method in the frequency domain. The natural 

poles from the SEM and the Cauchy method match very well. Therefore, it is proved that 

one can use the natural poles of the 0.15-m-diameter PEC sphere using the Cauchy 

method as a library of poles to identify objects, which does not require any late time 

characterization of the data. 
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Figure 2.1 HOBBIES simulation model for the 0.15-m-diameter PEC sphere. 
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Figure 2.2 Frequency domain response of the HOBBIES model with the 0.15-m-

diameter PEC sphere for three observation angles.   
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Figure 2.3 Natural poles of the 0.15-m-diameter PEC sphere. 

 

 

 

 

 

 

 

Table 2.1 Natural Poles of the 0.15-m-diameter PEC Sphere from the SEM and the 

Cauchy Method. 

SEM Cauchy Method 

Damping 

Factor (σ) 

Natural Frequency 

(GHz) 

Damping 

factor (σ) 

Natural Frequency 

(GHz) 

-2.0000 

-2.8080 

-3.3720 

-3.8160 

-4.1920 

-4.5160 

-4.8040 

-5.0680 

0.5513 

1.1504 

1.7558 

2.3650 

2.9768 

3.5918 

4.2081 

4.8256 

-2.0011 

-2.8183 

-3.3758 

-3.8136 

-4.1985 

-4.5086 

-4.8147 

-5.0576 

0.5504 

1.1490 

1.7534 

2.3638 

2.9761 

3.5885 

4.2081 

4.8299 
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2.4. Simulation Examples: Generating a Library of Poles of Objects 
 

Different simulation examples are presented to illustrate the application of this 

methodology to make a library of poles for different objects. We also generate the EM 

scattering data from six additional PEC objects, such as a wire, a disk, an ellipsoid, a 

sphere, a cone, and a cylinder using the HOBBIES simulation program [32]. Each object 

has the same characteristic size (0.1 m diameter, or length, or height) but they are of 

different shape as shown in Table 2.2. The thickness of the disk and the ellipsoid are very 

small. The simulation setup is the same as outlined before. We also apply the same 

criteria to extract the natural poles of each object.  

Figures 2.4, 2.7, 2.10, 2.13, 2.16, and 2.19 show the six HOBBIES simulation 

models and their frequency domain response for the three observation angles are shown 

in Figures 2.5, 2.8, 2.11, 2.14, 2.17, and 2.20. From Figures 2.6, 2.9, 2.12, 2.15, and 2.21, 

it is seen that the poles overlap each other even though the observation angles are 

different. However, one can see that the higher order poles (3rd, 4th, and 5th) are slightly 

different when using the frequency domain data than when using the damping factor as 

shown in Figure 2.18. Perhaps, the damping factor of the higher order poles can fluctuate 

due to the scattering from various regions of the illuminated surface of the object for the 

different observation angles. One thing we notice that the first order pole is not changed 

for the different observation angle because it provides the most significant contribution to 

the object response.  

If we observe the object response, the response of the PEC ellipsoid is very 

similar to the response of the PEC wire as shown in Figures 2.11 and 2.5. Thus, the 

resonant frequencies are also very close to each other (PEC ellipsoid: 1.3967, 4.2956, 
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PEC wire: 1.3339, 4.2265) based on their frequency domain response as shown in Table 

2.3. For object identification, one can use not only the first order pole including the 

damping factor but also the resonant frequencies of the higher order poles.  

Figure 2.6 presents the results for a PEC wire, whereas Figure 2.9 provides the 

data for a PEC disk. The poles for the PEC ellipsoid are presented in Figure 2.12. The 

poles for a PEC sphere are presented in Figure 2.15 and for a PEC cone in Figure 2.18. 

The poles for the PEC cylinder are presented in Figure 2.21. The classical SEM poles and 

the respective resonant frequencies are presented in Table 2.3 for all of these objects. 

Since the values for the damping factors are not reliable for the higher order poles we 

present the values only for the imaginary part of the natural poles. From the two spheres 

of Figures 2.3 and 2.15, one can observe that the resonant frequency of the first order 

pole decreases and the number of poles increases as the size of the object increases. 

Notice that for the PEC spheres, if the resonant frequency of the first order pole of a D1-

m-diameter PEC sphere is 1 1Df , the first order resonant frequency of a D2-m-diameter 

PEC sphere ( 1 2Df ) can be computed by 1 1 1 2/Df D D  [2], [26]. Therefore, one can also 

obtain the first order resonant frequency of a 0.15-m-diameter PEC sphere as 0.5511 GHz 

( 0.8267 0.1/ 0.15  ) from the first order resonant frequency of a 0.1-m-diameter PEC 

sphere. Finally, one can identify the unknown object by comparing the pole library with 

the extracted poles measured from the data in the time domain. 
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Table 2.2 The Dimension of Each Object. 

Target Dimension 

Wire 

Disk 

Ellipsoid 

Sphere 

Cone 

Cylinder 

0.1 m Length, 1 mm radius 

0.1 m Diameter 

0.02 m Diameter, 0.1 m Length 

0.1 m Diameter 

0.1 m Diameter, 0.1 m Height 

0.1 m Diameter, 0.1 m Height 

 

 

Figure 2.4 HOBBIES simulation model for the 0.1-m-length and 1-mm-radius PEC wire. 
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Figure 2.5 Frequency domain response of the HOBBIES model with the 0.1-m-length 

and 1-mm-radius PEC wire for three observation angles.   
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Figure 2.6 Natural poles of the 0.1-m-length and 1-mm-radius PEC wire. 

 

 

 

 

 

 

 

 

Figure 2.7 HOBBIES simulation model for the 0.1-m-diameter PEC disk. 

 



21 

 

    

 

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Frequency (GHz)

M
a

g
n

it
u

d
e

 

 

=0, =0

=0, =30

=0, =60

 
Figure 2.8 Frequency domain response of the HOBBIES model with the 0.1-m-diameter 

PEC disk for three observation angles.   
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Figure 2.9 Natural poles of the 0.1-m-diameter PEC disk. 
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Figure 2.10 HOBBIES simulation model for the 0.02-m-diameter and 0.1-m-length PEC 

ellipsoid. 
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Figure 2.11 Frequency domain response of the HOBBIES model with the 0.02-m-

diameter and 0.1-m-length PEC ellipsoid for three observation angles. 
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Figure 2.12 Natural poles of the 0.02-m-diameter and 0.1-m-length PEC ellipsoid. 

 

 

 

 

 

 

 

 

Figure 2.13 HOBBIES simulation model for the 0.1-m-diameter PEC sphere. 
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Figure 2.14 Frequency domain response of the HOBBIES model with the 0.1-m-

diameter PEC sphere for three observation angles.   
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Figure 2.15 Natural poles of the 0.1-m-diameter PEC sphere. 
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Figure 2.16 HOBBIES simulation model for the 0.1-m-diameter and 0.1-m-height PEC 

cone. 
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Figure 2.17 Frequency domain response of the HOBBIES model with the 0.1-m-

diameter and 0.1-m-height PEC cone for three observation angles. 
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Figure 2.18 Natural poles of the 0.1-m-diameter and 0.1-m-height PEC cone. 

 

 

 

 

 

 

 

 

Figure 2.19 HOBBIES simulation model for the 0.1-m-diameter and 0.1-m-height PEC 

cylinder. 
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Figure 2.20 Frequency domain response of the HOBBIES model with the 0.1-m-

diameter and 0.1-m-height PEC cylinder for three observation angles.   
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Figure 2.21 Natural poles of the 0.1-m-diameter and 0.1-m-height PEC cylinder. 
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Table 2.3 Pole Library of the seven PEC Objects. 

