ABSTRACT

Translocations and amplifications of the mixed lineage leukemia-1 (MLLI) gene are associated
with aggressive myeloid and lymphocytic leukemias in humans. MLL1 is a member of the SET1
family of histone H3 lysine 4 (H3K4) methyltransferases, which are required for transcription of
genes involved in hematopoiesis and development. MLL1 associates with a sub-complex
containing WDRS, RbBPS5, Ash2L, and DPY-30 (WRAD), which together form the MLL1 core
complex that is required for sequential mono- and dimethylation of H3K4. We previously
demonstrated that WDRS binds the conserved WDRS interaction (Win) motif of MLL1 in vitro,
an interaction that is required for the H3K4 dimethylation activity of the MLL1 core complex. In
this dissertation, we demonstrate that arginine 3765 of the MLL1 Win motif is required to co-
immunoprecipitate WRAD from mammalian cells, suggesting that the WDRS5-Win motif
interaction is important for the assembly of the MLL1 core complex in vivo. We also
demonstrate that peptides that mimic human SET1 family Win motif sequences (MLL1-4,
SETdla and SETd1b) inhibit H3K4 dimethylation by the MLL1 core complex with varying
degrees of efficiency. We show that the MLL3 Win motif peptide is the best inhibitor of the
H3K4 dimethylation activity of MLL1 core complex. To understand the structural basis for these
differences, we determined three-dimensional structures of WDRS bound to six different
naturally occurring Win motif sequences (MLL1-4, SETdla and SETd1b). The structural
analysis reveal that binding energy differences result from interactions between non-conserved
residues C-terminal to the Win motif and to a lesser extent from subtle variation of residues
within the Win motif. Based on the structure-function analysis, we deduce structural rules to
facilitate the design of two additional Win motif —based inhibitors (Ac-10-mer and six-residue

Win motif peptides) that bind WDRS with <10 nM affinities. To understand the structural basis



for this low nanomolar affinity, we determined X-ray three-dimensional structures of the Ac-10-
mer Win motif peptide bound to WDRS. The structures suggest that the presence of additional
intramolecular hydrogen bonds might contribute to the increased affinities for WDRS possibly
through the stabilization of the bound 3¢-helical conformation. We extend this structure-
function analysis further to identify other peptidomimetics by characterizing peptides identified
in a randomized phage display screen, which are also highly specific inhibitors of MLL1 core
complex. Crystal structures of these peptidomimetics reveal novel protein structural features that
contribute to increased affinity. We also present preliminary evidence suggesting that the MLL3
Win motif based peptide that has a cell penetrating sequence is readily taken up by mammalian
cells. This MLL3 Win motif-based peptide (MLL3-FITC-TAT) is localized to euchromatin
regions of cell nuclei, induces nuclear defects and inhibits global levels of H3K4 trimethylation.
These results highlight a new class of methylation inhibitors that may be useful for the treatment

of MLL1-related malignancies.
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CHAPTER 1: INTRODUCTION

BACKGROUND AND SIGNIFICANCE

Mixed Lineage Leukemia constitutes a heterogeneous category of rare acute leukemias that are
characterized by a mixed population of poorly differentiated lymphoid and myeloid progenitor
cells. The mixed lineage leukemia-1 (MLL1) gene, also known as HRX or ALL-1, is a frequent
site of genetic rearrangements in infant acute leukemias and therapy-related malignancies (/) and
since its discovery (2-4), significant progress has been made in understanding its role in
leukemogenesis (3, 6). Chromosomal abnormalities involving the MLL1 gene include reciprocal
chromosomal translocations, internal partial tandem duplications (PTD), and amplifications of
un-rearranged MLL1 (7). Recurrent MLL1 translocations account for >70% of infant acute
leukemias (both ALL and AML) and are also observed in approximately 10% of de novo AML
in adults (8), and in therapy-related leukemias that develop in patients treated with topoisomerase
IT inhibitors (8-10). The second common MLL1-rearrangement, internal partial tandem
duplication (MLL1- PTD) was first observed in de novo AML patients with a normal karyotype
or trisomy 11 (/7). MLL1-PTDs are found in 4-7% of the cases of AML and present a
cytogenetically normal rearrangement that is associated with poor prognosis (/2-15). The third
common aberration, amplifications of the MLL1 gene, including trisomy 11 and
intrachromosomal amplifications, are found with less frequency in AML and other
myelodysplastic syndromes and are associated with a complex karyotype and poor prognosis
(16-22). All these chromosomal aberrations disrupt the normal function of the MLL1 gene, the
protein product of which is a histone H3 lysine 4 (H3K4) specific methyltransferase that is

essential for the regulated expression of HOX genes during embryonic development and



hematopoiesis. Despite the growing body of literature on the important biological roles of MLL1
and its involvement in human leukemias, development of MLL1 targeted therapeutics has been
lacking. Therefore, there is an immediate need for a structural and functional characterization of
MLLI, an approach that would facilitate the development of novel therapeutic strategies for the
treatment of MLL1-associated leukemias. Although in recent years the introduction of broadly
based chemotherapeutic interventions such as all-trans retinoic acid, cytosine arabinoside,
histone deacetylase and DNA methyltransferase inhibitors has increased the survival times in
some leukemia patients (23-25), molecular therapies that specifically target MLL1 are still
lacking. The research carried out as a part of dissertation begins to address this knowledge gap
by identifying protein structural features responsible for the H3K4 methyltransferase activity of
MLL1. As a result of this research, we expect to identify novel therapeutic inhibitors that have
the potential to target MLL1’s function in cancer cells and epigenetically reprogram them to

normal phenotypes.

1.1 MLL1 belongs to the SETI family of lysine methyltransferases

The Mixed Lineage Leukemia protein-1 (MLL1) is a member of the SET1 family of lysine
methyltransferases that regulate the degree of histone H3 lysine 4 (H3K4) methylation in
eukaryotes (26). H3K4 methylation is an evolutionarily conserved epigenetic mark required for
the recruitment of enzymes that heritably maintain transcriptionally permissible states of
chromatin (27-317). Recent studies have shown that the Suppressor of Variegation, Enhancer of
Zeste and Trithorax (SET) domain of MLLI catalyzes monomethylation of H3K4 (H3K4mel)
(32, 33), a mark associated with nucleosomes in distal enhancer sequences and silenced genes

(34-37). However, since H3K4 di- and trimethylation (H3K4me2,3) are associated with



transcriptional competence (38, 39), the activity of MLL1 alone is insufficient to promote
transcription. MLL1 interacts with an evolutionarily conserved sub-complex that includes
WD40-repeat protein-5 (WDRSY), retinoblastoma binding protein-5 (RbBPS5), absent-small-
homeotic-2-like protein (Ash2L), and dumpy-30 (DPY-30) (40-48). This complex (called
WRAD) catalyzes H3K4 methylation on its own (32, 33, 49, 50), and has been shown to catalyze
H3K4me2 when in complex with MLL1 (33). MLL1 when in complex with WRAD is known as
the MLL1 core complex that is required for the di/trimethylation of H3K4 (32, 33, 51). These
results suggest that the degree of H3K4 methylation is regulated in a sequential fashion by
different enzymes within a multi-subunit complex- together called the MLL1 core complex (32,
33).

MLLI1 is one of six human SET1 family members that include MLL2, MLL3, MLLA4,
SETdla and SETd1b (41, 42, 47, 48, 51-56). Each of these enzymes regulate H3K4 methylation
levels and are assembled into large multi-subunit complexes that include WRAD (41, 42, 51,
57). The presence of WRAD within each of these complexes suggests a common mechanism of
complex assembly and enzymatic activity regulation among different SET1 family members.
Indeed, while deletion of MLL1 affects methylation at only a subset of genes (58), deletion of
WDRS affects global H3K4me?2,3 levels (57, 59), consistent with a more global role for WRAD

in regulating H3K4 methylation.

1.2 WDRYS5 is central for the assembly and H3K4 methylation activity of MLL1 core complex
The WD-40 repeat protein WDRS is a conserved component of MLL1 family complexes ranging
from yeast to humans and has been shown to be crucial for the assembly and H3K4

dimethylation activity of MLL1 core complex (57, 60, 61). Consistent with the role of WDRS in



the regulation of the degree of H3K4 methylation, siRNA mediated knock-down of WDRS in
mammalian cells results in a global decrease in the levels of H3K4 di- and trimethylation and
exhibit down-regulated expression of HOXa9 and HOXc8 genes that are also correlated with
defects in hematopoiesis and development (57, 59). WDRS5 knock down in X. laevis tadpoles and
MLLIASET mice show similar developmental defects suggesting that MLL1 and WDRS5
function together to regulate H3K4 di/trimethylation and HOX gene expression in vivo ((59, 62).
Furthermore, growing evidence suggest that WDRS interacts directly with MLL1 or other SET1
family members and functions as a scaffold to bridge the interactions between MLL1 and rest of
the components of MLL1 core complex (57, 59, 61, 63). Indeed, MLL1 and WRAD enzymatic
complexes fail to associate in the absence of WDRS (51, 61), suggesting a crucial role for WDRS5

in the assembly and H3K4 methylation activity of the MLL1 core complex.

1.3 Proposed roles for WDRS5 in MLL1 core complex

Several models have been proposed to explain the role of WDRS within the MLL1 core complex
(63). While the earlier studies have suggested that WDRS functions within the MLL1 core
complex as a histone “effector” or “presenter” domain (Figure 1.1a) (59, 63-67), more recent
studies by Patel et al., (60, 61) and Song and Kingston., (68) suggest an alternate role for WDRS.
According to this new model, WDRS5 recognizes a conserved arginine containing motif in the N-
SET region of MLL1 called the WDRS interaction (Win) motif (61), which is required for the
assembly and the H3K4 dimethylation activity of the MLL1 core complex (Figure 1.1b) (60, 61,

68).



In the histone effector domain model, WDRS functions within the MLL1 core complex to
specifically recognize dimethylated H3K4 (59) and is required for the subsequent conversion of
di- to trimethylation at H3K4 by the MLL1 core complex. Based on this study, the final product-
H3K4 trimethylated peptide has a weaker affinity to WDRS compared to that of H3K4
dimethylated peptide. Because of this weaker affinity, the MLL1 core complex is released from
the nucleosome bearing H3K4 trimethylation and binds to a neighboring nucleosome that has
dimethylated H3K4. WDRS therefore functions as a histone effector that helps in the propagation

of H3K4 trimethylation signal to the neighboring nucleosomes (59).

In contrast to the preferential binding of WDRS to dimethylated H3K4 suggested by the
histone effector model, the histone presenter model suggests that WDRS binds the N-terminus of
histone H3 and presents the lysine 4 side chain for further methylation by the MLL1 SET domain
(Figure 1.1a) (51, 67). Evidence for this hypothesis comes from the binding studies that
demonstrate that WDRS does not discriminate H3K4 peptides based on the absence or presence
of methyl groups (51, 67). In support of the binding studies, the crystal structures of WDRS in
complex with histone H3 peptides (unmodified, mono-, di-, or trimethylated at H3K4) presented
in that investigation reveal that the first three N-terminal residues (ART) of the histone H3
sequence in each of the structures make extensive contacts with WDRS while the lysine 4
(H3K4) side chain does not make any significant interactions with WDRS (67). Therefore, the
substrate lysine (H3K4) is not a part of the WDRS binding site and presence or absence of
methyl groups on the lysine side chain will not affect its WDRS binding affinity. Furthermore,

mutations in WDRS that disrupt its histone binding affinity also decrease the histone



methyltransferase activity when assembled into the MLL1 core complex in place of wild-type

WDRS5 (67) suggesting that WDRS functions as a histone presenter domain.

Based on these models, it has been predicted that both histone H3 and MLL1 bind WDRS5
simultaneously but at distinct sites (Figure 1.1a) to catalyze H3K4 methylation. Evidence for the
histone binding role for WDRS within the MLL1 core complex have come from the studies that
have shown that peptides derived from histone H3 can bind free WDRS (59) and hence expected
to bind WDRS within the context of MLL1 core complex. While these studies that have shown
that histone H3 peptides can bind free WDRS5 (59, 64-67), a direct interaction between histone
H3 and WDRS when in complex with MLL1 was not demonstrated in these studies. Therefore,

it is unclear if WDRS can bind histone H3 when it is a part of the MLL1 core complex.

In contrast to the models that suggest a role for WDRS5 in binding histone H3, several
previous observations have suggested that WDRS’s function within the MLL1 core complex
could be different. Using a recombinantly purified 180-kDa C-terminal fragment of MLL1
(MLL1-C) that contains the SET domain, Dou ef al. (51) demonstrated that WDRS is essential
for the assembly of the minimal MLL1 core complex, which includes MLL1-C,WDRS5,RbBPS5,
and Ash2L. Loss of WDRS5 disrupts the ability of MLL1-C fragment to co-immunoprecipitate
with the other core complex components, RbBP5 and Ash2L (57). Interestingly, Dou et al (57)
also observed that point mutations in WDRS (S91K and F133A) that were previously thought to
be important for binding the arginine 2 of histone H3, also disrupted the ability of MLL1-C
fragment to co-immunoprecipitate with the rest of the core complex components. While these

unexpected results were attributed to local conformational changes in WDRS that prevents its



association with MLL1-C at a distinct site (57), recent studies by Patel et al (60, 67) and Song
and Kingston (68) suggest an alternate possibility. Using a combination of domain-mapping,
analytical ultracentrifugation and crystal structures, Patel et al (60, 61) and Song and Kingston
(68) have independently demonstrated that WDRS recognizes an arginine containing histone H3
like sequence present in the N-SET region of MLL1-C (Figure 1.1b). Therefore it is possible that
the inability of WDRS histone binding mutants to co-immunoprecipitate MLL1-C observed in

the study by Dou et al (57) could be due to the disruption of MLL1 interaction surface in WDRS.



a. Existing Model b. New Model

Figure 1.1 Schematic models for the role of WDRS in the MLL1 core complex.

Nucleosomes are shown in yellow with the histone H3 N-terminal tail indicated. a, histone
binding model where WDRS recognizes Arg-2 of histone H3 and facilitates H3 methylation by
presenting the Lys-4 side chain to the SET domain of MLLI1. b, a new model based on the
present data in which WDRS5’s recognition of Arg-3765 of the MLL1 Win motif is required for
the assembly and H3K4 dimethylation activity of the MLL1 core complex. MLL1 SET domain

and the N-SET regions are indicated. The figure was adapted from Patel et al (6/) and modified
accordingly.



1.4 WDRS5 recognizes a conserved arginine containing sequence in the N-SET region of
MLL1

Previous studies that were focused on mapping the interaction region between WDRS and MLL1
led to the identification of three distinct regions in MLL1 that may be required for its interaction
with WDRS5 (40, 69). In the study by Dou et al, the minimum MLL1 fragment (residues 3301—
3969) that was shown to interact with WDRS included the N-SET region, the evolutionarily
conserved SET domain and the Post-SET domain (40). Similarly, Yokoyama et al (48) in their
efforts to map the WDRS binding region in MLL1 showed that the deletion of C-terminal 149
residues (3821-3969), which harbors the SET domain resulted in the loss of co-
immunoprecipitation of WDRS, RbBP5 and Ash2L with MLLI1. In contrast to these studies that
suggest that SET domain is required for the interaction with WDRS5, Lee and Skalnik (69)
demonstrated that a region corresponding to the N-SET region (amino acid residues 1450-1537)
of SETd]1a protein, a human MLL1 paralog, is required for the co-immunoprecipitation of
WDRS, RbBPS, and Ash2L. While these studies suggest that both the N-SET region and the SET
domain may harbor binding sites for WDRS, the precise location of the WDRS binding site in
MLLI or its family members were previously uncharacterized. To address this knowledge gap
and to map the precise location of the WDRS binding site, Patel et al (6/) generated two
constructs in MLL1, namely the MLL1*"* (encompassing residues 3745-3969 and contains a 66
amino acid N-SET region that precedes the catalytic SET domain and the Post-SET domain ) and
MLL*!" (encompassing residues 3811-3969 and contain only the SET domain and the Post-SET
domain) (Figure 1.2) and tested the ability of these recombinantly expressed proteins to bind
WDRS5 in sedimentation velocity analytical ultracentrifugation experiments. Using these

3745
1

constructs, Patel et al (6/) demonstrated that the MLL construct containing the N-SET

region binds to WDRS5 as a 1:1 complex with a dissociation constant of 120 nM. The MLL1*"*
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construct was also shown to be the minimal construct that is required for the in vitro
reconstitution of MLL1 core complex (MLL*"*, WDRS5, RbBBP5, Ash2L, and DPY30) (32, 61).
This minimal MLL1 core complex can efficiently catalyze mono- and dimethylation of H3K4, an
activity that has been attributed to the association of the two independent methyltransferases
MLLI1-SET and WRAD (32, 61). In contrast to MLL1*"**, the shorter construct MLL1**!! that
lacks the N-SET region fails to associate with WDRS and the rest of the core complex
components in sedimentation velocity analytical ultracentrifugation experiments (6/). MALDI-
TOF mass spectrometry based methylation assays show that while the MLL1**"" construct can
efficiently catalyze H3K4 monomethylation on its own, it is defective for H3K4 dimethylation
due to its inability to associate with the WRAD sub-complex (617). Collectively, these studies
demonstrate that MLL1 harbors a WDRS interaction motif within in the N-SET region and
suggest that WDRS functions as a structural platform to bridge the interactions between the

MLLI1-SET domain and rest of the core complex components- RbBP5, Ash2L. and DPY30 (61).
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of MLL1



12

Figure 1.2 WDRS binds to a conserved arginine containing sequence in the N-SET region
of MLL1

Top, conserved features in MLL1 are indicated as described in Figure 2.2. Menin binding motif
MBM (red), LEDGF binding domain or LBD (pink), DNA binding AT-hooks (black), zinc
finger containing CXXC motifs (orange), plant homeodomain (PHD) fingers (blue),
bromodomain (BD) (purple), phenylalanine-tyrosine rich regions (FYR-N and -C) (yellow),
transcriptional activation domain (grey) WDRS interaction (Win) motif (light green), histone
methyltransferase SET domain (light blue) and the Post-SET domain (beige) are highlighted.
Middle, MLLI constructs MLL1**"' (amino acid residues 3811-3969) and MLL1*"* (amino acid
residues 3745-3969) used in the study by Patel et al (67) are shown. Refer to text for more detail.
Bottom, Clustal W2 multiple sequence alignment (70) for the Win motif peptides from human
SET1 family members MLL1 (UniProtKB/Swiss-Prot accession number Q03164), MLL2
(UniProtKB/Swiss-Prot accession number O14686), MLL3 (UniProtKB/Swiss-Prot number
Q8NEZ4), MLL4 (UniProtKB/Swiss-Prot accession number QQUMNG6), SETd1a
(UniProtKB/Swiss-Prot accession numberO15047), and SETd1b (UniProtKB/Swiss-Prot number
QI9UPS6). BLOSUM matrix (77) was used for the alignment. Conserved residues are denoted
underneath the alignment by an asterisk (*), conservative substitutions are denoted by a colon (),
and semiconservative substitutions are denoted by a period (.). The amino acid sequences of
conserved Win motifs are boxed. In b, sequence alignment between the MLL1 Win motif and the
first ten residues of the histone H3 peptides are shown.
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In order to identify amino acid residues within the N-SET region that are required for the
interaction between MLL1 and WDRS, Patel et al (6/) performed an amino acid sequence
alignment of mammalian SET1 family members that have been experimentally shown to interact
with WDRS (40-42, 48, 51, 57). Extensive amino acid sequence analysis of the N-SET region
among human MLL1 family members revealed that while the amino acid sequence of the N-SET
region is generally highly variable across the paralogs, a six residue sequence (containing MLL1
residues GSARAE) alone is highly conserved among the different MLL1 family proteins (Figure
1.2a). This sequence designated the WDRS interaction (Win) motif closely resembles the
sequence surrounding arginine 2 of histone H3 (Figure 1.2b) and is highly conserved among
metazoan MLL1 orthologs and other SET1 family members (Appendix Figures 1.1-1.6) (61, 68).
Using a combination of analytical ultracentrifugation and MALDI-TOF mass spectrometry, it
was further demonstrated that the conserved arginine (R3765) of the MLL1 Win motif is crucial
for the interaction with WDRS and that substitution of R3765 of MLL1*"* with alanine
abolishes the interaction. MLL1 (R3765A) substitution also results in the loss of the H3K4
dimethylation activity of the MLL1 core complex (67). However, replacement of other residues
such as serine 3763 and glutamate 3767 in the conserved Win motif sequence only modestly
weakens MLL1’s interaction with the WRAD sub-complex (67). In addition, Patel et al (60) also
demonstrated that a 12-residue peptide derived from the Win motif in MLL1 (encompassing
residues 3762-3773) can bind WDRS with strong affinity (Kq= 1.7 puM). Addition of the excess
of this MLL1 Win motif peptide disrupts the interaction between MLL1?"** and WRAD and
results in the loss of H3K4 dimethylation activity of the MLL1 core complex (6/). While the
Win motif peptide represents the major interaction surface between WDRS and MLLI1 (as

predicted by the R3765A mutation), the difference in WDRS5 binding affinities observed between
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MLL1*7* (120 nM) and the MLL1 Win motif peptide (1.7 uM) suggests that the SET domain

also contributes to additional interaction affinities (48, 61).

Previously published crystal structures of WDRS in complex with histone H3 peptides
reveal that arginine 2 (R2) of histone H3 inserts into a central cleft in WDRS5 and is essential for
the histone peptide interaction with WDRS5 (67). Since the sequence of the MLL1 Win motif
closely resembles the sequence of histone H3 peptide, Patel et al (60, 61) hypothesized that
MLL1 interacts with WDRS5 using the same arginine binding pocket. Interestingly, crystal
structures of WDRS5 in complex with the MLL1 Win motif peptide (60, 68) reveal that R3765
from the MLL1 Win motif is present in the same arginine binding pocket of WDRS5 previously
thought to bind histone H3 peptides (57, 64-67). The crystal structures also revealed that amino
acid residues surrounding the Win motif arginine participate in more favorable interactions with
WDRS5 when compared to that of histone H3 peptides (60, 68). WDRS mutants (S91K and

137 in sedimentation

F133A) that line the arginine binding pocket failed to associate with MLL
velocity experiments suggesting that WDRS utilizes the same pocket to bind to the MLL1 Win
motif and histone H3 (67). Collectively, these results suggest a new role for WDRS within SET1
family complexes, which is its ability to bind to the Win motif and also argue against the role of
WDRS as a histone presenter domain, at least when it is in complex with MLL1. While these
studies do not rule out the possibility that WDRS can bind histone H3 in the absence of MLLI,
the high interaction affinity between WDRS and MLL1-Win motif suggests that the existing

models that describe WDRS5’s role within the MLL1 core complex as a histone binding module

needs to be revised (Figure 1.1).
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The significance of the interaction between the Win motif and WDRS in cells is
highlighted by the evolutionarily conserved nature of the Win motif sequence among metazoan
SET1 family members (Refer to Figure 1.2 and appendix Figures 1a-1f), and by the recent
demonstration that the conserved arginine (R5340) in the MLL2 Win motif has been found to be
among a spectrum of MLL2 missense amino acid mutations associated with Kabuki syndrome
(72, 73). It has also been demonstrated that peptides derived from the MLL1 Win motif disrupts
the formation of the MLL1 core complex in vitro and abolishes the H3K4 dimethylation activity
of the MLL1 core complex (67). These results suggest that Win motif peptides or related
compounds may be useful for targeted therapies for treatment of malignancies that result from
gain-of—function mutations in human SET1 family members (33). For example, amplifications of
the MLL4 gene (previously known as MLL2) is associated with solid tumors (74, 75). In
addition, a cytogenetically normal rearrangement of the MLL1 gene found in ~10% of acute
myeloid leukemias results in a partial tandem duplication of N-terminal MLL1 sequences that
retains the conserved SET domain (77, 33, 76, 77). These rearrangements display increased
H3K4 methylation, lysine acetylation and HOX gene expression and may be responsive to
targeted inhibition (78-80). An understanding of how different human Win motif sequences
interact with WDRS will increase our knowledge of how SET1 family complexes are assembled
and regulated, and will facilitate the rational design of novel targeted therapies for MLLI related

malignancies.

Purpose:
The main goals of the experiments described in this dissertation are to carry out a detailed

thermodynamic and structural analysis of the interaction between WDRS and human SET1
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family Win motifs. These experiments are focused on identifying novel protein structural
features which enable WDRS to differentially recognize different human SET1 family members.
Isothermal titration calorimetry (ITC) is initially used to compare the binding affinities of
different SET1 family Win motifs to WDRS. Three-dimensional structures of WDRS bound to
SET1 family Win motif peptides are then used to generate hypotheses to explain the observed
differences in binding affinities. These structure-function hypotheses are then tested using

synthetic peptides harboring individual amino acid substitutions.

The data presented in this dissertation are divided into two main Chapters (3-4) that deal
with thermodynamic and structural characterization of the interaction between WDRS and six
different human SET1 family Win motif based peptides (MLL1-4, SETdla and SETd1b). In
Chapter 2, we have reviewed the three most common chromosomal abnormalities associated
with MLL1 and introduce three novel targeted therapies that have emerged from the biochemical
characterization of the MLL1 protein. In Chapter 3, experiments are described that show that the
conserved arginine 3765 of the MLL1 Win motif is required for co-immunoprecipitation of
WDRS, RbBP5 and Ash2L from mammalian cells, confirming its critical role in the assembly of
the MLL1 core complex. In addition, ITC experiments that measure the binding affinities of
different SET1 family Win motif peptides to WDRS are described. In the first set of ITC
experiments, MLL1 Win motif peptides of varying lengths are compared. A representative MLL1
Win motif peptide is then chosen to compare with other SET1 family Win motif peptides of
similar length in the second set of ITC experiments. Differences in binding affinities can be the
result of amino differences within or outside the conserved Win motif sequence and these

possibilities are tested using experiments described in Chapter 4. The final set of experiments in
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Chapter 3 describes MALDI-TOF based methylation assays that test the ability of different Win
motif peptides to inhibit the H3K4 dimethylation activity of the MLL1 core complex. MALDI-
TOF assays were grouped into two categories that are classified as with or without the pre-
incubation of MLL1 with the WRAD sub-complex. In Chapter 4, three-dimensional structures of
WDRS5 bound to six different human SET1 family Win motif peptides are reported. Based on this
structural analysis, additional Win motif peptides bearing single amino acid substitutions are
synthesized and their inhibition constants are compared to wild-type Win motif peptides. In
Chapter 5, the results of the experiments described in Chapters 3-4 are summarized and
discussed in a broader context of identifying novel Win motif-based therapeutic approaches to
treat MLL1-associated leukemias. Preliminary data for the identification and characterization of
two additional Win motif-like inhibitors (Ac-10-mer and six-residue Win motif peptides) derived
from structure-function studies is presented. This analysis is extended further to identify
additional peptidomimetics that target MLL1-WDRS interaction using a randomized phage
display library screen. The results of additional experiments using chemical library screening
approach to identify small molecule inhibitors that target MLL1 core complex are also described
in Chapter 5. Based on the experiments described in Chapters 3-4, the MLL3 Win motif peptide
was identified as the best inhibitor for the H3K4 dimethylation activity of MLL1 core complex
and hence was chosen for the preliminary in vivo experiments described in Chapter 5. In vivo
experiments describing intracellular localization, nuclear morphology and changes in global
levels of H3K4 methylation are reported in Chapter 5. Collectively, the experiments described in
this dissertation suggest that Win motif based peptides represent an excellent starting point for
the design of inhibitors that would disrupt the interaction between MLL1 and WDRS5 and inhibit

the H3K4 dimethylation activity of MLL1 core complex in vivo. The knowledge gained from the



structure-function analyses of WDRS5-SET1 family Win motif interaction will facilitate the
design of novel class of “Win motif-based” methylation inhibitors that may be useful for the

treatment of MLL1-related malignancies.
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Chapter 2: Targeted therapy for Mixed Lineage Leukemia-what have we
learned from the biochemistry of MLL1

This Chapter is a review of the literature for the most common MLL1 aberrations and the
pathogenesis with these malignancies. It also includes a review of three unique targets identified
from the biochemical studies using MLL1 protein and their potential therapeutic value in MLL1

associated leukemia. The material presented here was published as a part of reference (87).
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Introduction

The mixed lineage leukemia (MLLI) gene, also known as HRX or ALL-1, is a frequent site of
genetic rearrangements in infant acute leukemias and therapy-related malignancies (/)
Chromosomal abnormalities involving the MLLI gene include reciprocal chromosomal
translocations, internal partial tandem duplications (PTD), and amplifications of un-rearranged
MLLI (7). These chromosomal aberrations are associated with mechanistically distinct gain-of-
function phenotypes that may be amenable to targeted therapeutic approaches. However,
progress in this area has been impeded by a lack of understanding of the molecular details by
which MLL1 translocations, amplifications and PTDs contribute to leukemogenesis. To date,
more than 60 MLLI1 fusion partners have been described (8), and detailed genetic/biochemical
studies have identified several functional domains within chimeric MLL 1-fusion proteins that are
essential for leukemic transformation (/, 3, 8, §2-89). Although our understanding of the
molecular pathology of MLL1-associated leukemias remains incomplete, recent biochemical and
structural information is contributing to an evolution of potential treatment strategies from a
broadly-based chemotherapeutics approach towards therapies targeted to the underlying
molecular pathogenesis of leukemia (23). This Chapter reviews recent advances in our efforts to

develop novel MLL1-targeted therapies.

Mixed Lineage Leukemia -1 (MLL1): a master epigenetic regulator with
multiple roles in transcription

2.1IMLL]1 in embryonic development and hematopoiesis
The mixed lineage leukemia-1 (MLLI) gene located at chromosome 11, band q23, encodes a
histone H3 lysine 4 (H3K4) methyltransferase that functions to maintain gene expression during

development and hematopoiesis (54, 90, 91). The best studied target genes of MLL1 include the
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homeobox transcription factors or HOX genes, which are important for segment identity and cell
fate during metazoan development (92, 93). Genetic studies in mice have demonstrated that the
homozygous knock out of MLL1 is embryonic lethal and is associated with multiple
developmental defects including neural crest patterning and hematopoietic abnormalities (90, 91,
94, 95). Notably, the expression levels of several HOX genes including HOXa4, HOXa7,
HOXa9, and HOXal0 are decreased in MLL1 "~ mice and are associated with defects in fetal liver
hematopoiesis (90, 96). MLL1"" mice are not embryonic lethal but are anemic and exhibit
homeotic developmental defects that are related to posterior shifts in HOX gene expression
patterns (90, 94). Likewise, MLL1 is also required for adult hematopoiesis and stem cell self-
renewal (97). In MLL1 conditional knockout mice, fetal hematopoiesis is unaltered; however,
adult mice exhibit anemia, a significant reduction in the number of bone marrow hematopoietic
stem cell progenitors, and poor survival rates (98). In addition, it has been demonstrated that
MLLI plays a crucial role in self-renewal in cultured fetal liver and adult bone marrow stem
cells (97, 99). These studies suggest that MLL1 orchestrates its biological functions at least in
part through the regulation of HOX genes. Indeed, HOX dysregulation is a common phenotype
that underlies the pathogenesis of acute leukemias associated with alterations in the MLL1 gene
(5, 79, 100-102). However, MLLI1 is also required for the regulation of cell cycle dependent
genes such as cyclins A, B, and E (103); CDK inhibitors p16™*, p18, p27 (103, 104); E2F
family of transcription factors (E2F2, E2F4 and E2F6) (103), as well as the transcription factor
GATA3, which plays an essential role in specifying lymphoid subtype (/05). In addition, MLL1
regulates expression of several genes involved in organogenesis and differentiation (106, 107) .
Therefore, MLL1 is a master regulator that is critical for many gene expression programs

required for normal development, hematopoiesis and the cell cycle.
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2.12 Chromatin Structure dynamics and Transcription

In eukaryotes, DNA is condensed into highly ordered structures known as chromatin- the
structure of which is dynamically altered according to the needs of the cell. The basic repeating
unit of chromatin is the nucleosome, which is composed of ~146 base pairs of DNA wrapped
around an octameric disc of histone proteins containing two copies each of histones H2A, H2B,
H3 and H4 (108). As a first level of DNA compaction, the nucleosomal units are positioned
along the length of the DNA to form 11-nm chromatin fibers, which represents the ‘beads-on-a-
string” structure (/09). Further chromatin compaction, either through binding of linker histones
(H1) or through inter-nucleosomal interactions packages the nucleosomal DNA into higher order
chromatin fibers that are refractory to gene expression, DNA replication and repair machineries
(110, 111). Cellular processes that require access to DNA often use enzymes that dynamically
regulate the structure of chromatin either through recruitment of adaptor proteins or additional
enzymatic machineries that alter the positioning of nucleosomes on DNA (/172-115). Key
mechanisms employed by these enzymes include incorporation of histone variants, introduction
of post-translational modifications on histones and the underlying DNA, and binding of non-
histone proteins that can dynamically alter the structure of chromatin. Among these mechanisms,
reversible post-translation modification of histones has been more extensively studied owing to
the variety of modifications (including lysine and arginine methylation; lysine acetylation,
ubiquitination, and sumoylation; and serine phosphorylation) present in the cell and the
combinatorial complexity that arises from the co-existence of these modifications as defined by
the “Histone code hypothesis™ (/15). The complexity is further increased by histone lysine

residues that can mono-, di-, or trimethylated with each modification correlating to different
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transcriptional outcomes (39, 116-121). Histone lysine methyltransferases characterized to date
are highly substrate-specific (lysine residue modified) and product-specific (their ability to
characterize mono-, di-, or trimethylation), and participate in a variety of cellular processes,
including transcriptional regulation, heterochromatin formation, and DNA repair (/22). A cell’s
differential gene expression program is maintained and inherited through different epigenetic

states, which are correlated with distinct types of histone post-translational modifications. (/23)

2.13 H3K4 methylation in transcriptional control

Methylation of lysine 4 of histone H3 (H3K4) is an evolutionarily conserved epigenetic mark
predominantly associated with transcriptional activation in eukaryotes (116, 124-127). The
epsilon amino group of lysine 4 can be mono-, di-, or trimethylated, with each modification
correlating with distinct transcriptional outcomes (39, /17-121). For example, genome-wide
chromatin immunoprecipitation studies have demonstrated that high levels of H3K4
trimethylation are present within the 5’ regions of actively transcribed genes (39, 119-121). It has
been demonstrated that H3K4 trimethylation functions to recruit ATP dependent nucleosome
remodeling enzymes that increase promoter DNA accessibility by sliding or displacing
nucleosomes (29-317). H3K4 dimethylation is spread more evenly across the coding regions of
genes and is thought to be associated with a transcriptionally “poised” state of chromatin (76,
120, 121). In contrast, H3K4 monomethylation is enriched at the 3* ends of the genes and distal
enhancer sequences, and is associated with ribosomal DNA (rDNA) and telomeric silencing (34-
37,39, 116, 119-121, 128). These studies suggest that the degree of H3K4 methylation is a
highly regulated process. Indeed eukaryotes have evolved a number of highly conserved

enzymes whose function appears to precisely regulate the degree of H3K4 methylation.
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2.14 H3K4 methylation is catalyzed by SETI family of lysine methyltransferases

H3K4 methylation is mainly deposited by a group of enzymes that share an evolutionarily
conserved SET (SuVar, E(z), Trithorax) domain (26), although a new H3K4 methyltransferase
lacking a SET domain has recently been reported (32, 33). While there are several SET domains
enzymes that differ with regard to their substrate specificity (26) (refer to Figure 2.1 for SET
domain substrate specificity), members of the SET1 family share the properties that they all
methylate H3K4 and all interact with an evolutionarily conserved core group of proteins that
function to regulate the degree of H3K4 methylation. The budding yeast S. cerevsiae enzyme,
SET1p, was the first H3K4 methyltransferase to be identified (34, 44, 46, 129) and carries out
the bulk of H3K4 methylation in yeast, a function that can be attributed to the presence of a
catalytic SET domain (34). In yeast, SET1p is recruited to the promoters of actively transcribing
genes through its interaction with the phosphorylated carboxy terminal domain (CTD) of RNA
polymerase II (//8). In metazoans, SET1 family is more diverse with humans encoding six
different SET1 family proteins, including the SET 1p orthologs SETd1a/SETd1b, and the Mixed
Lineage Leukemia proteins MLL1-4 (41, 42, 47, 48, 51-55, 59). Each of these proteins catalyzes
H3K4 methylation of distinct subsest of genes, with MLL1 and MLL2 playing crucial roles in
the regulated expression of HOX genes (45, 52, 54, 94) that specify segment identity during
vertebrate development. In contrast, the H3K4 methylation function of MLL3 and MLL4 are
required for nuclear hormone receptor dependent gene expression (/30-132) and
immunoglobulin class-switching (/33). It is becoming increasingly clear from recent studies that
SETdla/b maintains global H3K4 trimethylation levels (734, 135) while the activity of the other

metazoan paralogs is required for the regulation of more specific subsets of genes. The non-
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redundant functions of each SET1-family member can likely be attributed to their differential
domain architectures outside the conserved catalytic SET domain (refer to Figure 2.2 for the
domain architecture of human SET1 family members). These domains differ in their ability to
interact with proteins that can regulate its catalytic activity and target gene specificity of SET1
family enzymes. Despite their ability to regulate the expression of only a subset of genes, each
SET1 family member is highly essential for development and mutations that disrupt their normal
function are associated with a variety of disease phenotypes. For example, recent exome
sequencing studies have identified MLL2 genetic mutations as an underlying phenotype in
Kabuki Syndrome (72, 73), a rare human multiple malformation disorder. In addition,
amplifications of the MLL4 gene (previously known as MLL2) are associated with solid tumors

(74, 75).
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Figure 2.1: Substrate specificity of mammalian histone lysine-methyltransferases (HKMTSs)

Seven major lysine sites methylated by human histone methyltransferases and the biological
processes regulated by these reversible posttranscriptional modifications are summarized. The
methyltransferases are indicated in blue, the substrate lysine is indicated in green, the methyl
lysine binding domain is indicated in orange, and the biological process regulated by each
specific modification is indicated in purple. The figure was adapted from (/36) and (/37) and
modified to include more recent literature.
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Figure 2.2 Schematic representations of human SET1 family methyltransferases

The domain architectures of six different human SET1 family methyltransferases are shown. The
regions of the various putative functional domains are mapped (residue numbering indicated on
top or bottom). ScanProsite (/38) was used to annotate the domain regions for MLLI
(UniProtKB/Swiss-Prot accession number Q03164), MLL2 (UniProtKB/Swiss-Prot accession
number 014686), MLL3 (UniProtKB/Swiss-Prot number Q8NEZ4), MLL4 (UniProtKB/Swiss-
Prot accession number QOUMNG6), SETd1a (UniProtKB/Swiss-Prot accession numberO15047),
and SETd1b (UniProtKB/Swiss-Prot number Q9UPS6). The various domains are color coded as
shown below. The different domains are drawn to scale of the size of the full length protein.



