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Abstract 

This dissertation consists of two essays that explain health outcomes and medical care in 

the United States. Health care has been a major concern of economists and policy makers. Policy 

intervention is one of the key factors that affect health outcomes, especially among low-income 

families. Welfare programs such as Medicaid and cash assistance are conventionally 

implemented to assist low-income families. The effectiveness of these efforts to improve health 

outcomes and medical utilization among low-income families is not entirely clear. As to the 

supply side of health care, the results of previous studies on how hospitals provide the services 

are mixed. Additionally, hospitals may compete to attract patients and generate spillover effects. 

Quality of hospitals may in turn differ by market. My two essays apply econometrics models to 

investigate the effects of public policies and hospital quality on health and medical care. 

Specifically, the first essay examines whether welfare programs affect the health outcomes and 

medical utilization of children in the low-income families, and if so, which policy has the 

strongest effect on them. The second essay explores how the spillover effects impact the 

treatment rates of hospitals.   

The first essay examines the effect of the Temporary Aid to Needy Families (TANF) 

program on children’s health outcomes using data from the Survey of Income and Program 

Participation (SIPP) over the period 1994 to 2005. The TANF policies have been credited with 

increased employment for single mothers and a dramatic drop in welfare caseload. Our results 

show that these policies also had a significant effect on various measures of children’s health and 

medical utilization especially among low-income families. These health measures include a 

rating of the child’s health status reported by the parents; the number of days an illness or injury 

 
 



 
 

kept the child in bed; the number of times that parents consulted a doctor; and the number of 

nights that the child stayed in a hospital.  

The second essay addresses the effect of hospital ownership on treatment rates allowing 

for spatial correlation among hospitals. Competition among hospitals and knowledge spillovers 

generate significant externalities which we try to capture using the spatial Durbin model. Using a 

panel of 2342 hospitals in the 48 continental states observed over the period 2005 to 2008, we 

find significant spatial correlation of medical service treatment rates among hospitals. We also 

get mixed results on the effect of hospital ownership on treatment rates that depends upon the 

market structure where the hospital is located and which varies by treatment type. 
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1. Introduction  

It is well-known that poor health for children can lead to deterioration in school performance 

and lower future earnings (see Case, Lubotsky, and Paxson, 2002; Case, Fertig, and Paxson, 

2005; and Currie et al., 2010 to mention a few). The child’s health depends among other things 

on the amount of time and money the parents spend on their children. Children in higher-income 

families usually have more nutritious diets and better care than children from low-income 

families. It is well documented that children in poverty have worse health conditions (see Aber et 

al., 1997; Currie and Lin, 2007 to mention a few). The U.S. government provides welfare 

programs to improve this situation, for example, medical assistance and cash transfers1.  

However, when the mandates of the programs are restrictive, the recipients are more likely to 

drop out of welfare. As a result, the child’s health will be impacted by the loss of financial 

support.  

Under the Personal Responsibility and Work Opportunity Reconciliation Act (PRWORA), 

Temporary Aid to Needy Families (TANF) program replaced Aid to Families with Dependent 

Children (AFDC) in 1996. To reduce welfare dependency of low-income families, TANF limits 

the lifetime welfare use and requires work-attached activities. The restrictive TANF policies lead 

to a dramatic decrease in welfare caseloads (Moffitt, 2003) 2. The total amount of children 

covered by AFDC/TANF dropped from 9.3 million in 1992 to 3 million in 2008. Parents left this 

program because they either found employment or they failed to meet the restrictive 

requirements. In the latter case, children lose their cash benefits which in turn could affect their 

health. Parents that obtain jobs, presumably with higher income, can provide better quality food 

1 In fact, Gertler (2004) finds that cash transfers enhance children’s health in Mexico. 
2 However, Ziliak et al. (2000) suggest that economic conditions may have been the major culprit in the caseload decline. 
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and care for their children3. The worker participation rate among AFDC/TANF families 

increased from 18.8% in 1992 to 29.4% in 2008, even with a recession in the late 2000’s (DHHS, 

1998, 2009). In fact, Grogger (2004) reports higher employment after the implementation of 

lifetime limits.  As a result, children leaving TANF in either of these two scenarios can have 

different health outcomes.  

Studies investigating the effect of welfare reform policies on children’s health are rare. 

Exceptions are Leonard and Mas (2008) and Dunifon, Hynes, and Peters (2006). Leonard and 

Mas found that states which imposed shorter time limits on being in welfare had higher infant 

mortality rates. This was more pronounced for less educated and unmarried women. In contrast, 

Dunifon, Hynes, and Peters found insignificant effects of welfare reform policies on the child’s 

health status as rated by the parents.  

Our study investigates the effect of welfare reform on children’s health outcomes using data 

from the Survey of Income and Program Participation (SIPP) over the period 1994 to 2005. 

Utilizing the difference-in-differences method, our results show significant changes in various 

measures of children’s health and medical utilization among low-income families. These 

measures include: (i) a rating of the child’s health status as reported by the parents; (ii) the 

number of days an illness or injury kept the child in bed; (iii) the number of times that parents 

consulted a doctor; and (iv) the number of nights that the child stayed in a hospital.  

In fact, for low-income families, we find an improvement in the child’s health as reported by 

the parents. We also find a decrease in the number of times that parents consulted a doctor. The 

general health status is impacted by work requirements the most, while family caps have the 

3 Empirical studies report mixed results of  how a child’s health is impacted by maternal employment (see Gennetian et al., 2010; 
Brooks-Gunn et al., 2002; and Waldfogel, 2004 to mention a few). 
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largest effect on the number of doctor consultations. One possible explanation is that families are 

forward-looking as suggested by Grogger (2004) and Swann (2005). Parents tend to reduce 

welfare use when their children are young, because time limits restrict the total use of welfare. 

They are more risk-averse and would like to reserve these benefits for possible needs in the 

future. In addition, recipients worry about non-increment benefits for an additional child. With 

limited benefits, they may adjust their fertility decision to control the family size and pay more 

attention to health, nutrition, and care for their children.  

2. Welfare Reform in the 1990’s 

Before the PRWORA, families receiving AFDC benefits were typically low-income single-

parent families with at least one child under 18 years of age. Cash-aid continued until they 

earned higher income or all the children in the family became 18 years or older. AFDC generated 

work disincentive for low-income female headed families (Moffitt, 1992). In addition, Currie and 

Cole (1993) argued that it also generated undesired maternal behavior, such as inappropriate 

prenatal care. To reduce the dependency on welfare programs, TANF mandated several 

restrictive requirements. The requirements include: (i) lifetime limits, (ii) work-attached 

activities, (iii) initial sanctions, and (iv) family caps.  

The lifetime limits restrict the total cumulative use of TANF to only 60 months in the 

recipients’ lifetime. Families leave TANF when their income is higher than the threshold, and 

enroll again when their income drops lower than the threshold. If families reach the lifetime 

limits, they are not able to enroll in TANF again. Similarly, the federal program requires 

recipients to participate in the labor force within 24 months. If the parents fail to meet this work-

activity requirement, their benefits may be partly or fully sanctioned. It is even more challenging 
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for low-income families if the state mandates full-benefit initial sanctions when parents cannot 

fulfill the first time requirements. 

Besides welfare dependency, economists and policy makers also worry about the fertility 

decision of low-income families. Most welfare programs increase benefits if the family has one 

additional child. Families may intentionally have additional children due to these benefits. In 

fact, Robins and Fronstin (1996) find that AFDC benefits increase the birth rate among black and 

Hispanic unmarried women. To reduce these incentives, families are given zero or partial 

incremental benefits for an additional child under family caps. 

The federal policy is a general guideline of TANF. State governments decide which 

policy to implement, and how, and when to implement these policies. Each state can modify the 

restrictions according to their economic situations or concerns. Some states have shorter lifetime 

limits, but no family caps. Two states may both implement immediate work activity 

requirements, but only one may have full sanction policy. As a result in 2005, 11 states have 

lifetime limits shorter than 60 months, while four states do not have this mandate. In addition, 43 

states require immediate work activities in 2005. The implementation dates also vary by states. 

Some states enforced state-wide welfare reforms and implemented restrictive waivers before 

TANF. The waivers resemble the TANF policies, however, with a less comprehensive design. 

One state may implement part of the four policies along with some other requirements as its 

waivers. Table I-1a presents the number of states4 implementing waivers and TANF from 1994 to 

1999, and Table I-1b presents the number of states implementing policies after 1994. States are 

counted in both categories at the year that waivers were replaced with TANF. About half of the 

states implemented waivers prior to TANF.  In fact, waivers are not replaced immediately after 

4 This includes 50 U.S. states and Washington D.C.  
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the PRWORA in 1996.  For example, Hawaii adopted waivers in 1997 and replaced it with 

TANF in the same year.  All states implemented TANF between 1996 and 1997.  Table I-1b 

shows that almost all states adopt time limits and work requirements, regardless of the duration 

limits. 22 states adopted family caps and 18 states adopted full initial sanctions in 2005, 

respectively. The amount of benefits also varies by state and depends on the arrangement of its 

TANF block grant from the federal government5. For example, both Mississippi and Alaska have 

60-month lifetime limits in 2005. However, Mississippi has the lowest benefits and Alaska has 

the highest benefits in the US.  