Object 
First Order Pole 

(σ1, f1) 

Higher Order Frequency 

(GHz) 

Wire (-0.8811, 1.3339) 4.2265 

Disk (-2.9610, 1.1775)   4.6855 

Ellipsoid (-1.5828, 1.3967)   4.2956 

Cone (-3.3024, 0.9700)   1.9722, 2.9350, 3.9375, 4.8416   

Sphere 

(D = 0.1 m) 
(-2.9988, 0.8267)   1.7243, 2.6322, 3.5454, 4.4602 

Cylinder (-2.6532, 0.7028) 1.3540, 2.1733, 2.9673, 3.6885, 4.4146 

Sphere 

(D = 0.15 m) 
(-2.0011, 0.5504)   

1.1490, 1.7534, 2.3638, 2.9761, 3.5885, 4.2081, 

4.8299 
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3. PROCEDURE TO INDENTIFY AN UNKNOWN OBJECT 
 

 

 

3.1. Overview 
 

This chapter presents a proposed methodology for detecting and identifying an 

unknown object based on the Matrix Pencil (MP) method and using the Time-Difference-

of-Arrival (TDOA) in the time domain. The MP method is well-known not only for 

interpolation and extrapolation techniques but also for identification of an unknown 

object using the data in the time domain [11]-[15]. The TDOA technique is also 

applicable to find the coordinates of an unknown object [33]. 

This chapter starts with the procedure of the MP method and then an example is 

presented to validate the proposed methodology for detecting and identifying an 

unknown object. The MP method is applied to find the natural poles of an unknown 

object using the late time response of the receiver (dipole antenna). Thus, comparing the 

natural frequencies by using data from the MP method along with a library of poles 

obtained using the Cauchy method, one can identify an unknown object with very high 

accuracy. One can also get the accurate coordinates of an unknown object using the time 

difference between the complete impulse response of the left and the right receivers, 

when two receivers are employed to receive the scattered signal from the object.  
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3.2. Matrix Pencil (MP) Method to Find the Natural Poles of an object 
 

The MP method approximates a time domain function by a sum of complex 

exponentials and this approximation is valid only for the late time response. In general, 

the Electromagnetic (EM) transient signal of the observed late time response from an 

object can be formulated as 

1

( ) ( ) ( ) ( ), 0i

M
s t

i

i

y t x t n t R e n t t T


                                    (3.1) 

Such a model is valid because the scatterer can be treated as a linear time-

invariant (LTI) system [28]. It is well-known that for an LTI system, the eigenfunctions 

of the transfer operator are of the form is t
e  where si are the poles of the system. After 

sampling, the time variable, t, is replaced by kTs, where Ts is the sampling period. The 

sequence can be rewritten as 

1

( ) ( ) ( ) ( ), 0,1, , 1
M

k

s s s i i s

i

y kT x kT n kT R z n kT for k N


                   (3.2) 

( )
, 1,2, ,i s i i ss T j T

iz e e for i M
 

                                    (3.3) 

where  y(t) = observed time response 

 x(t) = signal 

 n(t) = noise in the system 

 Ri = residue or complex amplitudes of the ith pole 

 si = αi+jωi (ith pole of the system) 

 αi = negative damping factor of the ith pole 

 ωi = angular frequency of the ith pole  

 N = number of data samples 

 M = number of poles of the signal (Number of singular values) 
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The transient response from a structure can be characterized by the best estimates 

of M, Ri, and Zi using the MP method, especially in the case of noisy data resulting from 

numerical errors and random noise. For noiseless data, we can define the ( ) ( 1)N L L    

matrix [Y] as 

0 1

1 2 1

1 1 ( ) ( 1)

[ ]

L

L

N L N L N N L L

y y y

y y y
Y

y y y



      

 
 
 
 
 
 

                                 (3.4) 

We can also define matrix [Y] as  

   1 1 2 1[ ] , , LY c Y Y c                                                  (3.5) 

where ci represents the ith column of matrix [Y]. These matrices [Y1] and [Y2] can be 

written as  

1 1 0 2[ ] [ ][ ][ ][ ]Y Z R Z Z                                                    (3.6) 

2 1 2[ ] [ ][ ][ ]Y Z R Z                                                          (3.7) 

where 

1 2

1

( 1) ( 1) ( 1)

1 2 ( )

1 1 1

[ ]
M

N L N L N L

M N L M

z z z
Z

z z z     

 

 
 
 
 
 
 

                          (3.8) 

1

1 1

1

2 2

2

1

1

1
[ ]

1

L

L

L

M M M L

z z

z z
Z

z z









 
 
 
 
 
  

                                                    (3.9) 



32 

 

    

 

1

2

0

0 0

0 0
[ ]

0 0 M M M

z

z
Z

z


 
 
 
 
 
 

                                                   (3.10) 

1

2

0 0

0 0
[ ]

0 0 M M M

R

R
R

R


 
 
 
 
 
 

                                                   (3.11) 

Consider the following matrix pencil 

 1 2 1 0 2[ ] [ ] [ ][ ] [ ] [ ] [ ]Y Y Z R Z I Z                                        (3.12) 

Provided ,M L N M    the matrix 1 2[ ] [ ]Y Y  has rank M. However, if ,iz   

i=1,2,…,M, the ith row of 0[ ] [ ]Z I  is zero, and the rank of 0[ ] [ ]Z I  will be 

1.M  Here [I] is the identity matrix. Therefore, the matrix pencil 1 2[ ] [ ]Y Y  will also be 

reduced in rank to 1.M   It implies that zi’s are the generalized eigenvalues of the matrix 

pair {[Y1], [Y2]}. Therefore,  

     1 2i i iY r z Y r                                                 (3.13) 

where ri is the generalized eigenvector corresponding to zi. In the equivalent form 

       
†

2 1 0i iY Y z I r                                        (3.14) 

where  
†

2Y  is the Moore-Penrose pseudo-inverse of  2Y . From (3.14), we can obtain zi’s 

from the eigenvalues of    
†

2 1Y Y . Hence, for the MP method, the poles are obtained 

directly as a one-step process. For efficient noise filtering, the pencil parameter L is 

chosen between N/3 to N/2. Define the Singular Value Decomposition (SVD) [29] of 

matrix [Y] as 
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[ ] [ ][ ][ ]HY U V                                                   (3.15) 

The matrix [U] and [V] are ( ) ( )N L N L    and ( 1) ( 1)L L    unitary matrices, 

respectively. The matrix [Σ] is a ( ) ( 1)N L L    diagonal matrix with the singular 

values of matrix [Y] in descending order. If the given data y(kTs) were noise free, matrix 

[Y] would have exactly M nonzero singular values. 

However, due to the presence of noise, the zero singular values are perturbed. 

This results in several small nonzero singular values. This error due to the noise can be 

suppressed by eliminating these spurious singular values from matrix [Σ]. Define    as 

a M M  diagonal matrix with the M largest singular values of [Y] on its main diagonal. 

Furthermore, define  U   and  V   as submatrices of [U] and [V] corresponding to these 

singular values: 

[ ] [ (:, 1: )]U U M                                                    (3.16) 

[ ] [ (:, 1: )]V V M                                                     (3.17) 

[ ] [ (1: , 1: )]M M                                                (3.18) 

[ ] [ ][ ][ ]HY U V                                                       (3.19) 

Therefore, using matrix [ ]Y   instead of matrix [Y] in (3.5) results in filtering the 

noise in both [Y1] and [Y2]. From (3.5) and (3.19), we can write 

1 1[ ] [ ][ ][ ]HY U V                                                       (3.20) 

2 2[ ] [ ][ ][ ]HY U V                                                      (3.21) 
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where 
1[ ]V   and 

2[ ]V   are equal to [ ]V   without the first and the last row, respectively. 

Using (3.20-3.21), the poles of the signal (eigenvalues of    
†

2 1Y Y ) are given by the 

nonzero eigenvalues of 

 
†

2 1[ ] [ ]V V                                                             (3.22) 

The number of modes M is chosen by observing the ratio of the various singular values to 

the largest one as defined by [30] 

max

10 wR



                                                      (3.23) 

where w is the number of accurate significant decimal digits of the system response data. 

Based on w, one can determine the proper values of M for the assumed precision. Using 

this better choice of M, one can evaluate the poles zi and the amplitude Ri using the 

previously detailed approach. Hence, for the matrix pencil method, the poles are obtained 

from the contaminated data by the noise using the SVD [29] and the TLS method [31]. 