. Menin Binding Motif (MBM) . WDRS5 Interaction motif (Win)
. LEDGF Binding Domain (LBD) - SET Domain

. AT-Hooks I:I Post-SET domain

B cxxc Motit B RING domain

. Plant Homeo Domain (PHD) \:‘ RNA Recognition Motif (RRM)
D Bromo Domain (BD) . DHHC motif

I:I FY Rich Regions . Gene Internal Promoter

Legend for Figure 2.2

28



29

MLLI is more extensively characterized than the other homologs owing to its association with a
variety of leukemias and evidence suggests that its transcriptional co-activator function is
mediated in part by the enzymatic activity of its SET domain and through protein-protein
interactions (26, 54). For example, homozygous deletion of the MLL1 SET domain in mice,
while not embryonic lethal, exhibits skeletal defects and altered expression of several HOX
genes that partially phenocopy the heterozygous knockout of the whole MLL1 gene (62). These
changes are correlated with decreased levels of mono-, di- or trimethylation of H3K4 and
deregulated DNA methylation patterns at several HOX gene promoters (62). MLL1 functions
within a large macromolecular complex with more than 30 subunits that regulate the degree of
H3K4 methylation and MLL1’s target gene specificity (/39). While subunit composition of
different SET1 family members varies to some degree, each SET1 family member interacts with
the conserved core group of proteins that form the WRAD sub-complex (42, 51, 57) (For a
detailed list of interaction partners of human SET1 family proteins refer to appendix Figures 2a-
f). It has been shown recently that the WRAD sub-complex possesses an intrisic histone
methyltransferase activity on its own (32, 33, 50). Evidence suggests that both the MLL1 SET
domain activity and WRAD’s monomethyltransferase activity are required for the methylation of
nucleosomal H3K4 (32, 57). These studies have led to a model in which H3K4 methylation is
segentially catalyzed by a complex that contains multiple distinct active sites for the addition of
each methyl group (32). The presence of WRAD within each of the SET1 family complexes
suggests a common mechanism of complex assembly and enzymatic activity regulation among

different SET1 family members.
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2.15 Mechanism of multiple lysine methylation catalyzed by MLL1 core complex

Previously it was thought that mono-, di-, and trimethylation of H3K4 could be attributed to the
SET domain dependent methyltransferase activity of MLL1 alone and that the WRAD complex
functions merely as an allosteric regulator of MLL1 (47, 51, 65, 67, 140-143). However, since it
has more recently been demonstrated that the WRAD complex dimethylates H3K4 in a manner
that is independent of the enzymatic activity of the MLL1 SET domain (32), the allosteric model
needs to be revised. Indeed, in vitro methylation assays demonstrate that the isolated MLL1 SET
domain is predominantly a monomethyltranferse, which can be attributed to the presence of a
conserved tyrosine residue in the SET domain active site (32). Furthermore, loss of the WDRS5,
RbBP5 or Ash2L subunits of WRAD results in the loss of di- and trimethylation of H3K4 both in
vivo and in vitro without significant changes in H3K4 monomethylation (32, 51, 59, 61). These
results are consistent with a sequential mechanism whereby the MLL1 SET domain catalyzes
H3K4 monomethylation and the WRAD enzyme catalyzes H3K4 dimethylation within the
MLLI core complex. However, WRAD lacks the ability to dimethylate H3K4 without MLLI,
suggesting that MLL1 amino acid sequences, distinct from the MLL1 SET domain active site,
contributes to the WRAD active site within the MLL1 core complex. That a complex between
WRAD and MLLI1 is required for H3K4 dimethylation is supported by the demonstration that
amino acid substitutions that disrupt the interaction between MLL1 and WRAD also disrupt the
H3K4 dimethylation activity of the MLL1 core complex (67). Therefore, the completely
assembled MLL1 core complex is required for efficient H3K4 dimethylation and for nucleosome
methylation (33). The existence of a sequential mechanism utilizing several active sites for

multiple lysine methylation suggests that the degree of H3K4 methylation is more highly



regulated than previously appreciated (Refer to Figure 2.3 for the mechanism of H3K4

methylation by MLL1 core complex).
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Figure 2.3 Proposed model for the mechanism of multiple lysine methylation catalyzed by
MLL1 core complex

According to this model, the first methylation (H3K4mel) site is present in MLL1 SET domain
(at site 1) and the monomethylated H3 peptide is then transferred to the second active site (site 2)
on the WRAD-subcomplex, which catalyzes the dimethylation event (H3K4me?2). The catalytic
motif within site 2 (indicated with a white question mark) located on WRAD is not characterized
yet. The rate constants for mono- (K;) and dimethylation (K;) catalyzed by the fully assembled
MLL1 core complex are indicated. The rate constants were reported in (32).



33

2.16 WRAD components are associated with development and oncogenesis

One of the common features of the greater than 60-MLL fusion proteins associated with
leukemias is that they all lose the amino acid sequences required for interaction with WRAD.
This raises questions about WRAD’s role in MLL1 associated oncogenesis. WRAD subunits are
conserved within SET1 family complexes ranging from yeast to humans (41, 42, 47, 51, 57) and
have been shown to play essential roles in cellular differentiation (/44-146), development (59,
147), dosage compensation (/48, 149), and transcription (/50). In addition to their role in
regulating the H3K4 dimethylation activity of MLL1 core complex (and presumably the other
SET1 family members), components of the WRAD complex have also been implicated in
recruiting SET1 complexes to chromatin through their ability to associate with other proteins,
with DNA and with RNA. For example, the Ash2L component can recruit SET1 family
complexes to their genomic targets through its association with sequence-specific transcription
factors, such as Mef2d and Ap2delta (/50, 151). The N-terminal PHD domain of Ash2L also
harbors a putative winged-helix DNA binding motif (/52, 153). Similar to Ash2L, the WDRS5
component has also been shown to interact with the transcription factor Oct4 (1/54), which can
recruit SET1 complexes to gene targets that play crucial roles in stem cell self-renewal. In
addition, WDRS has been shown to associate with long intergenic noncoding RNA (lincRNA)
such as HOTTIP in vitro, an interaction that was required for MLL1/WDRS recruitment and
H3K4me3 at HOXA promoters (/55). Collectively, these studies suggest that WRAD

components can function to recruit SET1 family enzymes to target genes.

WRAD enzyme lacks sequence homology to known methyltransferase folds, and as a

result relatively little is understood about its methyltransferase activity and the role it might play
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in oncogenesis. WRAD’s potential role in oncogenesis is supported by the observation that the
Ash2l component of WRAD is overexpressed at the protein level in many human tumors, and
that knockdown of Ash2L inhibits tumor cell proliferation (/56). In addition, the RbBP5
component of WRAD has been shown to be amplified in several glioblastomas, suggesting that it
may be a novel oncogene (/57). Further studies will be required to better understand WRAD’s

role in MLL1 associated leukemogenesis and other cancers.

In contrast, the MLL1 component of the MLL1 core complex is more extensively
characterized and several functional domains implicated in transcriptional regulation have been
identified (for recent reviews refer to (106, 139)). Furthermore, MLLI is a frequent site of

chromosomal alterations that sometimes disrupt the functions of these domains.

2.17 MLL1 functional domains implicated in transcriptional regulation

The MLL1 gene encodes a large protein of 3,969 amino acid residues and contains several
functional domains including: menin binding motif (MBM), LEDGF binding domain (LBD),
DNA-binding AT hooks, a cysteine-rich CXXC DNA binding motif, plant homeodomain (PHD)
fingers, a bromo domain (BD), a transactivation domain (TAD), a WDRS interaction (Win)
motif, and a C-terminal histone methyltransferase SET domain (Figure 1.2) (/39). The full-
length MLL1 protein, synthesized as a single transcript, is cleaved by taspase I into MLL1-N
(320 kDa) and MLL1-C (180 kDa) fragments, which then re-associate non-covalently through
the FYRN and FYRC motifs to form the functional MLL1 complex in vivo (158-160). The
mature MLL1 protein assembles into macromolecular complexes with several regulatory

proteins that are essential for MLL1’s transcriptional co-activator properties. Biochemical and
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genetic studies have identified several direct and indirect interaction partners for MLLI that
include; the menin tumor suppressor protein (48, 53); cell cycle regulators such as E2Fs and
HCEF-1 (48, 161); polycomb group proteins, BMI-1 and HPC-2 (/62); histone deacetylases (45,
162); nuclear cyclophilin , Cyp33 (162); acetyltransferases such as p300, CBP and MOF (40,
163); chromatin remodeling factors, INI1/SNF5 (/64); and WDR5/RbBP5/Ash2L. and DPY30,
which are core components of SET1 family methyltransferases (57). In addition, a recent paper
describes the identification of a gene internal promoter that transcribes the C-terminal half of
MLL1 (107), the function of which is not known. Interestingly, the gene internal promoter
coincides with an MLL1 breakpoint region, suggesting that the pathogenesis of MLLI
translocation induced leukemia could be due in part to the loss of this N-terminally truncated
form of MLL1 when the breakpoint is 5’ to the gene internal promoter. However, in cases where
the MLL1 breakpoint is 3’ to the gene internal promoter, it could result in aberrant expression of
the fusion protein (/07). Indeed, it has been noted that the common MLL1 translocation partners
AF4, AF6, and ENL have potential AUG start codons in positions where they could be
transcribed within the context of the translocated MLL1 gene (/07). These studies suggest that
the transcriptional activator properties of MLL1 are mediated through multiple functional
domains through protein-protein and protein-DNA interactions. Many of these interactions are
retained in leukemogenic MLL1s, some participating in gain-of function phenotypes, making
them candidates for molecular targeted therapy. Recent technical advances that attempt to target
these interactions as potential therapeutic targets to treat MLL1-associated leukemia are
reviewed in sections 2. 5-2.8. In sections 2.2-2.4, I review the three most common genetic

alterations associated with the MLL1 gene.
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2.2 Acute myeloid and lymphoblastic leukemia with 11q23 abnormalities

2.2.1 Incidence and clinical Significance of 11423 Chromosomal translocations

The MLL1 gene located at chromosome 11, band 23, is frequently involved in reciprocal
translocations found in several cases of acute myeloid (AML) and acute lymphoblastic leukemia
(ALL) (2, 3, 165) and identify a patient sub-population with a poor prognosis (/). Recurrent
MLLI translocations account for >70% of infant acute leukemias (both ALL and AML) and are
also observed in approximately 10% of de novo AML in adults (&) and in therapy-related
leukemias that develop in patients treated with topoisomerase II inhibitors (§-70). Chromosomal
translocations fuse the N-terminal part (~1400 amino acids) of the MLL1 gene resulting in a
protein product with an in-frame fusion to one of more than 60 partner proteins that range from

nuclear factors to cytoplasmic proteins (/, 166, 167).

The five most common MLL1 translocations include: MLL1-AF4 or t(4;11)(q21;923),
MLLI1-ENL or t(11;19)(q23;p13.3), MLL1-AF9 or t(9;11)(p23;923), MLL1-AF10 or
t(10;11)(p12;923), and MLL1-AF6 or t(6;11)(q27;923) and account for greater than 80% of
MLL1-rearranged leukemias (6, /168-170). In addition, chimeric MLL1-fusions involving ELL,
EEN, GAS7, AF1p, AFx, Septins, and histone acetyltransferases CBP/p300 have also been
reported (4, 8, 14, 169, 171-177). The translocation partners identified to date are diverse and do
not share any biochemical function or structural motifs. However, all known MLLI fusion
proteins share the property that the N-terminal portion containing the AT hooks and CxxC
domains of MLLI are retained, suggesting the preservation of DNA binding activity (178, 179).
In contrast, the taspase cleavage site, gene internal promoter, TAD domain, PHD fingers, Win

motif and the SET domain are lost (Figure 2.4b) (5).



37

Break point
a LBD cluster region
2
SV AT-Hooks CXXC PHD BD FYRN TAD FYRC WIN SET
1+ - 3969
o
b Break point
LBD cluster region 2R
2
=V AT-Hooks CXXC
1-|
Break point
c LBD cluster region
2)
=V AT-Hooks CXXC PHD BD FYRN TAD FYRC WIN SET
1- - 3969

Figure 2.4: Schematic representation of the most common genetic alterations associated
with the MLL1 gene

The putative protein products generated by the two most common chromosomal alterations
associated with the MLL1 gene are indicated along with wild-type MLL1: a) wild-type MLL1 b)
reciprocal chromosomal translocations involving MLL1 c¢) partial tandem duplications (PTDs) in
MLLI. The various functional domains are color coded as in figure 1.2. Chromosomal
translocations fuse the N-terminal ~1400 amino acids of MLL1 in-frame to over one of the 60
different fusion partners (indicated in grey) (b). PTDs have a duplicated N-terminus (AT-hooks
and CXXC motifs) in addition to all the functional domains present in wild-type MLL1 (c¢).
Refer to text for a detailed description of MLL1 mutations.
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2.2.2 Pathogenesis of acute leukemias with MLL I-translocations

While it is expected that the loss of the SET domain in MLL1 translocations would result in
decreased H3K4 methylation and Hox gene expression, genetic studies have revealed that the
individual fusion partners possess transcriptional activator properties and are indispensable for
leukemogenesis (171, 176, 180, 181). Given the complexity of different translocation partners,
MLL1-fusions may activate a common leukemia-associated gene expression program through
multiple mechanisms. Indeed, AF4, AF5, AF9, ENL, ELL and AF10 proteins are all implicated
in transcriptional elongation via association with the EAF complex, pTEFb kinase, and hDOT1
mediated methylation of H3K79 (86, 88, 182-185). Another mechanism could involve
transcriptional activation via increased or aberrant histone acetylation (MLL-CBP/p300) (85,
186), protein arginine methyltransferase-1 (PRMT1) association (MLL-EEN) (/87), SWI-SNF
chromatin-remodeling complex recruitment (MLL-ENL, -AF9, -AF10)(89, 188, 189), and self-
association or dimerization of the N-terminal part of MLL1 (MLL-GAS?7, -AF1p, -beta-

galactosidase, -gephyrin, -SEPT6) (84, 172, 176, 190).

Regardless of the mechanism, aberrant expression of MLLI1 target genes are a common
feature of MLL1-rearrangements examined to date. For example, HOXa7, HOXa9, and the HOX
cofactor MEISI1 are consistently over expressed in human leukemias with MLL1-translocations
(100, 101, 191-193) and act, at least partially, through the activation of the proto-oncogene c-
Myb (194). Furthermore, retroviral co-transduction studies in mice have demonstrated that
HOXa9 and MEIS1 expression immortalizes hematopoietic progenitors in vitro and rapidly
accelerates leukemia development (/95). In addition, MLL1-fusion proteins fail to transform

bone marrow cells in which HOXa7 and HOXa9 expression are genetically ablated (/01).
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Similarly, it has been demonstrated that overexpression of HOXa9 and MEIS1 can replace the
leukemogenic activity of MLL1-ENL (/93). Collectively, these results suggest that HOXa9
dysregulation is an important factor in some MLL1-fusion induced leukemias (/07). However,
not all leukemogenic fusions result in HOXa9 dysregulation. For example, MLL1-GAS7 and
MLL1-AF9 fusions were shown to transform bone marrow cells or mice that do not express

HOXa9 (196, 197).

However, in addition to disregulation of HOX genes, other signaling pathways are
perturbed by MLL-translocations and may contribute to leukemogeneis. For example,
transcriptional deregulation of FMS-like tyrosine kinase 3(FLT3), glycogen synthase kinase 3
(GSK3), heat shock protein-90 (HSP-90), myeloid cell leukemia sequence-1 (MCL-1), and
components of the RAS pathway have been implicated in MLL1-induced leukemogenesis (/98-
206). MLL1’s role as a master regulator of gene expression significantly complicates

understanding its role in MLL1 associated leukemogenesis.

The master regulatory role of MLLI in transcriptional control has implications that affect
our normal understanding of malignancy. For example, it has been suggested that second-hit
mutations are required to initiate the full leukemia phenotype (/76). Indeed, recent studies have
identified mutations in p53, ATM, Ras, and FLT3 genes in MLLI leukemia patients (207-210).
However, because of MLL1’s role in epigenetic gene control, second hit mutations could also
arise in the form of epigenetic mutations that result in silencing of tumor suppressors genes
without changes in their DNA sequence. For example, it has been demonstrated that the FHIT

tumor suppressor gene is epigenetically silenced in human primary tumor cells and tumor cell
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lines with MLL1-translocations (2/7). These data suggest that epigenetic alterations may be

«27 hit” mutations that underlie the

just as important as genetic mutations in sources of so called
pathogenesis of leukemia. Recent advances in deep sequencing technologies such as RNA-SEQ

and CHIP-SEQ will likely allow us to better distinguish genetic versus epigenetic mutations in

future studies.

2.3 Partial tandem Duplications: A cytogenetically normal rearrangement in MLL1

2.3.1 Clinical significance of MLL1 partial tandem duplications (MLL1-PTDs)

The second common MLL 1-rearrangement, internal partial tandem duplication (MLL1- PTD)
was first observed in de novo AML patients with a normal karyotype or trisomy 11 (/7). MLL1-
PTDs are found in 4-7% of the cases of AML and present a cytogenetically normal
rearrangement that is associated with poor prognosis (/2-15). MLL1-PTDs result from an in
frame fusion of exons 11-5 or 12-5 upstream of exon 5, partially duplicating sequences in the 5’
end of MLLI1 (/1, 13, 76). The protein product of MLL1-PTDs has a duplicated N-terminus that
contains an additional AT-hook and CXXC domains while essentially retaining all the conserved
domains in wild-type MLL1 (/3, 76). In contrast to the variety of MLL1-fusions that delete the
MLLI C-terminus, MLL1-PTDs retain the 3’-portion of the gene that encodes the SET domain
methyltransferase motif (Figure 2.4c¢). Recent data suggests that the enzymatic activity of the

MLL-PTD SET domain participates in a gain-of function phenotype in AML.

2.3.2 Mechanism of leukemic transformation by MLL1-PTDs
The molecular mechanisms that underlie MLL1-PTD transformation in AML are currently

unknown. The crucial alteration is the duplication of AT hooks and CXXC DNA binding motifs,
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which may alter target gene specificity. It has been suggested that duplication of these segments
may also mimic dimerization observed in several MLL1 chimeric fusion proteins (/90). Indeed,
it has been demonstrated that a synthetic MLL1 N-terminal construct containing duplicated AT-
hook and CXXC domains possesses potent transactivation activity in luciferase reporter assays
(190). However, comparison of genome-wide gene expression data shows that MLL1-PTD
primary cells have gene expression patterns that are distinct from that of cells bearing MLL1
chimeric fusions suggesting that the mechanism underlying transformation is distinct (2172).
Alternatively, it has been suggested that the additional amino acid sequences in MLL1-PTD
might adopt a conformation that potentially interferes with the normal function of MLL1 by

distancing the regulatory domains from its target site (7).

There is a growing body of evidence that suggests that epigenetic alterations underlie the
pathogenesis of MLL1-PTDs. For example, it has been demonstrated that knock-in mice bearing
MLLI1P™YT exhibit increased expression of HOXa7, HOXa9, and HOXal0 that is associated
with increased H3K4 methylation and H3/H4 acetylation within these promoters (79). Similar
gene expression and H3K4me2 methylation changes were seen in the presence and absence of
the wild type MLL1 allele in primary MLL1-PTD mouse fetal liver cells, suggesting that MLL1-
PTD behaves as a dominant gain-of-function mutation (78). This phenotype may also be due to
other epigenetic alterations. For example, Whitman et al., (§0) have demonstrated that the wild
type MLL1 allele in MLL1"™™T AML cells is silenced in a manner that is associated with
hypoacetylation of histones H3 and H4. Treatment of MLL1-PTD cells with histone deacetylase
inhibitors partially reactivates wild type MLL1 expression and reduces AML blast colony

forming units (273). In addition, it has been demonstrated that the SLC5AS8 tumor suppressor
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gene is silenced in MLL-PTD cells in a manner that is associated with increased DNA
methylation in its promoter, a phenotype that is partially reversed with DNA methyltransferase
inhibitors (2/3). SLC5A8 encodes a membrane monocarboxylate transporter that regulates
intracellular concentrations of histone deacetylase inhibitors, such as butyrate and pyruvate (2174,
215). Together, these observations suggest that targeting MLL1-PTD may have therapeutic value
in the treatment of AML (80). Indeed, it has been demonstrated that down regulation of MLL1-
PTD using antisense oligodeoxynucleotides (aODNSs) in primary human MLL-PTD AMLs
results in reactivation of the wild type MLL1 gene, reduced AML blast-derived colony forming

units, and increased sensitivity to cell death (213).

2.4 Acute myeloid leukemia with amplifications in MLL1

Amplifications of the MLL1 gene, including trisomy 11 and intrachromosomal amplifications,
are found with less frequency in AML and other myelodysplastic syndromes and are associated
with a complex karyotype and poor prognosis (/6-22). Amplifications involving MLLI result in
upregulation of several HOX genes including, HOXa7, HOXa9, and MEIS1 (76, 22). These
studies suggest that MLL1-amplifications contribute to leukemogenesis through mechanisms that
share some features with that of MLL1-fusions and MLL1-PTDs. In addition, gene expression
analyses have identified other proteins that are upregulated in AML with 11g23 amplifications
including cell surface receptors PROML1, ADAM10, and NKG2D, and the inosine
triphosphatase (ITPA) (22). These data suggest that MLL1 amplifications are associated with a

gain-of-function phenotype that may be responsive to targeted therapy (22).
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In spite of these advances in our understanding of the pathogenesis of MLL1-linked
leukemias, identification of inhibitors that specifically target MLL1 or MLL1-chimeric fusion
proteins has so far proven elusive. Recent advances in our understanding of the protein-protein
interactions involving MLL1 suggest several novel therapeutic strategies for targeted inhibition
of MLL1 or MLLI chimeric fusion activity in leukemic cells. These advances are reviewed in

sections 2.5-2.8 (81) and summarized in Figure 2.4.

2.5 Targeting MLL1-Menin interaction as a therapeutic strategy to treat Mixed Lineage
Leukemia

2.5.1 Menin is a common component of wild-type and mutant MLL1 complexes

Despite the growing evidence demonstrating a role for HOX genes in hematopoiesis, it is unclear
how the array of mutations involving the MLL1 gene all contribute to altered HOX gene
expression in acute leukemias. While there is little that is common among the different types of
MLLI aberrations, all types of MLL1 gene mutations including: chromosomal translocations,
internal partial tandem duplications, and gene amplifications, retain the N-terminus of MLL1 (/,
87, 216). These ~1400 N-terminal amino acids contain the DNA binding AT hooks and CXXC
domains as well as the binding site for nuclear proteins menin (called the Menin Binding Motif
or MBM) and Lens epithelial derived growth factor (LEDGF binding domain or LBD) (Figure
2.4). Menin, which directly binds wild-type MLL1 and MLL1-oncogenic fusion proteins, is an
essential co-factor for the maintenance of normal hematopoiesis and the leukemogenic activity of

MLL1-associated translocations (48, 53, 217, 218). The importance of menin in the pathogenesis



44

of MLL1-related leukemia and progress on the development of inhibitors that target the MLL1-

menin interaction is reviewed in this section.

2.5.2 MENI tumorigenesis

Menin, the product of MEN1 gene located at chromosome band 11q13, is a tumor suppressor
protein that is mutated in patients with an inherited syndrome, Multiple Endocrine Neoplasia 1
(MENT1) (219-221). To date, more than 400 nonsense and frame-shift mutations have been
reported in MENT patients often developing parathyroid, pancreatic or pituitary tumors after the
loss of the wild-type MENI1 allele (219, 222-224). Homozygous knockout of MEN1 (-/-) is
embryonic lethal in mice, which die at the mid-gestation period with profound defects in liver,
heart and the neural tube (225-227). Heterozygous knockout mice are viable until the adult
stages, but develop tumors similar to human MEN1 syndrome in pancreatic islets, parathyroid,
anterior pituitary, adrenal cortex and adrenal medulla (225, 228). Although the loss of menin
results in tumors of the endocrine lineage, the MENT gene is ubiquitously expressed in most
adult tissues and at all developmental stages (221, 229). In spite of the increasing evidence that
highlights a role for menin in MEN1 tumors, the basic biology of menin dependent tumor

suppression is unclear.

2.5.3 Menin homology and conserved domain architecture

Menin is highly conserved among vertebrates including, humans, mouse, rat, and zebrafish.
However, menin orthologs have not been identified in budding yeast Saccharomyces cerevisiae
or in the nematode Caenorhabditis elegans (226) (230-233). Strikingly, several of the disease-
associated MEN1 mutations occur at conserved amino acid positions, highlighting a crucial role

for menin in regulating cell proliferation in higher eukaryotes (229, 234). Menin is a novel
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nuclear protein of ~610 amino acids and does not share significant sequence homology to any
other known proteins (220, 234, 235). However, extensive analysis of sequence alignments
among menin homologues has revealed several domains with putative roles in nuclear targeting
and transcriptional regulation. Conserved domain search using the human menin amino acid
sequence identified putative domains such as: consensus GTPase-like motifs (G1-G5), two
leucine-zipper motifs, a proline-rich region and two nuclear localization signals (NLS) (229, 234,
236) (Figure 2.5). However, it is unclear as to how these conserved motifs contribute to the

tumor suppressor function of menin.
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Figure 2.5: Domain architecture of human menin showing the putative conserved domains

Schematic representation of the conserved regions in human menin with the various functional
domains indicated in different colors: GTPase consensus-motifs G1-G5 (black), leucine-zipper-
like motifs (purple), proline-rich sequence (blue), and nuclear localization signal or NLS
(orange). Naturally occurring MEN1 mutations that disrupt its interaction with MLL1 (green)
and LEDGEF (red) are highlighted. Figure 3 was adapted from Poisson et al., (234) and modified
based on the studies by Hughes et al., (53) and Yokoyama and Cleary (237).
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2.5.4 Menin molecular interaction network

The precise biochemical function of menin has so far proven elusive due to the lack of any
known functional domains in menin. However, it has been suggested that the transcriptional
regulatory properties of menin are regulated by protein-protein interactions (48, 234, 236-238).
Recent biochemical efforts have been undertaken to elucidate the molecular pathways that
underlie menin-dependent transcriptional regulation (236). Using yeast two-hybrid, GST pull-
down and co-immunoprecipitation assays, menin was shown to interact with a cohort of proteins
that are involved in cell cycle regulation, DNA replication and repair, genome stability,
endocrine metabolism, bone morphogenesis and hematopoiesis (53, 229, 236, 239). These
studies uncovered a wide variety of proteins that may or may not interact directly with menin.
These proteins (menin interacting proteins or MIPs) can be grouped into four major functional
classes: Class I, which includes transcription factors like JunD (240-242), NFkB (p50, p52 and
p65) (240), Smad3 (243), BMP2 (bone morphogenic protein 2) (244), IGFBP-2 (Insulin-like
growth factor binding protein 2) (245), FANCD2 (fanconi anemia complementation group D2
protein) (246), Pem (a homeobox containing transcription factor) (247), cMyb (238); Class 11,
which includes DNA damage and replication proteins such as RPA (replication protein A 1 and
2) (248); Class 111, which includes cell cycle regulatory proteins such as CDK inhibitors (p18 and
p27) (104), ASK (activator s-phase kinase) (249), type III intermediate filaments (glial fibrillary
acidic protein or GFAP and Vimentin) (250); and Class IV, which includes transcriptional
activators such as MLL1/2 (mixed lineage leukemia proteins) (48, 53), RNA polymerase 11
phosphorylated carboxy terminal domain (53), LEDGF (237), and CHD1 (chromo domain
helicase I) (217). Based on these studies it has been suggested that MIPs modulate the

transcriptional activator/repressor functions of menin (240, 241, 243, 251). While a direct role
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for the interaction of menin with all MIPs has yet to be validated in vivo, it is possible that MIPs
regulate transcription by binding directly or indirectly to menin (229, 236, 239). In addition,
menin also binds to a putative tumor metastasis suppressor/nucleoside diphosphate kinase
(Nm23), which stimulates the GTP hydrolyzing activity of menin (252). Moreover, menin also
functions as a transcriptional co-activator of the nuclear receptor pathway by binding with
estrogen receptor-alpha (ERalpha) in a hormone-dependent manner (253). A non-specific DNA
binding activity through the C-terminal NLS has also been reported for menin (245). Of the
multitude of interactions reported for menin, it is the association with the SET1 family
methyltransferases MLL1/2 that has generated a lot of interest due to their roles in hematopoiesis

and leukemia.

2.5.5 Role of menin in Hematopoiesis

Menin is an essential component of MLL1/2 family complexes with specific roles in the
maintenance of HOX gene expression patterns during hematopoiesis (48, 53). Conditional
knockouts of the MEN1 gene in mice decreases peripheral white blood cell counts as well as
colony forming potential of bone marrow hematopoietic progenitors (277). Recent work by
Maillard et al., (254), suggests that while conditional menin knockouts have modest effects on
hematopoiesis under steady-state conditions, more severe defects are observed in competitive
transplantation assays and during drug-mediated chemoablation (254). These studies suggest that
menin functions as an essential regulator of hematopoietic stem cell (HSC) homeostasis
specifically in situations of hematopoietic stress (255). These phenotypes may be due, at least in
part, to menin’s role in regulating HOX gene expression. For example, small-interfering RNA
(siRNA) mediated knockdown of menin or conditional MENT1 (-/-) knockout embryos show

significant decreases in the expression levels of several HOX genes including HOXa9, HOXc6,
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and HOXc8. (48, 53, 217, 239). Interestingly, these hematopoietic defects are rescued by the
ectopic expression of menin or its downstream targets HOXa9/MEIS1 (53, 217). Evidence
indicates that menin’s interaction with MLL1/2 complexes is required for its role in transcription.
For example, chromatin immunoprecipitation studies using antibodies specific to menin, MLL1,
trimethylated H3K4 or CHD1 (which binds trimethylated H3K4) (28, 29, 256) have further
established that menin co-localizes with these components at HOXa9 promoters and is required
for transcriptional activation (217, 239). Furthermore, it has been shown that a subset of
naturally occurring mutations in menin (H139D, A242V, and T344R) disrupts its association
with MLL1 and fails to associate with MLL1-dependent H3K4 methyltransferase activity (53)
(refer to Figure 2.4 for MEN1 mutations). These findings underscore the importance of the

menin-MLL1 interaction in regulating HOX gene expression in hematopoiesis.