3. Previous Literature 

Many papers studying the effect of TANF focus on employment, caseload, and welfare use 

among low-income families. Grogger (2003, 2004) and Moffitt (2002) report an increase in 

employment among low-income families after the implementation of lifetime limits. The 

restrictive policies are an important barrier to entry and a primary factor for why families leave 

the TANF program. Recipients may run out of time limits or are not able to find a job. Around 25 

to 40 percent of women who leave welfare do not work. The non-working situation makes it 

even more economically disadvantageous to them and their children (Moffitt, 2002, 2003; Stuber 

and Kronebusch, 2004). Parents also tend to be forward-looking. They reduce welfare use when 

their children are young because time limits restrict the total use of welfare (Grogger, 2004; 

Swann, 2005). The increase in employment and the decrease in welfare enrollment have marked 

implications for the health of children in these families.  

5 The lowest maximum benefit for a family of three is $170 per month in 2005, and the median amount is $379. 
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For parents that obtain jobs, and leave welfare, one presumes a higher family income6. 

London et al. (2004) interviewed families that enrolled in welfare programs regarding the 

changes in their life due to work. These parents reported that work increases self-esteem and 

instills better self-sufficiency values within children. They also reported that they can afford 

better medical services and quality of life with higher income. However, these parents stated that 

they are usually exhausted after work and agreed that going to work decreases the time and 

energy devoted to their children. Bianchi (2000) also argues that the time that working mothers 

spent on their children is less than that of unemployed mothers, even though the difference of 

time spent on direct childcare is relatively small. Studies report that there is a greater chance for 

single working mothers to neglect their children. This includes medical neglect. In fact, the 

substantiated cases of children maltreatment significantly increased in states with short lifetime 

limits and tough initial sanctions (Paxson and Waldfogel, 2002, 2003).  

Bitler, Gelbach, and Hoynes (2006) find that after welfare reform, more black and Hispanic 

children live with married parents, or neither parent (likely to be a relative with higher income). 

In other words, the percentage of children living with an unmarried parent decreases. The results 

are mixed for white children. They argue that, compared to living with a single parent, children 

could have better outcomes when they live with a grandparent and no parent. Paxson and 

Waldfogel (2003) also suggest that it is more likely for children to be sent to out-of-home care 

(primarily foster care) in states with short lifetime limits, tough initial sanctions, family caps, and 

immediate work requirements. Conversely, states with more generous benefits are associated 

with a lower out-of-home care rate. Children may or may not receive proper care depending on 

6 Grogger (2003) indicates that family income increased over the study period. However, this increase is mainly because of the 
Earned Income Tax Credit (EITC). Moffitt (2002) finds moderate increments in earnings for women who leave welfare. The 
gains in earnings exceed the losses of benefits in one or two years after they leave the program. The income is slightly higher 
with EITC. The main source is from the income change of other family members. 
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the parent’s living arrangements. According to Bitler, Gelbach, and Hoynes, children who are 

sent to out-of-home care may be better off than staying home alone. On the other hand, Gordon 

et al. (2007) argue that center-based childcare provides less quality than maternal care. Young 

children in center-based care tend to have more injuries and infectious diseases.  

Second, if parents do not obtain a job in time or families run out of time limits, they lose their 

benefits temporarily or permanently. Their income is likely to be lower than that when they were 

under welfare. Even with income from other family members and welfare programs, a fraction of 

these families will still be worse off after they leave TANF (Moffitt, 2002). As a result, these 

families facing a tougher situation without benefits and sufficient income may not be able to 

provide the same nutritious food or proper care for their children. Studies have shown that 

children in poverty are more likely to have poor health (Aber et al, 1997; Currie and Lin, 2007).  

Combining these two effects, it is ambiguous if the waivers and TANF policies will result in 

a negative or positive effect on children’s health and medical utilization. Few studies investigate 

the welfare reform policy effects on children’s health and medical utilization. Dunifon, Hynes, 

and Peters (2006) studied how changes in welfare reform policies influenced children’s well-

being via their influence on income, employment, or welfare participation of the parents. They 

used data from the 1992, 1993 and 1996 panels of SIPP.  One of the measures of child well-being 

was the child’s health (but only for children with ages 0–5). This was reported by the child's 

primary caregiver and is one of the health variables that we will use in our study.  They argued 

that if changes in welfare policies increase family income, one may see improvements in child’s 

health. However if changes in welfare policies increase employment without changing income, 

one may see reductions in child health due to less parental supervision and/or stressful family 
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situation.  They argue that their results are inconclusive and do not suggest that welfare reform 

policies have a uniform, strong effect on the aspects of parenting behavior and child well-being. 

 Leonard and Mas (2008), on the other hand, showed that infant mortality rates increased in 

states with shorter lifetime limits. Using the Centers for Disease Control and Prevention (CDC) 

data covering 1995-2002 and a linear probability model, they found that this effect was larger for 

blacks than for whites. However, they do warn that time limits did not account for the whole 

increase in mortality rates. The bad economy in the early 2000’s and state differences could also 

be part of the reasons.  

4. Data and Methodology 

We apply the difference-in-differences methodology to estimate the effects of welfare reform 

on children’s health and medical utilization. We use the SIPP data which consists of several 

panels. The duration of each panel is between 2.5 to 4 years. We combine these panels into a 

larger dataset spanning the period 1994 to 2005. A longer duration dataset allows us to 

investigate long-term health effects, which were not feasible in previous studies that were based 

upon shorter periods. SIPP collects general individual information with different topical modules 

every four months. The health module reports the following four measures of children’s health 

and medical utilization: (i) a health status rating by parents, varying from excellent, very good, 

good, fair, to poor; (ii) days of an illness or injury that kept the child in bed for more than half a 

day in the past 12 months7; (iii) the number of times that parents consulted a doctor or an 

assistant regarding child health in the past 12 months; and (iv) the number of nights that the child 

spent in a hospital in the past 12 months. Even though our four measures are related to the child’s 

health, the latter three may also be considered as measures of medical utilization. All of these 

7 This measure is limited to young adults between the ages of 15 and 17.  
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measures were reported by the primary caregiver. We modified our health status variable to a 

dummy variable which takes the value one if the child’s health is rated as fair or poor and zero 

otherwise. The child health data was not available prior to 19948.  

To utilize a quasi-experimental method, it is important to know who are most likely to be 

impacted by TANF. We target three treatment groups: (i) unmarried parents that have at most a 

high school degree, (ii) families with income under 100% of the federal poverty level (FPL), and 

(iii) families with income under 200% of the FPL. These families are the most likely to enroll in 

welfare programs. The control group for the first treatment group includes married parents who 

have more than a high school degree. For the latter two treatment groups, the control group 

includes married parents with income higher than 200% of the FPL. One possible problem with 

using income as the treatment is possible sample selection bias (Evans and Garthwaite, 2010). 

Families may adjust their behavior due to the income threshold. However, the income threshold 

of the TANF program is usually much less than 200% of the FPL. It is true that families with 

income between 100% and 200% of the FPLs are very likely to be affected by the policies. These 

families may leave welfare due to the more stringent requirements or higher income after 

obtaining a job. Including families up to 200% of the FPL reduces the possible bias. Moreover, 

the restrictive policies are more likely to be the factors for the decision to enroll or not to enroll 

in TANF. See Moffitt (2003) who reports that many families leave or avoid the program because 

of these restrictive policies. 

Table I-2 presents our summary statistics. The mean of poor health status for all groups is 

0.02, which implies that on the average parents rate their children in good health. Similarly, 

8 The health modules are usually surveyed in the latter half of the year and the first two months of the next year. If the survey is 
taken in the latter half of the year, our measures are mostly impacted by the policies in the same year. However, if the interviews 
are completed in January and February of the next year, they are combined with the previous year. 
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while some children are ill for the whole year, the low means of the other three measures indicate 

that on the average there were few days in bed, few doctor consultations and few nights of 

hospital stays. There are substantial differences in the health measures considered between the 

treatment and control groups. Children in low-income, and low-educated unmarried parents 

groups, are more likely to be reported in poor health, with fewer doctor consultations, and more 

hospital stays. In addition, there are large percentages of black and younger mothers in these 

treatment groups.   

 Figure I-1 shows the proportion of children reported in poor health over the period 1994-

2005. The treatment group in Figure 1a is unmarried parents that have at most a high school 

degree; while that in Figure 1b is families with income under 100% of the FPL; and that in 

Figure 1c is families with income under 200% of the FPL.  In all Figures, the proportion of 

children in poor health in the treatment group declines over time, while that of the control group 

has relatively smaller fluctuations. The largest difference between the treatment and control 

groups occurs before 1998, the year in which all states implemented TANF.  This difference 

between the treatment and control groups declines after the reform.  This is contrary to most of 

the previous literature that suggest a deleterious influence of welfare reform on children.   