 

   

3.3. Extracting Natural Poles of a PEC Sphere Using the MP Method 
 

Figure 3.1 shows the HOBBIES simulation model. The configuration is with one 

transmitter (center antenna), two receivers (left and right antennas), and one sphere object 

located in free space. Using two receivers one can get the coordinates of the unknown 

object including the radial distance and the azimuthal angle. The specification for each of 

the antenna for transmitter and receiver are 0.15 m in length and 1.5 mm radius. The 

diameter of the sphere is 0.15 m. Spacing between the transmitter and the receiver is 2.5 

m to fully minimize the effects of the antenna coupling. The target sphere is located at 

12.046 m and is oriented by -5° from the axis of the transmitting antenna. The 
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transmitting antenna is excited by a voltage generator (delta-function generator) with 1 V. 

The response of the object is computed from 0.01 GHz to 5 GHz (sampling frequency Δf 

= 0.01 GHz), and the number of samples is 500. To isolate the response of the desired 

objects at the receiver, the received signals at both the antennas are computed with and 

without the presence of the object of interest.  

By subtracting one response from the other one reduces the coupling between the 

various antennas. In addition, the antenna impulse response needs to be deconvolved out 

from the computed total response from both the antennas and the object [34]. Therefore, 

the deconvolved response ( )Y f  from the object at each receiver can be represented as   

        
( ) ( )

( )
( )

Object No Object

Ant

X f X f
Y f

R f


                               (3.24) 

where ( )ObjectX f  and ( )No ObjectX f   are the received signal with the object present and the 

received signal without the object present, respectively. ( )AntR f  is the response of a 

receiving antenna. Figure 3.2 shows the normalized frequency domain response of the 

dipole antenna. Figures 3.3 and 3.4 show the received signal without the object present 

and the received signal with the object present in the frequency domain, respectively. 

Figure 3.5 shows the response of the sphere seen by the left and right receivers in the 

frequency domain using (3.24). The peak in the object response around 3.5 GHz is due to 

the antenna response. 

For applying the MP method, we need to obtain the time domain response of the 

object from the frequency domain data (deconvolved response and its complement 

response) using the inverse fast Fourier transform (IFFT, Matlab function). As expected, 

one can get exactly the same frequency domain response from the obtained time domain 



36 

 

    

 

response using the FFT (Matlab function). Figure 3.6 displays the time domain response 

of the object (for the left and for the right receivers). From Figure 3.6, one can identify 

the location of the object with respect to a global coordinate system. 

 

 
Figure 3.1 HOBBIES simulation model and its configuration using one transmitter, two 

receivers, and a 0.15-m-diameter PEC sphere. 
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Figure 3.2 Normalized frequency domain response of the dipole antenna. 
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Figure 3.3 Received signal without the object present 
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Figure 3.4 Received signal with the object present from (a) left receiver, (b) right 

receiver. 
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Figure 3.5 Frequency domain response of the 0.15-m-diameter PEC sphere; (a) the left 

receiver, (b) the right receiver. 
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Figure 3.6 Time domain response of the 0.15-m-diameter PEC sphere obtained from (a) 

the left receiver, (b) the right receiver. 

 

When the object is located on the left hand side of the normal to the line joining 

the location of all the antennas, the time delay of the signal received at the left receiver is 

shorter than that from the right receiver. Therefore, one can calculate the distance 



39 

 

    

 

between the object and the transmitting antenna using the Time-Difference-of-Arrival 

(TDOA) [33]. If we assume that the locations of the left receiver, the right receiver, and 

the object are (0, –d, 0), (0, d, 0), and (x, y, z), respectively as shown in Figure 3.7, then  

        1 2,L RR R C R R C                                           (3.25) 

where 

2 2 2 2 2 2( ) , ( )L RR x y d z R x y d z                    (3.26) 

8 8

1 23 10 , 3 10L RC T C T                            (3.27) 

, ,x x r y y r z z r                             (3.28) 

where R is the radial distance of the illuminated surface of the unknown object from the 

transmitter. RL and RR are the distances of the surface of the object from the left and the 

right receiver, respectively. TL and TR are the time delay (peak of the impulse response) 

of the left and the right receiver, respectively. r is the distance from the center of the 

object to the illuminated surface of the object by antennas. Since the distances of the left  

and the right receiver from the origin are the same, we can get one more formula based 

on the Pappus’s theorem [35]. 

2 2 2 22( )L RR R R d                                            (3.29) 

From (3.25~3.29), one can calculate the radial distance (R)  

  2 ,RR C R                                         (3.30) 

where 

2 2 2

1 2 1 2

1 2

2 2

2( )
R

C C C C d
R

C C

   



                            (3.31) 



40 

 

    

 

We can also estimate the displacement of the object in angle from the direction of 

the normal using the law of cosine.  

           
2 2 2

1cos 90
2

L
DOA

d R R

dR
    

   
 

                          (3.32) 

where DOA  is the azimuthal angle of inclination from the normal. 

 
Figure 3.7 Configuration of one transmitter, two receivers, and one object for calculating 

object coordinates 

 

Notice that we use R (distance from the origin to the front of the object) instead of 

R  (distance from the origin to the center of the object) considering the TDOA in the 

time domain. The peak point of the late time response is chosen to compute RL and RR. 

Table 3.1 presents the actual vs. estimated coordinates of the target from the origin. It has 

an relative error of 0.26 % for the distance R and 0.44 % error for the DOA .  

Table 3.1 Actual vs. Estimated Target Coordinates (0.15-m-diameter Sphere). 

 R (m) Angle (º) 

Actual target coordinates 11.971 ‒5 

Estimated target coordinates 12.002 ‒4.9779 
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For identification of  unknown objects, we need to compute their natural poles. If 

we consider the mechanisms of backscattering from the object, it can be divided into two 

parts. The first part is the impulsive part corresponding to the early time response (direct 

reflection of the incident wave from the surface of the object). The second part is the 

oscillatory part corresponding to the late time response (resonance phenomena).  

Therefore, we chose the truncated time domain data from the target between the peak 

point and its response settling down to zero with respect to the late time response for the 

receivers as shown in Figures 3.8 and 3.9. Even though the magnitude of the first 

negative peak is larger than the peak of the truncated data, it is not utilized because the 

first negative peak is from the first part in the backscattering mechanisms. One should 

notice that the late time response of the object represents its information. If one truncated 

very small portion of the late time response of the object, one cannot obtain its correct 

natural frequencies because of loss of information. Under this consideration, the 

truncated time domain data should be chosen very carefully. In this case, the truncated 

time domain data and the number of samples for the left receiver are 3.5594 ns and 73, 

respectively, whereas the truncated time domain data and the number of samples for the 

right receiver are 3.5515 ns and 73, respectively as shown in Figures 3.8 and 3.9.  

The MP method then is applied to extract the natural poles of the detected object. 

We apply two criteria to extract the natural poles. The first criterion filters the poles out 

having very high damping factors ( 7m  ). The second criterion allows one to remove 

single poles located on the real axis, poles having positive σ, and poles in the range fm < 

0.01 GHz and fm  > 5 GHz. The last criterion for the Cauchy method is not applied for the 

MP method because of its initial assumption from (3.2). Table 3.2 presents a list of poles 
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for the 0.15-m-diameter PEC sphere for the left and the right receivers using the MP 

method. If we compare these two sets of computed poles from the time domain response 

of the left and the right receivers, they are almost identical not only the first order pole 

but also the resonant frequencies of the higher order poles. It means one can extract the 

SEM poles with high accuracy using the late time response of the detected object 

irrespective of using which receiver.   

To evaluate the performance of this methodology, we compute the estimated 

error of the identification accuracy following the normalized mean square errors (MSEs) 

using resonance frequencies as 

                                            2

2

ˆ

est

f f
E

f


                                                    (3.33) 

where 
2

  is the L
2
-norm of a vector. f and f̂ are the resonance frequency of the pole 

library and extracted resonance frequency, respectively.  

Now let us try to indentify this unknown object based on Table 2.3 (pole library 

of the seven PEC objects) and the computed poles in the time domain. For identification 

of the unknown object, we need to compare two parameters. The first key parameter is 

the first order pole and the second parameter is the resonant frequencies. Thus, one can 

identify the unknown object as the 0.15-m-diameter PEC sphere comparing the pole 

library with the first order pole and the resonant frequencies of the unknown object. If we 

consider only the resonance frequencies, the estimated error is 1.97 % for the left receiver 

and 1.74 % for the right receiver, respectively. Therefore, one can locate the 0.15-m-

diameter PEC sphere with approximate 98 % accuracy at 12.002 m radial distance and     

-4.9779° azimuthal angle.   
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Figure 3.8 Truncated data from the object to apply the MP method from the left receiver 

(one sphere model). 
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Figure 3.9 Truncated data from the object to apply the MP method from the right 

receiver (one sphere model). 
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Table 3.2 Library of Poles of the 0.15-m-diameter PEC Sphere and Computed Natural 

Poles of the Detected Object Using the MP Method. 