2.5.6 Role of menin in leukemogenesis

The first evidence for the involvement of menin in MLL1-associated leukemogenesis came from
the initial biochemical studies carried out by Yokoyama et al., (2/8) who identified a menin
binding motif (MBM) located within the first 330 amino acids of MLL1, a region that is also
retained in all types of MLL1 aberrations (Figure 2.4) (218). Using leukemia cells that carry
specific MLL1-translocations (MLL1-AF6, MLL1-ENL, MLL1-AF9, MLL1-AF10, and MLL1-
GAS7) it was demonstrated that menin specifically associates with these MLL1-fusion proteins
at the promoter of HOX genes such as: HOXa7, HOXa9 and HOXal0, which are constitutively
expressed in several cases of acute leukemia (48, 217, 218). Acute loss of menin reduces the
aberrant HOX gene expression and abrogates the differentiation arrest associated with these
MLL1-fusions (218). Furthermore, conditional knockouts of the MEN1 gene suggests that menin

is essential for the initiation and maintenance of MLL1-associated, but not other oncogene
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induced, myeloid transformations (217, 218, 257). Together, these results demonstrate that
MLL1-fusion proteins are dependent on menin for their oncogenic properties and raise the
possibility that molecular therapies that target the menin-MLL1 interaction might be an effective

strategy to treat leukemias.

While it is unclear how menin modulates the activities of wild-type and MLL1-fusion
proteins, recent studies suggest that menin functions to recruit other proteins that are required for
targeting MLL1 to downstream genes. For example, a recent study by Yokoyama and Cleary
(237) suggests that menin promotes LEDGF binding to MLL1. LEDGF contains a highly
conserved PWWP motif that is required for MLL1’s association with downstream target genes
(237). In addition, menin amino acid substitutions that disrupt its interaction with LEDGF
without affecting menin’s interaction with MLL1 also display decreased Hoxa9 gene expression
(237, 258). These data indicate that part of menin’s function is to stabilize the interaction
between MLL1 and LEDGF. More recently, it has been shown that menin recruits the
transcription factor cMyb to the MLL1 complex, which is required for recruitment of MLL1 to
the Hoxa9 promoter (238). It has been shown that depletion of cMyb decreases the transforming
potential of the MLLI-ENL fusion protein (238), suggesting that molecules that inhibit the

menin-cMyb interaction may also be useful therapeutic agents.

2.5.7 Menin interacts with the N-terminus of MLLI through an evolutionarily conserved
Menin Binding Motif (MBM)

The interaction of menin with N-terminal sequences of wild-type MLL1 and MLL1-chimeric
fusion proteins have been demonstrated by three independent reports (278, 257, 259). While the
conclusions of these studies differ with respect to the exact length of the MLL1 fragment

predicted to be involved in the interaction with menin, they have collectively identified a highly
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conserved “menin binding motif” (MBM) localized within the first 46 residues of MLL1. For
example, Yokoyama et al., (2/8) demonstrated that a consensus sequence (RXRFP), called the
high-affinity menin binding motif (MBM), is present between MLL1 amino acids 6-10.
Sequence analysis reveals that the MBM is highly conserved among MLLI orthologs and in
MLL2 (residues 17-21) (Figure 2.6). Deletions of the MBM in the MLL1-ENL and MLL1-
GAS?7 fusion proteins abrogates the interaction with menin in 293T cells (2/8). Furthermore,
MLLI1-ENL fusions that lack the MBM fails to induce acute myeloid leukemia in syngeneic
recipient mice (2/8). This failure is associated with impaired expression of HOXa7 and HOXa9
genes in the MBM-deleted MLL1-ENL transduced murine myeloid progenitors (2/8). Moreover,
MBM deletion mutants of MLL1-ENL lose their clonogenic potential and induce differentiation
in leukemia blasts, a phenotype similar to the conditional knock out of menin or MLL1-ENL
itself (101, 193, 218). These studies demonstrate the importance of menin-MLLI1 interaction in

the pathogenesis of MLL1-associated leukemias.

In an attempt to further characterize the physiological significance of MLL1-menin
interaction in acute leukemias, Caslini et al., (257) employed a co-immunoprecipitation assay to
demonstrated that MLL1 residues between 5 and 44 are required for high affinity binding with
menin. This MBM region spans the RWRFP motif (residues 6-10) and also includes a second
region between MLL1 residues 35 and 44 that is necessary, but not sufficient, for high-affinity
interaction with menin (257). Internal deletions in the MLL1-AF9 fusion protein that lacked
amino acids 5-15 (high affinity MBM) or 35-44 (low affinity MBM) failed to co-
immunoprecipitate with menin from 293T cells (257). Furthermore, Caslini et al., (257) also
demonstrated that MLL1-AF9 MBM sequences were essential for the transformation of

hematopoietic progenitors by the MLL1-AF9 fusion protein. Interestingly, the MLL1 constructs
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MLL1(2-167), MLL1(2-62), and MLL1(2-44) function as dominant negative inhibitors of the
MLLI-menin interaction by titrating menin from the endogenous MLL1-AF9 protein resulting in
reduced HOXa9 and MEIS1 expression and inhibition of the growth of transformed bone
marrow progenitors (257). Together, these results suggest that expression of dominant negative
MLLI constructs or peptide inhibitors that mimic the MLL1-menin interaction can inhibit the
transforming potential of MLL1-fusion proteins by specifically down regulating the expression
of target HOX genes. Unexpectedly, dominant negative constructs of MLL1 also inhibited the
colony-forming ability of wild-type hematopoietic progenitors since these constructs also mimic
the interaction surface between wild-type MLL1 and menin (257). Collectively, these findings
suggest that small molecule inhibitors that target menin-MLL1 interaction have a therapeutic
potential to treat MLL1-associated leukemias, but with the caveat that normal hematopoiesis

might also be impaired (257).
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* % *% * kkk_k%x . % * *k | *
[ mBv2 |

Figure 2.6: Menin Binding Motifs (MBMs) are present in the wild-type, chromosomal
translocations and partial tandem duplication mutations in MLL1

Domain mapping experiments reveal that MBMs are present in the wild-type, chromosomal
translocations, and PTD mutations in MLL1. The different functional domains in MLLI1 are
indicated and color coded as in Figure 1.2. The menin binding motif encompassing residues 5-44
(red) along with LEDGF binding domain (pink), AT-hooks (black), and the CXXC motif
(orange) are retained by both MLL1-translocations and PTD mutations. The blow up shows the
ClustalW-based multiple sequence alignment of the high affinity menin binding motifs, MBM1
and MBM2, present in human (Q03164), mouse (NP_001074518), zebrafish (ACN88688), and
pufterfish (AAC41377) MLL1, human MLL2 (014686), and MLL1-AF4 (AAC37520) fusions
(indicated in red). MBMI1 and 2 were identified based on three independent studies (218, 257,
259).
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2.5.8 MBM based peptides as novel therapeutic agents for acute leukemias with MLL1-
rearrangements

Structural and biochemical studies that characterize the menin-MLL1 interaction in detail is an
important step in the development of MBM-based small molecule inhibitors that can specifically
help treat MLL1-mediated cancers. Grembecka et al., (259) carried out a detailed biophysical
characterization of the interaction between menin and MLL1. Using a combination of NMR,
Isothermal Titration Calorimetry (ITC) and Fluorescence Anisotropy (FP), it was demonstrated
that MLL1 binds menin with high affinity (K4=~10 nM) utilizing two menin binding motifs
(MBM1 and 2) located within the first 43 amino acids of MLL1 as previously suggested (2178,
257). Furthermore, peptides derived from the MBM1 (amino acids 5-14) and MBM2 (23-40) in
MLL1 bind menin with interaction affinities of 53 nM and 1400 nM, respectively (259). Using a
series of peptide competition experiments, MBM1 and MBM2 peptides were shown to displace a
construct of MLL1 (amino acids 2-43) from bound menin in vitro with ICsy values of 0.5 uM and
37 uM, respectively (259). Moreover, based on transfer-nuclear overhauser effects (Tr-NOEs)
based NMR experiments, it was further suggested that MBM1 interacts with menin in an
extended conformation and that the binding is facilitated by hydrophobic residues Phe9, Pro10
and Pro13 (259). Substitution to alanine of these amino acid residues significantly impaired the
binding of MLLI constructs to menin (259). Together, these studies have identified MBM1
(which encompasses the consensus RWRFP) as a potential drug target for leukemias with MLLI

translocations.
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2.6 Molecular targeting of MLL1-rearranged leukemias: Peptide inhibitors that target the
activity of MLL1-AF4 and MLLI1-AFY fusion proteins

2.6.1 Clinical significance of t(4;11) and t(9;11) translocations

MLLI translocations do not share a common structural motif or biochemical function. However,
based on sequence similarities, the most commonly occurring MLLI1 fusions can be grouped into
three major gene families: AF10/AF17, ENL/AF9, and the largest family,
AF4/LAF4/AF5q31/FMR2 (260). The most common translocation is t(4;11)(q21;q23) and is
associated with more than 50% of acute leukemia cases in infants, and for 3-6% of cases in older
children (261-263). The t(4;11) translocations results in leukemic blasts expressing phenotypic
markers for ALL in 95% of the cases (264, 265)). t4:11 translocations result in cancers that often
spread beyond the hematopoietic lineage and have a poor prognosis (100, 265, 266). The t(4:11)
translocation retains the 5° portion of MLL1 gene containing the menin binding motif (MBM),
AT hooks and the CXXC DNA binding motifs, which are fused in-frame to the 3’ portion of the
gene at the 4921 locus called AF4 (165). The high occurrence rates of t(4;11) translocation in
infants along with the poor prognosis and absence of chemotherapeutics to treat these leukemias
highlight an urgent need for the development of inhibitors that specifically target the gain-of-
function phenotypes associated with the MLL1-AF4 fusion. In this regard, inhibitors that target
the interaction between AF4 and its partner protein AF9 have been developed recently and show
promising results in inhibiting the transforming potential of leukemia cell lines bearing MLL1-
AF4 or MLLI1-AF9 translocations (267-269). The biochemical studies that form the basis for

these conclusions are summarized in this section.
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2.6.2 Domain architecture and the function roles of AF4 family

AF4, also known as AFF1/FEL, is a serine/proline-rich nuclear protein with crucial roles in B
and T lymphocyte development. AF4 has several putative functional domains including the ALF
(AF4/LAF4/FMR2 homology) domain, which mediates the interaction with a family of
ubiquitin ligases called SIAH (seven in absentia homolog), a serine/proline-rich transcriptional
activation domain (TAD), nuclear localization signals (NLS), a guanosine triphosphate (GTP)
binding motif (GBM), and a C-terminal homology domain involved in intra-nuclear localization
and binding to pre-mRNA splicing factors (265, 270-274) (Figure 2.7). AF4 is located at a
fragile break-point region on chromosome 4 and is associated with a wide variety of
chromosomal translocations. AF4 is a member of AF4/LAF4/AF5q31/FMR2 family of nuclear
transcription factors (275-277) and also shows significant homology to the Drosophila
melanogaster pair-rule gene Lilliputian (278). Surprisingly, three of these family members
(AF4/LAF4/AF5q31) are associated with infant leukemias involving reciprocal translocations
with the MLL1 gene (279-281). The second family member LAF4, isolated from Burkitt’s
lymphoma, is a lymphoid-specific transcription factor and has transcriptional activation domains
and nuclear localization signals that are highly similar to AF4 (287). Indeed, the MLL1-LAF4
fusion proteins also retain the TAD in LAF4, which can functionally substitute for the activation
domain in MLL1, thereby the contributing to the leukemogenic potential of these chimeric fusion
proteins (287). The third AF4 homologue AF5q31 was originally identified from infant acute
leukemias with a (5;11)(q31;q13g23) translocation (279). Strikingly, each of these MLL1-AF4
gene family fusions manifest very similar clinical characteristics- that is, early onset, poor
prognosis, and a mixed immunophenotype. However, the fourth AF4 family member, FMR2, is

associated with mental retardation and is located in the folate-sensitive break-point region at
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chromosome X band q28 (275, 282). FMR2 has not been reported to be a part of any MLL1

fusions.

Despite the growing amount of clinical evidence suggesting the involvement of MLL1-
AF4 family translocations in human acute leukemias, the molecular mechanisms by which the
MLLI1-AF4 fusion proteins induce neoplasia are not fully understood. One possibility is that the
resulting MLL1-AF4 fusion protein has a gain-of function phenotype wherein the transcriptional
activation domain of AF4 is fused to the DNA binding domains of MLL1 and alters the
regulation of MLL1 dependent genes (82). However, genetic studies using mouse knock-in
models suggest that the two fusion proteins MLL1-AF4 and AF4-MLL1 resulting from the
balanced reciprocal translocation between MLL1 and AF4 could independently contribute to the
pathogenesis of t(4;11) mediated acute leukemias (/81, 271, 283). Importantly, the AF4-MLL1
fusion protein retains the C-terminal portion of MLL1 including its SET domain, and is

sufficient to induce leukemia in the absence of MLL1-AF4 (283).
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hAF4 736 KDRLPLPLRDTKLLSPLRDTPPPQSLMVKITLDLLSRIPQPPG-KGSROQRKAEDKQPPAG 794

mAF4 742 KDKLLLPLRDTKLLSPLRDSPPPTSLVVKITLDLLTRIPQPLG-KGSRPRKAEDKQLSAG 800

hLAF4 741 QFYTLVPFGRNELLSPLKDSDEIRSLWVKIDLTLLSRIPEHLPQEPGVLSAPATKDSESA 800

hAF5> 691 RMFS--PMEEKELLSPLSEPDDRYELIVKIDLNLLTRIPGKPY-KETEPPKGEKKNVPEK 747

hFMR2 737 PTFSPIPVMQTEILSPLRDHENLKNLWVKIDLDLLSRVPGHSS-LHAAPAKPDHKETATK 795

mFMR2 734 TAFSPPPAMQTELLSPLRDHENPKNLWVKIDLDLLSRVPGQONS-VPVTPAKTDYKETASK 792
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RS4;11, AN4;11
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l N- homology domain . GTP binding motif (GBM)
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. AF9 interaction domain

l Nuclear Localization Signal (NLS)

Figure 2.7: Domain representation of human AF4 indicating the putative functional
domains including the AF9 interaction region

Overview of the protein domain structure of human AF4 adapted from (267, 270) and modified
accordingly. The different domains are highlighted: N-homology region with an unknown
function (green), ALF (AF4/LAF4/FMR2 homology) region which includes the transcription
activation domain (dark red), AF9 interaction region (orange), nuclear localization signals (dark
blue), a putative consensus guanosine triphosphate (GTP) binding motif (purple), and C-terminal
homology domain (blue). The domains are not drawn to scale. The ClustalW-based multiple
protein sequence alignment of the AF9 binding regions of AF4 family members: human AF4 or
hAF4 (P51825), mouse AF4 or mAF4 (AAU93698), human LAF4 or hLAF4 (NP002276),
human AFS or hAF5 (QO9UHB7), human FMR2 or hFMR2 (BAC81113) and mouse FMR?2 or
mFMR2 (CAA04821) are shown with the AF9 interaction region highlighted in brown.
Chromosomal break points are also indicated for cell lines carrying t(4;11) translocations.
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2.6.3 Molecular interaction network for AF4 fusion proteins

These studies raise the possibility that MLL1-AF4 and AF4-MLLI participate in different sets of
interaction networks as compared to the native full-length proteins (MLL1 and AF4) and result
in gene expression signatures that are a representative of the physiological function of the fusion
partners. This hypothesis is supported by the studies of Benedikt et al., (284) who used affinity
purified AF4 and AF4-MLL1 complexes from 293T cells to elucidate the subunit composition of
the two complexes. Wild-type AF4 was purified in a complex containing the CDK9/Cyclin T
heterodimer, which resembles the positive transcription elongation factor b (p-TEFb) (284, 285)
and also co-purifies with the wild type versions of two other known MLLI1 fusion partners, AF9
and ENL, both of which bind to the C-terminus of AF4 family members (88, 284, 286).
Furthermore, ENL binding to AF4 creates a binding site for AF10, DOT1 methyltransferase and
histone H3 (185, 284). Both the DOT1 mediated H3K79 methylation and the p-TEFb mediated
phosphorylation of RNA Pol II C-terminal domain could lead to transcriptional elongation and is
facilitated by the interaction of wild-type AF4 with these proteins (/84, 284). In contrast, the
subunit composition of the AF4-MLL1 complex is different from the wild-type AF4 protein
alone due to additional proteins that interact with the fused MLL1 C-terminal fragment and
modulate the transcriptional activating properties of AF4-MLLI fusion protein (284). MLLI1-
AF4 chimeric fusions on the other hand have an intact C-terminus of AF4 and therefore retain

the transcriptional activation domains and its ability to interact with AF9 and ENL.

2.6.4 Functional significance of AF9/ENL family

Reciprocal translocations involving the AF9 (t(9;11)(p22;q923)) and ENL (t(11;19)(q23;p13.))

genes are also associated with several cases of ALL and AML (287). Similar to AF4, AF9 also
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belongs to a family of serine/proline-rich transcription factors (82, 288, 289) and shares
significant similarity to ENL and the yeast protein ANC1 (290, 291). Interestingly, ANC1 has
been demonstrated to be a part of the yeast RNA polymerase II complex, as well as the SWI/SNF
nucleosome-remodeling complex, a macromolecular complex which functions as ATP-
dependent chromatin remodeler (292-294) The high degree of sequence similarity between
human AF9/ENL and the yeast ANCI1 protein has led to the hypothesis that AF9 and ENL may
also interact with a human SWI/SNF remodeling complex similar to yeast ANCI1, and the
MLL1-AF9/ENL fusion proteins may retain these features. The biological functions of AF4,
AF9 and ENL are not clearly understood, however, gene deletion studies in mice have
demonstrated important roles for these proteins during development (271, 295, 296)
Furthermore, the endogenous ENL protein was purified as a part of a macromolecular complex
(ENL associated protein complex or EAP) that also contains p-TEFb, DOT1 and AF4 and plays
a putative role in transcriptional elongation (/84, 185). Despite the fact that MLL1-AF4
translocations and MLL1-AF9/ENL fusions account for more than 50% of MLL1 1123
associated leukemias (/68-170), there exists no functional similarity between these MLL1 fusion
partners. It is tempting to hypothesize that MLL1 fusion proteins might hijack the p-TEFb/DOT1
mediated transcriptional elongation activity or the SWI/SNF dependent nucleosome remodeling
activity through the fusion partner and result in constitutive target gene expression leading to
leukemia. These studies suggest that pTEFb, DOT1 and the MLL1 fusion partners
AF4/AF9/ENL are all molecular targets in the development of therapeutics that target MLL1-

fusion mediated leukemias.
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2.6.5 Domain mapping of the interaction region between AF4 and AF9

Co-localization studies carried out by (286) have established that the two most common MLL1
fusion partners AF4 and AF9 form a stable complex within the nucleus and are restricted to
discrete nuclear foci called “AF4 bodies”. AF4 bodies are nuclear speckle-like in appearance and
are distinct from the nucleolus, cajal bodies, PML body or regions associated with DNA
replication and repair (286). Using yeast two-hybrid screens it was demonstrated that the
minimum motif in human AF4 required for binding AF9 encompasses 14 residues (761-774) that
are proximal to the bipartite nuclear localization signal (NLS) in AF4 (refer to Figure 2.7 for
domain representation). Deletion of these residues completely abolishes the interaction between
AF4 and AF9 and also results in diffuse AF4 bodies (267, 286). Site-directed mutagenesis
studies reveals that bulky hydrophobic residues within the conserved AF9 binding region in
mouse AF4 ( mAF4 ) dictate its binding affinity to AF9 (267). Using fluorescent tagged AF4 and
AF9 constructs it was further demonstrated that both the 14 residue AF9 binding motif and the
bipartite NLS was required for the punctate nuclear speckle distribution of AF4-AF9 complexes
(286). Likewise, the terminal 93 residues in AF9 (and the terminal 84 in the case of ENL) were
identified as the minimal region required for binding AF4 (286). Interestingly, the mutual
interaction domains between AF4 and AF9 are highly conserved in the AF4 and AF9
homologues (refer to figure 5 for sequence alignment) (267, 286) and the AF4-AF9 interaction
region is retained by the MLL1 fusion proteins (MLL1-AF4 and MLL1-AF9) (180, 280, 286)
suggesting that AF4-AF9 interaction might be an important step in the pathogenesis of these
MLLI fusions. The functional significance of the interaction between AF4 and AF9 is unclear;
however, the co-localization of these two proteins to specific sub-nuclear foci suggests that AF4-

AF9 interaction might be required for normal cellular functions as well as in the pathogenesis of
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MLL1-AF4 or MLL1-AF9 associated leukemias (286). Furthermore, the presence of this
interaction region in MLL1-AF4 and MLL1-AF9 fusion proteins, and the ability of MLL1-AF4
fusions to alter the localization of endogenous AF9 also suggest that AF4-AF9 protein complex

is a pharmacological target for leukemia therapy (267, 286).

2.6.6 A synthetic peptide PFWT disrupts the interaction between AF4 and AF9

Based on the initial mapping studies of the AF9 binding region in AF4, a synthetic peptide,
designated “PFWT” that mimics the interaction region was developed and tested for its ability to
disrupt the AF4-AF9 interaction both in vitro and in vivo (267, 286). The initial PEWT peptide
developed in this study was based on the highly conserved AF4-AF9 interaction sequence in the
mouse FMR2 protein and encompasses residues (759-771) (see Figure 2.7 for the sequence
alignment of the AF9 interaction region in AF4 family members). To enable nuclear uptake, the
PFWT peptide was conjugated to a penetratin transporter sequence at its N-terminus (267).
Using pull-down assays with GST-tagged AF4 and biotinylated AF9, it was shown that this
PFWT peptide disrupts the interaction between human AF4 and AF9 in a concentration
dependent manner (267). However, a control peptide (containing amino acid substitutions at
V763E and 1765S) did not interfere with the binding of AF4-AF9 complex (267).The specificity
of PFWT peptide against AF4-AF9 complexes was further demonstrated by its inability to
disrupt the interaction between AF9 and two other proteins, the Polycomb protein (MPC3) and
the mouse homolog of BCL-6 co-repressor (mBCoR), both of which interact through the C-
terminus of AF9 (267, 288, 297). Furthermore, the PFWT peptide was shown to be readily taken
up by NIH3T3 cells and disrupts the co-localization of AF4-AF9 in vivo (267). These results
corroborated the in vitro findings that the PFWT peptide has the ability to specifically disrupt the

interaction between AF4 and AF9 protein complexes.



63

2.6.7 PFWT peptide inhibits the cell proliferation of leukemia cell lines with t(4;11) and
1(9;11) translocations

Based on these observations it was further predicted that the PFWT peptide will have the ability
to inhibit the proliferation of leukemia cell lines that carry a t(4;11)(q21;q23) or t(9;11)(p22;q23)
translocations (267-269). As expected, PFWT peptide specifically inhibits the proliferation of
leukemia cell lines B1, MV4-11 and RS4;11 (298-300) that harbor the MLL1-AF4 translocation
(267-269). Interestingly, the PEWT peptide also inhibits the survival capacity of KP-L-RY cell
lines (300) that are characterized by a t(5;11) translocation associated with MLL1-AF5q31
fusions (267). In contrast to cell lines that carry either the MLL1-AF4 or MLL1-AF5q31
translocations, the PEFWT peptide shows mixed effects in the inhibition of the proliferative
capacity of leukemia cell lines that carry MLL1-AF9 translocations (267, 268).). For instance,
based on the study by (267), the PEWT peptide failed to inhibit the growth of THP-1 cells (301)
that are associated with MLL1-AF9 translocations. However, a more recent study by (268)
demonstrated that Molm13 leukemia cells (302) that are also associated with MLL1-AF9
translocations are sensitive to treatments with PEWT peptide in a dose dependent manner. While
these findings suggest that there are differences in the inhibitory properties of the PFWT peptide
towards cell lines that carry a similar translocation, it highlights the fact that these leukemias
might operate through additional pathways that lead to misregulated gene expression profiles
(267, 268). Furthermore, the specificity of PEWT peptide in inhibiting the leukemia cells with
MLLI1-AF4 and MLL1-AF9 mutations is corroborated by the findings that the MOLT-4 (T-
ALL) cell line (303) that does not contain a MLL1-AF4 translocation is not affected by the
PFWT peptide even at higher doses (267). However, the Reh (B-precursor) cell lines (304) that
do not carry a MLL1-AF4 chimeric fusion are susceptible to the PFWT peptide (267). These

results suggest that some cell lines might require the function of normal AF4-AF9 complexes for
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its carcinogenesis and these native complexes are also targeted by the PEFWT peptides (267).

Nevertheless, these findings demonstrate the wide range of specificity for the PFWT peptide and
suggest that PFWT-like peptides are promising lead compounds in the development of treatment
regimens for the most frequent 11923 translocations. The pharmacological importance of PFWT
based peptides is further enhanced by the fact that these peptides have little effect on the number
and colony forming potential of hematopoietic progenitor cells (267), suggesting that PEWT-like

peptides may have fewer side effects .

2.6.8 PFWT peptide as a lead compound in the treatment of MLL I-rearranged leukemias

While initial studies suggest that the growth inhibitory properties of the PEWT peptide is
mediated through apoptosis (267), recent work by (268) demonstrates that PEWT peptide
induces cell death by necrosis in MV4-11 and Molm13 cell lines. Necrotic cell death was further
demonstrated by the changes in plasma membrane integrity in the absence of traditional
apoptotic markers: nuclear disintegration, caspase activation, DNA fragmentation or
mitochondrial membrane depolarization (268). Given the resistance of t(4;11) translocations to
conventional pro-apoptotic chemotherapeutic drugs, PFWT mediated necrotic cell death is an
attractive alternative strategy to treat these acute leukemias. More recently, Bennett et al., (269)
demonstrated that the PFWT peptide in combination with standard chemotherapeutic agents such
as etoposide, 17AAG (17-(allylamino)-17-demthoxygeldamycin), cytarabine, and FIt-3 kinase
inhibitor results in synergistic cytotoxicity in MV4-11 cells that harbor t(4;11) translocations.
Furthermore, cell death was mediated through both apoptotic and necrotic pathways suggesting
that PFWT peptides could be useful in combinatorial therapy to treat leukemia cell lines that are
relatively resistant to current apoptotic drugs (269, 305-307). Together, these findings emphasize

that PFWT peptides inhibit the proliferation of t(4;11), t(5;11) and t(9;11) leukemia cell lines by
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specifically disrupting the association of AF4 or AF5q31 with AF9 and serves as a starting point
for the development of more effective therapeutic strategies. In the absence of a crystal structure
that clearly demonstrates the interaction mode between AF4 and AF9 proteins, systematic site-
directed mutagenesis experiments can help identify amino acid positions that are more important
for the overall binding affinity. Such an approach has the potential to help identify additional
PFWT-based peptido-mimetic compounds that have better inhibitory properties than the initial
PFWT peptide and prevent the potential toxic side effects that could occur at high doses of the

PFWT peptide.

2.7 Win motif-based inhibitors that target the assembly and enzymatic activity of the MLL1
core complex

2.7.1 Novel strategies that target the histone methyltransferase activity of MLL1 amplifications
and MLLI1-PTDs

Growing evidence suggests that increased HOXa gene expression associated with MLL1
amplifications and MLL1-PTDs underlie the pathogenesis of these leukemias (79, 308). HOXa
gene expression is dependent on the histone methyltransferase activity of MLL1 ((54), and given
the increased H3K4 methylation observed in MLL1-PTDs (78, 79), inhibitors that down-regulate
the histone methyltransferase activity of MLL1-PTD have the potential to reverse this aberrant
epigenetic program. Until recently, inhibitors that specifically target MLL1’s H3K4
methyltransferase activity have been difficult to develop due to lack of a clear understanding of
MLL1’s structure and function. However, recent findings have established that H3K4
methylation levels are precisely regulated by the function of two independent methyltransferases:
the MLL1 SET domain and a novel multi-subunit enzyme, WDR5-RbBP5-Ash2L-DPY30

(WRAD), that lacks sequence homology to known methyltransferases (32, 33). Because multiple
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methylation on H3K4 is catalyzed by two different enzymes, it is interesting to speculate that
inhibitors that prevent the association of two methyltransferases will have clinical significance in

the treatment of acute leukemias that are characterized by aberrant H3K4 methylation (78, 79).

2.7.2 Peptides derived from the MLL1 Win motif inhibit the H3K4 dimethylation activity of
MLLI core complex

Based on mapping studies of the WDRS5 binding region in MLL1, Patel et al (60) developed a
peptide, designated the MLL1 Win motif peptide (3762-3773) that can bind WDRS with high
affinity (K4=1700 nM) and disrupt the assembly of the MLL1 core complex in vitro (60, 61).
Consequently, this 12-residue MLL1 Win motif peptide was further shown to inhibit the in vitro
H3K4 dimethylation activity of the MLL1 core complex in a dose dependent manner by
competing with wild-type MLL1 for the arginine binding pocket in WDRS (67). However, a
control p53 peptide that has an arginine in a different sequence context failed to inhibit the H3K4
dimethylation activity even with a 60-fold excess, suggesting that Win motif peptides are highly
potent inhibitors of MLL1 family complexes (67). Furthermore, data presented in this
dissertation in Chapter 3 demonstrate that peptides derived from other human SET1 family
members bind WDRS with dissociation constants ranging from 50 nM-2800 nM (Figure 3.3)
(309). In accordance with the binding studies, MALDI-TOF mass spectrometry based
methylation assays further demonstrate that other human SET1 family Win motif peptides are 14
to 72-fold more potent inhibitors of the H3K4 dimethylation activity of the MLL1 core complex
as compared to the MLL1 Win motif peptide (Figure 3.6) (309). These studies suggest that the
human SET1 family Win motif based peptides represent an excellent starting point for the design
of lead compounds that would specifically disrupt the interaction between MLL1 and WDRS5 and

inhibit the H3K4 dimethylation activity of MLL1 core complex in vivo.
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2.7.3 Analysis of the binding of MLL1 Win motif and histone H3 peptides to WDR5:
identification of key structural elements required for binding WDR5

In order to characterize the protein structural features within the MLL1 Win motif peptide that is
required for its high affinity binding to WDRS, Karatas et al (3/0) performed a systematic
deletion analysis on the original 12-residue MLL1 Win motif peptide (3762-3773) and showed
that a three residue sequence composed of cetyi~ARA- 2 1S the minimal motif that is required
for its interaction with WDRS5 (370). The acetyi-ARA-nm2 peptide binds WDRS in peptide
competition experiments with similar affinity to that of the original 12 residue MLL1 Win motif
peptide (~120 nM) (61, 310). In addition to the acety-ARA- nm2 peptide, Karatas et al (370) also
identified another peptide designated the Acetyl-10mer (scety~ARAEVHLRKS-nw2) peptide
encompassing residues 3764-3773, which binds WDRS with 10-fold better affinity (K;=3 nM
(310)) compared to that of the acetyi~ARA- na2 or MLL1 Win motif peptide. The results of these
studies are described in more detail in Chapter 5 along with the binding and structural studies for
the acetyi~ARA- nm2 and the Acetyl-10mer peptides that were carried out as a part of this

dissertation.

2.7.4 Win motif based inhibitors: a novel class of compounds with potential to treat Acute
Mpyeloid Leukemia

The extensive biochemical characterization of the peptide derived from the MLL1 Win motif
have demonstrated that these peptidomimetic compounds have the potential to inhibit the H3K4
methyltransferase activity of the MLL1 core complex by disrupting the association of MLLI
with the WRAD sub-complex (67). Furthermore, the crystal structures of WDRS5 bound to

human SET1 family Win motif peptides, described in Chapter 4 of this dissertation, provides a
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rationale for the design of new peptides and nonpeptide mimetics with better inhibitory
properties. The structures also reveal that conserved residues from the human SET1 Win motifs
form a cyclical shaped 3, —helix that fits snugly into the outer opening in WDRS and raises the
possibility that other cyclic peptidomimetic compounds might also bind WDRS with similar or
better inhibitory properties. The efficacy of Win motif based inhibitors in down regulating the
H3K4 methylation activity of MLL1 core complex in vitro has yet to be demonstrated in vivo.
However, based on the in vitro studies it is expected that the Win motif based peptides will have
the ability to down regulate the increased H3K4 dimethylation, and aberrant HOX gene
expression associated with MLL1-PTDs and gene amplification mutations in MLL1. Hence, the
Win motif peptide is a novel “first in class” inhibitor that are expected to have the ability to
downregulate H3K4 dimethylation levels in the cell without perturbing K3K4 monomethylation,

or the methylation activities of other H3K4 methyltransferases.

2.8 Conclusions and future perspectives-are there other molecular targets for leukemia
therapy?

Over the past decade, we have witnessed remarkable strides towards understanding the
fundamental mechanisms of MLL1-mediated transcription and leukemogenesis, and many
targets that are likely to be biomedically important are beginning to be characterized (7, 23, 311).
Genetic, biochemical and structural studies have demonstrated that several MLL1 partner
proteins (AF4, AF9, AF10, ENL, and EEN) are either directly or indirectly associated with
macromolecular complexes involved in transcriptional control and elongation (88, 182, 184, 185,
187, 311, 312). Based on these studies, it was also suggested that leukemogenic properties of
these MLL 1-fusions are mediated in part through their association with the histone

methyltransferases: hDOT1 (/82, 184, 312) and protein arginine methyltransferase-1 or PRMT]1
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(187). These studies have led to the proposal of the “MLL1 web hypothesis”, which states that
MLL1 fusion partners are components of larger macromolecular complexes that are involved in
transcriptional activation and/or elongation (286). Molecular therapies directed at the interactions
of these proteins within the “MLL1 web hypothesis™ or inhibiting the activity of associated
histone modifying enzymes are emerging as promising targets (7, 23, 3/1). In addition to
targeting the function of MLL1-fusion proteins, inhibitors that target the association of MLL1-
fusion proteins to target DNA might also have potential therapeutic implications. In this regard,
inhibitors that disrupt the interaction between MLL1’s CXXC motif and unmethylated CpG
containing target DNA are being investigated as molecular drug targets in MLL1-related
leukemias (313, 314). In addition to these molecular targets, recent studies have also identified
other cooperating pathways such as positive transcription elongation factor-b (pTEFb)
recruitment (88, 185, 311, 315), activation of FMS-like tyrosine kinase 3 (FLT3) (199, 200, 202,
205), glycogen synthase kinase 3 (GSK3) (206), heat shock protein-90 (HSP-90) (198, 202),
myeloid cell leukemia sequence-1 (MCL-1) expression (376), and RAS pathways (204) that are
implicated in MLL1-induced leukemogenesis. The therapeutic significance of the these
molecular targets in MLL1-therapy were reviewed recently (7, 23, 3/1) and since then,
additional potential pharmacological targets such as the multi-subunit complex WRAD, which
regulates the degree of H3K4 methylation activity by MLL1 core complex, have emerged (32,

33) (Figure 2.8).