In addition, these treatment groups are only affected when the state implements these 

policies. As we discussed earlier, states vary in their adoption of these policies. Not all states 

implement all four policies we are focusing upon. For example, Michigan and Vermont did not 

adopt any termination time limits. Similarly, 27 states never had family caps, and 32 states never 

set the initial sanctions to be full benefits. Since these policies have never been implemented, we 

are not able to observe their effects in these states. Likewise, the effects are unobservable in 

those few states that implemented the policies before 1994. Hence, we dropped states that never 
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implemented the policies or had previously implemented them. In addition, SIPP grouped nine 

states into larger regions before 19969. For these larger regions, we could not determine which 

interviewee belonged to which state. Therefore, we are left with 41 states with lifetime limits, 42 

states with work requirements, 18 states with family caps, and 17 states with initial sanctions 

being full benefits, respectively.  

Our reduced form model is as follows: 

Healthist =  α + β1 Treatmentist + β2 Pst + β3 Pst*Treatmentist + β4 Maxbenst  

+ β5 Xist + β6 unemploymentst + β7 Medicaid coveragest+ us + vt + εist 

 

where Healthist is the health measure of child i in state s at year t. We employ the logistic 

regression when our dependent variable is the child’s binary health status variable. We also apply 

the negative binomial regression when our health variable is days in bed, number of doctor 

consultations, or nights of hospital stays10. Treatmentist is an indicator variable which takes the 

value one if child i belongs to that treatment group in state s at time t. Pst denotes the welfare 

reform policies for state s at time t. This is measured as a proportional dummy which is the share 

of the year that the policy is implemented. This is done for lifetime limits, work requirements, 

family caps, and initial sanctions being the full benefits. With the initial implementation dates, 

we can match the proportion of families with the month they are interviewed, and calculate the 

exact proportion of families that are impacted that year. If the policy is implemented after the 

interview, the proportional dummy is set equal to zero. Max Benefitst is the maximum 

AFDC/TANF benefit for a family of three in state s at time t. Unemploymentst  is the 

9 The nine states include: Alaska, Idaho, Iowa, Maine, Montana, North Dakota, South Dakota, Vermont, and Wyoming. 
10 We also tried the Poisson model for days in bed and doctor consultations. This was rejected statistically in favor of the less 
restrictive negative binomial model. Also, the probit model was also applied for the child’s health status variable and this 
produced similar results which are not reported here to save space. 
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unemployment rate in state s at time t, and Medicaid coveragest  is the Medicaid child coverage 

rate in state s at year t11. Xist controls for individual characteristics, including child’s age, race, 

and gender, mother’s age, mother’s education which consists of indicators of whether the mother 

is a high school dropout, or has a post high school degree, and a dummy variable for whether the 

family lives in a metro area. us and vt are the state and year dummies.  

 One concern with the difference-in-differences method is that the standard errors are likely 

to be understated because of autocorrelation. To correct for this problem, our standard errors are 

clustered by states (see Bertrand et al., 2004; and Donald and Lang, 2007). For the nonlinear 

models we calculate the average marginal effects following the method suggested by Ai and 

Norton (2003) and Karaca-Mandic, Norton, and Dowd (2010). 

As explained above, there are two possible outcomes from the restrictive policies on the 

health of children. If the parents participate in labor force, they leave the program with possibly 

higher income. Children are more likely to be sent to out-of-home care. They may have more 

nutritious food and sufficient attention. On the other hand, if parents are not able to seek out-of-

home care, children receive less time and care from their parents. Also, if parents run out of time 

limits or face a sanction, they lose their benefits and the children in turn suffer from the loss of 

these benefits. Encountering family caps will generate a similar situation as well. The marginal 

effects will determine which effect is stronger and whether the child’s health is improved due to 

the policy when comparing the treatment and non-treatment group.  

We also include maximum benefits and Medicaid child coverage in our model. According to 

Gertler (2004), a more generous benefit is expected to generate a better child health outcome. 

Medicaid is a public health insurance program for low-income individuals, including children. 

11 The Medicaid child coverage rate is equal to the total number of children covered by Medicaid divided by the total number of 
children under age 21. 
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The threshold for Medicaid is lower than that for the TANF program. Most of the children under 

AFDC/TANF are covered by Medicaid (Medicare and Medicaid Statistical Supplement, 2009). 

The TANF income thresholds are mostly lower than or equal to 100% of the federal poverty 

level, but the state Medicaid thresholds for children under age 6 are between 133% and 275% of 

the FPLs in 1997. This direct medical assistance benefits many low-income families, especially 

those with sick children. As noted by Currie and Gruber (1996), medical utilization would 

increase with the expansion of Medicaid. The restrictive requirements of the TANF program may 

push them out of TANF causing a switch to Medicaid. Parents may not meet the requirements of 

this program or run out of the lifetime limits, but are still eligible for Medicaid. Many families 

may choose to opt out of TANF. Children in low-income families may have better health due to 

Medicaid. Interestingly, Medicaid is rarely discussed in previous studies on TANF. 

We also include the state unemployment rate to controls for the effects of the economy12.  

However, the state economy is likely to correlate also with Medicaid child coverage. More 

children enroll in Medicaid in a bad economy. Currie and Grogger (2002) argue that if the 

unemployment rate can perfectly control for state economic conditions, we expect children to 

have better health with the expansion of Medicaid, holding everything else equal. However, if 

the unemployment rate cannot perfectly control for state economic conditions, the high Medicaid 

coverage rate reflects the hardship of low-income families. 

5. Results 

Table I-3 presents the logistic estimates with state and time dummies where the dependent 

variable is a dummy variable indicating whether the child is in poor health or not. The first three 

columns in each table pertain to the first policy (lifetime limits) and this is done for the three 

12 Ruhm (2000) argues that individuals have healthier habits and weight during recessions, and that the effect of a recession on 
preventive health care is insignificant. 
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different treatment groups considered. The next three columns repeat this regression for the 

second policy (work-attached activities), and so on for family caps, and initial sanctions, 

respectively.  For the work requirements policy in Table I-3, we observe a negative and 

significant effect on the probability that a child is in poor health for all treatment groups 

considered. The time limits, family caps and initial sanctions welfare reform policies had 

insignificant effects on the probability that a child is in poor health for all treatment groups. 

The average marginal effects for the work requirements policy in Table I-3 are negative and 

significant for all treatment groups. Implementation of the work requirements policy decreases 

the probability that a child is in poor health by about 1 to 1.6 percentage points. The largest 

effect is for families with income under 100% of the FPL. One possible explanation is an 

increase in confidence through work suggested by London et al. (2004). The marginal effects are 

insignificant for the other welfare policy reforms. 

Our results in Table I-3 indicate that the unemployment rate is insignificant. The only 

exceptions are for low-educated families under time limits, and for low-income families (under 

100% or 200% of the FPL) under initial sanctions. Medicaid coverage is only significant for the 

family caps policy for families with income under 200% of the FPL.  

Table I-4 presents the estimates using a negative binomial regression with state and time 

dummies where the dependent variable is the number of days an illness or injury kept the child in 

bed for more than half a day. None of the welfare policy requirements is significant. This holds 

for all treatment groups. The average marginal effects are also insignificant. Note that only 

children between the ages of 15 and 17 are examined in this measure due to data availability.  
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Our results in Table I-4 indicate that the effect of unemployment rate is insignificant for all 

treatment groups. Medicaid coverage rate has a positive and significant effect for all treatment 

groups under the family caps policy. It is also significant for low-income families (under 100% 

or 200% of the FPL) under the initial sanctions policy.  

Table I-5 presents the negative binomial estimates with state and time dummies where the 

dependent variable is the number of times that parents consulted a doctor. For low-income 

families (under 100% or 200% of the FPL), the time limits, work requirements, and family caps 

policies all have a negative and significant effect on the number of doctor consultations. For the 

low-educated unmarried parent treatment group, none of the policies have a significant effect on 

the number of doctor consultations. The initial sanctions remain insignificant for all the 

treatment groups except for the low-income families (under 100% of the FPL). 

Focusing on the first three columns of Table I-5, the average marginal effect estimates of the 

time limits policy indicate a decrease in the number of doctor consultations by 0.4 for the 100% 

low-income treatment group, and by 0.28 for the 200% low-income treatment group, 

respectively. The work requirements and family caps also lower the number of doctor 

consultations by around 0.55 for families with income under 100% of the FPL, and by around 

0.37 for families with income under 200% of the FPL, respectively. The initial sanctions are 

associated with a decline by 0.4 for the 100% low-income treatment group.  