Library of pole 

(0.15-m-diameter PEC 

Sphere) 

Computed poles from the 

left receiver  

Computed poles from the 

right receiver 

First Order 

Pole 

(σ1,  f1) 

Higher Order  

Frequency 

(GHz) 

First Order 

Pole 

(σ1,  f1) 

Higher Order  

Frequency 

 (GHz) 

First Order 

Pole 

(σ1,  f1) 

Higher Order  

Frequency 

 (GHz) 

(-2.0011, 

0.5504) 

1.1490 

1.7534 

2.3638 

2.9761 

3.5885 

4.2081 

4.8299 

(-2.0180, 

0.5463) 

1.1551   

1.7685    

2.3766    

2.9780    

3.6901    

4.3410    

4.8294 

(-2.0178, 

0.5465) 

1.1543    

1.7665    

2.3741    

2.9724   

3.6733    

4.3290    

4.8234 

 

 

3.4. Object Identification in Noisy Environment  
 

In practice the received data may be contaminated by an additive noise. So the 

noisy environment is studied where the system has an additive white Gaussian random 

noise of 30 dB SNR (signal-to-noise ratio). Let the system have a noise floor of 30 dB 

SNR. Based on the simulation model as shown in Figure 3.1, both ( )ObjectX f  (received 

signal with the object present) and ( )No ObjectX f   (received signal without the object 

present) are also noise contaminated data with 30 dB SNR. Figure 3.10 shows the time 

domain response of the 0.15-m-diameter PEC sphere including the noise obtained from 

the left receiver.  

The MP method is a robust pole extraction technique in any noisy environment as 

mentioned before. Therefore, one can extract natural poles from the noise contaminated 

data using the proposed methodology. Table 3.3 presents a list of the poles for the 0.15-

m-diameter PEC sphere from the left receiver in noisy environment using the MP method. 
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If we consider only the resonance frequencies, the estimated error is 4.49 %. Even though 

the accuracy is decreased from 98 % (noiseless data) to 95 % (noisy data), one can 

identify the detected target as a 0.15-m-diameter PEC sphere comparing the pole library 

with the first order pole and the resonant frequencies of the detected target.  
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Figure 3.10 Time domain response of the 0.15-m-diameter PEC sphere including the 

noise obtained from the left receiver  

 

 

Table 3.3 Library of Poles of the 0.15-m-diameter PEC Sphere and Natural Poles of the 

Detected Target in Noisy Environment Using the MP Method. 

Library of pole 

(0.1 m diameter PEC Sphere) 

Computed poles from the left receiver in 

Noisy Environment Using MP method 

First Order Pole 

(σ1,  f1) 

Higher Order  

Frequency (GHz) 

First Order Pole 

(σ1,  f1) 

Higher Order  

Frequency (GHz) 

(-2.0011, 0.5504) 

1.1490  

1.7534  

2.3638  

2.9761  

3.5885  

4.2081  

4.8299 

(-2.2049, 0.5690) 

1.1980 

1.8458 

2.5665 

3.0119 

3.6247 

4.5104 

4.7951 
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4. SIMULATION EXAMPLES WITH MULTIPLE TARGETS IN 

FREE SPACE 
 

 

 

4.1. Overview 
 

In this chapter, six different examples are presented to validate the proposed 

methodology for simultaneous identification of multiple PEC objects in free space. Each 

example is selected considering different dimensions, different shapes, similar shapes, 

and interaction effects.  For the simulation, we apply the same methodology as described 

for the PEC sphere example in the specified frequency range as outlined in chapter 3.3.  

The first example (4.2. two spheres) illustrates that the natural frequencies of the 

object are different due to its different dimensions. The second example (4.3. one sphere 

and one disk) shows their different natural frequencies although the projection of the 

sphere is the disk. Also we observe the natural frequencies of two objects with similar 

shape from the third example (4.4. one disk and one ellipsoid). For the fourth example 

(4.5. one cone and one wire) we identify closely spaced objects in order to identify them 

even though the cone is larger in shape than the wire. The fifth example (4.6. one 

cylinder and one sphere) shows their different natural frequencies when two objects have 

similar dimension. From the last example (4.7. one cone, one wire, and one sphere) we 

check the interaction effects in case of more than two objects. 
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4.2. Two Spheres 
 

Figure 4.1 shows the HOBBIES simulation model and its configuration with one 

transmitter (center), two receivers (left, right), and two PEC spheres of different sizes 

located in free space. The diameter of the first sphere is 0.1 m. The location of the 

spheres from the origin (the location of the transmitter) and in angle with respect to the 

normal joining the three antennas are 10.154 m and 10°. The diameter of the second PEC 

sphere is 0.15 m and its distance and angle are 12.046 m and -5°, respectively. Figure 4.2 

shows the deconvolved response of the two spheres to the left and right receiving 

antennas in the frequency domain. Figure 4.3 displays the time domain response of the 

detected objects for the left and right receivers.  

Based on the TDOA in the time domain, one can get estimated coordinates of the 

targets using (3.30) and (3.32). Table 4.1 describes the actual vs. estimated coordinates of 

the targets (two spheres) from the origin. For the first target, the computed relative error 

for the location is 0.29 % for the radial distance and a 0.71 % error for the azimuthal 

angle. For the second target, the corresponding error is 0.26 % for the distance and 

0.44 % error for the angle. 

For identification, we chose the truncated data as illustrated in Figures 4.4 and 4.5 

for both the targets. The record length is selected from the peak value of the waveform in 

the time domain till it decays down to zero. The MP method is applied to this truncated 

time domain data of the left receiver as shown in Figures 4.4 and 4.5. Figure 4.6  

compares the pole library using the Cauchy method with the computed poles of the 

unknown targets using the MP method. From Figure 4.6(a), one can clearly identify the 

unknown targets because the first and the second unknown targets overlap with the 
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library poles of the 0.1-m-diameter PEC sphere and 0.15-m-diameter PEC sphere, 

respectively. The estimated errors of the resonant frequency are 1.17 % for the first target 

and 4.79 % for the second target, respectively as shown in Figure 4.6(b). Therefore, one 

can locate the 0.1-m-diameter PEC sphere with approximate 99 % accuracy at 10.133 m 

radial distance, 10.071° azimuthal angle and the 0.15-m-diameter PEC sphere with 

approximate 95 % accuracy at 12.002 m radial distance, -4.9779° azimuthal angle.   

 

 

 

 

 
Figure 4.1 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a 0.1-m-diameter PEC sphere, and a 0.15-m-diameter PEC sphere. 
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Figure 4.2 Frequency domain response of the 0.1-m and 0.15-m-diameter PEC spheres; 

(a) the left receiver, (b) the right receiver. 
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Figure 4.3 Time domain response of the 0.1-m and 0.15-m-diameter PEC spheres; (a) the 

left receiver, (b) the right receiver. 
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Figure 4.4 Truncated data from the first unknown target to apply the MP method from 

the left receiver (two spheres model). 
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Figure 4.5 Truncated data from the second unknown target to apply the MP method from 

the left receiver (two spheres model). 
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Table 4.1 Actual vs. Estimated Target Coordinates (Two Spheres). 