In conclusion, this chapter summarizes the recent biochemical studies that have
contributed significantly to our understanding of how MLL1 works and have led to the
identification of promising therapeutic targets for MLL1-related leukemias. In particular,

inhibitors that target molecular interactions between menin and MLL1, AF4 and AF9 complex,
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and MLLI and WRAD sub-complex have emerged as novel candidate pharmacological targets.
These MLL1-targeted therapies have enhanced pharmacological potential as compared to the
existing broadly-based chemotherapeutics for MLL1-associated leukemias and will hopefully
result in better treatment outcomes. In the future, similar biochemical, structural and genetic
studies will be instrumental in identifying additional molecular targets that will form the basis for

novel treatment strategies.
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Figure 2.8: Potential protein-protein interaction targets for the development of novel
therapies for MLL1-associated leukemias

Cartoon representation of the different forms of MLL1 (wild-type, PTDs, and chromosomal
translocations) and a summary of emerging potential molecular targeted therapies for mixed
lineage leukemia. Key molecular targets include: 1) inhibitors that disrupt the association of
MLLI to its target genes (MBM-based, LBD-based or CXXC motif-based inhibitors), i1)
inhibitors that target the assembly of MLL1 core complex (Win motif-based inhibitors), iii)
inhibitors that target the functions of fusion proteins (PFWT-like peptides, hDOT1L inhibitors,
pTEFb kinase inhibitors), iv) WRAD sub-complex inhibitors and v) Inhibitors that target other
co-operating pathways in leukemia (GSK-3, FLT3, MCL-1, and Ras). MLL-N (blue) and MLL-
C (yellow) fragments are shown as localized to a MLLI target gene. In a) menin (red), LEDGF
(brown) and WRAD sub-complex associate with wild-type MLLI1 to regulate the normal
expression (indicated by a single arrow) of HOX, MEIS1, Pbx, and EphA7. Target gene
expression is dysregulated in MLL1-PTDs (b) and MLL1-fusions (c) as indicated by multiple
arrows. b) MLL1-PTDs retain all the functional interactions as seen in wild-type MLLI and c)
MLLI1-fusions do not retain the MLL-C fragment and many interacting proteins. Refer to text for
a detailed description of novel molecular targets that are emerging as potential candidates in the
design of treatment strategies for mixed lineage leukemia. Figure 2.8 was adapted from Liedtke
and Cleary (23) and modified based on the studies by Patel et al., (32, 33, 60, 61).
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CHAPTER 3: Thermodynamic characterization of the interaction between
WDRS and Human SET1 family Win motifs.

This chapter is a reprint of reference ((309)) and modified accordingly to include additional data
for this dissertation. Binding and inhibition studies for the 12-residue MLL1 Win motif peptide
was described previously by Patel et al (32, 60) and have been included in this dissertation for
completeness. Co-Immunoprecipitation studies described in this chapter were carried out by Dr.

Jeong-Hong Lee in Dr. David Skalnik’s group at Department of Pediatrics, Indiana University.
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INTRODUCTION

We have previously shown that the conserved R3765 of the MLL1 Win motif is required for the
assembly and H3K4 dimethylation activity of the MLL1 core complex. We have also shown that
a 12 residue peptide derived from the Win motif of MLL1 (amino acid residues 3762-3773) can
bind WDRS with high affinity (K4=1700 nM) and disrupt the assembly and H3K4 dimethylation
activity of the MLL1 core complex in vitro (60, 61). These initial studies suggest WDR5-MLL1
Win motif interaction is conserved in vivo and raises the possibility that peptides that mimic this
interaction surface will be useful inhibitors of MLL1 core complex dependent H3K4
dimethylation activity. These initial studies are extended further in Chapter 3 where we (in
collaboration with David Skalnik’s lab) demonstrate that the conserved arginine 3765 of the
MLL1 Win motif is required for co-immunoprecipitation of WDRS, RbBP5 and Ash2L from
mammalian cells, confirming its critical role in the assembly the MLL1 core complex (309).
Furthermore, the Win motif sequence is highly conserved among metazoan SET1 family
members (refer to Figure 1.2 and appendix Figures 1a-1b for alignment); however, little is
known about how WDRS recognizes the different SET1 family members. To begin to understand
the molecular basis for the interaction between WDRS and human SET1 family Win motifs, this
chapter describes a detailed thermodynamic and structural analysis of the binding of several
different Win motif peptides to WDRS. While the six residue Win motif is highly conserved
among the human SET1 family members, we were also interested in understanding the role of
the non-conserved residues flanking the six-residue Win motif in recognition by WDRS. To
delineate the potential roles of these additional amino acids in binding WDRS, in Chapters 3 and
4, we have performed a systemic structural and functional analysis of the interaction between

WDRS and six different human SET1 family Win motif peptides containing the six-residue Win



74

motif sequence flanked on both N- and C-termini by four additional naturally occurring amino

acid residues.

In Chapter 3, we compare the thermodynamic binding parameters and inhibition
constants of six-different human SET1 family Win motif based peptides bound to WDRS. We
show that Win motif peptides derived from human SET1 family members (MLL2, MLL3,
MLLA4, SETdla and SETd1Db) interact with WDRS with dissociation constants (K4) ranging from
54-541 nM. These binding affinities are 5 to S1-fold stronger than the interaction affinity
between MLL1 Win motif and WDRS (2762 nM) (309). We further demonstrate that the other
human SET1 family Win motif peptides are also 14 to 72-fold more potent inhibitors of the
H3K4 dimethylation activity of the MLL1 core complex as compared to that of MLL1 Win motif
peptide (309). In Chapter 4, we provide evidence based on WDRS5-Win peptide co-crystal
structures that these binding energy differences are governed by the differences in the amino acid
sequences between the SET1 family Win motif peptides both within and outside the conserved

Win motif sequence.

Collectively, these studies demonstrate that WDRS5-Win motif interaction is conserved
among human SET1 family members and also suggest a framework for the design of better Win

motif based peptide inhibitors for the MLL1 core complex.

METHODS

Co-immunoprecipitation and Immunoblotting: Human embryonic kidney cells (HEK293) were

transiently transfected with pPCMV-Myc tagged MLL-C180 constructs expressing either the



75

wild-type or mutant (R3765A) as previously described (47). After 48 hours of transfection,
nuclear extracts were prepared as previously described (47) and incubated with anti-Myc agarose
beads (Sigma) for 3 hours. Bound proteins were eluted with SDS sample buffer after extensive
washing, and were analyzed by western blotting. Antisera utilized are as follows. Anti-Myc
antibody was obtained from Santa Cruz Biotechnology, Inc. Antisera directed against Ash2L and

Rbbp5 were obtained from Bethyl Laboratories. Anti-Wdr5 antiserum was previously described

(42).

Protein expression and purification: 6X-His tagged versions of full-length WDRS5 (1-334) and
an N-terminal truncated form of WDRS (residues 23-334, AN-WDRS) were expressed and
purified as described previously (60, 61). For the first step of purification, the crude lysate was
passed through a HisTrap column (GE healthcare) containing Nickel beads. The bound 6x-His-
WDRS was eluted from the column using an elution buffer that contains 500 mM Imidazole. The
peak fractions that contain WDRS was then combined and dialyzed with three changes against
the column buffer with no imidazole (at 4 °C) to remove the imidazole and to cleave the 6X-His
tag in the presence of TEV (Tobacco Etch Virus) protease. For the second step of purification
the dialyzed protein was passed through the HisTrap column and the flow through fractions that
contain the untagged version of WDRS are collected. As a final step of purification, the protein
was passed through a gel filtration column (Superdex 200™ GE Healthcare) pre-equilibrated
with the sample buffer containing 20 mM Tris (pH 7.5), 300 mM sodium chloride, 1 mM Tris (2-
carboxyethyl) phosphine, and 1uM zinc chloride. All other proteins used in the inhibition assays

were purified as previously described (60, 61).
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Peptide synthesis: All six human SET1 family Win motif peptides used in this disseration were
synthesized by Genscript (refer to Tables 3.1-3.2 for peptide sequences). All peptides were
synthesized with an acetyl- and amide-capping group at the N- and C-terminus, respectively, to
eliminate the contributions of unnatural N- and C-terminal charges on binding. The isoelectric
points (pl) for the peptides are listed in Table 3.3. The pl values were calculated using the

EXPASY protparam tool. The net charge on each Win motif peptide at pH 7.5 is reported.

Isothermal Titration Calorimetry: Isothermal Titration Calorimetry (ITC) experiments were
carried out using VP-ITC calorimeter (MicroCal). All ITC experiments were performed at 20°C
in a sample buffer containing 20 mM Tris (pH 7.5), 300 mM sodium chloride, 1 mM Tris (2-
carboxyethyl) phosphine and 1 uM zinc chloride. Prior to ITC, all peptides and proteins were
dialyzed against sample buffer to minimize variations in sample preparations. Individual ITC
experiments for each of the six human SET1 family peptides were carried out by titrating a
known concentration of Win motif peptide (determined by amino acid analysis at the KECK
proteomics facility at Yale University) diluted in the sample buffer into a sample cell containing
a known concentration of full-length WDRS (0.037-0.050 mM) in the same buffer. For each ITC
experiment, a 180-s delay at the start of the experiment was followed by 30 injections of 10ul of
the titrant solution, spaced 300-s apart and the sample was stirred at 300rpm throughout the
experiment. Binding stoichiometry (N), dissociation constant (Kg), standard enthalpy (AH),
entropy (AS), and free energy (AG) changes associated with Win peptide binding to WDRS5 were

derived by fitting the binding isotherm to an one-site binding model (Origin 7.0).
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MLL]1 core complex inhibition assays: MALDI-TOF mass spectrometry based
methyltransferase assays were performed as described previously (67). Methylation assays were
carried out in the absence and presence of increasing concentrations of the different Win motif
peptide inhibitors. 7.3 uM of the MLL1 core complex [MLL1?"* (amino acid residues 3745-
3969), WDRS, RbBPS5 and Ash2L] was incubated with 250uM S-adenosyl-methionine (Sigma
Aldrich), 10uM histone H3 peptide (residues 1-20) (Global Peptides) and Win peptides (0-1
mM) at 15°C in an assay buffer containing 50 mM Tris-CI (pH 9.0), 200 mM sodium chloride, 3
mM dithiothreitol, 1uM Zinc chloride, and 5% glycerol. The reactions were quenched after 12
hours by the addition of trifluoroacetic acid to a final concentration of 0.5%. The quenched
samples were diluted 1:5 in deionized water and mixed 1:5 with a-cyano-4-hydroxycinnamic
acid. MALDI-TOF mass spectrometry analysis was carried out on Bruker AutoFlex mass
spectrometer (State University of New York, College of Environment and Forestry, Syracuse,
NY) operated in reflectron mode. Final spectra were averaged from 200 shots per position at 10
different positions. For the pre-incubation methylation assays, 7.3 uM of the WRA-subcomplex
was pre-incubated with increasing concentrations of the different Win motif peptides (0-250uM)
for 1 hour and then mixed with 7.3 uM MLL1°*"*. The methylation reactions and MALDI-TOF
analysis were performed as described above. MLL1 core complex inhibition assays with WDRS
were carried out similarly with 0, 5, 10 or 30-fold excess WDRS as compared to WRAD (7.3
uM) and the relative amounts of unmodified, mono-, di- and trimethylated histone H3 peptides

were quantified after 12 hours.

Curve fitting and ICsg analysis: MALDI-TOF mass spectrometry was used to determine the

relative distribution of unmodified, mono-, di-, and trimethylated species in each reaction as
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described previously (67). ICsq value is defined as the concentration of the Win motif peptide that
is required to inhibit the H3K4 dimethylation activity of the MLL1 core complex by 50% of the
initial value. ICs values were determined by plotting the percent dimethylation as a function of
Win peptide concentration. The data was fitted using Sigma plot 11.0 to a four parameter logistic

model (Equation 1):

Equation 1: y = ¢ + ((a-c)/(1 + (x/ICs0)"(b))),

where a = % inhibition at zero Win peptide concentration, ¢ = percent inhibition at infinitely high
peptide concentration, X is the concentration of inhibitor peptide, y is percent dimethylation, and
b= Hill slope. ICs( values derived from the fits were used to calculate the inhibition constants

(Kj) utilizing the Cheng-Prusoff relation (3/7) (Equation 2):

Equation 2: K= ICs¢/ (1+ [S]/Ky),

where S=concentration of the MLL1 (7.3 uM) used in the methylation assays and K4=

4
137 5

dissociation constant for the interaction between MLL and WDRS5 proteins, previously

determined to be 120 nM (67).

Nucleosome methylation inhibition assays: Radiometry based methyltransferase assays were
performed as described previously (33). Nucleosome methylation assays were carried out in the
absence and presence of increasing concentrations of the MLL3 Win motif peptide inhibitor.

Histones were expressed, purified, refolded, and reconstituted into nucleosomes using the small
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scale reconstitution procedure as described by Dyer et al. (318) using the 255-base pair 54A54
double-stranded DNA fragment from the murine mammary tumor virus 3-LTR promoter and
flanking sequences as described by Flause et al. (319). 7.3 uM of the MLL1 core complex was
incubated with 1uCi of [3H1]methy1 S-adenosylmethionine (I’H,]-SAM; MP Biomedicals), 1 ul
(0.325 mg/ml) of fully assembled nucleosome and MLL3 Win motif peptide (0-4 mM) in an
assay buffer containing 50 mM Tris-Cl (pH 8.5), 200 mM sodium chloride, 3 mM dithiothreitol,
5 mM magnesium chloride, and 5% glycerol. The reactions were carried out at 15°C for 2 hours
and quenched by the addition of 5X SDS loading buffer. The reactions were separated on a 18%
Tris-glycine PAGE and the destained gels were soaked for 30 min in autoradiography enhancer
solution (ENLIGHTNING; PerkinElmer Life Science), vacuum dried, and exposed to film at -

80°C for 10-days.

RESULTS

R3765 of the MLL1 Win motif'is required for the co-immunoprecipitation of WDR5, RbBP5
and Ash2L from mammalian cells (the co-immunoprecipitation experiments were done by J.
H. Lee in David Skalnik’s laboratory).

We have previously established that R3765 of the MLL1 Win motif is required for the assembly
and H3K4 dimethylation activity of MLL1 core complex in vitro (61). To determine if R3765 of
MLL]1 is required for the assembly of the MLL1 core complex in mammalian cells, we compared
wild-type and R3765A MLL1 proteins for their ability to co-immunoprecipitate WDRS, RbBP5
and Ash2L (WRA) from HEK293cells. pCMV-Myc vectors encoding the 180 kDa C-terminal
fragment of wild-type or R3765A MLLI proteins were transfected into HEK293 cells,

immunoprecipitated with antibodies against c-Myc, and probed by western blotting for the

presence of WDRS, RbBPS and Ash2L. As shown in Figure 3.1 (lane 5), while the wild-type
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MLLI co-immunoprecipitates the WRA sub-complex, co-immunoprecipitation is abolished
when R3765 of MLL1 is replaced with alanine (Figure 3.1, lane 6). These results are consistent
with the suggestion from our in vitro studies that R3765 of the MLL1 Win motif is crucial for the

assembly of the MLL1 core complex in cells.
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Figure 3.1 R3765 of MLL1 Win motif is required for the co-immunoprecipitation of MLL1
core complex components

In lanes (1-3), western blots using antibodies against WDRS, RbBPS5, Ash2LL and Myc show that
equal amounts of the MLL1 wild-type (lane 2) and MLL1®*mytant (lane 3) proteins are
present in the input. Lane 1 shows the vector only control. Lanes 4-6 show western blots from
samples immunoprecipitated with the anti-Myc antibody. WDRS, RbBPS5, and Ash2L are co-
immunoprecipitated along with wild-type MLLI1 (lane 5), but are absent in the MLL1 R3765A
mutant (lane 6) or vector only control (lane 4).
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Thermodynamic binding analysis of human SETI family Win motif peptides

In our previous crystal structure of WDRS bound to the 12-residue MLL1 Win motif peptide
(GSARAEVHLRKS), we observed that the N-terminus was well ordered while the last three
residues of the C-terminus were disordered (60). The high quality of density at the N-terminus
suggested that additional interactions may be observed using peptides with additional N-terminal
amino acids. However, Isothermal Titration Calorimetry (ITC) binding experiments with a
longer 19-residue MLL1 Win motif peptide (EPPLNPHGSARAEVHLRKS) shows identical
affinity, suggesting that our original Win motif peptide captured the majority of the salient
interactions (60). To better understand SET1 family Win motif recognition by WDRS, we
obtained synthetic Win motif peptides derived from the six human SET1 family members:
MLL1-4, SETdla and SETd1b. On the basis of our previous structural results, the length of each
peptide was 14-residues and contained the conserved 6-residue Win motif sequence with an
additional 4 amino acid residues flanking both the N- and C-termini (Tables 3.1-3.2). All
peptides were synthesized with acetyl- and amide capping groups to prevent unnatural charge-

charge interactions from influencing the results.

Using these peptides, we first compared the 14-residue MLL1 Win motif peptide
(LNPHGSARAEVHLR, conserved Win motif sequence highlighted in bold) with that of the
original 12- and 19-residue MLL1 Win motif peptides (tested in (60)) for their ability to bind
WDRS by ITC (Figure 3.2). While the 12- and 19-residue MLL1 peptides bind WDRS with
identical affinity (1.7 uM), the 14-residue MLL1 peptide binds ~2-fold weaker with a
dissociation constant of 2.8 uM (Figure 3.2 and Table 3.1). It is likely that this difference is due

to the absence of lysine and serine residues on the C-terminus of the 14-residue peptide, as it is
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present in both 12- and 19-residue peptides that bind WDRS with identical affinity. A similar
conclusion was reached upon deletion of the RKS residues of a Win motif peptide in a related
analysis (3/0). However, it is not clear how the RKS residues contribute to the binding affinity
for WDRS5 as they are disordered in all X-ray structures that contain these sequences (60, 68),
and therefore were not included in the peptides used for further analysis. Because of the
similarity in length to all other Win motif peptides in this study and the relatively small
differences in binding affinities, we used the 14-residue MLL1 Win motif peptide as the basis for
comparison for all other human SET1 family Win motif peptides. The thermodynamic binding
parameters such as dissociation constants (K4), number of binding sites (N), enthalpy change
(AH), entropy change (AS), and free energy change (AG) derived from the ITC experiments for

different MLL1 Win motif peptides are summarized in Table 3.1.
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Figure 3.2 Different length MLL1 Win motif peptides bind WDRS with similar affinities
Isothermal Titration Calorimetry (ITC) data shoWing that the different MLL1 Win motif peptides
have similar affinities for WDR5.(a-c). ITC data for WDRS5 binding to MLL1°7>*?"7 (a),
MLL1*"*3""! (b), and MLL1?"°**"7 (¢) Win motif peptides. Upper panels show heat of binding
plotted as a function of time. Lower panels show the binding isotherms fit to a one-site binding
model. MLL1 Win peptide sequence and the dissociation constants (K4 +S.E.M.) derived from
the fit are indicated.



Table 3.1: Thermodynamic binding parameters for the different
MLL1 Win motif peptides
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MLL1 Win | Peptide Sequence Dissoci Enthalpy Entropy TAS + | Number of | Free energy
motif ation Change Change S.E.M, binding Change (AG)
Constan (LAH) + | (48) + | kCal/mol sites (M) | = S.E.M,
t (Kd) + | S.E.M, S.E.M, + S.E.M. kCal/mol
S.E.M, kCal/mol Cal/mol/K
nM
aML1,13755-3773 acEPPLNPHGSARAEVHLRKSy, | 1700+150 | —-7.80+0.42 -0.45+1.56 -0.13+0.45 1.20+0.32 -7.71+0.52
MLL13758-3771 AcLNPHGSARAEVHLR 2762+338 | -5.80+0.92 4.474£3,23 1.31+0.95 1.48+0.34 -7.09+0.04
aM],1,13762-3773 acGSARAEVHLRKS ;5 1700+100 | -5.77+0.10 7.04+0.07 2.06+0.20 1.40+0.17 -7.83+0.10
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We next compared the binding of WDRS to the different 14-residue SET1 family Win motif
peptides using ITC (Figure 3.3 and Table 3.2). Despite the high sequence conservation of the six-
residue Win motif within each peptide, we observed a wide range of affinities for WDRS among
different peptides. For example, while the 14-residue MLL1 Win motif peptide binds WDRS5
with a dissociation constant (Kg) of ~2,800 nM, the other human SET1 family Win motif
peptides bind with 5- to 51-fold greater affinity (Table 3.2). These results suggest that the non-
conserved residues flanking the Win motif contributes to the specificity of WDRS for different
SET1 family Win motifs. The MLL3 Win motif peptide binds with the greatest affinity at 54 nM,
followed by MLL2 (75 nM), MLL4 (88 nM) SETd1b (103 nM), SETdla (541 nM), and MLLI1
(2,762 nM). The thermodynamic binding parameters for different SET1 family Win motif
peptides are summarized in Table 3.2. The binding data shows that all six SET1 family Win
motif peptides bind WDRS with a one-to-one stoichiometry (Table 3.2, column 7) suggesting

that there is a single Win motif binding pocket in WDRS.
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Figure 3.3 Human SET1 family Win motif peptides bind WDRS with a wide range of
affinities

ITC data for the binding of human SET1 family Win motif peptides to full-length WDRS.
Isothermal Titration Calorimetry (ITC) data shoWing that Win motif peptides derived from
human SET1 family members have differential affinities for WDRS. (a-f). ITC data for WDRS5
binding to MLL1 (a), MLL2 (b), MLL3 (c), MLL4 (d), SETd1a (e), and SETd1b (f) Win motif
peptides. Upper panels show heat of binding plotted as a function of time. Lower panels show
the binding isotherms fit to a one-site binding model. Peptide sequence and dissociation
constants (Kq+ S.E.M.) derived from the fits are indicated.
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Table 3.2: Summary of thermodynamic binding parameters for the
binding of human SET1 family Win motif peptides to WDRS5

SET1 Dissociation Enthalpy Entropy Change(AS) | TAS £ S.E.M, | Number of | Free energy
i i + + | £S.EM, inding si +
famllly Win Win motif sequence Constant  (Kd) Change(AH) S.E.M, Cal/mol/K kCal/mol binding sites (N) | Change (AG)
motif S.E.M, nM S.E.M, kCal/mol +S.EM S.E.M,
kCal/mol
MLLI1 a-LNPHGSARAEVHLR;, 2762+338 -5.80+0.92 4.47+£3.23 1.31+0.95 1.48+0.34 -7.09+0.04
MLL2 2 INPTGCARSEPKI Ly, 755 -15.32+1.56 -19.60+5.30 -5.74+1.56 0.87+0.04 -9.58+0.00
MLL3 acVNPTGCARSEPKMS ;. 5445 -14.03+2.11 -14.54+6.97 -4.26+£2.04 1.21£0.23 -9.77+0.07
MLL4 AcLNPHGAARAEVYLR,,, 88+16 -9.13+1.41 -7.1240.82 0.34+0.15 1.13£0.14 -9.47+0.03
SETla AnEHQTGSARSEGYYP,, 541+46 -7.30£0.71 6.54+4.10 1.13+0.67 1.53£0.03 -8.43+0.04
SET1b acEHVTIGCARSEGFY Ty, 103+14 -11.65+2.27 -10.67+7.54 -3.13£2.21 1.15£0.21 -9.39+0.06
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Human SETI family Win motif peptides have different enthalpic and entropic binding
signatures

Comparison of the enthalpy (AH) and entropy (AS) changes associated with the binding of
human SET1 family Win motif peptides to WDRS can provide valuable insights into the driving
forces involved in the differential binding affinity. Enthalpic interactions are

typically driven by hydrogen bonding and van der Waals interactions whereas favorable entropic
binding affinity is derived from hydrophobic interactions (320-323). Thermodynamic binding
data (Table 3.2 and Figure 3.3) suggest that the hydrogen bonding and van der Waals
interactions are the primary forces that dictate the binding of all Win motif peptides to WDRS5 (as
indicated by large negative values of AH in Table 3.2, column 4). The entropic contribution
(hydrophobic interactions and de-solvation effects) to the overall binding affinity is relatively
smaller (indicated by smaller values of TAS in Table 3.2, column 6). Interestingly, the Win
motif peptides MLL1, MLL4, and SETd1a have positive TAS values suggesting that these
peptides might utilize somewhat different binding forces (additional hydrophobic interactions
and/or changes in solvent entropy) to bind WDRS as compared to MLL2, MLL3, and SETd1b
(negative values of TAS) (Table 3.2 and Figure 3.4). Based on the thermodynamic analysis, the
human SET1 family Win motif peptides are grouped into two different thermodynamic binding
signatures: Group1 (includes MLL1, MLL4, and SETd1a) that has a more favorable AH and less
favorable TAS (characteristics of hydrogen bond contribution, van der Waals, and fewer
hydrophobic interactions) and Group 2 (includes MLL2, MLL3, and SETd1b) that has a
favorable AH and a more favorable TAS (characteristics of hydrogen bond, van der Waals, and

significant contributions from hydrophobic interactions/de-solvation entropy) (Figure 3.4).
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A similar thermodynamic analysis has been reported for HIV-protease inhibitors:
Indinavir, nelfinavir, saquinavir, ritonavir,amprenavir, lopinavir, KNI-272 and KNI-764 that
were used to deduce guidelines for the design of HIV-1 protease inhibitors with greater
specificity (favorable AH) and membrane solubility (favorable TAS) (320-323). Win motif
peptides could be subjected to a similar thermodynamic analysis to determine their initial
binding signatures that could then be optimized to identify new lead compounds with better
inhibitory properties. Based on this analysis, we predict that the MLL2 Win motif peptide that
has the largest AH value (highest specificity derived from hydrogen bonds) would represent a
good starting point for the design of additional Win motif-like inhibitors by incorporating new

hydrophobic features required for enhanced membrane solubility.



91

a Group 1 b Group 2
0 0
Q@ L}
o . 4 o _ 4
§ 10 E. 10
@ ]
O D
& &
-20 - -20 -
-30 ‘ . ‘ -30 : : :
MLL1 MLL4 SETd1a MLL2 MLL3 SETd1b
Win Peptide Win Peptide
= AH
mmm TAS
== AG

Figure 3.4 Thermodynamic binding signatures for Human SET1 family Win motif peptides

Thermodynamic binding signatures for the binding of six different human SET1 family Win
motif peptides to WDRS. Win motif peptides are classified based on the enthalpic (AH), entropic
(TAS) and free energy (AG) changes associated with binding to WDRS. Group 1: MLL1, MLL4
and SETdla (a). Group 2: MLL2, MLL3, and SET1b (b). See text for further description.
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SETI family Win motif peptides are potent inhibitors of the H3K4 dimethylation activity of the
MLLI core complex

We have previously demonstrated that the 12-residue MLL1 Win motif peptide (3762-3773)
inhibits the H3K4 dimethylation activity of the MLLI1 core complex in a concentration
dependent manner by competing with MLL1 for the arginine-binding pocket of WDRS (61).
Since all six human SET1 family Win motif peptides described here bind WDRS with similar or
better interaction affinities as compared to that of the 12-residue MLL1 Win motif peptide, we
predicted that the other SET1 family Win motif peptides would also inhibit the H3K4
dimethylation activity of the MLL1 core complex. Moreover, since the different human SET1
family Win motif peptides differ in their affinities to bind WDRS, we further hypothesized that
these Win motif peptides will inhibit the H3K4 dimethylation activity with varying efficiencies.
To determine if other human SET1 family Win motif peptides also inhibit the enzymatic activity
of the MLL1 core complex, we compared inhibition constants among different Win motif
peptides in enzymatic assays with the fully assembled MLL1 core complex using MALDI-TOF
mass spectrometry. As a negative control, we performed the same assays with a peptide derived
from the P53 tumor suppressor protein containing amino acids HSSHLKSKKGQSTSRHKK

(P53365-382).

Using this strategy, we first compared the inhibition constants among the different MLL1
Win motif peptides. While we previously showed that the 12-residue MLL1 Win motif peptide
has an ICsy of ~400 uM (61), the 14-residue MLL1 Win motif peptide inhibits with an ICsy of 1.8
mM (Figure 3.5b). However, the 19-residue Win motif peptide, which binds to WDRS with

similar affinity as compared to the 12-residue peptide, inhibits the H3K4 dimethylation activity
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with an ICsp of 750 uM (Figure 3.5a-b). The ~2-fold difference in ICsy values between the 19-
and 14-residue MLL1 Win motif peptides is consistent with the differences observed in the

binding affinities of the different MLL1 Win motif peptides (Figure 3.5).
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Figure 3.5 Comparison of inhibition constants for different MLL1 Win motif peptides

MLL1 Win motif peptides inhibit the H3K4 dimethylation activity of MLL1 core complex with
varying efficiencies (a-b). MALDI-TOF assays for the H3K4 methylation activity catalyzed by
the MLL1 core complex (MLL*"*, WDRS5, RbBP5 and Ash2L). MALDI-TOF assays were
carried out with 7.3 uM MLL1 core complex for 12 hours in the absence or presence of
increasing concentrations of MLL1*"%373 MLL1*7*37"! and MLL1*"°**"" Win motif peptides.
In a, relative H3K4 dimethylation levels in the presence of increasing concentrations of different
MLL1 Win motif peptides are shown. Error bars represent the variation observed in two or three
independent experiments. Percent dimethylation at zero Win peptide concentration is normalized
to 100%. In b, IC*° values derived from fitting the data to a four parameter logistic model
described in equation 1. Inhibition constants (Ki) were derived from cheng-prusoff equation (see
equation 2) using a substrate concentration (S) of 7.3 uM and a dissociation constant K4 of 120
nM (MLL1-WDRS5 complex interaction, (617)).
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We next compared the inhibition constants among the six different 14-residue human
SET1 family Win motif peptides. The results show that all SET1 family Win motif peptides
inhibit the H3K4 dimethylation activity of the MLL1 core complex in a concentration dependent
manner (Figure 3.6). For example, at 6-, 30- and 60-fold molar excesses of all six human SET1
family Win motif peptides, the relative amounts of dimethylation catalyzed by the MLL1 core
complex decreases dramatically while the monomethylation activity is correspondingly increased
(Appendix Figures 3a-f). In contrast, even with a 120-fold excess of a control arginine-
containing p53 peptide, the H3K4 dimethylation activity is not significantly altered (Appendix
Figure 3g). The ICs, values for the inhibition of H3K4 dimethylation activity of MLL1 core

complex derived from these experiments are summarized in Figure 3.6b.