This is in line with the Bitler, Gelbach, and Hoynes (2005) results which suggest that single 

mothers reduce their usage in preventive health care after the implementations of waivers and/or 

TANF.  Our results indicate that this reduction in medical utilization may also carry over to their 

children. 

 
 



17 
 

Table I-5 also shows that Medicaid coverage has no significant effect for all policies 

considered. On the other hand, unemployment has a positive and significant effect on the number 

of doctor consultations for the regressions with the family caps policy and all treatment groups. 

It is also significant for families with income under 100% of the FPL under the time limits and 

work requirements policies. 

Table I-6 presents the negative binomial estimates with state and time dummies where the 

dependent variable is the number of nights that a child stayed in a hospital. Time limits have a 

significant and negative effect for all treatment groups. However, work requirements, family 

caps, and initial sanctions are not significant for all treatment groups. 

The average marginal effects in Table I-6 are negative and significant for the time limits 

policy for low-educated families and low-income families (under 200% of the FPL). The 

implementation of time limits decreases the number of nights that a child stayed in a hospital by 

around 0.1 for these two treatment groups.  

Table I-6 indicates that the unemployment rate is not significant for all policies and treatment 

groups. The only exception is the 100% low-income families under the family caps policy. On 

the other hand, Medicaid coverage has a significantly negative effect on the number of nights 

that child stayed in a hospital for both low-income treatment groups under work requirements 

and family caps. It is also associated with a decline for the 100% low-income treatment group 

under time limits and initial sanctions. This is in line with the results of Aizer (2007) who reports 

a reduction in hospitalization after Medicaid expansion. 
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6. TANF, Waivers and Treatment Groups 

One might argue that focusing on specific welfare reform policies may overestimate their 

effects.  Estimating the effects of one policy may be contaminated with the effects of other 

policies implemented at the same time in some states. In addition, one could argue that the 

effects of welfare reform should not be limited to one particular policy since it is a combination 

of various policies. To study the robustness of our results, we estimate an alternative model 

described as follows: 

Healthist =  α + β1 Treatmentist + β2 Waiverst + β3 Waiverst*Treatmentist  

+ β4 TANFst + β5 TANFst*Treatmentist + β6 Maxbenst  

+ β7 Xist + β8 unemploymentst + β9 Medicaid coveragest + us + vt + εist 

 

Waiverst and TANFst denote the welfare reform implementations for state s at time t. They are 

measured as a proportional dummy which is the share of the year that the policy is implemented 

in the first year, and equal to one afterwards. Following the argument of Bitler, Gelbach, and 

Hoynes (2005), we cannot assume that waivers and TANF have the same effect across states and 

over time. The policy variables only measure the average effects of waivers and TANF.  

However, by not turning off Waiverst to zero after the implementation of TANF, we can identify 

states having waivers before TANF.  If waivers or TANF are implemented after the interview, the 

proportional dummy is set equal to zero. The other variables are identical to those in the policy 

model. 

Table I-7 presents the nonlinear regression estimates with state and time dummies. The first 

three columns in the table pertain to the first health measure (the probability that the child is in 

poor health), for the three different treatment groups considered. This uses the logistic 
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specification. The next three columns repeat this regression for the second measure (the number 

of days that the child was in bed), and so on for the number of doctor consultations, and the 

number of hospital stays, respectively. These use the negative binomial specification. For low-

income families (under 100% or 200% of the FPL), TANF has a negative and significant effect 

on the probability that the child is in poor health and the number of doctor consultations. TANF 

is also associated with a negative relationship with the number of hospital stays for unmarried 

low-educated families and low-income families (under 100% of the FPL). On the other hand, 

waivers are not significant for any of the treatment groups, no matter what dependent variable we 

focus on.  

The average marginal effects in the bottom of Table I-7 present the overall effects of waivers 

and TANF. Waivers are not significant for all treatment groups. The only exception is that 

waivers lower the probability that the child is in poor health by 0.6 percentage points on average 

for families with income under 200% of the FPL. TANF is also associated with a decline of 0.8 

percentage points on the probability that the child is in poor health and a decline of 0.5 to 0.34 

for the number of doctor consultations for low-income families (under 100% and 200% of the 

FPL). TANF is not significant for days in bed and hospital stays. 

Comparing the results in Table I-7 and Table I-3, we see that waivers and TANF result in a 

small but significant decline in the probability that a child is in poor health for families with 

income under 200% of the FPL. In contrast, this is only significant for the work requirements 

policy in Table I-3, but for all treatment groups. Comparing the results in Table I-7 and Table I-4, 

we see that neither waivers nor TANF have any significant effects on the number of days that the 

child was in bed. This is also the case for all policies considered in Table I-4. Comparing the 

results in Table I-7 and Table I-5, we see that TANF results in a small but significant decline in 
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the number of doctor consultations for low-income families. This is also true for both low-

income treatment groups for all policies considered, except the 200% low-income families under 

initial sanctions, in Table I-5. Comparing the results in Table I-7 and Table I-6, we see that 

neither waivers nor TANF have any significant effects on the number of hospital stays. This is by 

and large true for all policies considered in Table I-6 except for time limits which find a small but 

significant decline in the number of hospital stays. 

7. Conclusion 

Our results indicate that for low-income families the implementations of restrictive policies 

reduced the probability of being in poor health and the utilization of doctor consultations. The 

comprehensive welfare reform model agrees with these results. Among the restrictive policies, 

work requirements dominate the effect on probability of being in poor health.  All four welfare 

policies reduce the number of doctor consultations, but family caps have the greatest effect. 

Interestingly, we found that Medicaid has a negative and significant effect on the number of 

hospital stays in Table I-7, and this is also true for families with income under 100% of the FPL 

for all policies considered in Table I-613.  

In conclusion, our results have to be tempered by the fact that the health measures used in 

this study are reported measures by the caregiver and are subject to the usual criticism of such 

subjective measures. Also, one may argue that there may be other policies that we have not 

accounted for and not spanned by the state and time dummies included.  

13 We did include unemployment but we found it insignificant in most regressions. 
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Table I-1. Number of states implementing policies by year 

Table 1a. Number of states implementing waivers and TANF by year 

 1994 1995 1996 1997 1998 1999 

Waivers  11 19 24 12 0 0 

TANF 0 0 16 51 51 51 
 

Table 1b. Number of states implementing specific policies by year 

 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

Time limits 1 5 28 48 49 47 47 47 47 47 47 47 

Work requirements 3 8 29 51 51 51 51 51 51 51 51 51 

Family caps 3 9 17 21 21 21 22 22 22 23 22 22 

Initial sanctions 0 0 6 11 13 12 12 12 13 13 17 18 
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Table I-2. Descriptive Statistics 

  Treatment groups  Control groups 

 All Groups 
Under 100% 

FPL 
Under 200% 

FPL 

Unmarried 
parents 

 (at most HS 
degree)  

Married 
parents 
(above 

200% FPL) 

Married parents 
(above HS 

degree) 
Dependent variables:       
Poor health status 0.023 

(0.150) 
0.043 

(0.202) 
0.036 

(0.187) 
0.043 

(0.204) 
 0.015 

(0.121) 
0.013 

(0.115) 
Number of days in bed 1.856 

(8.278) 
1.790 

(6.427) 
1.872 

(7.548) 
1.822 

(6.173) 
 1.714 

(8.066) 
1.816 

(8.521) 
Number of doctor 
consultations 

2.875 
(6.720) 

2.562 
(6.128) 

2.638 
(6.628) 

2.672 
(6.629) 

 2.942 
(6.652) 

3.116 
(7.103) 

Nights of hospital stays 0.215 
(2.753) 

0.306 
(3.358) 

0.306 
(3.631) 

0.308 
(3.584) 

 0.176 
(2.182) 

0.188 
(2.306) 

        
Independent variables:       
Child’s age 8.450 

(0.165) 
7.598 

(4.966) 
7.861 

(5.001) 
8.052 

(5.200) 
 8.556 

(5.135) 
8.305 

(5.119) 
Number of siblings 1.443 

(1.24) 
1.976 

(1.516) 
1.813 

(1.415) 
1.619 

(1.428) 
 1.345 

(1.124) 
1.351 

(1.079) 
Male 0.509 

(0.500) 
0.507 

(0.500) 
0.508 

(0.500) 
0.504 

(0.500) 
 0.508 

(0.500) 
0.508 

(0.500) 
White 0.785 

(0.411) 
0.653 

(0.476) 
0.708 

(0.455) 
0.590 

(0.492) 
 0.862 

(0.345) 
0.859 

(0.348) 
Black 0.154 

(0.361) 
0.288 

(0.453) 
0.238 

(0.426) 
0.355 

(0.478) 
 0.076 

(0.266) 
0.078 

(0.268) 
Living in a metro area 0.796 

(0.403) 
0.787 

(0.409) 
0.782 

(0.413) 
0.787 

(0.409) 
 0.800 

(0.400) 
0.814 

(0.389) 
Mother’s age 35.847 

(7.392) 
32.785 
(7.354) 