 
Sphere (D=0.1 m) Sphere (D=0.15 m) 

R (m) Angle (º) R (m) Angle (º) 

Actual target 

coordinates 
10.104 10 11.971 -5 

Estimated target 

coordinates 
10.133 10.071 12.002 -4.9779 
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Figure 4.6 Pole Library vs. Computed poles of the unknown targets using the MP 

method (two spheres model); (a) First order pole, (b) Resonant frequency. 
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4.3. One Sphere and one Disk 
 

For the next example we consider a PEC sphere and a PEC disk. Figure 4.7 shows 

the HOBBIES simulation model and its configuration for the case of one PEC sphere and 

one PEC disk in free space. The diameter of the sphere is 0.1 m. The coordinates of the 

object from the origin (transmitter) is 10.154 m and 10° respectively.  The diameter of the 

disk is 0.1 m. Its coordinates from the transmitter (the origin) are 12.046 m and -5°, 

respectively. Figures 4.8-4.9 show the deconvolved response of the sphere and the disk 

for the left and right receivers in the frequency domain and in the time domain, 

respectively. Table 4.2 shows the actual vs. estimated coordinates of the targets (sphere 

and disk) from the origin. For the first target, it has a relative error of 0.29 % for the 

radial distance and 0.71 % error in the azimuthal angle. For the second target, it has 

0.16 % error for the distance and a 2.98 % error for the angle. The MP method is applied 

to the truncated time domain data of the right receiver as shown in Figures 4.10 and 4.11. 

Figure 4.12 compares the pole library along with the computed poles of the 

unknown targets using the truncated time domain response of the right receiver. Figure 

4.12(a) shows that one can identify the unknown targets because the first and the second 

unknown targets almost overlap with the library poles of the 0.1-m-diameter PEC sphere 

and 0.1-m-diameter PEC disk, respectively. The estimated errors of the resonant 

frequency are 2.12 % for the first target and 3.17 % for the second target, respectively as 

shown in Figure 4.12(b). Therefore, one can locate the 0.1-m-diameter PEC sphere with 

approximate 98 % accuracy at 10.133 m radial distance, 10.071° azimuthal angle and the 

0.1-m-diameter PEC disk with approximate 97 % accuracy at 12.065 m radial distance,     

-5.1488° azimuthal angle.   
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Figure 4.7 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a PEC sphere, and a PEC disk. 
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Figure 4.8 Frequency domain response of a PEC sphere and a PEC disk; (a) the left 

receiver, (b) the right receiver. 
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Figure 4.9 Time domain response of a PEC sphere and a PEC disk; (a) the left receiver, 

(b) the right receiver. 
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Figure 4.10 Truncated data from the first unknown target to apply the MP method from 

the right receiver (one sphere and one disk model). 
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Figure 4.11 Truncated data from the second unknown target to apply the MP method 

from the right receiver (one sphere and one disk model). 

 

 

 

 

 

 

Table 4.2 Actual vs. Estimated Target Coordinates (Sphere and Disk). 

 
Sphere (D=0.1 m) Disk (D=0.1 m) 

R (m) Angle (º) R (m) Angle (º) 

Actual target 

coordinates 
10.104 10 12.046 –5 

Estimated target 

coordinates 
10.133 10.071 12.065 –5.1488 
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Figure 4.12 Pole Library vs. Computed poles of the unknown targets using the MP 

method (one sphere and one disk model); (a) First order pole, (b) Resonant frequency. 
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4.4. One Disk and one Ellipsoid 
 

Figure 4.13 shows the HOBBIES simulation model and its configuration for the 

case of one PEC disk and one PEC ellipsoid located in free space. The diameter of the 

disk is 0.1 m. The coordinates of the disk from the origin (transmitter) is 7.2469 m and 

15°, respectively. The diameter and length of the ellipsoid is 0.02 m and 0.1 m, 

respectively. Its coordinates from the origin (transmitter) is 9.2011 m and -12°, 

respectively. Figure 4.14 shows the computed response of a disk and an ellipsoid to the 

left and right receivers in the frequency domain, whereas Figure 4.15 shows their time 

domain response.  

Table 4.3 shows the actual vs. estimated coordinates of the targets (disk and 

ellipsoid) from the origin. For the first target, it has a 0.18 % relative error for the 

distance and a 0.97 % error for the angle. For the second target, it has a 0.20 % error for 

the distance and a 0.87 % error in the angle. Figures 4.16-4.17 show the truncated time 

domain data of the right receiver to apply the MP method. Figure 4.18 shows a pole 

library of the PEC disk (0.1 m diameter), a PEC ellipsoid (0.02 m diameter, 0.1 m length) 

and computed poles of the targets. If we compare them, we can clearly identify the two 

unknown objects. The estimated errors of the resonant frequency are 3.34 % for the first 

target and 4.9 % for the second target, respectively as shown in Figure 4.18(b). Therefore, 

one can locate the 0.1-m-diameter PEC disk with approximate 97 % accuracy at 7.2601 

m radial distance, 14.855° azimuthal angle and the 0.02-m-diameter, 0.1-m-length PEC 

ellipsoid with approximate 95 % accuracy at 9.2199 m radial distance, ‒11.896° 

azimuthal angle.   
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Figure 4.13 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a PEC disk, and a PEC ellipsoid. 
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Figure 4.14 Frequency domain response of a PEC disk, and a PEC ellipsoid; (a) the left 

receiver, (b) the right receiver. 
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Figure 4.15 Time domain response of a PEC disk, and a PEC ellipsoid; (a) the left 

receiver, (b) the right receiver. 
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Figure 4.16 Truncated data from the first unknown target to apply the MP method from 

the right receiver (one disk and one ellipsoid model). 
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Figure 4.17 Truncated data from the second unknown target to apply the MP method 

from the right receiver (one disk and one ellipsoid model). 

 

 

 

 

 

Table 4.3 Actual vs. Estimated Target Coordinates (Disk and Ellipsoid). 

 
Disk (D=0.1 m) Ellipsoid (D=0.02 m, L=0.1 m) 

R (m) Angle (º) R (m) Angle (º) 

Actual target 

coordinates 
7.2469 15 9.2011 –12 

Estimated target 

coordinates 
7.2601 14.855 9.2199 ‒11.896 
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Figure 4.18 Pole Library vs. Computed poles of the unknown targets using the MP 

method (one disk and one ellipsoid model); (a) First order pole, (b) Resonant frequency. 
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4.5. One Cone and one Wire 
 

For the next example displayed in Figure 4.19 we consider a PEC cone and a PEC 

wire located in free space. The diameter and height of the cone is 0.1 m and 0.1 m, 

respectively. The coordinates of the target from the origin is 7.2469 m and 15°, 

respectively.  The length and radius of the wire is 0.1 m and 1 mm, respectively. Its 

coordinates from the origin are 8.0601 m and 7°, respectively. Figures 4.20-4.21 show the 

response from a cone and a wire as seen by the left and right receivers in the frequency 

domain and in the time domain, respectively.  

Table 4.4 shows the actual vs. estimated coordinates of the targets (cone and wire) 

from the origin. For the first target, it has a relative 0.24 % error for the distance and 

0.24 % error for the angle. For the second target, it has a 0.26 % error for the distance and 

0.60 % error for the angle. Figures 4.22-4.23 show the truncated time domain data of the 

right receiver to apply the MP method. Figure 4.24 shows a library of poles for the PEC 

cone (0.1 m diameter, 0.1 m height), a PEC wire (0.1 m length, 1 mm radius) and the 

computed poles of the unknown objects. If we compare the library of poles with the ones 

computed in the time domain, we can clearly identify the two targets. The estimated 

errors of the resonant frequency are 3.41 % for the first target and 0.76 % for the second 

target, respectively as shown in Figure 4.24(b). Therefore, one can locate the 0.1-m-

diameter & height PEC cone with approximate 97 % accuracy at 7.2642 m radial distance, 

15.036° azimuthal angle and the 0.1-m-length, 1-mm-radius PEC wire with approximate 

99 % accuracy at 8.0802 m radial distance, 7.0419° azimuthal angle.   
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Figure 4.19 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a PEC cone, and a PEC wire. 
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Figure 4.20 Frequency domain response of a PEC cone and a PEC wire; (a) the left 

receiver, (b) the right receiver. 
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Figure 4.21 Time domain response of a PEC cone and a PEC wire; (a) the left receiver, 

(b) the right receiver. 
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Figure 4.22 Truncated data from the first unknown target to apply the MP method from 

the right receiver (one cone and one wire model). 
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Figure 4.23 Truncated data from the second unknown target to apply the MP method 

from the right receiver (one cone and one wire model). 

 

 

 

 

Table 4.4 Actual vs. Estimated Target Coordinates (Cone and Wire). 