Interestingly, all other 14-residue human SET1 family Win motif peptides inhibit with
ICso values that are between 14- to 72-fold lower than that of the 14-residue MLL1 Win motif
peptide (Figure 3.6 and Appendix 3a-g). Little inhibition was observed with the P53 peptide,
which could not be fit to the same model described in equation 1 (Figure 3.6a). The MLL3 Win
motif peptide is the best inhibitor of the H3K4 dimethylation activity of the MLL1 core complex
(Figure 3.6b) with an ICso value of 25 uM, followed by MLL2, MLL4, SETd1b, SETdIa, and
MLLI. The relative inhibitory efficiencies of the human SET1 family Win motif peptides
correlate well with the differences in their binding affinities for WDRS as measured by ITC
(Figure 3.6b). The original MALDI-TOF spectra for the relative distribution of different H3K4
methylation (unmodified, mono-, di-, and trimethylation) levels in the absence or presence of
different Win motif peptides is presented in the Appendix 3a-g. The MALDI-TOF inhibition

assays described in Figure 3.6 were classified as no pre-incubation experiments due to the fact
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that the Win motif peptides were added to a pre-assembled MLL1 core complex (MLL1 and
WRA). The next set of inhibition assays are classified as pre-incubation experiments due to the
fact that Win motif peptides were pre-incubated with the WRA-subcomplex before mixing with

MLL13"%,
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Figure 3.6 Human SET1 family Win motif peptides inhibit the H3K4 dimethylation activity
of the MLL1 core complex with varying efficiencies

SET1 family Win motif peptides inhibit the H3K4 dimethylation activity of the MLL1 core
complex. a-b. MALDI-TOF assays for the H3K4 methylation activity catalyzed by the MLL1
core complex (MLL*"*, WDRS5, RbBP5 and Ash2L). MALDI-TOF assays were carried out with
7.3 uM MLLI core complex for 12 hours in the absence or presence of increasing concentrations
of MLLI (green), MLL2 (pink), MLL3 (yellow), MLL4 (orange), SETdla (cyan), SETd1b (dark
blue) Win motif peptides or the control P53 peptide (red). a. Relative H3K4 dimethylation levels
in the presence of increasing concentrations of Win motif peptides or control P53 peptide. Error
bars represent the variation observed in two or three independent experiments. b. IC*° values and
inhibition constants (Ki) were derived as described in Figure 3.5. MALDI-TOF spectra for non
pre-incubation experiments are shown in Appendix 3.
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We next asked if pre-incubation of Win motif peptides with the WRA sub-complex

3745 3745
1 1

before mixing with MLL alters the ability of Win motif peptides to compete with MLL
in our MALDI-TOF methylation assays. To test this hypothesis, we pre-incubated the WRA-sub
complex with a 1-, 6-, 12- or 30-fold excess of different SET1 family Win motif peptides and
examined the H3K4 dimethylation activity catalyzed by the MLL1 core complex (Figure 3.7 and
Appendix Figure 4a-g). It should be noted that the MLL1 Win motif peptide used in the pre-
incubation assays is the 19-residue peptide while the no pre-incubation assays were carried out
with the 14-residue MLL1 peptide. Comparison of ICs, values for the different Win motif
peptides shows that MLL3 and SET1b Win motif peptides have similar ICsy values of 25 uM and
29 uM, respectively, when pre-incubated with the WRA sub-complex (Figure 3.7). These 1Cs
values are 10-fold better than that of the MLL1 Win motif peptide that has an ICs value of 251
uM (Figure 3.7 and appendix figures [Va-g). Similar experiments with MLL2 and MLL4 Win
motif peptides show that these peptides inhibit the H3K4 dimethylation activity with similar ICs
values of 34 uM, which is 7-fold better than the MLL1 Win motif peptide (Figure 3.7b). Finally,
when pre-incubated with the WRA sub -complex, the SET1a Win motif peptide inhibits the
H3K4 dimethylation activity of the MLL1 core complex with an ICsq value of 77 uM (Figure
3.7b) that is in correlation with its intermediate interaction affinity to WDRS. However, when the
same experiments were conducted with the control p53 peptide, no change in H3K4
dimethylation activity was observed, even with a 30-fold excess of peptide (Figure 3.7 and
appendix Figure 4g). Overall, the inhibition studies show that the human SET1 family Win motif
peptides are 2 to 3-fold better inhibitors of H3K4 dimethylation activity when pre-incubated with

the WRA sub-complex than when the Win peptides are not pre-incubated. These results suggest
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that human SET1 family Win motif peptides are better at inhibiting the assembly of MLL1 core
complex as compared to inhibiting pre-formed MLL1 core complexes. The SET1 family Win
motif peptides ranked in the order of strongest to weakest inhibitor efficiencies when pre-
incubated with WRA-sub complex are as follows: MLL3> SET1b> MLL2> MLL4> SET1a>

MLLI.
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Figure 3.7 Pre-incubation with WRAD lowers the inhibition constants for SET1 family Win

motif peptides

SET1 family Win motif peptides are better inhibitors of the H3K4 dimethylation activity of the
MLL1 core complex when pre-incubated (a-b). MALDI-TOF assays were carried out as
described in 3.6. For pre-incubation, increasing concentrations of human SET1 family Win motif
peptides were incubated with 7.3 uM of WRAD sub-complex for 1 hour and then mixed with 7.3

uM of MLL1*"* to initiate the methylation reaction. a. Relative H3K4 dimethylation levels in
the presence of increasing concentrations of Win motif peptides or control P53 peptide. Error

bars represent the variation observed in two or three independent experiments. b. IC*° values and
inhibition constants (Ki) were derived as described in Figure 3.5. MALDI-TOF spectra for pre-

incubation experiments are shown in Appendix 4.
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Nucleosomal H3 methylation by MLL1 core complex is inhibited by the MLL3 Win motif
peptide

Based on these studies, MLL3 Win motif peptide was identified as the best inhibitor of the H3K4
dimethylation activity of MLL1 core complex. However, the MALDI-TOF assays described
earlier were carried out using a histone H3 peptide (N terminal 1-21 residues of histone H3)
substrate and it is possible that the histone peptide may not fully recapitulate the additional
features present in the physiological substrate for MLL1 core complex, which is a nucleosome.
Indeed, it was previously shown that while the individual methyltransferases, MLL1 and
WRAD, are both capable of methylating histone H3 peptides in vitro, a fully assembled MLLI1
core complex is required for the methylation of a nucleosomal histone H3 (33). Since the Win
motif peptides target an interaction that is required for the assembly of the MLL1 core complex,
we predicted that Win motif peptides will prevent MLL1 core complex mediated nucleosomal
H3K4 methylation. To test this hypothesis, we carried out radiometric histone methyltransferase
assays using a nucleosome substrate in the absence or presence of increasing concentrations of
MLL3 Win motif peptide. The results shows that while the fully assembled MLL1 core complex
catalyzes efficient nucleosomal H3 methylation (Figure 3.8, lane 2), nucleosomal methylation is
inhibited in the presence of MLL3 Win motif peptide (Figure 3.8, lanes 10-11). The fold excess
MLL3 Win motif peptide required to inhibit nucleosomal methylation is 250-500 fold (as
compared to the MLL1 concentration) and is 80-fold higher than the ICs value (25 uM)
determined for the MLL3 Win motif peptide using MALDI-TOF assays (Figure 3.6). No
inhibition was seen up to 125-fold excess MLL3 Win peptide concentration (Figure 3.8, lanes 3-
9) when nucleosomes were used as a substrate. These results suggest that additional features
present in the nucleosome substrate stabilize the interaction between MLL1 core complex and a

fully assembled nucleosome H3 and hence a large excess of MLL3 Win motif peptide is required
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to completely abolish this interaction. Nevertheless, these results demonstrate that MLL3 Win
motif acts as a highly specific inhibitor of nucleosomal H3 methylation at higher concentrations
and possibly through the disruption of the assembly of MLL1 core complex. It is interesting to
speculate that complete inhibition of nucleosomal H3K4 dimethylation could be obtained by pre-
incubating the MLL3 Win motif peptide with the WRA sub-complex before the addition of
MLL1*"* in the methylation reactions. Intriguingly, the methylation assays also demonstrate that
at lower concentrations of MLL3 Win motif peptide there is a slight increase in MLL1 core
complex mediated nucleosomal methylation (Figure 3.8, lane 3). One possible explanation for
this slight increase in nucleosomal methylation is that one of the components of the enzymatic
assays (present in excess) acts as an intrinsic inhibitor of MLL1 core complex activity and the
addition of small amount of MLL3 Win motif peptide relieves that inhibition. Since WDRS is the
only component that is expected to bind the MLL3 Win motif peptide based on its three-
dimensional structure, we predicted that free WDRS can act as an intrinsic inhibitor of MLL1
core complex activity when present in excess by competing with WRAD sub-complex for
binding the Win motif of MLL1. Methylation assays carried out using a MLL1 core complex
that is purified over gel filtration (and hence should have stoichiometric amounts of individual

core complex components) can help address this problem.
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Figure 3.8 MLL3 Win motif peptide inhibits MLL1 core complex mediated nucleosomal
methylation

Nucleosomal H3 methylation assays for the H3K4 methylation activity catalyzed by the MLL1
core complex (MLL>"*, WDR5, RbBP5 and Ash2L). Methylation assays were carried out with
7.3 uM MLLI core complex for 8 hours in the absence or presence of increasing concentrations
of MLL3 Win motif peptide. Protein bands were separated using a 4-12% SDS gel and stained
with coomassie to view the protein bands and the methylated nucleosomal H3 bands were

visualized using H? fluorography.
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Free WDRYS acts as inhibitor of MLLI core complex activity

To test if free WDRS inhibits MLL1 core complex mediated H3K4 methylation, I carried out
MALDI-TOF based methyltransferase assays in the absence or presence of increasing
concentrations of WDRS5 as compared to that of WRAD sub-complex. The data demonstrate that
MLLI core complex mediated H3K4 dimethylation activity decreases with increasing
concentrations of free WDRS (Figure 3.9). The ICsg value derived from the fit for inhibition of
H3K4 dimethylation is 50 uM and suggests that WDRS acts as a strong inhibitor of the MLLI
core complex. However, it should be noted that WDRS has been previously shown to bind
histone H3 peptides with a weak affinity (10-60 uM) (64-67) and adding excess WDRS5 could
titrate away histone H3 peptide from the MLL1 core complex active site instead of acting as an
inhibitor of MLL1 core complex. The 3-fold increase in MLL1 core complex mediated
monomethylation even at 30-fold excess WDRS (Figure 3.9) suggests that the H3 peptide can
still bind to the first active site present in the MLL1 core complex (which catalyzes the
monomethylation event). Therefore it is likely that the histone H3 peptide binding to the MLLI
core complex active site is not perturbed in the presence of excess WDRS and the decrease in

H3K4 dimethylation is due to WDRS’s role as an inhibitor of MLL1 core complex activity.
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Figure 3.9 Free WDRS acts as an inhibitor of MLL1 core complex mediated H3K4
dimethylation activity

Methylation assays were carried out with 7.3 uM MLLI core complex for 12 hours in the
absence or presence of increasing concentrations (0 to 30-fold excess) of WDRS. Relative
amounts of unmodified, mono-, di-, and trimethylation on H3 peptide is plotted as a function of
fold excess WDRS concentration.
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DISCUSSION

WDRS5 is an essential component of SET1 family complexes required for regulating the
degree of H3K4 methylation in cells (63). WDRS functions to bridge interactions between MLL1
and WRAD by binding to a highly conserved WDRS interaction or Win motif within the N-SET
region of MLLI (61, 68). It was previously shown that arginine 3765 of the MLL1 Win motif is
essential for the interaction between MLL1 and WDRS (67). Consistent with the in vitro results,
we demonstrate here that R3765 of MLL1 is required for co-immunoprecipitation of WDRS,
RbBPS5 and Ash2L from mammalian cells, suggesting that the Win motif is important for the
assembly of the MLL1 core complex in cells. We also showed previously that a peptide that
mimics the MLL1 Win motif disrupts the assembly of the MLL1 core complex in vitro and
inhibits its H3K4 dimethylation activity (67). These results suggest that disrupting the interaction
between MLL1 and WDRS5 using Win motif peptides or related compounds may be an effective
strategy for the inhibition of H3K4 methylation in malignant cells. It is expected that such a
strategy would be far more specific compared to efforts to design s-adenosyl methionine-related
mimics that may bind to a wider variety of methyltransferases. A challenge remains in the
identification of Win motif inhibitors that target preferntially MLL1 over other human SET1
family members. However, little is known about the relative stability of SET1 family complexes.
To begin to address this question and to identify more potent Win motif inhibitors of the MLL1
core complex, we compared thermodynamic binding parameters and inhibition constants of
several Win motif peptides derived from the other members of the human SET1 family (MLL2,

MLL3, MLL4, SETd1a, and SETd1b).
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Although the interaction affinity between the full-length SET family proteins and WDRS
is currently unknown, the differences in the binding affinities shown here suggest that the SET1
family complexes may have differing overall stabilities. If this hypothesis is correct, then it is
predicted that the weakest complex would be disrupted at the lowest concentration of Win motif
inhibitors before other SET1 family complexes are disrupted. The binding studies presented here
suggest that MLL1 has the weakest affinity for WDRS and therefore would likely be most
sensitive to inhibition by peptides or other compounds that mimic the MLL1-WDRS interaction
interface. The increased sensitivity of the MLL1 core complex to Win motif peptides could
provide a mechanism to selectively inhibit MLL1 over other human SET1 family members in
MLL1 gain-of-function leukemias. The best peptide inhibitor we have identified is derived from
the MLL3 Win motif sequence, which binds with 51-fold greater affinity to WDRS than the
equivalent MLL1 sequence. We have also shown that pre-incubation of Win motif peptides with
WRA sub-complex lowers the inhibition constants 2 to 3-fold as compared to the inhibition
constants derived from no pre-incubation experiments. These results suggest that Win motif
peptides are better inhibitors in preventing the assembly of MLL1 core complex as compared to
disrupting complexes that are already formed. This result could be physiologically relevant in
that new MLL1-like complexes are being actively formed in rapidly dividing cells such as cancer

cells and Win motif peptides could be useful in targeting these cells over normal cells.

We have also shown that MLL3 Win motif peptide is a highly potent inhibitor of MLL1
core complex mediated nucleosomal methylation. This result suggests that Win motif peptides
will have the potential to be useful inhibitors of MLL1 core complex activity in vivo. We have

also demonstrated that free WDRS acts as an inhibitor of MLL1 core complex activity. This
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finding is of high significance and suggests that the intracellular concentration of free WDRS

should be taken into account when designing inhibitors that target Win motif-WDRS interaction.

In summary, data presented in this chapter suggests that the MLL1 Win motif is essential
for the assembly of the MLL1 core complex in mammalian cells. We have also shown that Win
motif peptides bind to WDRS with a wide range of affinities, suggesting that human SET1
family complexes may be differentially sensitive to Win motif inhibitors-with the MLLI core
complex being the most sensitive. These results provide the basis for the rational design of
improved Win motif inhibitors. We expect that the MLL3 Win motif peptide will be a good

template for future rational drug design efforts.
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CHAPTER 4: Structural analysis of the interaction between WDRS and
Human SET1 family Win motifs.

This chapter is a reprint of reference (309) and modified accordingly to include additional data

for this dissertation.



111

INTRODUCTION

Design of Win motif based inhibitors with better efficiency could be greatly enhanced by
determining the protein structural features within the Win motif that are required for the high
affinity binding to WDRS. To facilitate the process of structure-based drug design and to
understand the molecular basis for Win motif-WDRS interaction, we previously determined the
three-dimensional structure of WDRS bound to the 12-residue (3762-3773) MLL1 Win motif
peptide (60, 68). The structure revealed that the 12-residue MLL1 Win motif peptide binds
WDRS by adopting a partial 3¢ -helical conformation and by inserting the side chain of
conserved Win motif R3765 into the central tunnel in WDRS (60, 68). While the MLL1 Win
peptide binding mode is similar to the previously determined structures of WDRS bound to
histone peptides, which bind by inserting R2 of histone H3 into the central tunnel in WDRS (64-
66), the MLL1 Win motif peptides participate in more favorable interactions with WDRS (60,
68). These structural studies further corroborate the role of MLL1 R3765 in mediating the
interaction with WDRS5 and explain the high sequence conservation of arginine within SET1

family Win motifs.

Since the six residue Win motif sequence is highly conserved within SET1 family, we
predicted that peptides derived from other human SET1 family members will also bind WDRS5
using the same arginine binding pocket utilized by MLL1 Win motif peptide. Moreover, binding
and inhibition studies described in Chapter 3 demonstrate that Win motif peptides derived from
other human SET1 family members bind WDRS with affinities that are 5 to S1-fold better than

that of the MLL1 Win motif peptide and suggests that there are subtle differences in the binding
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mode for different Win motif peptides. To understand how WDRS recognizes the different
human SET1 family Win motifs with different binding affinities, we determined the three-
dimensional crystal structures of WDRS bound to 6-different naturally occurring human SET1

family Win motif sequences at resolutions ranging from 1.9-1.2 Angstroms.

The structures demonstrate that all SET1 family Win motif peptides bind WDRS using
the same arginine binding pocket previously shown to be utilized by the MLL1 Win motif or
histone peptides (60, 64-68). The conserved residues of the Win motif adopt a similar 3¢ helical
conformation. The structures also reveal that non-conserved residues C-terminal to the Win motif
participate in different sets of interactions with WDRS. In particular, the amino acid four
residues C-terminal to the conserved arginine (+4 position, refer to Figure 4.1 for residue
numbering) is highly variable among the different Win motif peptides and may contribute to the
binding energy differences through the presence or absence of an additional hydrogen bond with
WDRS residues. Moreover, the structural analysis also reveals subtle variation within the
conserved Win motif sequence (at the -2 and +1 position), which may also contribute to binding
energy differences-possibly through stabilization of the bound conformation of the peptides
when free in solution. The structures also demonstrate that the residues N-terminal to the Win
motif adopt a conformation that may further stabilize the bound conformation of the Win motif.
To further characterize the contribution of each of these structural differences to the overall
differences in binding affinity, we synthesized additional Win motif peptides bearing individual
amino acid substitutions and quantified their contribution to WDRS5 binding energy differences.

The results of this structure-function analysis are described in Chapter 4.
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Taken together, the structural studies reported in this chapter demonstrate how WDRS
specifically recognizes the different human SET1 family Win motifs. Based on the crystal
structures, we have deduced some rules that could be useful for the design of additional Win

motif peptides with better inhibitory properties.

METHODS

Protein expression and purification: A N-terminal truncated form of WDRS (residues 23-334,
AN-WDRS5) was expressed and purified using the conditions described previously in Chapter 2
for the full-length WDRS5 (60, 61). As a final step of purification, the protein was passed through

a gel filtration column (Superdex 200™

GE Healthcare) pre-equilibrated with the sample buffer
containing 20 mM Tris (pH 7.5), 300 mM sodium chloride, 1 mM Tris (2-carboxyethyl)

phosphine, and 1 pM zinc chloride. The purified protein was concentrated to 13 mg/ml and used

in the crystallization studies described below.

Crystallization and Structure Determination: Crystals of the AN-WDRS: Win peptide binary
complex were obtained using the hanging drop vapor diffusion method. Immediately before
crystallization, a 13 mg/ml stock solution of AN-WDRS in the sample buffer was mixed with a
stock solution of each of the six Win motif peptides dissolved in the same buffer. The final
concentration of AN-WDRS and the Win peptides were 11.7 mg/ml and 1 mM, respectively. The
mother liquor used for crystallization contained 20-30 mM ammonium sulfate, 25-27%
polyethylene glycol (PEG)-3350, and 100 mM HEPES (pH 7.3-7.5). The crystals were flash
frozen in the mother liquor containing 40% PEG3350. Diffraction data for AN-

WDRS:SETd1aWin peptide complex was collected at the National Synchrotron Light Source
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(NSLS) on the beamline X25 using quantum 210 CCD detector. The diffraction data for the
other binary complexes were collected at the Cornell High Energy Synchrotron Source (CHESS)
at the F1 beamline using ADSC quantum 270 CCD detector. All dataset were indexed, reduced
and scaled with HKL-2000 (324) and CCP4i suite (325). Data collection statistics are
summarized in Table 4.1. Each of the six Win motif peptide-WDRS binary complex structures
were solved by molecular replacement with MOLREP (326) using as a search model the
coordinates of the previously determined structure of WDRS (PDB code:2H68) (67). After an
initial rigid body refinement, the structures were further refined with rounds of simulated
annealing, energy minimization, and individual B-factor refinement with a maximum likelihood
target using CNS (327). CNS was used to calculate the initial difference Fourier maps (F,-F.)
and locate the electron density corresponding to each of the Win motif peptides, and the
structures were built using O (328). Final refinements were carried out using the Phenix.refine
module within the Phenix program (/47) and the refinement statistics are reported in Table 4.2.
Molprobity was used to analyze the protein geometry and steric clashes in final refined structures
and the statistics are reported as molprobity score in Table 4.2 (329, 330). All structure figures
were generated using PyMOL (3317). All structure refinement programs used in this study were a

part of SBGrid Consortium.

Peptide synthesis: All human SET1 family Win motif peptides used in this chapter were

synthesized by Genscript (refer to Figure 4.1 for peptide sequences) except the MLL177%Y

peptide, which was obtained from Pi-Proteomics. All peptides were synthesized with an acetyl-

and amide-capping group at the N- and C-termini, respectively, to eliminate the contributions of

H3769Y

unnatural N- and C-terminal charges on binding. It should be noted that the MLL1 peptide
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is insoluble in ITC sample buffer (refer to Chapter 3) and therefore no ITC data could be

collected with this peptide. However, the MLL1"7%Y

peptide is soluble in methyltransferase
assay buffer (refer to Chapter 3) and was therefore used to determine inhibition constants

described in this chapter.

MLLI core complex inhibition assays:

1H3769Y and

MALDI-TOF mass spectrometry based methyltransferase assays for the MLL
MLL1%7%4 peptides were performed as described previously (67). The methylation reactions,

MALDI-TOF analysis and curve-fitting were performed as described in Chapter 3.

RESULTS

Structure determination of WDRS bound to human SETI family Win motif peptides.

To begin to understand the structural basis for the observed differences in affinity for WDRS, we
determined the three-dimensional X-ray structures of WDRS bound to the 14-residue MLL2,
MLL3, MLL4, SETd1a, and SETd1b Win motif peptides with resolutions ranging from 1.2 to 1.9
A (Table 4.1 and 4.2). In addition, we also determined the structure of WDRS bound to the 19-
residue MLL1 Win motif peptide at 1.7 A resolution for structural comparisons. Crystals grown
with the 14-residue MLL1 peptide did not show density for peptide and hence was not included
in the comparative analysis. The data collection and refinement statistics for the different Win

peptide structures are summarized in Tables 4.1 and 4.2.
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* Amino acid residues underlined are not modeled in the crystal structure. Residues with the superscript (a)

are modeled as alanine. Conserved Win motif residues are indicated in red.

Figure 4.1: Amino acid sequence of the human SET1 family Win motif peptides used in
crystallization
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MLLL MLL2 MLL3 MLLe SETd1a SETd1b
Sequence 7ccEPPLPNPHGSARAEVHL | , INPTGCARSEPKI | ,. .VNPTGCARSEPKM | , LNPHGAARAEVY | , EHQTGSARSEGY | ,EHVTGCARSEGFY
Rl(:\']IZ LN][I SNE]Z LR NH2 YPNIIE TNI]Z
Space group P2, c121 P2,2,2, c121 222, €222,

Cell dimensions
a, b, c(A°)

38.606, 80.154,83.517

139.78, 80.79, 88.12

46.53, 68.25, 87.88

139.03, 80.29, 87.63

78.49,98.695, 80.280

78.254,98.272,79.879

Angles a,B,y (°)

90, 89.96, 90

90,90.2,90

90,90, 90

90, 90.04,90

90, 90,90

90, 90,90

Resolution (A%)

50-1.7(1.76-1.7)

50-1.90(1.93-1.90)

50-1.22(1.24-122)

50-1.75(1.78-1.75)

50-1.50(1.55-1.50)

50-1.81(1.87-1.81)

Redundancy® 6.7(3.4) 75(6.3) 123(6.3) 7.4(15) 13.6(9.5) 13.2(11.2)
Completeness (%) 99.4 (93.8) 100 (99.4) 99.6(96.9) 99.8 (100) 99.7 (98.9) 98.3(89.8)
1/ol® 285(261) 34.76 (4 42) 589(3.17) 44.87(6.07) 37.1(3.25) 60.9 (12.06)
Rroverge” 82(47.8) 85(54.3) 132(58.9) 7.9(54.6) 68(52.1) 12.1(35.7)

2 Values in parentheses are for the highest resolution shell.

Table 4.1: Summary of the X-ray data collection statistics for the different human SET1 family
Win motif peptides



MLL1 MLL2 MLL3 MLL4 SETd1a SETd1b
Number of 2 3 1 3 1 1
molecules in the
asymmetric unit
Resolution (A°) 1.75 191 13 1.75 175 1.82
No.reflections 51223 76235 69347 96631 31743 27254
Ruork / Rivee 15.89/20.06 16.53/19.97 18.66/20.91 18.59/21.61 15.68/18.95 21.44/2421
No.atoms
Protein 4713 7070 2356 7070 2356 2356
Peptide 236 285 100 264 92 45
Water 679 705 560 559 338 116
B-factors
Protein 15.01 2335 13.07 21.08 13.01 2416
Peptide 20.09 26.16 14.92 25.58 21.37 27.26
Water 26.77 32.45 25.88 27.27 24.67 28.63
root mean square (r.m.s deviations
Bond lenghts (A°) | 0.007 0.008 0.006 0.007 0.007 0.007
Bond angles (°) 1.148 1.137 1.178 1174 1.165 1.154
Ramachandran plot
% most favored 88.90 87.20 88.30 87.70 90.30 93.40
% allowed 11.10 12.60 11.70 12.30 9.70 6.60
% outliers 0 0.20 0 0.53 0.96 0.33
Molprobity score 1.36 1.28 1.39 117 1.34 1.21
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Table 4.2: Summary of the refinement statistics for the different human SET1 family Win motif

peptides
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Crystal structure of MLL1 Win motif peptide bound to WDR5

We determined the crystal structure of WDRS bound to a MLL1 Win motif peptide
encompassing residues 3755-3773. This 19-residue MLL1 Win motif peptide co-crystallized
with WDRS5 in the P2; space group and the structure was determined at 1.70 A resolution. The
molecular replacement solution revealed that there are two molecules in the asymmetric unit.
The structural superposition of the two individual monomers in the asymmetric unit is reported
in Figure 4.2a and the two peptide molecules superpose with a root mean square deviation
(RMSD) of 0.044 A. The structure was refined using the Phenix program and the final
refinement statistics include a Ryo of 15.89% and Ry 0f 20.06 % (Table 4.2). Fifteen residues
could be modeled into the electron density with the last four residues on the C-terminus being
disordered (Figure 4.3a). The structure was analyzed by Procheck (332) for stereochemical
quality and the Ramachandran plot did not show any deviations from the allowed conformations
for Phi (), Psi (v) angles (refer to appendix Figure 5a). The structure coordinates have been

deposited in the protein data bank (PDB code: 4ESG).



120

a MLL1 longer peptide b MLL2 peptide c MLL4 peptide
%// monomers 1and 2 monomers 1and 2 monomers 1and 2

5 ./ 5;‘
RMSD=0.044 (A°) RMSD=0.027 (A°) RMSD=0.025 (A°)

MLL2 peptide MLL4 peptide
monomers1and 3 monomersland 3

R

RMSD=0.058 (A°) RMSD=0.052 (A°)

MLL2 peptide MLL4 peptide
monomers 2 and 3 monomers 2 and 3

RMSD=0.047 (A°) RMSD=0.047 (A°)

Figure 4.2 Pair-wise superposition of peptide monomers in the asymmetric unit for MLL]1,
MLL2 and MLL4 Win motif structures

a-c. Structural superposition of individual peptide monomers in the asymmetric unit of MLL1,
MLL2 and MLL4 Win motif structures. In a, superposition of the two peptide chains (1 and 2)
from the MLL1 Win motif structure is shown. In b, individual pair-wise superposition of the
three peptide chains (1, 2 and 3) of MLL2 Win motif peptide structure is shown. In ¢, individual
pair-wise superposition of the three peptide chains (1, 2 and 3) of MLL4 Win motif peptide
structure is shown. Root mean square deviation (RMSD A) values for the superposition of each
monomer pairs are indicated. Structural differences are present in the ends of each peptide
monomer chain. Structural figures were generated using PyMOL (3317).
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— MLL1 e MLLA
—MLL2 o SETd1a
MLL3 ——SETd1b

Figure 4.3 Simulated Annealing omit maps showing the different human SET1 family Win
motif peptides bound to WDRS

a-f. Simulated annealing Fo-Fc Omit maps showing the different Win motif peptides bound to
WDRS. MLLI1 (¢) and MLL3 (e) Win motif peptides are contoured at 2c and MLL2 (d), MLL4
(f), SETdl1a (g), and SETd1b (h) Win peptides are contoured at 3c. The peptides are shown as
sticks and color-coded as MLL1 (green), MLL2 (pink), MLL3 (yellow), MLL4 (orange),
SETdla (cyan), and SETd1b (dark blue).
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Crystal structure of MLL2 Win motif peptide bound to WDR5

Next, we determined the crystal structure of MLL2 Win motif peptide (encompassing residues
5333-5346) bound to WDRS. The 14-residue MLL2 Win motif peptide co-crystallized with
WDRS in the C,2; space group and the structure was determined at 1.90 A resolution. The
molecular replacement solution revealed three molecules in the asymmetric unit. The structural
superposition of the three individual monomers in the asymmetric unit is reported in Figure 4.2b
and the three peptide molecules superpose with RMSD values that range from 0.027-0.058 A.
The structure was refined using the Phenix program and the final refinement statistics include a
Ryork 0f 16.53% and Rgee 0f 19.97 % (Table 4.2). Thirteen residues could be modeled into the
electron density with the last leucine residue on the C-terminus being disordered (Figure 4.3b).
The structure was analyzed by Procheck (332) for stereochemical quality and the Ramachandran
plot did not show any deviations from the allowed conformations for Phi (¢), Psi (y) angles
except for the WDRS residue D212 from chain A, which is present in a disallowed region (refer
to appendix Figure 5b). The structure coordinates have been deposited in the protein data bank

(PDB code: 4ERQ).

Crystal structure of MLL3 Win motif peptide bound to WDR5

Next, we determined the crystal structure of WDRS in complex with a MLL3 Win motif peptide
encompassing residues 4703-4716. The 14-residue MLL3 Win motif peptide co-crystallized with
WDRS in the P2,2,2; space group and the structure was determined at 1.22- A resolution. The
molecular replacement solution revealed only one molecule in the asymmetric unit. The structure
was refined using the Phenix program and the final refinement statistics include a Ry of

18.66% and Ry 0f 20.91 % (Table 4.2). All fourteen residues could be modeled into the
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electron density owing to the high quality diffraction data (Figure 4.3c). The structure was
analyzed by Procheck (332) for stereochemical quality and the Ramachandran plot did not show
any deviations from the allowed conformations for Phi (¢), Psi (y) angles (refer to appendix
Figure 5c¢). The structure coordinates have been deposited in the protein data bank (PDB code:

AERY).

Crystal structure of MLL4 Win motif peptide bound to WDR5

The crystal structure of WDRS5-MLL4 Win motif peptide (residues 2504-2517) binary complex
was determined at 1.75 A resolution. The 14-residue MLL4 Win motif peptide co-crystallized
with WDRS in the C,2; space group and the molecular replacement solution revealed three
molecules in the asymmetric unit. The structural superposition of the three individual monomers
in the asymmetric unit is reported in Figure 4.2¢ and the three peptide molecules superpose with
RMSD values that range from 0.025-0.052 A. The structure was refined using the Phenix
program and the final refinement statistics include a Ry of 18.59% and Ry 0f 21.61% (Table
4.2). Eleven residues could be unambiguously modeled into the electron density with the last
leucine residue on the N-terminus and the last two residues on the C-terminus being disordered
(Figure 4.3d). The structure was analyzed by Procheck (332) for stereochemical quality and the
Ramachandran plot did not show any deviations from the allowed conformations for Phi (¢), Psi
(v) angles (refer to appendix Figure 5d).The structure coordinates have been deposited in the

protein data bank (PDB code: 4ERZ).
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Crystal structure of SETd1a Win motif peptide bound to WDR5

The crystal structure of WDRS5-SETdla Win motif peptide (residues 1488-1501) binary complex
was determined at 1.50 A resolution. The 14-residue SETd1a Win motif peptide co-crystallized
with WDRS in the C222, space group and the molecular replacement solution revealed only one
molecule in the asymmetric unit. The structure was refined using the Phenix program and the
final refinement statistics include a Ryox 0f 15.68% and Rgee of 18.95% (Table 4.2). Nine
residues could be unambiguously modeled into the electron density with the last three residues
on the N-terminus and the last two residues on the C-terminus being disordered (Figure 4.3¢).
The structure was analyzed by Procheck (332) for stereochemical quality and the Ramachandran
plot did not show any deviations from the allowed conformations for Phi (¢), Psi (y) angles
(refer to appendix Figure 5e¢).The structure coordinates have been deposited in the protein data

bank (PDB code: 4EWR).

Crystal structure of SETd1b Win motif peptide bound to WDR5

The crystal structure of WDR5-SETd1a Win motif peptide (residues 1488-1501) binary complex
was determined at 1.81 A resolution. The 14-residue SETd1b Win motif peptide co-crystallized
with WDRS in the C222; space group and the molecular replacement solution revealed only one
molecule in the asymmetric unit. The structure was refined using the Phenix program and the
final refinement statistics include a Ry of 21.44% and R 0f 24.21% (Table 4.2). Seven
residues could be unambiguously modeled into the electron density with the last four residues on
the N-terminus and the last three residues on the C-terminus being disordered (Figure 4.3f). The
structure was analyzed by Procheck (332) for stereochemical quality and the Ramachandran plot

did not show any deviations from the allowed conformations for Phi (), Psi (y) angles (refer to



125

appendix Figure 5f). The structure coordinates have been deposited in the protein data bank

(PDB code: 4ESO).