33.483 
(7.320) 

32.557 
(8.079) 

 37.093 
(6.827) 

37.299 
(6.666) 

Max benefits (in 
thousands) 

0.408 
(0.165) 

      

Unemployment 5.284 
(1.113) 

  
 

   

Medicaid coverage 24.883 
(7.120) 

  
 

   

The first number is the mean and the second number in parentheses is the standard deviation. 
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Figure I-1. The Proportion of Children Reported in Poor Health 

a. Low-educated unmarried parents vs. Higher-educated married parents 

 
b. Parents with income lower than 100% of the FPL vs. Higher-income married parents 

 
c. Parents with income lower than 200% of the FPL vs. Higher-income married parents 
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Table I-3. Logistic Estimates of the Effect of Welfare Reform Policies on the Child’s Health Status 

Welfare Reform 
Policies    Time Limits   Work Requirements   Family Caps   Initial Sanctions 

Treatment Group   
at most 

HS 100% FPL 
200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL 

                                  
Treatment 

 
1.205*** 1.004*** 0.898*** 

 
1.368*** 1.134*** 0.962*** 

 
1.007*** 0.792*** 0.772*** 

 
1.138*** 0.906*** 0.778*** 

  
(0.148) (0.142) (0.107) 

 
(0.116) (0.133) (0.103) 

 
(0.175) (0.141) (0.112) 

 
(0.096) (0.070) (0.062) 

Policy 
 

0.093 0.248 0.205 
 

-0.077 -0.150 -0.040 
 

-0.037 0.095 0.050 
 

-0.045 0.119 0.048 

  
(0.157) (0.152) (0.134) 

 
(0.151) (0.154) (0.130) 

 
(0.182) (0.161) (0.134) 

 
(0.145) (0.146) (0.137) 

Treatment*policy 
 

-0.099 -0.232* -0.213** 
 

-0.287*** -0.411*** -0.296*** 
 

0.083 -0.035 -0.085 
 

-0.052 -0.103 -0.114 

  
(0.140) (0.122) (0.101) 

 
(0.108) (0.123) (0.099) 

 
(0.167) (0.104) (0.101) 

 
(0.145) (0.131) (0.149) 

Max benefita 
 

-2.071** -0.151 -0.592 
 

-2.392*** -0.824 -1.035 
 

-2.834** -1.003 -1.164 
 

-4.754** -5.847*** -5.774** 

  
(0.811) (1.063) (1.048) 

 
(0.824) (0.864) (0.868) 

 
(1.284) (1.038) (1.151) 

 
(2.290) (2.182) (2.461) 

Child’s age 
 

-0.000 0.002 -0.002 
 

0.000 0.003 -0.001 
 

-0.008 -0.010 -0.011 
 

-0.004 0.007 -0.000 

  
(0.006) (0.007) (0.006) 

 
(0.006) (0.006) (0.006) 

 
(0.009) (0.009) (0.009) 

 
(0.009) (0.007) (0.008) 

Number of siblings 
 

0.005 0.003 -0.009 
 

-0.001 -0.002 -0.011 
 

0.024 0.034 0.019 
 

-0.025 -0.084** -0.062** 

  
(0.022) (0.022) (0.019) 

 
(0.022) (0.022) (0.019) 

 
(0.029) (0.028) (0.026) 

 
(0.036) (0.034) (0.031) 

Male 
 

0.232*** 0.163*** 0.203*** 
 

0.236*** 0.161*** 0.206*** 
 

0.183*** 0.090* 0.141*** 
 

0.178** 0.130** 0.175*** 

  
(0.066) (0.062) (0.054) 

 
(0.064) (0.060) (0.052) 

 
(0.065) (0.052) (0.047) 

 
(0.087) (0.056) (0.049) 

White 
 

-0.266** -0.148 -0.176 
 

-0.268** -0.164 -0.185 
 

-0.317*** -0.076 -0.151 
 

-0.278* -0.156 -0.191 

  
(0.114) (0.126) (0.123) 

 
(0.110) (0.124) (0.121) 

 
(0.116) (0.145) (0.156) 

 
(0.167) (0.208) (0.199) 

Black 
 

0.019 0.094 0.176 
 

0.025 0.081 0.163 
 

-0.075 0.247 0.282 
 

-0.133 -0.040 0.062 

  
(0.138) (0.149) (0.134) 

 
(0.132) (0.142) (0.130) 

 
(0.133) (0.195) (0.178) 

 
(0.201) (0.230) (0.202) 

Living in a metro area 
 

-0.118 -0.166* -0.181** 
 

-0.121 -0.156 -0.168** 
 

0.003 0.006 -0.043 
 

-0.181* -0.347*** -0.315*** 

  
(0.079) (0.096) (0.077) 

 
(0.076) (0.095) (0.076) 

 
(0.088) (0.125) (0.101) 

 
(0.101) (0.108) (0.084) 

Mother ‘s age 
 

0.006* 0.010*** 0.012*** 
 

0.006** 0.009** 0.012*** 
 

0.005 0.016*** 0.017*** 
 

0.009*** 0.013** 0.015*** 

  
(0.003) (0.004) (0.003) 

 
(0.003) (0.004) (0.003) 

 
(0.004) (0.005) (0.004) 

 
(0.003) (0.006) (0.006) 

Mother being a high 
school dropout 

 
0.439*** 0.413*** 

  
0.454*** 0.427*** 

  
0.456*** 0.437*** 

  
0.493*** 0.425*** 

   
(0.085) (0.084) 

  
(0.084) (0.083) 

  
(0.141) (0.130) 

  
(0.134) (0.148) 

Mother has post high 
school degree 

  
-0.356*** -0.379*** 

  
-0.339*** -0.359*** 

  
-0.324*** -0.336*** 

  
-0.352*** -0.363*** 

   
(0.075) (0.067) 

  
(0.075) (0.068) 

  
(0.111) (0.098) 

  
(0.114) (0.100) 

Unemployment 
 

-0.113* -0.046 -0.056 
 

-0.097 -0.060 -0.062 
 

-0.065 -0.088 -0.092 
 

-0.098 -0.152*** -0.130** 

  
(0.065) (0.057) (0.055) 

 
(0.062) (0.052) (0.050) 

 
(0.099) (0.057) (0.058) 

 
(0.099) (0.046) (0.053) 
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Medicaid coverage 
 

0.002 -0.001 0.006 
 

0.001 -0.002 0.004 
 

0.014 0.017 0.022* 
 

-0.001 -0.000 0.007 

  
(0.008) (0.011) (0.010) 

 
(0.008) (0.012) (0.010) 

 
(0.014) (0.015) (0.013) 

 
(0.010) (0.012) (0.011) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt treatment): 
          

  
-0.0004 -0.001 -0.002 

 
-0.008*** -0.010*** -0.007*** 

 
0.001 0.0005 -0.001 

 
-0.002 -0.0003 -0.002 

  
(0.003) (0.002) (0.002) 

 
(0.003) (0.002) (0.002) 

 
(0.003) (0.002) (0.002) 

 
(0.003) (0.002) (0.002) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt policy): 
          

  
-0.001 -0.003 -0.003 

 
-0.013*** -0.015*** -0.009*** 

 
0.002 0.0004 -0.002 

 
-0.003 -0.001 -0.003 

  
(0.005) (0.004) (0.003) 

 
(0.004) (0.003) (0.002) 

 
(0.005) (0.003) (0.002) 

 
(0.005) (0.003) (0.003) 

                 Average marginal effect (wrt treatment): 
             

  
-0.001 -0.002 -0.003 

 
-0.012*** -0.013*** -0.009*** 

 
0.002 0.0005 -0.001 

 
-0.003 -0.001 -0.003 

  
(0.005) (0.003) (0.003) 

 
(0.004) (0.004) (0.003) 

 
(0.004) (0.002) (0.002) 

 
(0.005) (0.003) (0.003) 

                 Average marginal effect (wrt policy): 
              

  
-0.001 -0.003 -0.003 

 
-0.013*** -0.016*** -0.010*** 

 
0.002 0.0004 -0.002 

 
-0.003 -0.001 -0.003 

  
(0.005) (0.004) (0.003) 

 
(0.004) (0.004) (0.002) 

 
(0.005) (0.003) (0.002) 

 
(0.005) (0.004) (0.004) 

                 Observations 
 

120826 126190 147462 
 

125468 130810 152806 
 

62921 65951 76676 
 

48222 50090 58901 

                 P-value of Wald test on joint significance of… 
                  State dummies 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

     Year dummies   0.00 0.00 0.00   0.00 0.00 0.00   0.00 0.00 0.00   0.00 0.00 0.00 
 
Note: All models include state and year dummies. Standard errors are adjusted for clustering at the state level. 

* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 

a. Max benefit is measured in thousands. 
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Table I-4. Negative Binomial Estimates of the Effect of Welfare Reform Policies on the Number of Days the Child spent in Bed due to Illness or Injury 

Welfare Reform 
Policies    Time Limits   Work Requirements   Family Caps   Initial Sanctions 

Treatment Group   
at most 

HS 
100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL 

                                  
Treatment 

 
0.098 0.295** 0.305** 

 
0.065 0.274* 0.201 

 
-0.117 0.320 0.276 

 
-0.199 0.214 0.119 

  
(0.136) (0.132) (0.124) 

 
(0.119) (0.143) (0.129) 

 
(0.192) (0.224) (0.191) 

 
(0.159) (0.155) (0.150) 

Policy 
 

0.077 0.035 0.037 
 

0.090 0.063 0.164 
 

-0.091 -0.035 -0.112 
 

-0.254 -0.357*** -0.303** 

  
(0.181) (0.160) (0.164) 

 
(0.206) (0.205) (0.216) 

 
(0.214) (0.157) (0.171) 

 
(0.155) (0.137) (0.149) 

Treatment*policy 
 

0.000 0.068 -0.051 
 

0.064 0.090 0.110 
 

0.294 0.159 0.131 
 

0.411 0.369 0.358 

  
(0.178) (0.175) (0.139) 

 
(0.165) (0.187) (0.143) 

 
(0.208) (0.294) (0.215) 

 
(0.297) (0.270) (0.231) 

Max benefita 
 

-0.725 -1.483 -1.741** 
 

-0.568 -1.346 -1.490 
 

-0.661 -1.048 -1.603* 
 

-2.185 -2.234 -2.258 

  
(0.754) (1.014) (0.856) 

 
(0.800) (0.997) (0.909) 

 
(1.030) (0.852) (0.922) 

 
(2.272) (2.093) (1.773) 

Child’s age 
 

0.055 0.027 0.015 
 

0.063* 0.041 0.027 
 

0.021 0.015 -0.001 
 

0.011 0.007 -0.003 

  
(0.036) (0.032) (0.029) 

 
(0.035) (0.034) (0.030) 

 
(0.055) (0.051) (0.044) 

 
(0.051) (0.047) (0.046) 

Number of siblings 
 

-0.069*** -0.077*** -0.083*** 
 

-0.072*** -0.076*** -0.082*** 
 

-0.076** -0.052** -0.061** 
 

-0.054** -0.088** -0.062** 

  
(0.022) (0.021) (0.019) 

 
(0.021) (0.020) (0.018) 

 
(0.031) (0.024) (0.025) 

 
(0.023) (0.034) (0.030) 

Male 
 

-0.289*** -0.312*** -0.325*** 
 

-0.301*** -0.324*** -0.339*** 
 

-0.169** -0.208*** -0.188*** 
 

-0.301*** -0.366*** -0.387*** 

  
(0.065) (0.058) (0.060) 

 
(0.063) (0.056) (0.059) 

 
(0.086) (0.066) (0.065) 

 
(0.100) (0.092) (0.101) 

White 
 

0.074 0.134 0.128 
 

0.096 0.148 0.144 
 

-0.030 -0.050 -0.043 
 

0.316 0.118 0.185 

  
(0.167) (0.118) (0.142) 

 
(0.164) (0.116) (0.138) 

 
(0.228) (0.144) (0.191) 

 
(0.195) (0.188) (0.181) 

Black 
 

-0.419* -0.461*** -0.441** 
 

-0.394* -0.442*** -0.419** 
 

-0.572* -0.640*** -0.617** 
 

-0.166 -0.476* -0.426* 

  
(0.219) (0.170) (0.188) 

 
(0.212) (0.163) (0.180) 

 
(0.308) (0.238) (0.243) 

 
(0.248) (0.268) (0.238) 

Living in a metro area 
 

0.060 0.051 0.077 
 

0.037 0.038 0.068 
 

0.135 0.091 0.132 
 

0.102 0.052 0.132 

  
(0.073) (0.093) (0.081) 

 
(0.073) (0.089) (0.076) 

 
(0.110) (0.119) (0.108) 

 
(0.136) (0.163) (0.140) 

Mother ‘s age 
 

-0.002 -0.005 -0.006 
 

-0.001 -0.004 -0.005 
 

0.003 0.003 0.003 
 

0.007 0.002 -0.001 

  
(0.006) (0.006) (0.005) 

 
(0.006) (0.006) (0.005) 

 
(0.008) (0.006) (0.006) 

 
(0.008) (0.007) (0.006) 

Mother being a high 
school dropout 

 
-0.344** -0.392*** 

  
-0.315** -0.366*** 

  
-0.612*** -0.595*** 

  
-0.220** -0.288*** 

   
(0.152) (0.122) 

  
(0.154) (0.122) 

  
(0.148) (0.130) 

  
(0.099) (0.089) 

Mother has post high 
school degree 

 
0.014 0.005 

  
0.036 0.025 

  
-0.020 -0.001 

  
0.065 0.054 

   
(0.080) (0.080) 

  
(0.079) (0.078) 

  
(0.107) (0.109) 

  
(0.102) (0.093) 

                 Unemployment 
 

0.005 -0.029 -0.048 
 

0.026 -0.024 -0.035 
 

0.020 -0.000 -0.036 
 

0.043 0.031 -0.004 

  
(0.067) (0.074) (0.064) 

 
(0.059) (0.066) (0.057) 

 
(0.090) (0.090) (0.090) 

 
(0.086) (0.085) (0.080) 
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Medicaid coverage 
 

0.012 0.011 0.013 
 

0.014 0.012 0.014 
 

0.031** 0.027** 0.026* 
 

0.021 0.030** 0.031* 

  
(0.011) (0.010) (0.010) 

 
(0.011) (0.010) (0.009) 

 
(0.015) (0.012) (0.013) 

 
(0.018) (0.015) (0.016) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt treatment): 
          

  
0.012 0.128 -0.069 

 
0.121 0.177 0.245 

 
0.494 0.233 0.162 

 
0.669 0.397 0.472 

  
(0.274) (0.257) (0.201) 

 
(0.266) (0.290) (0.213) 

 
(0.360) (0.439) (0.355) 

 
(0.467) (0.423) (0.354) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt policy): 
          

  
0.013 0.166 -0.081 

 
0.135 0.233 0.302 

 
0.518 0.329 0.196 

 
0.667 0.564 0.558 

  
(0.300) (0.344) (0.236) 

 
(0.303) (0.400) (0.278) 

 
(0.366) (0.626) (0.421) 

 
(0.494) (0.581) (0.425) 

                 Average marginal effect (wrt treatment): 
              

  
0.013 0.138 -0.075 

 
0.130 0.192 0.267 

 
0.526 0.254 0.177 

 
0.734 0.445 0.523 

  
(0.293) (0.277) (0.220) 

 
(0.287) (0.315) (0.236) 

 
(0.401) (0.478) (0.387) 

 
(0.540) (0.488) (0.412) 

                 Average marginal effect (wrt policy): 
              

  
0.014 0.180 -0.088 

 
0.147 0.255 0.333 

 
0.553 0.359 0.214 

 
0.731 0.635 0.624 

  
(0.321) (0.374) (0.257) 

 
(0.329) (0.438) (0.310) 

 
(0.406) (0.688) (0.460) 

 
(0.571) (0.674) (0.494) 

                 Observations 
 

16556 17992 20777 
 

17200 18672 21543 
 

8485 9235 10676 
 

6805 7324 8520 

                 P-value of Wald test on joint significance of… 
                  State dummies 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

     Year dummies   0.00 0.01 0.00   0.00 0.00 0.00   0.00 0.00 0.00   0.00 0.00 0.00 
 
Note: All models include state and year dummies. Standard errors are adjusted for clustering at the state level. 

* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 

a. Max benefit is measured in thousands. 
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Table I-5. Negative Binomial Estimates of the Effect of Welfare Reform Policies on the Number of Doctor Consultations 

Welfare Reform 
Policies    Time Limits   Work Requirements   Family Caps   Initial Sanctions 

Treatment Group   
at most 

HS 
100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL 

                 Treatment 
 

-0.028 0.161*** 0.094*** 
 

-0.014 0.190*** 0.114*** 
 

-0.030 0.173** 0.075 
 

-0.050* 0.084* 0.044 

  
(0.055) (0.049) (0.034) 

 
(0.043) (0.040) (0.023) 

 
(0.083) (0.076) (0.049) 

 
(0.029) (0.045) (0.027) 

Policy 
 

0.000 -0.002 0.019 
 

-0.052 0.001 0.002 
 

-0.008 0.021 0.038 
 

-0.046 -0.052 -0.041 

  
(0.043) (0.035) (0.035) 

 
(0.037) (0.037) (0.029) 

 
(0.045) (0.032) (0.040) 

 
(0.037) (0.036) (0.034) 

Treatment*policy 
 

-0.025 -0.140*** -0.097*** 
 

-0.038 -0.181*** -0.127*** 
 

-0.070 -0.201*** -0.137*** 
 

0.051 -0.139* -0.069 

  
(0.047) (0.041) (0.028) 

 
(0.042) (0.043) (0.035) 

 
(0.062) (0.057) (0.039) 

 
(0.051) (0.073) (0.056) 

Max benefita 
 

-0.126 0.187 0.028 
 

-0.191 0.067 -0.080 
 

-0.243 0.158 -0.019 
 

-0.427 0.137 -0.126 

  
(0.306) (0.238) (0.224) 

 
(0.334) (0.272) (0.236) 

 
(0.291) (0.288) (0.331) 

 
(0.746) (0.623) (0.680) 

Child’s age 
 

-0.038*** -0.034*** -0.035*** 
 

-0.037*** -0.033*** -0.034*** 
 

-0.040*** -0.038*** -0.039*** 
 

-0.038*** -0.037*** -0.037*** 

  
(0.003) (0.003) (0.003) 

 
(0.003) (0.003) (0.003) 

 
(0.003) (0.003) (0.003) 

 
(0.006) (0.007) (0.006) 

Number of siblings 
 

-0.137*** -0.151*** -0.143*** 
 

-0.136*** -0.149*** -0.142*** 
 

-0.151*** -0.147*** -0.141*** 
 

-0.146*** -0.177*** -0.159*** 

  
(0.009) (0.011) (0.009) 

 
(0.009) (0.011) (0.009) 

 
(0.010) (0.011) (0.009) 

 
(0.011) (0.013) (0.011) 

Male 
 

0.046*** 0.035** 0.037*** 
 

0.046*** 0.035** 0.036*** 
 

0.047* 0.031 0.031 
 

0.057** 0.029 0.034* 

  
(0.015) (0.014) (0.012) 

 
(0.014) (0.014) (0.012) 

 
(0.025) (0.020) (0.019) 

 
(0.023) (0.022) (0.021) 

White 
 

0.249*** 0.208*** 0.170*** 
 

0.256*** 0.210*** 0.174*** 
 

0.253*** 0.182*** 0.153*** 
 

0.265*** 0.249*** 0.219*** 

  
(0.037) (0.045) (0.043) 

 
(0.037) (0.044) (0.043) 

 
(0.046) (0.055) (0.054) 

 
(0.075) (0.059) (0.059) 

Black 
 

-0.040 -0.098** -0.113** 
 

-0.037 -0.099*** -0.112** 
 

-0.053 -0.113* -0.118* 
 

-0.078 -0.098 -0.126* 

  
(0.052) (0.039) (0.046) 

 
(0.050) (0.038) (0.044) 

 
(0.070) (0.063) (0.071) 

 
(0.079) (0.079) (0.073) 

Living in a metro area 
 

0.014 0.042 0.025 
 

0.013 0.041 0.027 
 

0.028 0.068** 0.052 
 

0.019 0.042 0.037 

  
(0.026) (0.033) (0.029) 

 
(0.025) (0.031) (0.028) 

 
(0.036) (0.035) (0.037) 

 
(0.034) (0.047) (0.039) 

Mother’s age 
 

0.000 -0.002 -0.002 
 

-0.000 -0.002 -0.002 
 

0.000 0.000 -0.000 
 

0.002 0.001 -0.000 

  
(0.002) (0.002) (0.002) 

 
(0.002) (0.002) (0.002) 

 
(0.003) (0.002) (0.002) 

 
(0.003) (0.002) (0.002) 

Mother being a high 
school dropout 

 
-0.140*** -0.143*** 

  
-0.138*** -0.139*** 

  
-0.148*** -0.154*** 

  
-0.091 -0.128** 

   
(0.039) (0.037) 

  
(0.037) (0.037) 

  
(0.056) (0.052) 

  
(0.062) (0.062) 

Mother has post high 
school degree 

 
0.202*** 0.196*** 

  
0.200*** 0.194*** 

  
0.247*** 0.233*** 

  
0.199*** 0.189*** 

   
(0.026) (0.025) 

  
(0.025) (0.024) 

  
(0.027) (0.032) 

  
(0.034) (0.032) 

Unemployment 
 

0.009 0.023* 0.021 
 

0.014 0.022* 0.020 
 

0.036** 0.048*** 0.045*** 
 

0.007 0.007 0.011 

  
(0.014) (0.013) (0.014) 

 
(0.014) (0.013) (0.013) 

 
(0.015) (0.014) (0.016) 

 
(0.026) (0.027) (0.027) 
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Medicaid coverage 
 

-0.001 -0.002 -0.001 
 

-0.001 -0.003 -0.002 
 

0.000 -0.003 0.001 
 

0.003 -0.001 0.000 

  
(0.003) (0.003) (0.002) 

 
(0.003) (0.002) (0.002) 

 
(0.005) (0.004) (0.004) 

 
(0.006) (0.004) (0.004) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt treatment): 
        

  
-0.071 -0.386*** -0.261*** 

 
-0.104 -0.500*** -0.348*** 

 
-0.190 -0.524*** -0.350*** 

 
0.146 -0.373* -0.183 

  
(0.137) (0.112) (0.075) 

 
(0.126) (0.121) (0.093) 

 
(0.172) (0.149) (0.098) 

 
(0.142) (0.193) (0.146) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt policy): 
        

  
-0.069 -0.397*** -0.263*** 

 
-0.098 -0.508*** -0.344*** 

 
-0.179 -0.529*** -0.346*** 

 
0.144 -0.376* -0.184 

  
(0.134) (0.116) (0.075) 

 
(0.119) (0.117) (0.089) 

 
(0.163) (0.154) (0.098) 

 
(0.140) (0.195) (0.147) 

                 Average marginal effect (wrt treatment): 
             

  
-0.074 -0.409*** -0.277*** 

 
-0.109 -0.530*** -0.369*** 

 
-0.200 -0.559*** -0.374*** 

 
0.153 -0.398* -0.195 

  
(0.143) (0.120) (0.081) 

 
(0.132) (0.130) (0.101) 

 
(0.182) (0.163) (0.107) 

 
(0.149) (0.207) (0.156) 

                 Average marginal effect (wrt policy): 
              

  
-0.072 -0.423*** -0.279*** 

 
-0.102 -0.540*** -0.366*** 

 
-0.189 -0.568*** -0.370*** 

 
0.151 -0.404* -0.197 

  
(0.140) (0.125) (0.081) 

 
(0.125) (0.127) (0.096) 

 
(0.172) (0.169) (0.107) 

 
(0.147) (0.210) (0.157) 

                 Observations 
 

112721 118530 139348 
 

116972 122833 144354 
 

58048 61199 71587 
 

45011 47085 55703 

                 P-value of Wald test on joint significance of… 
                  State dummies 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

     Year dummies   0.095 0.00 0.00   0.03 0.00 0.00   0.00 0.00 0.00   0.00 0.00 0.00 
 
Note: All models include state and year dummies. Standard errors are adjusted for clustering at the state level. 

* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 

a. Max benefit is measured in thousands. 
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Table I-6. Negative Binomial Estimates of the Effect of Welfare Reform Policies on the Number of Hospital Stays 

Welfare Reform 
Policies    Time Limits   Work Requirements   Family Caps   Initial Sanctions 

Treatment Group   
at most 

HS 
100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL   

at most 
HS 

100% 
FPL 

200% 
FPL 

                                  
Treatment 

 
0.919*** 0.942*** 0.751*** 

 
0.751*** 0.699*** 0.626*** 

 
0.783*** 0.686** 0.729** 

 
0.319* 0.400** 0.393* 

  
(0.148) (0.268) (0.177) 

 
(0.192) (0.209) (0.162) 

 
(0.270) (0.318) (0.286) 

 
(0.166) (0.190) (0.205) 

Policy 
 

0.216 0.296 0.230 
 

0.046 0.030 -0.057 
 

-0.197 0.236* 0.111 
 

-0.204 -0.122 -0.163 

  
(0.174) (0.183) (0.159) 

 
(0.175) (0.179) (0.136) 

 
(0.242) (0.143) (0.148) 

 
(0.161) (0.187) (0.180) 

Treatment*policy 
 

-0.476*** -0.599** -0.424** 
 

-0.243 -0.250 -0.277 
 

-0.153 -0.236 -0.395 
 

0.112 0.106 -0.145 

  
(0.178) (0.273) (0.186) 

 
(0.230) (0.275) (0.207) 

 
(0.343) (0.351) (0.296) 

 
(0.190) (0.284) (0.244) 

Max benefita 
 

-1.436 -0.106 -0.691 
 

-1.610 -0.234 -1.019 
 

-1.421 0.775 -0.080 
 

2.152 5.945* 2.391 

  
(1.754) (1.679) (1.384) 

 
(1.733) (1.658) (1.403) 

 
(1.794) (2.026) (1.781) 

 
(3.726) (3.489) (3.448) 