 
Cone (D=0.1 m, H=0.1m) Wire (L=0.1 m, r=1 mm) 

R (m) Angle (º) R (m) Angle (º) 

Actual target 

coordinates 
7.2469 15 8.0591 7 

Estimated target 

coordinates 
7.2642 15.036 8.0802 7.0419 
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Figure 4.24 Pole Library vs. Computed poles of the unknown targets using the MP 

method (one cone and one wire model); (a) First order pole, (b) Resonant frequency. 
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4.6. One Cylinder and one Sphere 
 

For the next example displayed in Figure 4.25 we consider a PEC cylinder and a 

PEC sphere located in free space. The diameter and height of the cylinder is 0.1 m and 

0.1 m, respectively. The coordinates of the target from the origin is 8.0306 m and 5°, 

respectively.  The diameter of the sphere is 0.1 m. Its coordinates from the origin are 

9.0176 m and 7°, respectively. Figures 4.26-4.27 show the response from a cylinder and a 

sphere as seen by the left and right receivers in the frequency domain and in the time 

domain, respectively.  

Table 4.5 shows the actual vs. estimated coordinates of the targets (cylinder and 

sphere) from the origin. For the first target, it has a relative 1.03 % error for the distance 

and 2.16 % error for the angle. For the second target, it has a 0.25 % error for the distance 

and 2.22 % error for the angle. Figures 4.28-4.29 show the truncated time domain data of 

the right receiver to apply the MP method. Figure 4.30 shows a library of poles for the 

PEC cylinder (0.1 m diameter, 0.1 m height), a PEC sphere (0.1 m diameter) and the 

computed poles of the unknown objects. If we compare the library of poles with the ones 

computed in the time domain, we can clearly identify the two targets. The estimated 

errors of the resonant frequency are 4.15 % for the first target and 5.87 % for the second 

target, respectively as shown in Figure 4.30(b). Therefore, one can locate the 0.1-m-

diameter & height PEC cylinder with approximate 96 % accuracy at 7.9478 m radial 

distance, 5.1082° azimuthal angle and the 0.1-m-diameter PEC sphere with approximate 

94 % accuracy at 9.0405 m radial distance, 7.1554° azimuthal angle.   
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Figure 4.25 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a PEC cylinder, and a PEC sphere. 
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Figure 4.26 Frequency domain response of a PEC cylinder, and a PEC sphere; (a) the left 

receiver, (b) the right receiver. 
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Figure 4.27 Time domain response of a PEC cylinder, and a PEC sphere; (a) the left 

receiver, (b) the right receiver. 
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Figure 4.28 Truncated data from the first unknown target to apply the MP method from 

the right receiver (one cylinder and one sphere model). 
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Figure 4.29 Truncated data from the second unknown target to apply the MP method 

from the right receiver (one cylinder and one sphere model). 

 

 

 

 

 

Table 4.5 Actual vs. Estimated Target Coordinates (Cylinder and Sphere). 

 
Cylinder (D=0.1 m, H=0.1m) Sphere (D=0.1 m) 

R (m) Angle (º) R (m) Angle (º) 

Actual target 

coordinates 
8.0306 5 9.0176 7 

Estimated target 

coordinates 
7.9478 5.1082 9.0405 7.1554 
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Figure 4.30 Pole Library vs. Computed poles of the unknown targets using the MP 

method (one cylinder and one sphere model); (a) First order pole, (b) Resonant frequency. 
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4.7. One Cone, one Wire, and one Sphere 
 

For the last example displayed in Figure 4.31 we consider a PEC cone, a PEC 

wire, and a PEC sphere located in free space. We add an additional PEC sphere to the 

simulation model of chapter 4.5. The diameter of the sphere is 0.1 m. Its coordinates from 

the origin is 9 m and 0°, respectively. Figure 4.32 shows the response from a cone, a wire, 

and a sphere as seen by the left and right receivers in the frequency domain. Figure 4.33 

shows their time domain response. Table 4.6 shows the actual vs. estimated coordinates 

of the targets from the origin. For the first and second targets, they have the same errors 

for the radial distance and for the azimuthal angle as Table 4.4. For the third target, it has 

a 0.28 % relative error for the radial distance and 0 % error for the azimuthal angle.  

The MP method is applied to the truncated time domain data of the right receiver 

as shown in Figures 4.34, 4.35, and 4.36. Figure 4.37 shows a library of poles for the 

PEC cone (0.1 m diameter, 0.1 m height), a PEC wire (0.1 m length, 1 mm radius), a PEC 

sphere (0.1 m diameter) and the computed poles of the targets. If we compare the library 

of poles with the computed poles of the three detected targets, one can clearly identify the 

detected targets. The estimated errors of the resonant frequency are 3.51 % for the first 

target, 1.15 % for the second target, and 9.49 % for the third target respectively as shown 

in Figure 4.37(b). 

Therefore, one can locate the PEC cone (0.1 m diameter, 0.1 m height) with 

approximate 96 % accuracy at 7.2642 m radial distance, 15.036° azimuthal angle, the 

PEC wire (0.1 m length, 1 mm radius) with approximate 99 % accuracy at 8.0802 m 

radial distance, 7.0419° azimuthal angle, and the PEC sphere (0.1 m diameter) with 

approximate 90 % accuracy at 8.9747 m radial distance, 0° azimuthal angle. For the third 
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target, it has a 10 % error in identifying the target as a 0.1-m-diameter sphere because of 

the relatively strong interaction effects between the various targets. From Figures 4.24 

and 4.37, one can recognize that the first (front) target and the second (middle) target 

have almost the same accuracy of the identification procedure, as there are relatively 

weak interaction effects. However, for the third (last) target, the accuracy decreases from 

99 % (Figure 4.6), 98 % (Figure 4.12) to 90 % because the amplitude of the late time 

response of the last target might increase or decrease from overlapping with the late time 

response of the first and the second targets. It means that if there are more than two 

targets, the accuracy of the identification for the rear target might decrease because of 

interaction effects between the various targets. For this case, identification accuracy for 

the third target is still acceptable. 

 

 
Figure 4.31 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a PEC cone, a PEC wire, and a PEC sphere. 
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Figure 4.32 Frequency domain response of a PEC cone, a PEC wire, and a PEC sphere; 

(a) the left receiver, (b) the right receiver. 
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Figure 4.33 Time domain response of a PEC cone, a PEC wire, and a PEC sphere; (a) the 

left receiver, (b) the right receiver. 
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Figure 4.34 Truncated data from the first unknown target to apply the MP method from 

the right receiver (one cone, one wire, and one sphere model). 
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Figure 4.35 Truncated data from the second unknown target to apply the MP method 

from the right receiver (one cone, one wire, and one sphere model). 
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Figure 4.36 Truncated data from the third unknown target to apply the MP method from 

the right receiver (one cone, one wire, and one sphere model). 

 

 

 

 

 

Table 4.6 Actual vs. Estimated Target Coordinates (Cone, Wire, and Sphere). 

 

Cone 

(D=0.1 m, H=0.1m) 

Wire 

(L=0.1 m, r=1 mm) 

Sphere 

(D=0.1 m) 

R (m) Angle (º) R (m) Angle (º) R (m) 
Angle 

(º) 

Actual target 

coordinates 
7.2469 15 8.0591 7 8.950 0 

Estimated 

target 

coordinates 

7.2642 15.036 8.0802 7.0419 8.9747 0 
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Figure 4.37 Pole Library vs. Computed poles of the unknown targets using the MP 

method (one cone, one wire, and one sphere model); (a) First order pole, (b) Resonant 

frequency. 
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5. SIMULATION EXAMPLE WITH AN OBJECT ON OR UNDER A 

DIELECTRIC MEDIUM 
 

 

 

5.1. Overview 
 

In this chapter, the application using the proposed methodology is extended from 

identification of an unknown object in free space to identification of an unknown object 

on urban ground or under an urban ground or under a sandy soil. Several examples are 

presented to clarify the proposed methodology for extended applications. For the 

simulation, we applied the same methodology as described for the PEC sphere example 

in the specified frequency range as outlined in chapter 3.3. The only different setup is 

adding a dielectric medium (urban ground: εr = 4, σ = 0.0002, sandy soil: εr = 10, σ = 

0.002 [36]), the operating frequency range, spacing between the transmitter and the 

receiver considering the computation time (the number of unknown), and the limited 

spectrum band for the penetrating terrain [37]. The operating frequency ranges for 

examples in the chapter 5.2 and 5.3 are 0.01 GHz to 3 GHz (Δf = 0.01 GHz) and 0.01 

GHz to 2 GHz (Δf = 0.01 GHz), respectively. 