An overview of the structure of each of the Win motif peptides bound to WDRS is
presented in Figures 4.4a-f. The individual structures were analyzed for the presence of intra-
and intermolecular hydrogen bond, van der Waals contacts between the Win motif peptide and
WDRS, which are summarized in Figures 4.5-4.7. The contribution of solvent molecules is
ignored in this structural analysis. The structures of other human SET1 family Win motif
peptides are then compared and contrasted with the three-dimensional structure of the 19-residue
MLLI1 Win motif peptide and the similarities and differences observed in these structures are

described in the following sections (Figures 4.8-4.12).
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Figure 4.4a: Structure of MLL1 Win motif peptide bound to WDRS

The amino acid residues that form the interaction surface between WDRS and MLL1 Win motif
peptide are shown. WDRS5 residues are shown as white sticks and the MLL1 Win motif peptide
residues are shown as sticks in green. Intramolecular i to i+3 (purple dotted lines) and inter
molecular (pink dotted lines) hydrogen bonds present within the MLL1 Win peptide structure are
shown. Water molecule is shown as red sphere. WDRS residues are labeled in black and MLL1
Win motif peptide residues are labeled in red.
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Figure 4.4b: Structure of MLL2 Win motif peptide bound to WDRS

The amino acid residues that form the interaction surface between WDRS and MLL2 Win motif
peptide are shown. WDRS residues are shown as white sticks and the MLL2 Win motif peptide
residues are shown as sticks in pink. Intramolecular hydrogen bonds are shown as purple dotted
lines (i to i+3) and green dotted lines, respectively. WDRS residues are labeled in black and
MLL2 Win motif peptide residues are labeled in red.
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Figure 4.4c: Structure of MLL3 Win motif peptide bound to WDRS

The amino acid residues that form the interaction surface between WDRS and MLL3 Win motif
peptide are shown. WDRS residues are shown as white sticks and the MLL3 Win motif peptide
residues are shown as sticks in yellow. Intramolecular hydrogen bonds are shown as purple
dotted lines (i to i+3) and green dotted lines, respectively. WDRS residues are labeled in black
and MLL3 Win motif peptide residues are labeled in red.
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Figure 4.4d: Structure of MLL4 Win motif peptide bound to WDRS

The amino acid residues that form the interaction surface between WDRS and MLL4 Win motif
peptide are shown. WDRS5 residues are shown as white sticks and the MLL4 Win motif peptide
residues are shown as sticks in orange. Intramolecular hydrogen bonds are shown as purple
dotted lines (i to i+3) and pink dotted lines, respectively. WDRS residues are labeled in black and
MLL4 Win motif peptide residues are labeled in red.
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Figure 4.4e: Structure of SETd1a Win motif peptide bound to WDRS

The amino acid residues that form the interaction surface between WDRS and SETd1a Win motif
peptide are shown. WDRS5 residues are shown as white sticks and the SETd1a Win motif peptide
residues are shown as sticks in cyan. Intramolecular hydrogen bonds are shown as purple dotted
lines (i to i+3) and green dotted lines, respectively. WDRS residues are labeled in black and
SETdla Win motif peptide residues are labeled in red.
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Figure 4.4f: Structure of SETd1b Win motif peptide bound to WDRS

The amino acid residues that form the interaction surface between WDRS and SETd1b Win motif
peptide are shown. WDRS residues are shown as white sticks and the SETd1b Win motif peptide
residues are shown as sticks in dark blue. Intramolecular hydrogen bonds are shown as purple
dotted lines (i to i+3) and green dotted lines, respectively. WDRS residues are labeled in black
and SETd1b Win motif peptide residues are labeled in red.
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Figure 4.5: Intramolecular hydrogen bonds within human SET1 family Win motif peptides

a-f. Summary of number of intramolecular hydrogen bonds present in human SET1 family Win
motif peptide structures. The hydrogen bonds are listed according to the residue position of the
peptide with the conserved Win motif arginine residue designated as position 0. CCP41i suite was
used to analyze the intramolecular hydrogen bond contacts present within the different Win motif
structures using a cutoff distance range of 2.50-3.25 A. Additional intramolecular hydrogen
bonds are observed in the N-terminus of MLL2, MLL3 and MLL4 Win motif structures as
compared to MLL1, SETdla and SETd1b structures. Refer to text to more detail.
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Figure 4.6: Intermolecular hydrogen bonds between WDRS and different SET1 family Win
motif peptides

a-f. Summary of number of intermolecular hydrogen bonds present in human SET1 family Win
motif peptide structures. The hydrogen bonds are listed according to the residue position of the
peptide with the conserved Win motif arginine residue designated as position 0. CCP41i suite was
used to analyze the intermolecular hydrogen bond contacts present between WDRS and different
Win motif peptides using a cutoff distance range of 2.50-3.25 A. All Win motif peptides
participate in similar number of intermolecular hydrogen bonds. Refer to text to more detail.
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Figure 4.7: Intra and intermolecular van der Waals contacts present in different human

SET1 family Win motif peptides

a-f. Summary of number of inter and intramolecular van der Waals contacts present in human
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SET1 family Win motif peptide structures. The van der Waals contacts are listed according to the
residue position of the peptide with the conserved Win motif arginine residue designated as
position 0. CCP4i suite was used to analyze inter- and intramolecular van der Waals contacts
using a cutoff distance range of 3.3-4.0 A. Refer to text to more detail.
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STRUCTURAL ANALYSIS OF WDR5-HUMAN SET1 FAMILY WIN
MOTIF PEPTIDE COMPLEXES

Human SETI family Win motif peptides bind WDRS5 using a similar conformation

The overall structure of WDRS in each co-crystal structure is topologically similar to that of
previously reported structures of WDRS bound to MLL1 Win motif peptides, or histone H3
peptides (60, 64-68). The WDRS structure consists of a seven-blade B-propeller with a central
cavity that traverses the center of the protein from top to bottom (Figure 4.8a and b). Initial
electron density difference maps revealed that each Win motif peptide binds in the central
opening at the top of WDRS, with the conserved arginine residue in each structure (designated as

position 0) inserted into the central tunnel (Figure 4.8a and b).
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Figure 4.8. Human SET1 family Win motif peptides bind WDRS using a similar 3, helical
conformation

Human SET1 family Win motif peptides bind WDRS using the same arginine-binding pocket. (a-
b) WDRS molecule is shown as a surface representation (grey) and the different Win motif
peptides are shown in different colors. a. Superposition of Win motif peptides shown with a
cartoon representation. b. Cut-away view of the arginine-binding pocket of WDRS is shown. All
Win motif peptides insert the conserved arginine into the central tunnel in WDRS. The side chain
of the conserved arginine is shown as a stick representation.
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The six conserved residues of the Win motif (which ranges from amino acid -3 to +2,
relative to the conserved arginine) are ordered in each co-crystal structure and are all highly
similar (Figures 4.3 and 4.9). Superposition of all atoms in the conserved six—residue sequence in
all peptides reveals an RMS deviation of 0.207 A (Figure 4.9). All SET1 family Win motif
peptides bind WDRS5 by adopting a 3¢-helical conformation (Figure 4.8) and an extensive
network of direct and water-mediated hydrogen bonds and hydrophobic interactions stabilize the
binding of all SET1 family Win motif peptides (Figures 4.5-4.7). The conserved Win motif
residues (-3 to +2) all participate in the formation of the 3¢-helix in each of the crystal structure
and are stabilized by two intramolecular i to i+3 main-chain hydrogen bonds between residues at

-2 and +1 positions and between residues at -1 and +2 positions (Figures 4.4a-f).
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Figure 4.9 Conserved Win motif residues adopt structurally similar conformations

Conserved Win motif residues adopt structurally similar conformations. a. Model superposition
of the six conserved Win motif residues from different WDRS5-Win motif peptide co-crystal
structures. Conserved Win motif residues are indicated and numbered with respect to the
conserved arginine (position 0). Refer to figure 4.1 for residue numbering. WDRS molecule is
shown as a surface representation (grey) and the different Win motif peptides are shown as sticks
(color coded as in Figure 4.8).
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Conserved Win motif residues Gly(-3), Ala(-1) and Arg (0) occupy similar positions in
all the Win motif structures (Figure 4.9) and involve in several interactions with WDRS that are
identical (Figures 4.5-4.7). Similar to the previously determined structure of the 12-residue
MLL1 Win motif peptide (60), the conserved Arg at position 0 in all the SET1 family Win motif
structures makes direct and water-mediated hydrogen bonds with WDRS residues: Ser91,
Phel33, Ser175 and Cys261 (Figures 4.4a-f and figures 4.5-4.7). Additionally, the arginine side
chain makes intermolecular van der Waals contacts with Ser49, Ser91, Asp92, Phel133, Tyr260,
Cys261, Phe263 and 11e305 (Figures 4.4a-f and figures 4.5-4.7). This extensive network of
interactions observed with the Win motif arginine explains its high sequence conservation within
the different SET1 family Win motif peptides and provides a structural basis for why the
mutation of the conserved arginine (R3765A) in MLL1 completely abolishes the interaction with
WDRS both in vitro (67) and in mammalian cells (Figure 3.1). In all the Win motif peptide
structures, other conserved Win motif residues Glycine at -3 and Alanine at the -1 position
participate in multiple hydrogen bonds (Gly89 and Asp107) and van der Waals contacts (Ala65,
Gly89, Ser91, Asp107, Tyr131, Phel33 and Phel149) with WDRS residues that are common to
all Win motif structures (Figures 4.4a-f and figures 4.5-4.7). It is likely that these conserved sets
of interactions observed within the conserved Win motif accounts for the strong interaction
affinities of all human SET1 family Win motif peptides to WDRS and explains their high amino
acid sequence conservation within the SET1 family members (refer to Figure 1.2 and appendix

Figures 1.1-1.6).

However, comparison of the different SET1 family Win motif peptide structures also

reveal minor differences within the conserved Win motif residues. The largest difference is
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observed at residues present in the -2 and +1 position. In three out of six structures (MLL2,
MLL3, and SETd1b), the cysteine side chain at the -2 position forms an intramolecular hydrogen
bond with the hydroxyl group of serine residue present at +1 position (Figures 4.4b, 4.4c and
4.4f). Likewise, the SETd1a Win motif peptide has a serine at both the -2 and +1 positions and
can form a similar intramolecular side chain hydrogen bond (Figure 4.4¢). In contrast, MLL1 and
MLL4 Win motifs have a serine or an alanine at the -2 position and an alanine at the +1 position
and do not have the ability to form the intramolecular side chain hydrogen bond (Figure 4.4a,
and 4.4d). It is possible that this extra hydrogen bond present in the MLL2, MLL3, SETdla, and
SETd1b Win motif peptides contribute to their 5- to 50-fold increased affinities for WDRS as
compared to the MLL1 Win motif peptide. Interestingly, the MLL4 Win motif peptide that has an
alanine at the -2 and +1 positions (hence no additional hydrogen bond) can still bind WDRS with
30-fold greater affinity compared to MLL1. One possible explanation for this difference could be
that an alanine side chain in MLL4 (-2 position) makes favorable hydrophobic interactions in the
relatively hydrophobic pocket in WDRS5 (formed by Ala 65, 1190 and the alanine at -1 position
of Win motif peptides) as compared to a hydrophilic side chain of serine present in MLL1
(Figures 4.4a and 4.4e¢).

The second structural difference observed within the conserved Win motif is two residues
C-terminal to the conserved arginine (position +2) where the methylene atoms of the conserved
glutamate side chain adopt slightly different positions (Figure 4.9). However, the position of
carboxylate of the +2 glutamate is in a relatively similar position in each structure. One other
observed difference is the carbonyl of the glutamate in position +2 is oriented in the opposite
direction in the SETd1a and SETd1b structures compared to that of the MLL1-4 structures

(Figure 4.9). This change in orientation of the carbonyl oxygen in SETdla and SETd1b
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structures enables the carbonyl oxygen to participate in van der Waals contacts with the WDRS
residue K259. These observed differences within the conserved six-residue Win motif alone do
not correlate with the 5- to 51-fold differences in affinity for peptide binding to WDRS,
suggesting that the non-conserved residues that flank the Win motif may also be responsible for
differences in affinity. Indeed, the largest differences in the six structures are observed in non-

conserved the residues flanking the N- and C-termini of the Win motif.

Structural differences at the N-terminus

While there is some structural heterogeneity in the non-conserved residues flanking the N-
terminus of the Win motif, in four out of the six structures, the N-terminal flanking residues (-4
to -7) adopt a U-shaped conformation in which the concave surface forms a pocket that interacts
with the side chain carboxylate of the conserved +2 glutamate (Figure 4.10). In each of these
structures, the +2 carboxylate forms two hydrogen bonds with the side chain and main chain
atoms of the residue in the-4 position (either histidine or threonine) (Figure 4.10). These
additional interactions may stabilize the bound conformation of the 3¢-helix of the peptide when
free in solution, which may enhance binding affinity. Similar N-terminal interactions may also
be present in the other WDRS5-Win motif complexes with MLL1 and SETd1b peptides in
solution, but these interactions could not be observed in the crystal structures in this
investigation. The N-terminal flanking residues of the SETd1b peptide co-crystal structure were
disordered and could not be modeled (Figure 4.3f). In contrast, most of the N-terminal residues
of the 19-residue MLL1 Win motif peptide were ordered, and the model reveals that they adopt a

significantly extended conformation that is stabilized by interaction with another molecule in the
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asymmetric unit (Appendix Figure 6). This extended conformation is therefore likely a

crystallization artifact.
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Figure 4.10 Structural differences at the N-terminus

N-terminal residues flanking the conserved Win motif adopt structurally different conformations.
(a-f). N-terminus (residues from -4 to -1) of MLL1 (a), MLL2 (b), MLL3 (c), MLL4 (d), SETdla
(e) and SETd1b (f) peptides are shown. Intramolecular hydrogen bonds between the -4 residue
and +2 residue of MLL2, MLL3, MLL4 and SETdla Win motif peptides are highlighted in red.
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Structural differences at the C-terminus

In five out of the six structures, at least one residue flanking the C-terminal end of the Win motif
could be modeled unambiguously (Figure 4.3). In the WDRS5-MLL3 Win motif structure, all four
C-terminal flanking residues could be modeled owing to its high resolution (1.22 A). However,
the last two residues (+5 and +6) do not appear to make any contacts with WDRS5 (Figures 4.6-
4.7). In contrast, in the WDRS5-SETd1b structure, only one residue after the conserved +2

glutamate could be unambiguously modeled (Figure 4.3f).

A comparison of the C-terminal flanking residues among WDRS5-Win motif peptide
structures reveals that the +4 residue interacts with one of two shallow hydrophobic pockets on
WDRS, which we arbitrarily designate as the A- and B-pockets (Figure 4.11a). The A-pocket is
lined by WDRS5 residues Y191, P173, F149 and D172. The +4 amino acid in the MLL1 and
MLL4 peptides interacts with residues in the A-pocket. The B-pocket is lined by residues Y191,
P216 and L234, which interact with the +4 amino acid side chain of the MLL2, MLL3, SETd1a
Win motif peptides. In addition, B-pocket peptides form an additional main chain hydrogen bond
between the amide nitrogen of the +4 amino acid and the carbonyl oxygen of WDRS residue
K259 (Figure 4.11b and Figure 4.6). This hydrogen bond is absent for peptides that bind in the
A-pocket. All of the B-pocket Win motif peptides, albeit to varying degrees, have higher affinity
for WDRS compared to that of the MLL1 Win motif peptide. This increase in affinity may be due
to the presence of this additional main chain hydrogen bond with the +4 amino acid in the B-

pocket.
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Differences in binding affinity is not correlated with the identity of the residue in the +4
position, as tyrosine is seen in both A- or B-pockets of the MLL4 and SETd1a structures,
respectively (Figure 4.11a). Instead, A- or B-pocket binding appears to be correlated with the
identity of the preceding residue in the +3 position. Common among A-pocket peptides is the
presence of a valine in the +3 position of MLL1 and MLL4 structures. The valine side chain in
the +3 position interacts with WDRS5 residues Y260 and the aliphatic portion of the K259 side
chain (Figure 4.11b). In contrast, B-pocket peptides have either proline (MLL2, MLL3) or
glycine (SETdla, SETd1b) in the +3 position. The +3 proline interacts more extensively with the
Y260 side chain, and to a lesser extent with the K259 side chain (Figure 4.11b). As a result, the
proline Ca atom is shifted by 1.2-1.4 A compared to that of the Ca atom of valine in the MLL1
and MLL4 structures. Likewise, in the SETd1a and SETd1b structures, the Ca atom of the +3
glycine forms van der Waals contacts with the CO1 and Cel atoms of the Y260 side chain,
correlating with a 2.2-2.4 A shift in its position relative to that of the Ca atom of valine in the
MLLI1 and MLLA4 structures. These results suggest that it is the different interactions between
WDRS and the side chain or main chain atoms of the +3 amino acid of the Win motif that

determines, at least in part, the location of the +4 amino acid.
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Figure 4.11 Structural differences at the C-terminus

a-c. Superposition of SET1 family Win motif peptides showing interactions at the C-terminal
Win motif flanking residues. In a, a closer look at the interactions at +4 position is shown.
WDRS residues that form the A- (red circle) and B- (blue circle) pockets are indicated as sticks
(white). Different Win peptides are color coded as in Figure 4.8. In b, representative
superposition of MLL1 (A-pocket) and MLL2 (B-pocket) peptides show the differences of
interactions at the +3 position. The +3 and +4 amino acids from the MLL1 (green) and MLL2
(pink) structures are shown as stick representations. WDRS5 residues (K259 and Y260) from the
Win peptide structures are shown as lines in the same colors, respectively. The +4 residue in B-
pocket peptides (MLL2, MLL3, SETdla, and SETd1b) forms an intermolecular hydrogen bond
(red dotted line) with the main chain carbonyl of WDRS residue K259. c. superposition of A-
(F149, D172, P173, and Y191) and B-pocket (Y191, P216, and L234) WDRS residues is shown
for all structures in the absence of Win peptides. The largest differences are observed in the side
chains of Y191 and K259. The WDRS residues are color coded as follows: green (MLL1), pink
(MLL2), yellow (MLL3), orange (MLL4), cyan (SETd1a), and dark blue (SETd1b).



147

Despite differences in the positions of the C-terminal amino acids of the different Win
motif peptides, there is remarkably little difference in the positions of WDRS residues in the
different complexes. Main chain atom positions of WDRS are highly similar among the different
Win peptide bound structures and superpose with RMS deviations of 0.1-0.4 A (Table 4.3). The
largest difference is a rotation around the CB-Cy bond of Y191, which rotates to accommodate
interactions with the +4 amino acid of the different Win motif peptides (Figure 4.11¢). In
addition, the side chain of WDRS residue K259 is oriented differently in the SETdla and
SETd1b Win motif peptide structures compared to that of the MLL1-4 structures (Figure 4.11c¢).
The absence of a side chain in the +3 position of the SETd1a and SETd1b Win motif peptides
likely allows a rotation around Ca-Cf bond of WDRS residue K259 bringing its side chain

within van der Waals distance of the peptides.

Collectively, these structural analyses predict that the amino acid differences within and
outside the conserved Win motif contribute in parts to the 50-fold difference in affinities for
WDRS. To quantify the contribution of each of these differences to the overall binding affinities,
we compared the binding properties of the 14-residue MLL1 and MLL4 Win motif peptides,

which are highly similar in sequence (refer to Figure 1.2).



MLL1 MLL2 MLL3 MLL4 SETla SET1b
MLL1 - 0.280 0.359 0.278 | 0.357 0.338
MLL2 = 0.343 0.156 | 0.391 0.386
MLL3 = 0.352 | 0.421 0.418
MLIL4 = 0.339 0.318
SETla - 0.115
SET1b -
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Table 4.3: Pair-wise RMSD values for the superimposition of WDRS molecules only from
Win motif peptide bound structures
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The -2 and +4 amino acids of SETI family Win motifs contribute to high affinity binding to
WDRS5

The amino acid sequences of the MLL1 and MLL4 peptides differ in only two positions (-2 and
+4), yet the MLL4 peptide binds WDRS with 31-fold greater affinity (Table 3.2). Comparison of
the 3-dimensional structures reveals that the tyrosine hydroxyl atom of the +4 position in the
MLL4 Win motif peptide forms a direct hydrogen bond with WDRS residue D172 in the A-
pocket (Figure 4.12b). A similar direct hydrogen bonding is absent in the MLL1 Win motif
structure containing a histidine in the +4 position. Instead, a water-mediated hydrogen bond with
D172 stabilizes the position of the histidine side chain (Figure 4.4a). These structural differences
suggest that a direct hydrogen bond between the +4 amino acid of the Win motif peptide and

D172 of WDRS contributes significantly to the observed differences in affinity.

To test this hypothesis, peptides were synthesized that individually replaced the -2 and +4
residues in the MLL1 Win motif peptide with the corresponding residue in the MLL4 peptide,
and were compared for their ability to inhibit the H3K4 dimethylation activity of the MLLI1 core
complex in vitro. When the -2 serine of the MLL1 Win motif peptide was replaced with alanine,
ICs¢ decreases 3-fold compared to that of the 14-residue wild-type MLL1 Win motif peptide
(Figure 4.12c and d). In contrast, when the +4 histidine residue of the MLL1 Win motif peptide is
replaced with tyrosine, ICsy decreased 9-fold compared to that of the wild-type MLL1 Win motif
peptide (Figure 4.12¢ and d). These results suggest that the tyrosine in the +4 position of the Win
motif peptide contributes ~1.3 kcal/mol to binding WDRS within the context of the MLL1 core
complex, likely due to the formation of a direct hydrogen bond between the +4 tyrosine hydroxyl
and D172 in WDRS5 (Figure 4.12d). In contrast, replacement of -2 serine with an alanine

contributes ~ 0.6 kCal/mol to binding (Figure 4.12d). We hypothesize, based on the crystal
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structures of the MLL1 and MLL4 Win motif peptides that this contribution results from an
increase in entropy associated with easier desolvation of the alanine in the -2 position compared

to that of serine for insertion into a relatively hydrophobic pocket on WDRS (Figure 4.12a).
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Figure 4.12: The -2 and +4 amino acids of SET1 family Wirn motifs contribute to high
affinity binding to WDRS.

Structural differences between MLL1 and MLL4 Win motif peptides contribute to the differences
in binding affinity to WDRS. (a-b): Superposition of MLL1 and MLL4 Win motif peptides. a,
Superposition showing the -2 position of MLL1 (green) and MLL4 (Orange) Win motif
peptides.. WDRS residues are shown as line representations. b, Superposition showing the +4
amino acid in MLL1 (green) and MLL4 (orange) structures. MLL4 residue Y2515 (+4 position)
sits in the A-pocket and forms a direct hydrogen bond (pink dotted line) with the WDRS residue
D172.c, ICsq plots for the inhibition of the H3K4 dimethylation activity of the fully assembled
MLLI core complex by the wild-type and mutant MLL1 Win motif peptides. For comparison,
MLL4 and the control p53 peptide plots are also shown. The methylation reactions were carried
out as described in Figure 3.6. Data presented is an average of two independent experiments. d,
ICsy, Ki, and the standard free energy of binding values derived from the fits to the data in ¢ are
summarized. AAG®’ values represent the difference in free energy of binding between wild-type
and mutant MLL1 Win motif peptides.
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Together, the structures of all six human SET1 family Win motif peptides bound to
WDRS reaffirm the earlier predictions that all human SET1 Win motif based peptides bind
WDRS5 using the same arginine binding pocket in WDRS. While the WDRS5-Win motif
interactions are highly conserved among the different Win motif peptides, the structures reveal
that residues flanking the N- and C-termini of the Win motif are structurally different-suggesting
that these amino acid differences contribute to the majority of differences in WDRS binding
affinities. Collectively, these structural data provide a molecular basis for the high interaction
affinities of all human SET1 family Win motif based peptides to WDRS and suggest a

framework for the design of additional Win motif based inhibitors that target this interaction.

DISCUSSION

Win motif peptides from other human SET1 family members bind WDRS with 5- to 51-fold
greater affinity than that of a similar length MLL1 Win motif peptide. Three-dimensional
structures reported in this chapter reveal that each peptide inserts the conserved arginine of the
Win motif into the central tunnel of WDRS. Surprisingly, despite the large differences in affinity,
the three-dimensional structure of WDRS displays remarkably little variation when bound to the
different peptides. Instead, most of the variation is observed in the non-conserved residues
located C-terminal to the Win motif in SET1 family sequences. WDRS appears to have evolved
two separate hydrophobic pockets to accommodate different sequences in the +3 and +4
positions C-terminal to SET1 family Win motifs. In each case, high affinity binding appears to be
conferred by an additional direct hydrogen bond either through main chain or side chain

interactions between WDRS5 and the +4 amino acid of SET1 family sequences. These
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interactions likely account for the majority of the affinity differences among SET1 family
peptides. However, structural analysis also suggests that subtle variation within the conserved
six-residue Win motif sequence also contributes to the observed differences in binding energy.
We speculate that binding may be facilitated if the conformation of the 3¢-helix is stabilized in
solution by a hydrogen bond between the side chain in the -2 and +1 positions of the Win motif.
Indeed, The MLL2, MLL3 and SETd1b peptides possess such a hydrogen bond and they bind
WDRS5 with the greatest affinities. For those peptides lacking this hydrogen bond, binding may
be facilitated by residues that are easier to desolvate when binding to WDRS. This may explain
why replacing the -2 serine in the MLL1 peptide with alanine results in 3-fold greater affinity to
WDRS.

A similar study was carried out by Zhang et al., (333) who reported structures of WDRS
bound to six 11-residue peptides containing Win motif sequences flanked by 5 additional
residues on the C-terminus. Based on their crystal structures they proposed that amino acid
differences C-terminal to the Win motif are important for affinity differences among peptides
used in their investigation. The results presented in this chapter are consistent with that
observation, but also suggests that subtle variation within the conserved Win motif may also
contributes to binding energy differences. While the study by Zhang et al (333) showed that their
MLL3 Win motif peptide has the weakest affinity for WDRS, the results presented as a part of
Chapter 3 contrasts with that report and demonstrates that MLL3-like peptide used in this study
binds WDRS with the strongest affinity. Careful analysis revealed that the peptide used in the
study by Zhang et al., (333) is different from the wild type human MLL3 sequence used in this
investigation in the -2 and +1 positions and also lacks the four N-terminal Win motif-flanking

residues. The mutant MLL3 peptide used by Zhang et al (333) contains a serine and alanine in
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the -2 and +1 positions of the Win motif, respectively; whereas the wild-type MLL3 Win motif
contains a cysteine and serine in the same respective positions. The three-dimensional structure
of the wild type MLL3 Win motif presented here reveals that the -2 cysteine and +1 serine are
within hydrogen bonding distance. This hydrogen bond is absent in the mutant MLL3 peptide,
which may explain its reduced affinity for WDRS. It is also possible that reduced affinity for the
mutant MLL3 peptide could be due to the absence of the four N-terminal flanking residues,
which hydrogen bond with the conserved +2 glutamate. The presence of these features in the
wild type MLL3 peptide may improve overall affinity by reducing the number of different

conformations of the peptide that WDRS must sample in solution.
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Chapter 5: Win motif-based inhibitors: A novel class of methylation inhibitors
with potential to treat Acute Myeloid Leukemia

This chapter is a summary of preliminary studies that are aimed at identifying additional Win
motif-based inhibitors and the initial experiments to test the effect of Win motif peptides in cells.
The data presented in this chapter are unpublished and part of the work was done in collaboration
with Dr. Ziwei Huang’s group at the Upstate Cancer Institute. The Immunofluorescence

experiments described in this chapter were done by Dr. Laila Kabrossy (our former postdoc) and

were included in this thesis for completeness.
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INTRODUCTION

The extensive biochemical and structural characterization of human SET1 family Win motif
peptides described in Chapters 3 and 4 have demonstrated that Win motif peptides or related
peptidomimetic compounds can inhibit the H3K4 methyltransferase activity of the MLL1 core
complex by disrupting the association of MLL1 with the WRAD sub-complex. Furthermore, the
crystal structures of WDRS bound to human SET1 family Win motif peptides (Chapter 4) have
identified unique protein structural features that determine the high affinity binding. The
structures also reveal that conserved residues from the Win motif (-3 to +2) form a cyclical
shaped 3o —helix that fits snugly into the outer opening in WDRS and raises the possibility that
other cyclic peptidomimetic compounds might also bind WDRS with similar or better inhibitory
properties. These structural results provide a rationale for the design of new peptides and non-
peptide mimetics with better inhibitory properties. We have addressed this possibility in Chapter
5 using a combination of systematic mutagenesis, chemical library screening, and phage display
screens and have identified new Win-motif like inhibitors that bind WDRS with < 10 nM
affinities. These peptides are also 10-fold better inhibitors of MLL1 core complex activity
compared to the MLL3 Win motif peptide, which was identified as the best inhibitor in my initial
analyses reported in Chapters 3 and 4. In addition, the results of a randomized phage display
screen presented in this chapter have identified six additional peptides that are also highly potent
inhibitors of MLL1 core complex activity. Based on the crystal structures of peptides derived
from the phage display, we have identified novel protein structural features that contribute to
high WDRS interaction affinities. Furthermore, using a chemical library screen we have also
identified four chemical compounds that mimic Win motif binding to WDRS and inhibit the

H3K4 dimethylation activity of MLL1 core complex.
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The efficacy of Win motif based inhibitors in down regulating the H3K4 methylation
activity of MLL1 core complex in vitro has yet to be demonstrated in vivo. However, based on
the in vitro studies it is expected that the Win motif based peptides will have the ability to down
regulate MLL1 core complex dependent H3K4 di/trimethylation in vivo. We have tested this
hypothesis in Chapter 5 using a fluorescent tagged MLL3 Win motif based peptide that has a cell
penetrating sequence linked to its C-terminus. The results show that this peptide is readily taken
up by mammalian cells and the peptide is localized at euchromatic regions. The cells treated with
the MLL3 peptide display distinct nuclear defects and decreased global levels of H3K4
trimethylation. However, a control mutant MLL3 peptide wherein the conserved Win motif
arginine is mutated to alanine does not inhibit H3K4 trimethylation. These results suggest that

MLL3 Win motif peptide is a highly potent inhibitor of H3K4 trimethylation in cells.

Targeting WDRS5-Win motif interaction as a novel strategy for treating MLL1 amplifications
and MLLI1-PTDs

Growing evidence suggests that increased HOXa gene expression associated with MLL1
amplifications and MLL1-PTDs underlie the pathogenesis of these gain-of-function form of
leukemias(79, 308). HOXa gene expression is dependent on the histone methyltransferase
activity of MLL1 (54), and given the increased H3K4 methylation observed in MLL1-PTDs (78,
79), inhibitors that down-regulate the histone methyltransferase activity of MLL1-PTD have the
potential to reverse this aberrant epigenetic program. Until recently, inhibitors that specifically
target MLL1’s H3K4 methyltransferase activity have been difficult to develop due to lack of a
clear understanding of MLL1’s structure and function. However, recent findings have

established that H3K4 methylation levels are precisely regulated by the function of two
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independent methyltransferases: the MLL1 SET domain and a novel multi-subunit enzyme,
WRAD, that lacks amino acid sequence homology to known methyltransferases (32, 33).
Because multiple methylation on H3K4 is catalyzed by two different enzymes, it is interesting to
speculate that inhibitors that prevent the association of two methyltransferases will have clinical
significance in the treatment of acute leukemias that are characterized by aberrant H3K4
methylation (78, 79). Binding and inhibition studies reported in this dissertation demonstrate that
human SET1 family Win motif peptides and related peptidomimetic compounds can target the
histone methyltransferase activity of MLL1. These Win motif peptides hence have the potential
to down regulate the increased H3K4 dimethylation, and aberrant HOX gene expression
associated with MLL1-PTDs and gene amplification mutations in MLL1. Therefore, the Win
motif peptides represent a group of novel “first in class” inhibitors that are expected to have the
ability to down- regulate H3K4 dimethylation levels in the cell without perturbing H3K4

monomethylation, or the methylation activities of other H3K4 methyltransferases.

METHODS

Peptide synthesis

Ac-10-mer (AccARTEVHLRKSNy) and the six residue (acc ARTEVYnm2) Win motif peptides
used in this chapter were synthesized by Genscript. Both peptides were synthesized with an
acetyl- and amide-capping group at the N- and C-terminus, respectively, to eliminate the
contributions of unnatural N- and C-terminal charges on binding. The peptides identified from
the initial Phage display screen (Ph. D "™ Phage Display Screen kit from New England BioLabs)
(refer to table 5. 3 for peptide sequences) were synthesized by Dr. Ziwei Huang’s laboratory and

do not have capping groups on the N- and C-termini. MLL3" T TAT peptide
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(Ace VNPTGCARSEPK-Ahx-K(FITC)-GRKKRRQRRRAPyy;) and the control arginine mutant
peptide MLL3R*71OAFITCTAT hentide (4o VNPTGCAASEPK-Ahx-K(FITC)-
GRKKRRQRRRAPyy; used in the in vivo experiments were also synthesized by Dr. Ziwei
Huang’s laboratory. The MLL3™ T peptides used in the in vivo experiments has only the first
12 residues (VNPTGCARSEPK) of the original MLL3 Win motif peptide used in Chapters 3 and
4 because the last two C-terminal residues (methionine and serine) did not appear to make any
contacts with WDRS5 in the crystal structure. A Fluorescent IsoThioCynate (FITC) moiety was
attached to the C-terminus of MLL3 Win peptide using an Ahx (6-Aminohexanoic acid,
CsH13NOy) linker and a cell penetrating sequence derived from the HIV-TAT protein
(RKKRRQRRRAP) was also attached to the C-terminus of this peptide to enable intracellular
uptake. Chemical compounds NP7 (2-chloro-N-[2-(4-methylpiperazin-1-yl)-5-nitrophenyl]
benzamide), OBW (methyl 3-[(3-methoxybenzoyl) amino]-4-(4-methylpiperazin-1-yl)
benzoate), WD1 and WD2 used in the inhibition assays were also provided by Dr. Ziwei

Huang’s laboratory.

Isothermal Titration Calorimetry

Isothermal Titration Calorimetry (ITC) experiments using the Ac-10-mer and the six residue
Win motif peptides were carried out as described previously in Chapter 3. Prior to ITC, all
peptides and proteins were dialyzed against sample buffer to minimize variations in sample
preparations. Individual ITC experiments for each of the peptides were carried out by titrating a
known concentration of Win motif peptide (0.425-0.490 mM) (determined by amino acid
analysis at the KECK proteomics facility at Yale University) diluted in the sample buffer into a

sample cell containing a known concentration of full-length WDRS (0.050mM) in the same
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buffer. Binding stoichiometry (N), dissociation constant (Kg), standard enthalpy (AH), entropy
(AS), and free energy (AG) changes associated with Win peptide binding to WDRS were derived

by fitting the binding isotherm to an one-site binding model (Origin 7.0).

MLLI core complex inhibition assays

MALDI-TOF mass spectrometry based methyltransferase assays were performed as described
previously in Chapter 3. Methylation assays for the Ac-10-mer and MLL3-FITC-TAT peptides
were carried out by incubating 7.3 uM of the MLL1 core complex in the absence and presence of
increasing concentrations of peptide (0-250 uM). For the peptides identified from phage display
screen (Peptides 1-8) and the chemical compounds (NP7, OBW, WD1 and WD2), 7.3 uM MLLI
core complex was incubated with 250 uM inhibitor and the amount of unmodified, mono-, di-,
and trimethylated histone H3 peptides present after 12 hours were quantified by MALDI-TOF
mass spectrometry. Curve-fitting and analysis were carried out as described previously in

Chapter 3.

Crystallization and Structure Determination

Crystals of the Ac-10-mer (5. ARTEVHLRKS\p,) Win peptide, Peptide 3 (GARTEVPFLTIF)
and Peptide 6 (SARVAIEYNTAR) from the phage display screen were obtained as described in
Chapter 4. Immediately before crystallization, a 13 mg/ml stock solution of AN-WDRS in the
sample buffer was mixed with a stock solution of each of the peptide dissolved in the same
buffer. The final concentration of AN-WDRS and the individual peptides were 11.7 mg/ml and 1
mM, respectively. The mother liquor used for crystallization contained 20-30 mM ammonium
sulfate, 25-27% polyethylene glycol (PEG)-3350, and 100 mM HEPES (pH 7.3-7.5). The

crystals were flash frozen in the mother liquor containing 40% PEG3350. The diffraction data
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were collected at the Cornell High Energy Synchrotron Source (CHESS) at the F1 beamline and
processed as previously described in Chapter 4. The structures of Ac-10-mer and Peptide 6 were
solved by difference fourier analysis in CNS using as a search model the coordinates of the 12-
residue MLL1 Win motif peptide structure (PDB code:3EG6), which also crystallized in C222,
space group with similar unit cell dimensions (60). Structure of Peptide 3 was solved by
molecular replacement using as a search model the coordinates of the apo-WDRS crystal
structure (PDB code: 2H68). Molprobity was used to analyze the protein geometry and steric
clashes in final refined structures and the statistics are reported as molprobity score in Table 5.2
(329, 330). Data collection and refinement statistics for the different peptide structures are

summarized in Table 5.2.

Immunoflourescence

In cell experiments with the MLL3YTFTCTAT gpg ML 3R47TIOAFITCTAT

peptides were carried out
in P19 cells (mouse embryonal carcinoma). Approximately, 0.5x10° cells were plated on a 6-well
plate along with 2ml of DMEM media and were allowed to divide till ~60% confluence. For the
peptide localization immunofluorescence experiments, MLL3" T TAT peptide was diluted to
50pg/ml in 2ml of DMEM media and added to P19 cells attached in a 6-well plate. After 30min,
4 hr and 24 hours of peptide treatment, the cells were washed 2X with phosphate buffer saline
(PBS) and fixed by adding 70% ethanol for 20 min at room temperature. The cells were washed
3X with PBS to remove excess ethanol and stained with DAPI stain (final concentration of 1
pg/ml) for 10 min at room temperature. The cells were washed 3X with PBS and mounted on the

cover slip using 30 pl of mounting media. Immunoflourescence images were acquired using a

Zeiss Axioplan2 microscope (Carl Zeiss, Inc., NY). Images were acquired with a Hamamatsu
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Orca II C4742-98 dual scan-cooled CCD camera (Hamamatsu Photonics), an X-Cite 120 light
source (EXFO America), and filter sets for FITC (excitation wavelength=499 nm), and DAPI
(excitation wavelength=345 nm) fluorescence. MetaMorph imaging software (Universal Imaging
Corp., PA) was used to control illumination shutters, camera exposure and image acquisition.
The fluorescence images were collected with the help of Dr. Torsten Wollert in Dr. Langford’s

lab at Department of Biology, Syracuse University.