The first (5.2. one PEC sphere above an urban ground) example illustrates that 

even though there is effect of the ground in the scattered field data, the proposed 

methodology can be applied for identification of the unknown object on urban ground. 

The next (5.3. air cavity located under the ground) example also show that one can guess 

the unknown object located under an urban ground or under a sandy soil using the 

proposed methodology.  
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5.2. One PEC sphere above an Urban Ground  
 

Figure 5.1 shows the configuration of the HOBBIES simulation model. The 

configuration is with one transmitter (center antenna), two receivers (left and right 

antennas), and one PEC sphere object located on urban ground (εr = 4, σ = 0.0002). The 

specification for each of the antenna for transmitter and receiver are 0.15 m in length and 

1.5 mm radius. Each antenna is located at 2 m above an urban ground. Spacing between 

the transmitter and the receiver is 1.25 m to minimize the effects of the antenna coupling. 

The diameter of the sphere is 0.15 m. The sphere target is located above an urban ground 

and is oriented by 0° from the axis of the transmitting antenna. We applied a 1 V 

excitation to the transmitting antenna. The response of the object is computed from 0.01 

GHz to 3 GHz (sampling frequency Δf = 0.01 GHz), and the number of samples is 300. 

Figure 5.2 shows the deconvolved response of the sphere to the left and right receiving 

antennas in the frequency domain. Figure 5.3 displays the time domain response of the 

object on urban ground for the left and right receivers. Table 5.1 describes the actual vs. 

estimated coordinates of the target from the origin based on the TDOA in the time 

domain. For the detected target, the computed error for the location is 1.85 % for the 

distance and a 0 % error for the angle.  

The MP method is applied to the truncated time domain data obtained at the right 

receiver as shown in Figure 5.4. Figure 5.5 shows a library of poles and the computed 

poles of the detected target. If we compare the library of poles with the computed poles 

from the actual scattered fields from the target, we can clearly identify the detected target. 

Since the estimated error of the resonant frequency is 4.93 %, one can locate the 0.15-m-

diameter PEC sphere with approximate 95 % accuracy at 1.8843 m radial distance and 0° 
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azimuthal angle. Notice that the most of the errors of the resonant frequency is due to the 

ground effect.  

 

Figure 5.1 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, and a 0.15-m-diameter PEC sphere on urban ground. 
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Figure 5.2 Frequency domain response of the 0.15-m-diameter PEC sphere on urban 

ground; (a) the left receiver, (b) the right receiver. 
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Figure 5.3 Time domain response of the 0.15-m-diameter PEC sphere on urban ground; 

(a) the left receiver, (b) the right receiver. 
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Figure 5.4 Truncated data from the unknown target to apply the MP method from the 

right receiver (sphere on urban ground). 
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Table 5.1 Actual vs. Estimated Target Coordinates (Sphere on urban ground). 

 R (m) Angle (º) 

Actual target coordinates 1.85 0 

Estimated target coordinates 1.8843 0 
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Figure 5.5 Pole Library vs. Computed poles of the unknown target using the MP method 

(sphere on urban ground); (a) First order pole, (b) Resonant frequency. 
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5.3. Air Cavity located under the Ground  
 

For the next example we consider a spherical air cavity under an urban ground. 

Figure 5.6 shows the configuration of the HOBBIES simulation model. The configuration 

is with one transmitter (center antenna), two receivers (left and right antennas), and one 

spherical air cavity at a depth of 0.25 m under urban ground (εr = 4, σ = 0.0002). The 

specification for each of the antenna for transmitter and receiver and spacing between the 

transmitter and the receiver are the same as in the previous models. Distance between the 

transmitter and the surface of the urban ground is 0.5 m. The diameter of the spherical air 

cavity is 0.2 m. The spherical air cavity is located at a depth of 0.25 m under an urban 

ground and is oriented by 0° from the axis of the transmitting antenna. We applied a 1 V 

excitation to the transmitting antenna. The response of the object is computed from 0.01 

GHz to 2 GHz (sampling frequency Δf = 0.01 GHz), and the number of samples is 200. 

Figure 5.7 shows the deconvolved response of the spherical air cavity to the left and right 

receiving antennas in the frequency domain. Figure 5.8 displays the time domain 

response of the object for the left and right receivers.  

 
Figure 5.6 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a 0.2-m-diameter spherical air cavity at a depth of 0.25 m under urban ground. 
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Figure 5.7 Frequency domain response of the 0.2-m-diameter spherical air cavity at a 

depth of 0.25 m under urban ground; (a) the left receiver, (b) the right receiver. 
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Figure 5.8 Time domain response of the 0.2-m-diameter spherical air cavity at a depth of 

0.25 m under urban ground; (a) the left receiver, (b) the right receiver. 
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For the calculation of the target coordinates, if we assume that the locations of the 

left receiver, the right receiver, and the object are (0, –d, 0), (0, d, 0), and (x, y, z), 

respectively as shown in Figure 5.9. Since the object is oriented by 0° from the axis of the 

transmitting antenna, 

            ,L R L RR R R R R R                                         (5.1) 

where 

2 2 2 2 2 2

1 1 2 2, ( )RR x y z a b R x y d z a b                    (5.2) 

2 2 2

1 1 2 2( ) ( )a b d a b               (5.3) 

1 1 1
1 2 2 1

2 2 2

( )

( )

b a b
a b a b

b a b


  


           (5.4) 

where R is the radial distance of the surface of the unknown object from the transmitter. 

RL and RR are the distances of the surface of the object from the left receiver and right 

receiver, respectively.  

 

Figure 5.9 Configuration of one transmitter, two receivers, and one underground object 

for calculating object coordinates. 
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Considering different speed of propagation wave in air or in dielectric medium, 

the time delay (peak of the impulse response) of the left receiver (TL) and the right 

receiver (TR) can be formulated by  

1 2 1 2( ) / ( ) /L R rT T a a c b b c                      (5.5) 

One can calculate the detected underground target coordinates from (5.1-5.5) as 

shown in Table 5.2. For the detected target, the computed relative error for the location is 

5.3 % for the distance and a 0 % error for the angle.  

 

Table 5.2 Actual vs. Estimated Target Coordinates (Air cavity under urban ground at 

0.25 m depth). 

 R (m) Angle (º) 

Actual target coordinates 0.75 0 

Estimated target coordinates 0.71 0 

 

The MP method is applied to the truncated time domain data of the right receiver 

as shown in Figure 5.10. Notice that if an air cavity is in a dielectric medium of εr, its 

response can be compared to the actual response of a conducting object in free space with 

the same shape of an air cavity irrespectively of the value of εr [38]. Figure 5.11 shows a 

library of poles and the computed poles of the detected target. The Natural poles of a 0.2-

m-diameter PEC sphere are computed using the Cauchy method as described in chapter 2. 

If we compare the library of poles with the computed poles of the detected target, we can 

guess the detected target as a 0.2-m-diameter spherical air cavity at a depth of 0.21 m 

under urban ground. Perhaps, the large difference in the values of the natural frequency 

may be due to the interaction of the surface to the buried object.  
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For the next example displayed in Figure 5.12 we consider a spherical air cavity 

under urban ground at a different depth. All simulation setup is the exactly same as 

previous simulation model except for a depth of 0.65 m under urban ground. Figure 5.13 

shows the deconvolved response of the spherical air cavity to the left and right receiving 

antennas in the frequency domain. Figure 5.14 displays their time domain response for 

the left and right receivers. For the detected target, the computed error for the location is 

3.9 % for the distance and a 0 % error for the angle as shown in Table 5.3. The MP 

method is applied to the truncated time domain data of the right receiver as shown in 

Figure 5.15. Figure 5.16 shows a library of poles and the computed poles of detected 

target. If we compare the library of pole of them with computed poles of the detected 

target, we can also guess the detected target as a 0.2-m-diameter spherical air cavity at a 

depth of 0.61 m under urban ground. One can observe that the resonant frequency of the 

first order pole increases as the depth of an object increases as shown in Figure 5.17.  
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Figure 5.10 Truncated data from the unknown target to apply the MP method from the 

right receiver (air cavity under urban ground at 0.25 m depth). 
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Figure 5.11 Pole Library vs. Computed poles of the unknown target using the MP 

method (air cavity under urban ground at 0.25 m depth); (a) First order pole, (b) Resonant 

frequency. 