Western Blotting

Western blots to measure the global levels of H3K4 mono- and trimethylation in the presence or
absence of MLL3"T“TAT peptides were carried out in P19 cells. Approximately, 2x 10° P19 cells
were plated on a 6-well plate in the presence of 2 ml of DMEM media and allowed to divide to
<50% confluence. The cells were then treated with increasing concentrations (0-100 pg/ml) of
MLL3WTFITETAT op MLL3RATIOAFITCTAT heptides in 2 ml of fresh media for 3 hours. After 3
hours of peptide treatment, 0.5 pl of retinoic acid (RA) was added to induce differentiation in
P19 cells. After 24 hours of RA treatment, the cells were lysed in 100 pl of RIPA lysis buffer
and the whole cell extracts were separated on a 4-12% SDS PAGE. The protein bands were then
transferred to a nitrocellulose blot for 1-3 hours at 4 °C. Blocking was done using bovine serum
albumin for 1 hour at 37°C followed by washing 3X with PBS. Western blots were carried out
using antibodies specific for mono- and trimethylated H3K4 (H3K4 mel and me3), trimethylated
H3K27 (H3K27me3), histone H3, and tubulin for 1 hr at 37 °C. The blot was then washed 3X
with PBS to remove unbound antibodies and then incubated with the HRP-conjugated anti-rabbit
secondary antibody for 1 hr at 37 °C. After the final wash, the protein bands were visualized

using chemiluminescence (ECL kit, GE Health care).
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RESULTS AND DISCUSSION

5.1 Identification of key structural elements required for binding WDRS5: Analysis of the
binding of MLL1 Win motif peptide to WDRS5

To facilitate the design of small-molecule inhibitors that target MLL1-WDRS interaction,
Karatas et al (3/0) performed a systematic deletion analysis on the original 12-residue MLL1
Win motif peptide (3762-3773) and showed that a three residue sequence composed of acetyl-
ARA- \i2 1s the minimal motif that is required for its interaction with WDRS5 (370). The acetyl
group on the N-terminus is essential as its removal results in the loss of binding. The scetyi-ARA-
N2 peptide binds WDRS in peptide competition experiments with similar affinity (K;=~160
nM) to that of the original 12 residue MLL1 Win motif peptide (K;=~120 nM) (61, 310).
Moreover, systematic mutagenesis and molecular dynamics simulations further suggest that
Acetyl"FARA- N2 peptide could recapitulate the two intramolecular 1-> 1+3 main chain hydrogen
bonds that are present in the original 12-residue MLL1 Win motif peptide. Absence of one or
both of these hydrogen bonds significantly weakens the interaction affinity between the 3-residue
Acety-”ARA- nm2 peptide and WDRS (310). These results suggest that acery1-ARA-nH2 peptide binds
WDRS by adopting a partial 3¢ -helical conformation similar to that of the 12-residue MLL1

Win motif peptide and participates in similar sets of interactions (61, 3/0). However, the most
potent inhibitor derived from the MLL1 Win motif peptide sequence based on their analysis is
the acetyl-10mer (acety~ARAEVHLRKS-N12) encompassing residues 3764-3773, which binds
WDRS5 (in peptide competition experiments) with a K;= 3 nM (310). These results suggest that
sequences outside of the ~ARA- sequence contribute to the affinity and would likely increase
specificity. In addition, replacement of alanine at the +1 position (1 residue C-terminal to R3765)

with a threonine in the acetyl-10mer (scety~ARTEVHLRKS-np2) or 3-mer (acety-ART-nm2) results
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in a 3-to-6-fold increase in binding affinity to WDRS, respectively (3/0). In summary, these
experiments suggest that the acetyi~ARA-n2 motif anchors the peptide to the arginine binding
pocket of WDRS5 and that the 3,p—helical conformation is crucial for the interaction. In addition,
sequences N- and C-terminal to the ARA motif are important for increasing binding specificity.
It remains to be determined if the acetyi-ARA-nu2 peptide actually inhibits the WDRS-MLLI

interaction within the context of the assembled MLL1 core complex.

5.1.1 Binding and inhibition studies for the Acetyl-10-mer peptide

Karatas et al (310) has identified the p..-~ARTEVHLRKS-npp peptide (designated Ac-10-mer) as
the best inhibitor in their peptide competition experiments. To test if the Ac-10-mer can bind
WDRS and inhibit the MLL1 core complex dependent H3K4 dimethylation activity under our
assay conditions, we synthesized a similar Ac-10-mer peptide with acetyl and amide capping
groups at the N- and C-termini, respectively. The results of ITC based binding experiments show
that the Ac-10-mer peptide binds WDRS with a dissociation constant (Kg4) of 6 nM (Figure 5.1a).
This binding affinity is 10-fold and 460-fold better than the affinities reported for MLL3 (54 nM)
and MLL1 (2762 nM) Win motif peptides, respectively (refer to Table 3.2). While this binding
constant is in correlation with the binding affinity (K;=1 nM) reported for the Ac-10-mer peptide
in the study by Karatas et al., (370), it has not been shown if the Ac-10-mer peptide does indeed
inhibit the H3K4 dimethylation activity of MLL1 core complex with greater efficiency. To test
this hypothesis, we next tested the Ac-10-mer peptide for the inhibition of MLL1 core complex
activity using MALDI-TOF mass spectrometry. Expectedly, the Ac-10-mer peptide inhibited the
H3K4 dimethylation activity with a high efficiency (Figure 5.2). Significant inhibition was seen

at a peptide concentration that is in a 1:1 molar ratio with the MLL1*"* protein (refer to Figure
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5.1b and Figure 5.2¢). The ICsq value derived from the fit is 2.5uM (Table 5.1), which is 10-fold
lower than that reported for the MLL3 Win motif peptide (25 uM) in Chapter 3. These results
indicate that the Ac-10-mer is a highly specific inhibitor of H3K4 dimethylation activity.
However, it should be noted that the sequence of Ac-10-mer peptide (ARTEVHLRKS)
resembles closely the sequence of histone H3 substrate (ARTKQTARKS) and could possibly
compete with histone H3 peptide for the binding the active site in MLL1 core complex. Such a
possibility would also result in loss of H3K4 methylation but due to a mechanism that differs
from that proposed for Win motif peptides. However, monomethylation catalyzed by the MLL1
core complex (in the presence or absence of Ac-10-mer peptide) is not significantly altered
suggesting that the histone H3 peptide substrate can still bind to the MLL1 core complex active
site (Figure 5.2). Additional experiments are required to test the binding of the Ac-10-mer
peptide to the MLL1 SET domain or the WRAD active site. Nevertheless, the Ac-10-mer peptide

still represents a highly potent inhibitor of MLL1 core complex activity.
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Figure 5.1 Ac-10-mer peptide (.. ARTEVHLRKSNy;) binds WDRS with the strongest
affinity

a-b. Binding and inhibition data for Ac-10-mer peptide. a, Isothermal Titration Calorimetry
(ITC) data for the binding of Ac-10-mer peptide with WDRS. Upper panels show heat of binding
plotted as a function of time. Lower panels show the binding isotherms fit to a one-site binding
model. Ac-10-mer peptide sequence and the dissociation constants (K4 +=S.E.M.) derived from
the fit are indicated. S.E.M values are derived from two independent experiments. b, H3K4
dimethylation inhibition data for Ac-10-mer peptide. MALDI-TOF assays were carried out as
described in 3.6. Relative H3K4 dimethylation levels in the presence of increasing
concentrations of Ac-10-mer peptide are shown. Error bars represent the variation observed in
two independent experiments. IC*° values and inhibition constants (K;) were derived as described
in Figure 3.5 and reported in Table 5.1.
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Figure 5.2: Ac-10-mer peptide specifically inhibits the H3K4 dimethylation activity of
MLL1 core complex

Ac-10-mer peptide inhibits the H3K4 dimethylation activity of the MLL1 core complex. a-g. MALDI-
TOF assays for the H3K4 methylation activity catalyzed by the MLL1 core complex. MALDI-TOF
assays were carried out with 7.3 uM MLLI core complex for 12 hours in the absence or presence of
increasing concentrations of Ac-10-mer peptide. Relative levels of unmodified, mono-, di-, and
trimethylation on H3K4 in the absence (a) or presence of increasing concentrations of Ac-10-mer peptide
(b-g) are shown. Fold-excess of the Ac-10-mer peptide compared to MLL*"* in each reaction is indicated
within the panels.
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Table 5.1: Summary of thermodynamic binding parameters for the Ac-10-mer and 6-mer
peptides shown in comparison with human SET1 family Win motif peptides
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5.1.2 Structural basis for the high affinity binding of Ac-10-mer peptide to WDR5

To understand the molecular basis for the 10-fold better affinity of the Ac-10-mer peptide
compared to that of the MLL3 Win motif peptide, we determined the x-ray structure of the Ac-
10-mer peptide bound to WDRS at 1.6 Angstroms. X-ray data collection and refinement statistics
are summarized in Tables 5.2 and 5.3. Six of the ten residues could be modeled unambiguously
into the electron density map, while the last four C-terminal residues (LRKS) are disordered
(Figure 5.3a). The structure reveals that the Ac-10-mer peptide binds WDRS using a 3¢ helical
conformation (Figure 5.3b) as previously shown for human SET1 family Win motif peptides
(Figure 4.8a). Similar to the other Win motif peptide structures, the side chain of the conserved
arginine (at 0 position) is inserted into the central water-filled tunnel in WDRS and is stabilized
by an extensive network of hydrogen bonds, van der Waals interactions and hydrophobic
contacts (Figures 5.4 and 5.5). The 3;p-helical structure is stabilized by two intramolecular i to
i+3 hydrogen bonds between the -2 (acetyl carbonyl) and +1 (threonine amide), and -1 (alanine
carbonyl) and +2 (glutamate amide) residues, respectively (Figures 5.4 and 5.6). Interestingly,
the carbonyl oxygen of the acetyl capping group at -2 position is within hydrogen bonding
distance to the amide nitrogen and side chain hydroxyl of +1 threonine residue (Figure 5.6). This
network of hydrogen bonds involving the acetyl capping group could stabilize the bound 3 -
helical conformation of the Ac-10-mer peptide and can explain why deletion of the acetyl
capping group significantly lowers the binding affinity for WDRS (370). In the MLL1 Win motif
structure (from which the Ac-10-mer peptide is derived), serine and alanine residues are present
at the identical -2 and +1 positions, respectively, (Figures 4.4a and 5.6a) and hence do not have
the ability to form the intramolecular bond present in the Ac-10-mer peptide structure. The

presence of these additional intramolecular hydrogen bonds at the N-terminus could stabilize the
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310-helical conformation of Ac-10-mer peptide and potentially contribute to its increased binding
affinity for WDRS. The MLL3 Win motif peptide structure also reveal an intramolecular
hydrogen bond between the side chains of -2 and +1 residues (Figure 5.6b); however, we
hypothesize that the structure of the 3¢ -helix is more closed in the Ac-10-mer structure due to
the presence of a smaller residue (acetyl cap) at the -2 position, which in the MLL3 peptide is
occupied by a cysteine. In addition, the methyl moiety of the acetyl capping group sits in a
hydrophobic pocket formed by A65 and 190 and makes more favorable hydrophobic interactions
as compared to that of a cysteine in the identical position in the MLL3 peptide structure.
Interestingly, the MLL4 Win motif peptide has an alanine at the -2 position that could mimic the
methyl moiety of the acetyl capping group. The presence of a hydrophobic residue at the -2
position contributes 3-fold to the observed differences in affinity between MLL1 (serine) and
MLLA4 (alanine) Win motif peptides that have either a hydrophilic or hydrophobic residue at this
position. These novel features observed in the N-terminus of Ac-10-mer peptide could contribute

to its 10-fold better affinity as compared to MLL3.

The sequence of the Ac-10-mer peptide is identical to the sequence of MLL1 Win motif
peptide in the residue positions that are C-terminal to the conserved Win motif (+3 to +8) (Figure
5.6¢), which are expected to participate in similar sets of interactions compared to that of the
MLL1 Win motif peptide. Similar to that of the MLL1 Win motif peptide structure (Figures 4.4a
and 5.6¢), the +3 (valine) and +4 (histidine) residues of the Ac-10-mer peptide participate in a
number of interactions with WDRS (Figure 5.4 and 5.5). For example, the +4 histidine in the Ac-
10-mer structure is located in the A- pocket (Figure 5.4) similar to that MLL1 Win motif peptide

and participates in van der Waals and hydrophobic contacts with WDRS residues F149, Y191,
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and P173. It is likely that the structural similarity at the C-terminus and the presence of
additional hydrogen bonds at the N-terminus of Ac-10-mer peptide contributes to the ~460-fold

increase in affinity compared to that of the MLL1 Win motif peptide.



Ac-10mer Peptide 3 Peptide 6
Sequence AARTEVHLRKS 5 Ace GARTEVPFELTIF g5 Ace SARVAIEYNTAR g5
Space group €222, P2,2,2, C222,

Cell dimensions
a, b, c(A°)

78.413,98.888, 80.169

48.756,67.408,91.033

78.507,98.584, 80.175

Angles a,B,y (°)

90,90 90

90, 90, 90

90, 90, 90

Resolution (A°)?

50-1.60(1.63-1.60)

50-1.40 (1.42-1.40)

50-1.40(1.42-1.4)

Redundancy? 14.3(11.4) 12.4(5.2) 12.6(5.6)
Completeness (%) 100 (100) 99 (89.4) 98.2(83.1)
I/al? 56.03(9.87) 48.52(2.6) 56.54 (4.89)
Rperge’ 11.4 (42.7) 10.3 (72.1) 10.9(41)

2Values in parentheses are for the highest resolution shell.

Table 5.2: Summary of the X-ray data collection statistics for Ac-10-mer, Peptide-3 and

Peptide-6 structures
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Ac-10-mer Peptide 3 Peptide 6
Number of 1 1 1
molecules in the
asymmetric unit
Resolution (A°) 1.6 1.40 1.40
No.reflections 29227 59085 58901
Ruwork / Reree 19.39/21.83 16.68/19.37 20.46/22.23
No.atoms
Protein 2356 2356 2356
Peptide 60 94 68
Water 213 510 338
B-factors
Protein 12.91 14.38 12.55
Peptide 20.41 14.03 20.97
Water 20.65 26.39 24.68
root mean square (r.m.s! deviations
Bond lenghts (A°) 0.005 0.006 0.005
Bond angles (°) 1.49 1.193 1.52
Ramachandran plot
% most favored 87.5 96.47 86.8
% allowed 12.5 3.53 13.2
% outliers 0.0 0.0 0.0

Table 5.3: Summary of the refinement statistics for Ac-10-mer, Peptide-3 and Peptide-6
structures
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Figure 5.3 Crystal structure of Ac-10-mer peptide bound to WDRS

a-b. Structure of Ac-10-mer peptide in complex with WDRS. In a, Simulated annealing (SA)
omit map contoured at 3 ¢ showing the Ac-10-mer peptide bound to WDRS. The peptide is
shown as sticks and the map is shown as grey mesh. b, Ac-10-mer peptide binds at the top of
WDRS using a 3¢ helical conformation. Ac-10-mer peptide is found in the same arginine-
binding pocket that was shown to be occupied by Human SET1 family Win motif peptides.
WDRS5 molecule is shown as a surface representation (grey) and the Ac-10-mer peptide is shown
as sticks (green). Electron density for the last four C-terminal residues (LRKS) were ambiguous
and hence these residues were not modeled in the final structure.
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Figure 5.4 Crystal structure of Ac-10-mer peptide bound to WDRS

The amino acid residues that form the interaction surface between WDRS and Ac-10-mer
peptide are shown. WDRS residues are shown as white sticks and the Ac-10-mer peptide
residues are shown as sticks in green. Intramolecular i->i+3 (purple dotted lines) and inter
molecular (red dotted lines) hydrogen bonds present within the Ac-10-mer peptide structure are
shown with the bond distances in A. A (red)- and B (blue)-hydrophobic pockets present in
WDRS are circled. The +4 histidine residue of Ac-10-mer peptide is found in the A-pocket.
WDRS residues are labeled in black and Ac-10-mer peptide residues are labeled in red.
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Figure 5.5 Summary of interactions observed in Ac-10-mer peptide:WDRS co-crystal
structure

a-c. Summary of number of inter and intramolecular hydrogen bonds and van der Waals contacts
present in Ac-10-mer peptide structure. The interactions are listed according to the residue
position of the peptide with the conserved Win motif arginine residue designated as position 0.
CCP4i suite was used to analyze inter- and intramolecular hydrogen bonds (a and b) using a
cutoff distance range of 2.5-3.25 A and van der Waals contacts (c) using a cutoff distance range
of 3.3-4.0 A. Refer to text to more detail.
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MLL3:Ac-10-mer

Ac-10-mer
MLLI1
MLL3

MLL1:Ac-10-mer (C-terminus)

Figure 5.6 Structural comparisons between Ac-10-mer and MLL1/MLL3 Win motif
peptides

a-c. Structural analyses of the similarities and differences between Ac-10-mer and MLL1 or
MLL3 Win motif peptides. MLL1 (cyan), MLL3 (yellow) and Ac-10-mer (green) peptides are
shown as stick representations. a, N-terminal structural differences between MLL1 and Ac-10-
mer peptides showing the intramolecular hydrogen bonding network. The hydrogen bonding
network of Ac-10-mer peptide is indicated in pink and that of the MLL1 Win motif peptide is
indicated in red. b, N-terminal structural differences between MLL3 and Ac-10-mer peptides
showing the intramolecular hydrogen bonding network. The hydrogen bonding network of Ac-
10-mer peptide is indicated in pink and that of the MLL3 Win motif peptide is indicated in cyan.
¢, Structural superposition of the C-termini of MLL1 Win motif and Ac-10-mer peptides. C-
termini of MLL1 and Ac-10-mer peptides are highly similar.
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5.1.3 Structure based design of a six residue Win motif peptide

The crystal structure of Ac-10-mer peptide reveals that the presence of acetyl capping group (at -
2 position) and a hydroxyl side chain (threonine in Ac-10-mer and serine in
MLL2/MLL3/SETd1b) could significantly enhance WDRS binding affinity. Moreover, the
crystal structure of MLL4 Win motif peptide also shows that a tyrosine residue at the +4 position
forms a direct hydrogen bond with the carboxylate side chain of WDRS residue D172.
Thermodynamic analysis suggests that this hydrogen bond contributes to ~9-fold observed
differences in affinities between MLL4 and MLL1 (has a histidine at +4 position) Win motif
peptides. Based on these crystal structures, we hypothesized that combining these structural
features could further enhance the binding affinity of Win motif-based peptides to WDRS. To
test this hypothesis, we designed a six residue Win motif based peptide (oc.cARTEVYny2) that
has an acetyl capping group at -2, threonine at +1 and a tyrosine at +4, and measured its affinity

for WDRS5 using ITC.

The ITC data shows that the six residue Win motif peptide binds WDRS5 with a
dissociation constant of 9 nM (Figure 5.7), which is similar to that of the Ac-10-mer peptide
(Table 5.1). While this binding affinity is 6-fold and 300-fold better than the MLL3 and MLLI
Win motif peptides, respectively; it is similar in binding affinity of that of the Ac-10-mer peptide.
These results suggest that the six-residue peptide captures the majority of interactions present in
the Ac-10-mer peptide and that the presence of tyrosine at the +4 position does not contribute to
the increased affinity. However, it should be noted that the Ac-10-mer peptide has four
additional residues (LRKS) on the C-terminus compared to the six residue peptide. It is possible

that these additional residues contribute to increased WDRS affinity and hence could negate the
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positive contribution of having a tyrosine at +4 position in the six residue peptide. Indeed, a
previous study showed that deletion of lysine and serine residues (+7 and +8) at the C-terminus
of MLL1 Win motif peptide results in a 2-fold decrease in WDRS binding affinity (3/0). One
other possibility for the similar interaction affinities observed for both the Ac-10-mer and the
six-residue Win motif peptide is that in the absence of additional residues on the C-terminus, the
+4 tyrosine in the six residue peptide may not adopt a conformation similar to the MLL4 peptide
structure. Three dimensional structure of six residue peptide bound to WDRS5 is required to
distinguish these possibilities. It is important to note that the binding affinities reported for the
Ac-10-mer and six-residue peptides are very close to the lower limits (K,= 10" to 10'%) (334) of
the dynamic range of measurements possible with ITC. Therefore, it is possible that the similar
dissociations constants reported here for Ac-10-mer and six-residue peptides are biased due to
experimental limitations of ITC and the binding affinities could be different for the two peptides.
Nevertheless, based on these studies the six-residue Win motif peptide was identified as the
smallest length peptide that can recapitulate majority of interactions required for high affinity
binding to WDRS. Hence, the six residue peptide represents an excellent starting point for the

design of additional small molecule inhibitors that target MLL1-WDRS interaction.
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Figure 5.7: Six-residue Win motif-based peptide (occeARTEVYny2) binds WDRS with low
nanomolar affinity

Isothermal Titration Calorimetry (ITC) data for the binding of six-residue Win motif-based
peptide to WDRS. Upper panels show heat of binding plotted as a function of time. Lower panels
show the binding isotherms fit to a one-site binding model. Six-residue Win motif-based peptide
sequence and the dissociation constants (K4 £S.E.M.) derived from the fit are indicated. S.E.M
values reported are derived from two independent experiments.
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5.2 Ongoing efforts to identify of additional Win-motif like inhibitors with better
inhibitory properties:
5.2.1 Approach 1: Phage display screen (in collaboration with Dr. Ziwei Huang’s group at
Upstate Cancer Institute)
Binding and inhibition studies reported for the Ac-10-mer and six-residue peptides suggest that
these inhibitors bind WDRS with low nanomolar affinities and the Ac-10-mer peptide is a highly
potent inhibitor of MLL1 core complex dependent H3K4 dimethylation activity. The efficacy of
using these Win motif-based peptides as potential inhibitors in vivo could be greatly enhanced by
designing peptides or small molecule compounds that inhibit the MLL1 core complex activity
with more stringent efficiencies. To facilitate the design of better Win motif inhibitors, we
utilized a random group of peptides derived from a phage display screen (Ph. D™ screen New
England BioLabs). The premade libraries (~10° clones) consists of a mixture of linear
(heptapeptide, Ph.D.-7 and dodecapeptide, Ph.D.-12) and cyclic (heptapeptide, Ph.D.-C7C)
peptides whose sequences are completely randomized. The randomized segment of the cyclic
peptides is flanked by a pair of cysteine residues, which are oxidized during phage assembly to
form a disulfide linkage, resulting in the displayed peptides being presented to the target as
loops. We then used this random library of phage display peptides and tested their ability to bind
the target protein WDRS. Using this approach, we (Yan Xu in Dr. Huang’s Lab) identified eight
peptides (numbered 1-8) of random length (7-12 residues) and sequence (refer to Table 5.4) that
bound to the target protein using competition based fluorescence polarization anisotropy
experiments (FPA experiments were carried out by Yan Xu in Dr. Huang’s laboratory).
Interestingly, the sequence of all eight peptides identified from this random library screen

contains an arginine residue within a sequence context similar to that of Win motif (Table 5.4).



Peptide

number

Sequence

o U B~ W N R

7

8 (cyclic
peptide)

-5-4-3-2 -1 0

S AASR

I SASMRBR

>100

Note: IC;, values were determined using fluorescence polarization anisotropy

Table 5.4 Sequence and ICs, values for peptides identified using Phage display screen
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Using this bank of peptides, we tested these peptides for their ability to inhibit the H3K4
dimethylation activity of the MLL1 core complex using our MALDI-TOF mass spectrometry
based methylation assays. The results show that in the presence of peptides-1, 3, 5, 6, and 8, the
dimethylation activity of the MLL1 core complex is decreased 5-fold (~20% remaining) (Figure
5.8) compared to that observed in the absence of any inhibitor (normalized to 100%). The
amount of inhibition observed with peptides-1, 3, 5, 6, and 8 is similar to that of MLL3 Win
motif peptide (Figure 5.8). On the contrary, peptides- 2, 4, and 7 did not inhibit the H3K4
dimethylation activity to similar levels (Figure 5.8). These results are similar to the ICsg values
determined from the fluorescence polarization experiments (Table 5.4). Furthermore, these
inhibition studies suggest that peptides -1, 3, 5, 6, and 8 would bind WDRS with similar affinities
compared to the MLL3 Win motif peptide. Since the sequences of the peptides are quite
different, analysis of three-dimensional structures of these peptides- (1, 3, 5, 6 and 8) could
provide useful structural information that could facilitate the process of structure-based drug

design.
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Figure 5.8 MALDI-TOF based inhibition data for the peptides identified from phage
display screen

H3K4 dimethylation inhibition data for peptides identified from phage display screen. MALDI-
TOF assays were carried out as described in 3.6. H3K4 methylation assays were carried out in
the absence (N.I=No inhibitor) or presence of 250 uM of MLL3 (M) Win motif or other peptides
(1-8) derived from phage display. Relative H3K4 dimethylation levels in the presence of
different peptides are shown. Percent dimethylation level in the absence of any inhibitor (N.I) is
normalized to 100%. The data presented is from a single experiment. Compounds 1, 3, 5, 6, and
8 are as good as MLL3 Win motif peptide in inhibiting the H3K4 dimethylation activity of
MLLI core complex.
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5.2.2 Structural basis for the interaction between WDRS5 and phage display library derived
peptides

Based on the results on the inhibition studies described earlier, we attempted to determine the
crystal structures of WDRS in complex with peptides- 1, 3, 5, 6, and 8, respectively. Crystal
structures of WDR5:Peptide-3 and WDR5:Peptide-6 binary complexes were determined at 1.4 A
resolution. However, crystallization trials with peptides- 1, 5 and 8 did not produce diffraction

quality crystals.

Crystal structure of WDRS5-Peptide3 binary complex

To understand the molecular basis for the inhibitory efficiency of Peptide-3, we determined the
x-ray structure of Peptide-3 (GARTEVPFLTIF) bound to WDRS at 1.4 A resolution. The x-ray
data collection and refinement statistics are summarized in Tables 5.2 and 5.3. All 12 residues
could be modeled unambiguously into the electron density map (Figure 5.9a). The structure
reveals that Peptide-3 binds WDRS using a 3¢-helical conformation (Figure 5.9b) similar to that
of Ac-10-mer (Figure 5.3b) or human SET1 family Win motif peptides (Figure 4.8a). Similar to
the other Win motif peptide structures, the side chain of the arginine (at 0 position) is inserted
into the central water-filled tunnel in WDRS and is stabilized by an extensive network of
hydrogen bonds, van der Waals interactions and hydrophobic contacts (Figures 5.9, 5.10 and
5.11). The 3¢ -helical structure is stabilized by two intramolecular i to i+3 hydrogen bonds
between the -2 (glycine carbonyl) and +1 (threonine amide), and -1 (alanine carbonyl) and +2
(glutamate amide) residues, respectively (Figure 5.10). In addition, the carbonyl oxygen of the
glycine residue at -2 position is within hydrogen bonding distance to the side chain hydroxyl of
the +1 threonine residue. Moreover, the carbonyl oxygen of -1 alanine is also within hydrogen

bonding distance to the amide nitrogen of the +3 valine (Figure 5.10). The presence of these
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additional intramolecular hydrogen bonds involving residues -2 to +3 could lock the peptide in a
favorable 3¢ -helical conformation and potentially contribute to its increased binding affinity for

WDRS.



187

Figure 5.9 Crystal structure of Peptide-3 bound to WDRS

a-b. Structure of Peptide-3 (GARTEVPFLTIF) in complex with WDRS. In a, Simulated annealing
(SA) omit map contoured at 3 ¢ showing peptide 3 bound to WDRS. Peptide-3 is shown as sticks
(blue) and the map is shown as grey mesh. All 12 residues could be modeled into the electron
density for the peptide. b, Peptide-3 binds at the top of WDRS using a 3¢ helical conformation.
Peptide-3 is found in the same arginine-binding pocket. WDRS molecule is shown as a surface
representation (grey) and the peptide is shown as sticks (blue).
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Figure 5.10 Crystal structure of Peptide-3 bound to WDRS

The amino acid residues that form the interaction surface between WDRS and Peptide-3 are
shown. WDRS5 residues are shown as white sticks and Peptide-3 residues are shown as sticks in
blue. Intramolecular hydrogen bonds present in the Peptide-3 structure are shown as purple (I to
1+3) and pink dotted lines. A (red)- and B (blue)-hydrophobic pockets present in WDRS are
circled. The +5 phenylalanine residue of Peptide-3 is found in the B-pocket. WDRS residues are
labeled in black and the peptide residues are labeled in red.
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Amino acid residues C-terminal to the arginine (+2 to +9) display significant structural
heterogeneity in the Peptide-3 structure as compared to Ac-10-mer or other human SET1 family
Win motif peptide structures. A major difference in the Peptide-3 structure is seen at +3, +4 and
+5 positions. In the Peptide-3 structure, the +3 and +4 positions are occupied by valine and
proline, respectively. The presence of proline in +4 position reorients the side chain of +3 valine
in the opposite direction compared to that of the MLL1 and MLL4 Win motif structures each of
which have a valine at +3 position (Figures 4.4a, 4.4d and 5.10) . The presence of an
intramolecular hydrogen bond with the carbonyl oxygen of alanine at the -1 position also helps
to reorient the valine side chain away from WDRS residue Y260 (Figure 5.10) . These features
enable the +4 proline ring from the Peptide-3 structure to make extensive van der Waals contacts
with the aromatic ring of Y260 in WDRS5 (Figure 5.10). MLL2 and MLL3 Win motif peptides
also have a proline, but in the +3 position and engage in similar van der Waals interactions with
Y260. The next residue in the Peptide-3 sequence, phenylalanine at the +5 position, is found in
the B-pocket in WDRS and engages in van der Waals and hydrophobic contacts with WDRS
residues L.234, P216 and Y191 (Figure 5.10). In addition, the amide nitrogen of the +5
phenylalanine residue also forms a direct hydrogen bond with the main chain carbonyl oxygen of
WDRS5 residue K259. The interactions observed for the +5 phenylalanine residue are similar to
the interactions observed for the + 4 lysine residue in MLL2 and MLL3 Win motif peptide
structures, which also bind to the B-pocket. The presence of this intermolecular hydrogen bond
could explain why both MLL3 and Peptide-3 have similar ICsy values in WDRS binding assays
(Table 5.4). One other observed difference in the Peptide-3 structure is that the carbonyl oxygen
of the threonine residue at +7 position is within hydrogen bonding distance to the carboxylate

side chain of WDRS residue E258. A similar hydrogen bond could be present in the all peptides
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that have a +7 residue, however, the +7 residue is disordered in most of the crystal structures and

hence could not be modeled.
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Figure 5.11: Summary of interactions observed in Peptide-3: WDRS co-crystal structure

a-c. Summary of number of inter and intramolecular hydrogen bonds and van der Waals contacts
present in Peptide- 3: WDRS co-crystal structure. The interactions are listed according to the
residue position of the peptide with the arginine residue designated as position 0. CCP4i suite
was used to analyze inter- and intramolecular hydrogen bonds (a and b) using a cutoff distance
range of 2.5-3.25 A and van der Waals contacts (c) using a cutoff distance range of 3.3-4.0 A.
Refer to text to more detail.
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Crystal structure of WDRS: Peptide-6 binary complex

We next determined the x-ray three-dimensional structure of Peptide-6 (SARVAIEYNTAR)
bound to WDRS5 at 1.4 A resolution. The x-ray data collection and refinement statistics are
summarized in Tables 5.2 and 5.3. Eight residues could be modeled unambiguously into the
electron density map with the last four C-terminal residues being disordered (Figure 5.12a). The
structure reveals that Peptide-6 binds WDRS using a 3¢-helical conformation (Figure 5.12b)
similar to that of Ac-10-mer (Figure 5.3b), Peptide-3 (Figure 5.9b) or human SET1 family Win
motif peptides (Figure 4.8a). Similar to the other peptide structures reported in this study, the
side chain of the arginine (at 0 position) is inserted into the central water-filled tunnel in WDRS
and is stabilized by an extensive network of hydrogen bonds, van der Waals interactions and
hydrophobic contacts (Figure 5.14). The 3;o-helical structure is stabilized by an intramolecular i
to i+3 hydrogen bonds between the -2 (serine carbonyl) and +1 (valine amide residues (Figure
5.13). In addition, the main chain carbonyl oxygen of the serine residue at the -2 position is
within hydrogen bonding distance to the main chain amide of +2 alanine residue (Figure 5.13).
Moreover, the carbonyl oxygen of alanine at the -1 position also forms a direct intramolecular
hydrogen bond with the amide nitrogen of +3 valine residue (Figure 5.13). These interactions at

the N-terminus are quite similar to that of the Peptide-3 structure.
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Figure 5.12 Crystal structure of Peptide-6 bound to WDRS

a-b. Structure of Peptide-6 (SARVAIEYNTAR) in complex with WDRS. In a, Simulated
annealing (SA) omit map contoured at 3 ¢ showing the Peptide-6 bound to WDRS. Peptide-6 is
shown as sticks (yellow) and the map is shown as grey mesh. Only the first 9 residues could be
modeled into the electron density for the peptide. b, Peptide-6 binds at the top of WDRS using a
310-helical conformation. Peptide-6 is found in the same arginine-binding pocket. WDRS
molecule is shown as a surface representation (grey) and the peptide is shown as sticks (yellow).
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G89

Figure 5.13 Crystal structure of peptide 6 bound to WDRS

The amino acid residues that form the interaction surface between WDRS and Peptide-6 are
shown. WDRS5 residues are shown as white sticks and Peptide-6 residues are shown as sticks in
yellow. Intramolecular hydrogen bonds present in the Peptide-6 structure are shown as purple (i
to 11+3) and pink dotted lines. A (red)- and B (blue)-hydrophobic pockets present in WDRS are
circled. The +5 tyrosine residue of Peptide-6 is found in the A pocket and forms a direct
hydrogen bond with WDRS residue D172. WDRS residues are labeled in black and the peptide
residues are labeled in red.
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Amino acid residues C-terminal to the arginine (+2 to +5) displays significant structural
heterogeneity in the Peptide-6 structure compared to that of Ac-10-mer or other human SET1
family Win motif peptide structures. Similar to the Peptide-3 structure, the side chain of the
isoleucine residue at the +3 position is oriented away from the aromatic ring of WDRS residue
Y260 (Figure 5.13). However, in contrast to the Peptide-3 structure which has a proline at the +4
position that stacks against Y260, the glutamate residue at the +4 position in the Peptide-6
structure makes extensive van der waals contacts with the WDRS residue K259 (Figure 5.11).
These interactions are similar to the +3 valine interactions observed in the MLL1 and MLL4 Win
motif peptides that bind in the A-hydrophobic pocket. Similar to MLL1 and MLL4 Win motif
structures, the +5 tyrosine residue in the Peptide-6 structure also binds in the A-pocket and
engages in van der Waals and hydrophobic contacts with WDRS5 residues F149, D172, P173 and
Y191 (Figure 5.13). The hydroxyl group of the +5 tyrosine in the Peptide-6 structure forms a
direct hydrogen bond with the carboxylate group of WDRS5 residue D172 (Figure 5.12), an
interaction that is also observed in the MLL4 Win motif structure. It is possible that this extra
hydrogen bond contributes significantly to the WDRS5 binding affinity of Peptide-6, which is

expected to be similar to MLL3 and MLL4 Win motif peptides.