 

 



89 

 

    

 

 

Figure 5.12 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a 0.2-m-diameter spherical air cavity at a depth of 0.65 m under urban ground. 
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Figure 5.13 Frequency domain response of the 0.2-m-diameter spherical air cavity at a 

depth of 0.65 m under urban ground; (a) the left receiver, (b) the right receiver. 
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Figure 5.14 Time domain response of the 0.2-m-diameter spherical air cavity at a depth 

of 0.65 m under urban ground; (a) the left receiver, (b) the right receiver. 

 

 

 

 

0 20 40 60 80 100
-6

-4

-2

0

2

4

6

8

10

12
x 10

-4

 

 

Time (ns)

A
m

p
lit

u
d

e

X: 14.31

Y: 0.001047

Original

Truncated

 
Figure 5.15 Truncated data from the unknown target to apply the MP method from the 

right receiver (air cavity under urban ground at 0.65 m depth). 
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Table 5.3 Actual vs. Estimated Target Coordinates (Air cavity under urban ground at 

0.65 m depth). 

 R (m) Angle (º) 

Actual target coordinates 1.15 0 

Estimated target coordinates 1.1053 0 
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Figure 5.16 Pole Library vs. Computed poles of the unknown target using the MP 

method (air cavity under urban ground at 0.65m depth); (a) First order pole, (b) Resonant 

frequency. 
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Figure 5.17 Pole Library vs. Computed poles of the unknown targets using the MP 

method (air cavities under urban ground at 0.25 m and 0.65m depth); (a) First order pole, 

(b) Resonant frequency. 
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For the next example we also consider a spherical air cavity under sandy soil at a 

depth of 0.65 m as shown in Figure 5.18.  All simulation setup is the exactly same as 

previous simulation model except for different dielectric medium, sandy soil. (εr = 10, σ 

= 0.002). Figure 5.19 shows the deconvolved response of the spherical air cavity to the 

left and right receiving antennas in the frequency domain. Figure 5.20 displays their time 

domain response for the left and right receivers. For the detected target, the computed 

error for the location is 6.7 % for the distance and a 0 % error for the angle as shown in 

Table 5.4. The MP method is applied to the truncated time domain data of the right 

receiver as shown in Figure 5.21. Figure 5.22 shows a library of poles and the computed 

poles of detected target. If we compare the library of pole of them with computed poles 

of the detected target, we can also guess the detected target as a 0.2-m-diameter spherical 

air cavity at a depth of 0.57 m under sandy soil. One can observe that the response of an 

air cavity under a dielectric medium (εr) can be compared to the actual response of a 

conducting object in free space with the same shape of an air cavity irrespectively of the 

value of εr as shown in Figure 5.23. 
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Figure 5.18 HOBBIES simulation model and its configuration with one transmitter, two 

receivers, a 0.2-m-diameter spherical air cavity at a depth of 0.65 m under sandy soil. 
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Figure 5.19 Frequency domain response of the 0.2-m-diameter spherical air cavity at a 

depth of 0.65 m under sandy soil; (a) the left receiver, (b) the right receiver. 
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Figure 5.20 Time domain response of the 0.2-m-diameter spherical air cavity at a depth 

of 0.65 m under sandy soil; (a) the left receiver, (b) the right receiver. 
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Figure 5.21 Truncated data from the unknown target to apply the MP method from the 

right receiver (air cavity under sandy soil at 0.65 m depth). 
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Table 5.4 Actual vs. Estimated Target Coordinates (Air cavity under sandy soil at 0.65 m 

depth). 

 R (m) Angle (º) 

Actual target coordinates 1.15 0 

Estimated target coordinates 1.0726 0 
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Figure 5.22 Pole Library vs. Computed poles of the unknown target using the MP 

method (air cavity under sandy soil at 0.65m depth); (a) First order pole, (b) Resonant 

frequency. 
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Figure 5.23 Pole Library vs. Computed poles of the unknown targets using the MP 

method (air cavities under urban ground and sandy soil at 0.65m depth); (a) First order 

pole, (b) Resonant frequency. 
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6. CONCLUSION 
 

 

 

A new methodology for detection and identification of objects in free space or 

objects located above the ground, or under the ground has been developed. The main idea 

of the proposed methodology starts from finding the natural frequency of an object 

corresponding to its instinct characterization using the Singularity Expansion Method 

(SEM). Each object has its natural frequencies from the late time response in typical 

transient temporal response of scatterers with various shapes and constitutions, in free 

space, on ground, underground.   

Among many techniques to extract singularities of the EM response of an object, 

the Cauchy method and the Matrix Pencil (MP) method have been chosen for 

identification of an unknown object. The unique feature of the Cauchy method is that it is 

not necessary to distinguish between the early time and the late time regions where the 

SEM formulation holds, and this may make this procedure accurate and efficient.  

Comparing the SEM poles of a PEC sphere and the computed poles from the Cauchy 

method, it is proved that one can use the natural poles of an object using the Cauchy 

method because the natural poles from both methods match each other. In this 

dissertation, a library of poles of the seven objects (two spheres, a wire, a disk, an 

ellipsoid, a cone, and a cylinder) are generated using the Cauchy method. The seven 

objects can be uniquely identified from their natural poles irrespectively with illuminated 

surface of the object for the different observation angle. The procedure to extract natural 

poles of objects using the Cauchy method in the frequency domain has illustrated in 

detail.  
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Another methodology has been also introduced for detecting and identifying the 

unknown object in the time domain. For the simulation model, one transmitter (dipole 

antenna) and two receivers (dipole antennas) are utilized to have the response of 

unknown object. One can obtain the received currents of the unknown object from the 

left and the right receivers after the deconvolving procedure. From the deconvolved 

response in the time domain, one can estimate the accurate coordinates (radial distance 

and azimuthal angle) of the unknown object using the time difference between the 

impulses of the left and the right receivers based on the Time-Difference-of-Arrival 

(TDOA). The MP method was applied to extract the natural poles of the unknown object 

using only late time response of its transient temporal response. By generating the pole 

library using frequency domain data and the actual poles computed using the time 

domain data, the correlation between the two pole sets obtained using totally different 

methodologies provides a robust identification procedure. The poles using responses 

from data generated in different domains can be used for comparison purpose. It is also 

proved that one can detect and identify the unknown object with high accuracy using 

library poles of objects, computed natural poles from the late time response of the 

unknown object, and the TDOA.  

Even in the presence of noise the unknown object is identifiable by the proposed 

methodology because the MP method is the robust pole extraction technique in noisy 

environment. Several simulation examples in free space have explained this novel and 

accurate way for detection and identification of multiple objects. The drawback in this 

methodology is that if there are more than two objects, the accuracy of the identification 

for the rear object might decrease because of interaction effects between objects. 
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This dissertation also verifies that the proposed methodologies can be applied for 

not only an object in free space case but also an object on ground case or an object 

underground case. The extracted natural poles are compared with the natural poles of 

library poles of various objects. It gives very accurate result in the case even though the 

object is on urban ground.  If the spherical air cavity is under urban ground or sandy soil 

then the extraction process is relatively less accurate but it can still guess the unknown 

object.  

The main contributions of this dissertation are to illustrate that a target signature 

can be extracted using either the frequency domain technique or the time domain 

technique, separately. The proposed methodology can give us a robust identification 

procedure of the unknown objects using both the frequency domain (Cauchy method) and 

the time domain (Matrix Pencil method and TDOA) techniques, simultaneously. Also, 

the frequency sweeping radar using one transmitter and two receivers is the first proposed 

system to detect and identify the unknown objects. I think the frequency sweeping radar 

can be built on a truck using one transmitter, two receivers, and a network analyzer. The 

benefit of the dissertation is that the unknown object can be detected and identified for 

objects in free space or objects located above the ground, or under the ground cases using 

the proposed methodologies. For future work, I will study identification of a dielectric 

object.  
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