In summary, the structures of Peptide-3:WDRS and Peptide-6:WDRS binary complexes
reveal that both peptides recapitulate the majority of salient interactions present in the MLL3
(Figures 5.15 and 5.16) or MLL4 Win motif structures through an intermolecular hydrogen bond

between the +5 residue and WDRS residues K259 or D172.
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Figure 5.14 Summary of interactions observed in Peptide-6: WDRS co-crystal structure

a-c. Summary of number of inter- and intramolecular hydrogen bonds and van der Waals
contacts present in the Peptide-6:WDRS co-crystal structure. The interactions are listed
according to the residue position of the peptide with the arginine residue designated as position
0. CCP4i suite was used to analyze inter- and intramolecular hydrogen bonds (a and b) using a
cutoff distance range of 2.5-3.25 A and van der Waals contacts (c) using a cutoff distance range
of 3.3-4.0 A. Refer to text to more detail.
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Figure 5.15: Structural superposition of Peptide-3 and MLL3 Win motif peptide structures

Structural overlay of MLL3 (VNPTGCARSEPKMS) and Peptide-3 (GARTEVPFLTIF)
structures highlight the similarities and differences between the two structures. Peptide-3 (Cyan)
and MLL3 Win motifs (Magenta) are shown as stick representations. The residue positions of the
MLL3 Win motif are labeled in magenta and that of the Peptide-3 structure are labeled in cyan.
MLL3 Win motif has additional residues modeled at the N-terminus (-3 to -6) while Peptide-3
has additional residues modeled at the C-terminus (+5 to +9). Amino acid residue at the +5
position in the Peptide-3 structure is present in the B-pocket occupied by the +4 amino acid
residue in MLL3 Win motif peptide structure.
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Figure 5.16: Structural superposition of Peptide-6 and MLL3 Win motif peptide structures

Structural overlay of MLL3 (VNPTGCARSEPKMS) and Peptide-6 (SARVAIEYNTAR)
structures highlight the similarities and differences between the two structures. Peptide-6
(Yellow) and MLL3 Win motifs (Magenta) are shown as stick representations. The residue
positions of the MLL3 Win motif are labeled in magenta and that of the Peptide-6 structure are
labeled in yellow. MLL3 Win motif has additional residues modeled at the N-terminus (-3 to -6)
while Peptide-6 has additional residues modeled at the C-terminus (+5 to +6). Amino acid
residue at the +5 position in the Peptide-6 structure is present in the A-pocket while the +4 amino
acid residue in MLL3 Win motif peptide structure is present in the B-pocket of WDRS.
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5.2.3 Identification of novel Win motif-like inhibitors using a chemical library screen (This
work is done in collaboration with Dr. Huang’s lab at Upstate Cancer Institute)

The binding and inhibition data presented in Chapters 3, 4 and early part of Chapter 5 have
shown that Win motif peptides or related peptide mimics are excellent candidates that disrupt the
interaction between WDRS and MLL1 and inhibit the H3K4 dimethylation activity of MLL1
core complex. While these peptidomimetics would have enhanced potency against the MLL1
core complex in cells, peptide inhibitors are hard to develop because of poor membrane
solubility, large size (few kDa) and lower stability (degradation by proteases in cells). Small-
molecule chemical inhibitors (that target a specific interaction such WDRS5-Win motif) can
overcome these drawbacks due to their enhanced membrane solubility and stability. The next
section in this dissertation is aimed at screening a library of natural compounds to identify small

molecules that can bind WDRS with increased affinities.

Using an array of chemical compounds obtained from the National Cancer Institute (NCI)
database, we sought to identify novel chemical molecules that bind WDRS5 with equal or greater
affinity than that of the MLL3 Win motif peptide. However, our initial screens did not identify
any chemical molecules that bind WDRS with high affinity in competition based fluorescence
polarization experiments (work done by Yan Xu in Dr. Huang’s lab). Further screening trials led
to the identification of two molecules, WD1 and WD2, which bind WDRS5 with ~10-fold weaker
affinity than the MLL3 Win motif peptide (refer to Figure 5.17a and b for the chemical
structure). While this work was in progress, the structure of WDRS in complex with two other
chemical compounds NP7 (2-chloro-N-[2-(4-methylpiperazin-1-yl)-5-nitrophenyl]benzamide)
and OBW (methyl 3-[(3-methoxybenzoyl)amino]-4-(4-methylpiperazin-1-yl)benzoate) were

determined by the structural biology consortium and were included in my analysis.
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Using these four chemical compounds (WD1, WD2, NP7 and OBW), we asked if these
compounds can inhibit the H3K4 dimethylation activity of MLL1 core complex comparable to
the MLL3 Win motif peptide. MALDI-TOF based H3K4 methylation assays show that at 30-fold
excess (compared to MLL1?"), H3K4 dimethylation activity of the MLL1 core complex is
inhibited ~80% in the presence of MLL3 Win motif peptide. However, little (OBW) to no
inhibition was observed for WD1, WD2 and NP7 under the same assay conditions (Figure 5.18).
These results suggest that all four chemical compounds are not as good as the MLL3 Win motif
peptide in inhibiting MLL1 core complex activity under these assay conditions. Further
screening trials using a larger library of chemical compounds would help identify small

molecules that are highly potent inhibitors of MLL1 core complex.
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Figure 5.17 Chemical structure of compounds identified in virtual screen

The chemical compounds WD1, WD2, NP7 and OBW were synthesized by Dr. Ziwei Huang’s
lab as per their lab chemical synthesis protocols and were handed to me.
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Figure 5.18 MALDI-TOF based inhibition assays for the chemical compounds identified
from virtual screen

H3K4 dimethylation inhibition data for the chemical compounds identified from virtual screen.
MALDI-TOF assays were carried out as described in 3.6. H3K4 methylation assays were carried
out in the absence (No inhibitor) or presence of 250 uM of MLL3 Win motif or other compounds
derived from chemical synthesis. Relative H3K4 dimethylation levels in the presence of different
inhibitors are shown. Percent dimethylation level in the absence of any inhibitor (N.I) is
normalized to 100%. The data presented is from a single experiment. Compounds WD1, WD?2,
NP7 and OBW8 are not as good as MLL3 Win motif peptide in inhibiting the H3K4
dimethylation activity of MLL1 core complex.
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5.3 MLL3 Win motif peptide inhibits the H3K4 methylation activity of MLL1
core complex in cells (this work was done with assistance from a former postdoc
Dr. Laila Kabrossy)

5.3.1 Design of a fluorescent tagged MLL3 Win motif peptide for in vivo experiments

To test the efficacy of Win motif peptides in inhibiting the H3K4 methylation activity of MLL1
core complex in cells, we synthesized a peptide derived from the Win motif in MLL3 and
conjugated it to a fluorescent moiety (FITC). The peptide designated MLL3"TCTAT
(aAcVNPTGCARSEPK-Ahx-K(FITC)-GRKKRRQRRRAPxi) also has a cell penetrating
sequence (derived from HIV-TAT) attached to its C-terminus (refer to methods for more details).
Before testing the MLL3-FITC-TAT peptide in cells, we first asked if the addition of FITC
group or TAT sequence interferes with the ability of MLL3 Win motif sequence to inhibit MLL1

core complex activity. MALDI-TOF based methylation assays carried out with the MLL3W ¢

TAT beptide shows that there is only a slight increase (2-fold) in the ICsg value for the MLL3""
FITCTAT heptide compared to that of the MLL3 peptide (VNPTGCARSEPKMS) (Figure 5.19).

Since these values are not significantly different, the MLL3 Y T peptide was chosen for the

further in vivo studies described in the next section.



204

a
Sequence
C
2
=
(0]
=
=
9]
£
a MLL3 A VNPTGCARSEPKMS, ;. 25 £ 12
€
8 MLL3- 2 VNPTGCARSEPK-Ahx— o
. FITC-TAT K (FITC) ~-GRKKRRQRRRAP,
o NHZ2
0 . . . . Data from a single measurement
0 50 100 150 200 250

Win Peptide Concentration, uM

® MLL3
A MLL3-FITC-TAT

Figure 5.19 MALDI-TOF based inhibition data for MLL3Y " *T¢TAT peptide

a-b. H3K4 dimethylation inhibition data for MLL3" T peptide. MALDI-TOF assays were
carried out as described in 3.6. a, Relative H3K4 dimethylation levels in the presence of
increasing concentrations of MLL3" " T TAT peptide are shown. The data presented for
MLL3WTHITETAT hentide is from a single experiment. b. IC* values derived from fitting the data
(refer to 3.6 for curve fitting) are reported.
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5.3.2 MLL3-FITC-TAT peptide is readily taken up by mammalian cells

To test if the MLL3Y TS AT peptide can cross the cell membrane, we incubated the peptide
with mouse P19 cells and checked for FITC fluorescence after various times between 30 min to
24 hours. The results show that the MLL3 ™ TS TAT heptide is readily taken up by P19 cells
after 30 minutes (Figure 5.20) and FITC fluorescence does not disappear even after 24 hours
suggesting that the peptide is stable inside the cell. Interestingly, the peptide localizes to distinct
regions within the nucleus that do not overlap with DAPI staining. These regions represent
actively transcribing euchromatin regions. Intriguingly, cells exposed to the MLL3 W FTCTAT
peptide for 4 hours start to display distinct nuclear defects (Figure 5.21b) compared to cells that
were not treated with the peptide (Figure 5.21a). In the cells that are treated with peptide, the
nuclei are larger, and microscopic examination revealed that there are fewer mitotic cells. These
results suggest that treatment with MLL3 " T TAT peptide induces cell-cycle arrest. Additional
experiments using a control peptide (MLL3R7IOAFITCTAT " wherein the Win motif arginine is
mutated to an alanine) are required to address this possibility and to distinguish potential peptide

toxicity effects.
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Figure 5.20 MLL3""F ITC-TAT peptide is readily taken up by P19 cells

Fluorescence microscopy images showing that MLL3 W FTCTAT sentide is readily taken up and
translocated to the nucleus of mouse P19 cells. In the left panel, FITC fluorescence indicates the
localization of MLL3WVTFTCTAT septide. In the middle panel, DAPI fluorescence shows the
nucleus of P19 cells. In the right panel, a merge shows that the MLL3W FTCTAT septide is
present in the nucleus and localizes to euchromatin regions. Representative immunofluorescence
images after 30 min (upper panels) and 4 hours (lower panels) post-transfection with the
MLL3WTFITCTAT hontide are shown.
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Figure 5.21 MLL3WTFITCTAT peptide induces nuclear defects in P19 cells

Fluorescence microscopy images showing that MLL3 Y FTSTAT pentide induces nuclear defects

in mouse P19 cells. a, DAPI/FITC fluorescence merge of P19 cells in the absence of MLL3" "
FITCTAT Heptide (treated with DMEM media for 24 hours). b, DAPI/FITC fluorescence merge
shows that nuclei are significantly larger in P19 cells treated with the MLL3" FT¢TAT heptide
for 24 hours.
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5.3.3 MLL3-FITC-TAT peptide inhibits global H3K4 trimethylation levels in mammalian cells

Inhibition studies reported in Chapters 3-5 suggest that Win motif peptides are highly potent
inhibitors of H3K4 dimethylation activity in vitro. To determine if Win motif peptides inhibit the
H3K4 di/trimethylation activity in cells, we measured the global levels of H3K4 trimethylation

in P19 cells that are treated with either a wild-type (MLL3 " " TAT) or control (MLL3R*7194

FITC-TATY peptides. Western blots using antibodies specific for trimethylated H3K4 shows that the

3 WT-FITC-TAT

global levels of H3K4 trimethylation is decreased in cells treated with MLL peptide

(Figure 5.22, row 3, compare lanes 3-6 versus lane 2 that was not treated with the peptide).
However, the relative levels of H3K4 monomethylation, is unchanged (Figure 5.22, row 2, lanes
2-6). These results suggest that MLL3 " 1“1 peptide inhibits only the H3K4 trimethylation
activity of the MLL1 core complex possibly by disrupting MLL1 Win motif-WDRS interaction.
Furthermore, a control peptide (MLL3®710AFITCTATY (herein the Win motif arginine is replaced

with an alanine did show any changes in H3K4 trimethylation levels (Figure 5.22, row 3, lanes

3 WT-FITC-TAT

8-12) suggesting that the effects are specific for the MLL peptide. The observed

decrease is not due to the decrease in the amount of total histone H3 as western blot using anti-

histone H3 antibody reveals similar amounts of histone H3 across different samples (Figure 5.22,

row 5). Unexpectedly, the levels of H3K27me3 are also decreased in cells treated with MLL3™ "

FITCTAT peptide (Figure 5.22, row 3, lanes 3-6). One possible explanation is that MLLI (and

other SET1 family complexes) could be regulating the expression of enzymes that catalyze

H3K27me3, loss of MLLI activity in the presence of MLL3™ 1< AT peptide would therefore

result in an indirect loss of H3K27 methylation. An alternate explanation could be that MLL3"™ "

FITCTAT peptide could also be targeting enzymatic complexes that catalyze H3K27

trimethylation. Further experiments are required to distinguish these possibilities. In summary,
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the in vivo results suggest that MLL3" TS TAT peptide is a highly potent inhibitor for H3K4
di/trimethylation in cells and the inhibition is dependent on the conserved Win motif arginine.
These in vivo results are highly promising and future experiments will test the efficiency of Win
motif peptides and related compounds in inhibiting H3K4 di/trimethylation, Hox gene expression

and aberrant cell proliferation in leukemia cells.
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Western blots in RA-differentiated P19 cells treated with
MLL3 peptides
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Figure 5.22 Global levels of H3K4 trimethylation is decreased in the presence of MLL3""
FITC-TAT .
peptide

Western blots showing that the wild-type (MLL3" "“TAT) byt not the mutant (MLL3%*7'%A
FITCTAT) peptide inhibits global levels of H3K4 trimethylation. Mouse P19 cells were treated
with retinoic acid (RA) to induce differentiation in the absence or presence of MLL3™ AT
(wild-type or R4710A mutant) peptides. Western blots using antibodies specific for mono
(H3K4mel) (row 2)-, or trimethylated (H3K4me3) (row 3) histone H3K4 shows that H3K4me3
levels are decreased in the presence of MLL3™ < TAT heptide (lanes 2-6). H3K27me3 levels
are shown for comparison (row 4). Total histone H3 present in each sample is shown (row 5).
Tubulin is used as a loading control (row 1).
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Conclusions and future perspectives- Win motif peptides as potential candidates
for targeted molecular therapy for MLL I-associated leukemia?

In conclusion, this dissertation summarizes the detailed biochemical and structural studies that
were carried out to characterize the interaction between WDRS and human SET1 family Win
motifs. The findings from this research have contributed significantly to our understanding of
how WDRS5 recognizes different Win motif-based peptides and have led to the identification of
additional peptides that bind WDRS with greater than 450-fold better affinities. This thesis also
summarizes the variety of approaches that could be undertaken to identify novel Win motif-based
therapeutics. We have also presented promising preliminary data that shows that MLL3 Win
motif peptide is a highly potent inhibitor of H3K4 trimethylation in cells. Collectively, the data
presented in this thesis have identified Win motif-like inhibitors as a promising target for MLL1-
related leukemias. It is expected that such an MLL1-targeted therapy will have enhanced
pharmacological potential compared to the existing broadly-based chemotherapeutics for MLL1-
associated leukemias and will hopefully result in better treatment outcomes. In the future, similar
biochemical, structural and genetic studies will be instrumental in identifying additional

molecular targets that will form the basis for novel treatment strategies.
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MLL1_Human 3745 FRFHKPEEANEPPLNPHGSARAEVHLRKSAFDMENFLASKHROPPEYN-- 3792
Chimpanzee 3745 FRFHKPEEANEPPLNPHGSARAEVHLRKSAFDMFNFLASKHRQPPEYN-- 3792
Mouse 3742 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMFNFLASKHRQPPEYN-— 3789
Rat 3670 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMENFLASKHRQPPEYN-- 3717
Macaca 3600 FRFHKPEEANEPPLNPHGSARAEVHLRKSAFDMENFLASKHRQPPEYN-— 3647
Gibbon 3744 FRFHKPEEANEPPLNPHGSARAEVHLRKSAFDMFNFLASKHRQPPEYN-- 3791
Oranguttan 3752 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMENFLASKHROPPEYN-- 3799
Callithrix 3770 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMFNFLASKHRQPPEYN—— 3817
Bos_Taurus 3602 FRFHKPEEANEPPLNDPHGSARAEVHLRQSAFDMENFLASKHRQPPEYN—— 3649
Panda 3757 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMFNFLASKHRQPPEYN—— 3804
Dog 3605 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMFNFLASKHRQPPEYN— 3652
Elephant 3738 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMFNFLASKHRQPPEYN-— 3885
Hamster 3683 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMENFLASKHRQPPEYN-- 3730
Oppossum 3736 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMENFLASKHRQPPEYN-- 3783
Chicken 3647 FRFHKPEEANEPPPNPHGSARAEVHLRKSAFDMENFLASKHRQPPEYN-— 3694
Turkey 3627 FRFHKPEEANEPPLNPHGSARAEVHLRKSAFDMFNFLASKHRQPPEYN-— 3674
Zebra Finch 3625 FRFHKPEEANEPPLNPHGSARAEVHLRKSAFDMENFLASKHRQPPEYN-- 3672
MoleRat 3685 FRFHKPEEANEPPLNPHGSARAEVHLRQVLFFSPPEYNPNDEEEEEVQL- 3722
Guinea Pig 2575 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMENFLASKHRQPPEYN-— 2572
Wild Boar 2301 FRFHKPEEANEPPLNPHGSARAEVHLRQSAFDMENFLASKHRQPPEYN-- 2348
Lizard 3593 FRFHKPEE TKEPDVNPHGSARAEVHLRQSAFDMFNFLASKHRQPPEYH-— 3640
Xenopus 3631 FRFHRPEGEEEPPINPHGSARAEVHRRKSAFDMENFLASKHRQPPEYKEN 3678
Zebra fish 3995 FRFHKPEETDYLPVNPHGSARAEVYHRKSVLDMENFLASKHROPPVYN-— 4042
Tilapia 4294 FRFHKPEETDEPPINPHGSARAEVHHRRSVFDMENFLASKHRQPPEYRPQ 4341
Pufferfish 4275 FRFHKPDE PDEPPINPHGSARAE INHRRCVFDIFSFLASKHRQPPEYRPH 4322
Drosophila M 3508 -LLDYGSDQDELEENAYDCARCE PY SNRSE YDMF SWLASRHRKQPIQV-—- 3554
Drosophila V. 3603 ALIDYGSDQEELOENAYECARCE PYVSRSEYDMFSWLASRHRKQPIQV-- 3650
: L W : :

MLL1 Win motif

Weblogo 3.3

Appendix Figure 1a. Win motif in MLL]1 is highly conserved in metazoan orthologs

Amino acid sequence conservation within the Win motif of MLL1 orthologs is shown. Top,
ClustalW (70)multiple sequence alignment for all the MLL1 orthologs found in NCBI. The
conserved residues of the Win motif are highlighted in red. bottom, a bit-score representation of
the amino acid conservation within the sequences used in Clustal W alignment. Weblogo server
(weblogo.berkeley.edu) (335) was used to generate the consensus motif with respect to residue
positions in the alignment. Degree of conservation is indicated by the size of the letters.
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Appendix Figure 1b. Win motif in MLL?2 is highly conserved in metazoan orthologs

Amino acid sequence conservation within the Win motif of MLL2 orthologs is shown. Top,
ClustalW (70) multiple sequence alignment for all the MLL?2 orthologs found in NCBI. The
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conserved residues of the Win motif are highlighted in red. botfom, a bit-score representation of
the amino acid conservation within the sequences used in ClustalW alignment. Weblogo server
(weblogo.berkeley.edu) (335) was used to generate the consensus motif with respect to residue
positions in the alignment. Degree of conservation is indicated by the size of the letters.
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Human MLL3 4689 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 4735
Chimpanzee 3808 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVK----RPHTLNSTSTS 3850
Macaca 4563 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 4609
Gibbon 4638 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVK----RPHTLNSTSTS 4680
Elephant 4563 FRYGRNPLMELPLATNPTGCARSEPKMSTHVKRFVLRPHTLNSTSTS 4609
Horse 4688 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 4734
Panda 4705 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 4751
Wild Boar 3260 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 3306
Dog 4652 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 4698
Callithrix 4687 FRYGRNPLMELPLAINPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 4733
Mouse 4681 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKREVLRPHTLNSTSTS 4727
Rat 4708 FRYGRNPIMELPLAVNPTGCARAEPKMSAHVKRFVLRPHTLNSTSTS 4754
Rabbit 4643 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKREFVLRPHTLNSTSAS 4689
Opposum 4640 FRYGRNPLMELPLAINPTGCARSEPKMSTHVKRFVLRPHTLNSTSTS 4686
Platypus 4688 FRYGRNPLMELPLAINPTGCARSEPKMSTHVKREVLRPHTLNSTSTS 4734
Cat 4684 FRYGRNPLMELPLAINPTGCARAEPKMSTHVKREVLRPHTLNSTSTS 4730
Guinea pig 4656 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 4702
Hamster 4649 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVKRFVLRPHTLNSTSTS 4695
Mole rat 4506 FRYGRNPLMELPLAVNPTGCARSEPKMSAHVK----RPHTLNSTSTS 4548
Zebra finch 4663 FRYGRNPLMELPLAINPTGCARAEPKMSTHVKREVLRPHTLNSTSTS 4709
Xenopus 4993 FRYGRNPLMELPLAINPSGSARSEPKMNSHVKRFVLRPHTLNSTSTS 5039
Anolis 4634 FRYGRNPLMELPLAINPTGCARSEPKMSSHVKREVLRPHTLNSTSTS 4682
Tilapia 4648 FRYGRNPLVELPLMFNPAGCARAQPKASSPYTSVVIRPOPOAVSSSS 4694
Zebra fish 3697 FRYGRNPLMOLPLAINPSGCARSEPKACTHIKR----PHTLTSTSKA 3739
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Appendix Figure 1c. Win motif in MLL3 is highly conserved in metazoan orthologs

Amino acid sequence conservation within the Win motif of MLL3 orthologs is shown. Top,
ClustalW (70) multiple sequence alignment for all the MLL3 orthologs found in NCBI. The
conserved residues of the Win motif are highlighted in red. botfom, a bit-score representation of
the amino acid conservation within the sequences used in Clustal W alignment. Weblogo server
(weblogo.berkeley.edu) (335) was used to generate the consensus motif with respect to residue
positions in the alignment. Degree of conservation is indicated by the size of the letters.



Human MLL4 FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Callithrix FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Chimpanzee FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Orangutan FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Macaca FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Gibbon FRYHQQOGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Panda FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Bos taurus FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Wild boar FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Dog FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Rat FRYHQOGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Mouse FRYHQQGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Mole rat FRYHQQOGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Guinea pig FRYHQOGEGQEEPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGA 49
Anolis FRYHQHEGEEEELPLNPHGCARAEVYSRKCTFDMFNFLASQHRVLPEGG 49
Xenopus FLFHPQEVEEGEISTNPSGCARSEVYVRKSTFDMFNFLASQHRTLPEIG 49
Zebra fish FRFHQHEIPEEELPENPNGCARAEVYVRKSTFDMFNFLASQHRQLPESR 49
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MLL4 Win motif
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Appendix Figure 1d. Win motif in MLL4 is highly conserved in metazoan orthologs

Amino acid sequence conservation within the Win motif of MLL4 orthologs is shown. Top,
ClustalW (70) multiple sequence alignment for all the MLL4 orthologs found in NCBI. The
conserved residues of the Win motif are highlighted in red. bottom, a bit-score representation of
the amino acid conservation within the sequences used in Clustal W alignment. Weblogo server
(weblogo.berkeley.edu) (335) was used to generate the consensus motif with respect to residue
positions in the alignment. Degree of conservation is indicated by the size of the letters.
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Human_SETdla 1474  —--———m- TTPKRKRRPQDGPREHQT GSARSEGY YPTSKKERDKYLDVCPVSARQLE-- 1522
Chimpanzee 1474 —--m-m-- TTPKRKRRPODGPREHQT GSARSEGY YPISKKERDKYLDVCPVSARQLE-- 1522
Gibbon 1442 ———————- TTPKRKRRPODGPREHOT GSARSEGY YPISKKERDKYLDVCPVSARQLE-- 1490
Bos_taurus 1475 —----——- STPKRKRRPODGPREHQTGSARSEGYYPISKREKDRYLDVCPVSARQLE-- 1523
Callithrix 1475 ——mmmeee TTPKRKRRPQDGPREHQTGSARSEGY YPISKKERDKYLDVCPVSARQLE-- 1523
Elephant 1470 —-—————- NTPKRKRRPQDGPREHQT GSARSEGY YPISKRERDKYLDVCPVSARQLE-- 1518
Panda 1360  —-———-m- STPKRKRRPQDGPREHQTGSARSEGYYPISKKEKDRYLDVCPVSARQLE-— 1408
Dog 1480  —------- STPKRKRRPQDGPREHQTGSARSEGYYPISKREKDRYLDVCPVSARQLE-- 1528
Wild boar 1317 =—memmee- STPKRKRRPODGPREHOQTGSARSEGY YPISKKEKDRYLDVCPVSARQLE-~ 1365
Horse XP 001915080 1474  -—---——-- STPKRKRRPQDGPREHQTGSARSEGYYPISKREKDRYLDVCPVSARQLE-— 1522
Opposum 1473 ———mm—m- TTPKRKRKPFDGPREHQT GSARSEGY YPISKKERDKYLDVCPVSARQLE-- 1521
Mouse 1483 ———————- STPKRKRRPQDGPREHQTGSARSEGY YPISKREKDKYLDVCPVSARQLE-— 1531
Mole_rat 1269  ———————- PADEVLEAPEDGPREHQTGSARSEGYYPISKKEKDKYLDVCPVSARQLE-— 1317
Hamster 1490  —----——- STPKRKRRPQDGPREHQTGSARSEGY YPISKKEKDKYLDVCPVSARQLE-- 1538
Guinea pig 1469 —-----—- STPKRKRRPQDGPREHQTGSARSEGYYPISKKEKDKYLDVCPVSARQLE-- 1517
Xenopus 1585  ———m-m—- ADPKRRENRQDGLREHQT GCARSEGY YATSKKDRDKYLKVLLVAAEEQE-- 1633
Jewel wasp 1443 ——mmmmmmeo SPAKRRKRDEVRLHVTGCARTEGY YKVDLKDKLKHKHHYAQSIQRNED- 1490
Coprinopsis 1362 —————m———o SAPEPSEPTSSRKHLTGSARTEGFYKITKODKAMYLEQYKSKARAEVIP 1410
Puccinia 733 ——m—me AQSESKGKANEGVGRHSTGS SRTEGY YHISSSQRAIYLPQ-RNKAIIDIGS 782
S_pombe 680 FRNGDVKYGDTAILPEPKGYFRSNTSGSAKSEGYYI IPTTERSLYLPLRNR-=~-———- 730
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Appendix Figure 1le. Win motif in SETd1a is highly conserved in metazoan orthologs

Amino acid sequence conservation within the Win motif of SETd1a orthologs is shown. 7op,
ClustalW (70) multiple sequence alignment for all the SETd1a orthologs found in NCBI. The
conserved residues of the Win motif are highlighted in red. botfom, a bit-score representation of
the amino acid conservation within the sequences used in Clustal W alignment. Weblogo server
(weblogo.berkeley.edu) (335) was used to generate the consensus motif with respect to residue
positions in the alignment. Degree of conservation is indicated by the size of the letters.
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Mouse 1746
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Mole rat 1248
Xenopus 1699
Zebrafish 1607
Ant 1260

Carpenter_ Ant 1169
Barrel clover 976

LSSAKKKKRDDGIREHVIGCARSEGFYTIDKKDKLRYLNSSRASTDEP PA-
LSSAKKKKRD DGIREHMIGCARSEGFYTIDKKDKLRYLNSSRASTDEPPT-
LSSAKKKKRDDGIREHVIGCARSEGFYTIDKKDKLRYLNSSRASTDEP PA-
LSSAKKKKRE DGIREHVIGCARSEGFYTIDKKDKLRYLNSSRASTDEP PM-
FSTPKKKKRD DGMREHVTGCARS EGYYKI DKKDKLKYLNNSRAFAREEPPA-
-ILPDKKKRDDGIREHVIGCRARSEGFYTIDKKDKLRYLNSSRASTDEPPAD
VY SPKKKKRD DGLREHVIGCARSEGYYKIDKKDKLKYLINNRSLADEPPI-
VIGVKKKRKE DGIRDHVIGCARS EGYYKI DKKDKMKYLNSSRLOQSEEPDV-
-PSPAKKRKR DELRLHASGSART EGYYKVDIREKAKHKHHYAQSIQRSNDV
-PSPAKKRKR DELRLHASGSARTEGYYKVDIREKAKHKHHYAQSIQRSNDV
-RRNSAKSKSLDLCPRSIGCART SIDGWEWHKWSQSASPTSRARVRGLPRL
* = . . .

* dkkoe
- -

SETd1b Win motif

217

1733
1669
1730
1795
1818
1297
1748
1656
1309
1218
1025

WeblLogo 3.3

Appendix Figure 1f. Win motif in SETd1b is highly conserved in metazoan orthologs

Amino acid sequence conservation within the Win motif of SETd1b orthologs is shown. Top,
ClustalW (70)multiple sequence alignment for all the SETd1b orthologs found in NCBI. The
conserved residues of the Win motif are highlighted in red. botfom, a bit-score representation of
the amino acid conservation within the sequences used in ClustalW alignment. Weblogo server
(weblogo.berkeley.edu) (335) was used to generate the consensus motif with respect to residue
positions in the alignment. Degree of conservation is indicated by the size of the letters.
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Appendix 2

Appendix 2a. STRING Interaction network for human MLL1
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Figure 2a STRING interaction network for human MLL1

Protein-protein interactions associated with the full length MLL1 protein are shown. The network was created using
the STRING 9.0 database (336, 337) and the evidence view was selected to display the interactions. The query
sequence and the list of interaction partners are listed below the network. Only the top 20 partners for MLL1
identified through experimental evidence and text mining resulting from a STRING search set at confidence level
0.5 are shown. Nodes are either colored (if they are directly linked to the input - as in the table) or white (nodes of a
higher iteration/depth). Edges, i.e. predicted functional links, consist of up to eight lines: one color for each type of
evidence.
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Appendix 2b. STRING interaction network for human MLL2
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Figure 2b. STRING interaction network for human MLL2

Protein-protein interactions associated with the full length MLL2 protein are shown. The
network was created using the STRING 9.0 database (336, 337) as described in appendix Figure
2a.



220

Appendix 2c. STRING Interaction network for human MLL3
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PPP2R1A  protein phosphatase 2 (formerly 24), regulamry subunit A, alpha isoform; The PRES subunitof p [ % = 0.625
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CXXC1 CXXC finger 1 {PHD domain); Transcriptional activator that exhibits a unigue DNA binding specif [...] (660 aa) x| 0587
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Figure 2¢c. STRING interaction network for human MLL3

Protein-protein interactions associated with the full length MLL3 protein are shown. The
network was created using the STRING 9.0 database (336, 337) as described in appendix Figure
2a.
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Appendix 2d. STRING Interaction network for human MLL4
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Figure 2d. STRING interaction network for human MLL4

Protein-protein interactions associated with the full length MLL4 protein are shown. The
network was created using the STRING 9.0 database (336, 337) as described in appendix Figure
2a. STRING search for human MLL4 identified only 6 interaction partners and did not predict
the components of WRAD sub-complex as interaction partners for MLL4.



222

Appendix 2e. STRING Interaction network for SETd1a
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' DPY30 dpy-30 homolog (C. elegans) (99 aa) xixixix| Ixi=| [0.919
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- PAF1 Pafl, RNA polymerase II associated factor, homolog (S. cerevisiae); The mammalian PAFL complex [...] (531 aa) xix x x| Ixe |0.768
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' RNF20 ring finger protein 20; E3 ubiquitin-protein ligase that mediates monoubiguitination of 'Lys-12 [...] (975 aa) xixixix| Ix|e] |0.758
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Figure 2e. STRING interaction network for human SETd1a

Protein-protein interactions associated with the full length SETd1a protein are shown. The
network was created using the STRING 9.0 database (336, 337) as described in appendix Figure
2a.
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Appendix 2f. STRING Interaction network for hRSETd1b
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2 HCFC1 host cell factor C1 (VP16-accessory prowein): Involved in contrel of the cell cycle. Also antag [...] (2035 aa) wikixix x e D702
W TOX4 TO¥ high mability group box family member 4 (621 aa) wimixlx| x e 0673
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I HIST1H3E histone cluster 1, H3e (136 aa) ®iwixix|=nie |0.562
" DNMT3B DNA (cytosine-5-)-methylransferase 3 beta; Required for genome wide de novo methylation and is [...] (833 az) xixlxlx| Ix 0.560
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Figure 2f. STRING interaction network for human SETd1b

Protein-protein interactions associated with the full length SETd1b protein are shown. The
network was created using the STRING 9.0 database (336, 337) as described in appendix Figure
2a.
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Appendix 3a-g: MALDI-TOF mass spectrometry data for human SET1 family Win motif
peptides under no pre-incubation conditions
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Appendix 4a-g: MALDI-TOF mass spectrometry data for human SET1 family Win motif
peptides under pre-incubation conditions
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Appendix Figure 5a: Ramachandran plot for MLL1 Win motif peptide
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Appendix Figure 5b: Ramachandran plot for MLL2 Win motif peptide
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Appendix Figure 5¢: Ramachandran plot for MLL3 Win motif peptide
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Appendix Figure 5d: Ramachandran plot for MLL4 Win motif peptide
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Appendix Figure 5f: Ramachandran plot for SETd1b Win motif peptide
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Appendix 6: View of the Asymmetric Unit for MLL1 Win motif-WDRS binary complex.

The WDRS molecules are shown as a surface representation (Magenta and Grey) and the two
MLL1 Win motif peptide chains are shown as ribbons (Blue and Green). Structure figure was
generated in PyMol.
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