Child’s age 
 

-0.086*** -0.085*** -0.092*** 
 

-0.086*** -0.084*** -0.091*** 
 

-0.104*** -0.104*** -0.114*** 
 

-0.065*** -0.070*** -0.067*** 

  
(0.013) (0.011) (0.012) 

 
(0.013) (0.011) (0.012) 

 
(0.020) (0.016) (0.016) 

 
(0.017) (0.014) (0.013) 

Number of siblings 
 

-0.192*** -0.243*** -0.222*** 
 

-0.193*** -0.226*** -0.210*** 
 

-0.154*** -0.232*** -0.209*** 
 

-0.230*** -0.278*** -0.238*** 

  
(0.033) (0.041) (0.031) 

 
(0.032) (0.038) (0.030) 

 
(0.042) (0.055) (0.042) 

 
(0.033) (0.058) (0.045) 

Male 
 

0.231** 0.174* 0.139 
 

0.241** 0.187* 0.150 
 

0.178 0.138 0.060 
 

-0.017 -0.103 -0.147 

  
(0.111) (0.099) (0.098) 

 
(0.105) (0.095) (0.096) 

 
(0.132) (0.134) (0.140) 

 
(0.118) (0.091) (0.111) 

White 
 

0.212* 0.186 0.153 
 

0.248* 0.208 0.173 
 

0.007 0.121 0.126 
 

0.414 0.634*** 0.628*** 

  
(0.128) (0.176) (0.173) 

 
(0.128) (0.176) (0.173) 

 
(0.184) (0.169) (0.199) 

 
(0.267) (0.210) (0.202) 

Black 
 

0.155 0.088 0.182 
 

0.223 0.191 0.258 
 

-0.141 0.151 0.182 
 

0.323 0.572* 0.615** 

  
(0.166) (0.215) (0.206) 

 
(0.164) (0.220) (0.212) 

 
(0.246) (0.276) (0.286) 

 
(0.313) (0.299) (0.310) 

Living in a metro area 
 

0.001 0.097 0.042 
 

0.000 0.092 0.036 
 

0.181 0.222 0.225* 
 

0.017 0.003 0.103 

  
(0.097) (0.090) (0.078) 

 
(0.095) (0.093) (0.080) 

 
(0.158) (0.171) (0.132) 

 
(0.182) (0.153) (0.125) 

Mother ‘s age 
 

-0.014 -0.011 -0.006 
 

-0.012 -0.010 -0.006 
 

-0.010 -0.006 -0.001 
 

-0.030** -0.021** -0.025*** 

  
(0.008) (0.007) (0.008) 

 
(0.008) (0.007) (0.007) 

 
(0.014) (0.011) (0.011) 

 
(0.012) (0.009) (0.009) 

Mother being a high 
school dropout 

 
0.063 0.091 

  
0.064 0.095 

  
0.272** 0.187* 

  
0.216 0.221 

   
(0.099) (0.087) 

  
(0.094) (0.085) 

  
(0.132) (0.110) 

  
(0.159) (0.144) 

Mother has post high 
school degree 

 
-0.074 -0.023 

  
-0.081 -0.032 

  
0.113 0.098 

  
0.055 0.078 

   
(0.119) (0.105) 

  
(0.117) (0.104) 

  
(0.160) (0.135) 

  
(0.111) (0.088) 

Unemployment 
 

0.047 0.074 0.032 
 

0.028 0.048 0.018 
 

0.129 0.198* 0.081 
 

-0.049 -0.014 -0.038 

  
(0.098) (0.092) (0.071) 

 
(0.093) (0.091) (0.072) 

 
(0.109) (0.115) (0.089) 

 
(0.080) (0.128) (0.084) 
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Medicaid coverage 
 

-0.016 -0.019* -0.018 
 

-0.018 -0.021* -0.020* 
 

-0.010 -0.025** -0.025* 
 

-0.011 -0.031* -0.021 

  
(0.011) (0.012) (0.011) 

 
(0.012) (0.012) (0.012) 

 
(0.021) (0.012) (0.014) 

 
(0.019) (0.018) (0.019) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt treatment): 
          

  
-0.062** -0.063 -0.053* 

 
-0.040 -0.037 -0.054* 

 
-0.053 -0.016 -0.054 

 
0.008 0.009 -0.035 

  
(0.028) (0.042) (0.032) 

 
(0.035) (0.037) (0.033) 

 
(0.061) (0.047) (0.049) 

 
(0.038) (0.048) (0.045) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt policy): 
          

  
-0.091** -0.102 -0.070* 

 
-0.054 -0.052 -0.060* 

 
-0.064 -0.028 -0.067 

 
0.011 0.014 -0.039 

  
(0.036) (0.062) (0.039) 

 
(0.047) (0.050) (0.036) 

 
(0.077) (0.071) (0.058) 

 
(0.045) (0.065) (0.052) 

                 Average marginal effect (wrt treatment): 
             

  
-0.094** -0.094 -0.077 

 
-0.057 -0.051 -0.074 

 
-0.077 -0.024 -0.082 

 
0.011 0.013 -0.046 

  
(0.047) (0.067) (0.049) 

 
(0.053) (0.053) (0.047) 

 
(0.099) (0.071) (0.079) 

 
(0.052) (0.068) (0.061) 

                 Average marginal effect (wrt policy): 
              

  
-0.117** -0.131 -0.088* 

 
-0.068 -0.065 -0.076 

 
-0.085 -0.038 -0.092 

 
0.014 0.018 -0.051 

  
(0.052) (0.085) (0.052) 

 
(0.060) (0.065) (0.047) 

 
(0.106) (0.097) (0.083) 

 
(0.058) (0.085) (0.071) 

                 Observations 
 

112721 118530 139348 
 

116972 122833 144354 
 

58048 61199 71587 
 

45011 47085 55703 

                 P-value of Wald test on joint significance of… 
                  State dummies 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

     Year dummies   0.01 0.00 0.00   0.01 0.00 0.00   0.01 0.00 0.00   0.00 0.00 0.00 
 
Note: All models include state and year dummies. Standard errors are adjusted for clustering at the state level. 

* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 

a. Max benefit is measured in thousands. 
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Table I-7. Nonlinear Estimates of the Effect of Welfare Reform on Health 

Health measures  
 

Child's Health Status  
 

Days in Bed  
 

Doctor Consultations  
 

Hospital Stays 

Treatment Group  
at most 

HS 
100% 
FPL 

200% 
FPL  

at most 
HS 

100% 
FPL 

200% 
FPL  

at most 
HS 

100% 
FPL 

200% 
FPL  

at most 
HS 

100% 
FPL 

200% 
FPL 

                                  
Treatment 

 
1.337*** 1.170*** 1.042*** 

 
-0.042 0.304* 0.248* 

 
-0.013 0.175*** 0.106*** 

 
0.750*** 0.686*** 0.691*** 

  
(0.158) (0.146) (0.114) 

 
(0.163) (0.165) (0.137) 

 
(0.043) (0.039) (0.029) 

 
(0.206) (0.177) (0.130) 

Waivers 
 

-0.165 0.011 -0.028 
 

-0.344 0.025 -0.031 
 

0.053 0.064 0.052 
 

-0.240 -0.232 -0.185 

  
(0.270) (0.245) (0.221) 

 
(0.338) (0.214) (0.193) 

 
(0.057) (0.048) (0.048) 

 
(0.320) (0.266) (0.239) 

Treatment*Waivers 
 

-0.070 -0.202 -0.171 
 

0.200 0.043 0.089 
 

-0.041 -0.008 -0.009 
 

0.240 0.131 -0.093 

  
(0.133) (0.144) (0.113) 

 
(0.171) (0.191) (0.134) 

 
(0.043) (0.065) (0.051) 

 
(0.166) (0.238) (0.168) 

TANF 
 

0.244 0.204 0.137 
 

0.094 -0.027 -0.068 
 

-0.005 0.052 0.048 
 

0.452* 0.613*** 0.357** 

  
(0.160) (0.200) (0.152) 

 
(0.169) (0.228) (0.177) 

 
(0.053) (0.047) (0.034) 

 
(0.248) (0.184) (0.162) 

Treatment*TANF 
 

-0.217 -0.358*** -0.319*** 
 

0.067 0.019 -0.029 
 

-0.015 -0.171*** -0.121*** 
 

-0.415** -0.353 -0.335** 

  
(0.145) (0.127) (0.114) 

 
(0.183) (0.176) (0.139) 

 
(0.040) (0.042) (0.031) 

 
(0.194) (0.224) (0.149) 

Max benefita 
 

-2.187** -0.395 -0.787 
 

-0.894 -1.410 -1.629* 
 

-0.101 0.163 0.010 
 

-1.818 -0.384 -0.996 

  
(0.855) (1.102) (1.102) 

 
(0.842) (1.063) (0.918) 

 
(0.311) (0.263) (0.245) 

 
(1.846) (1.790) (1.485) 

Child’s age 
 

0.000 0.003 -0.001 
 

0.065* 0.041 0.028 
 

-0.037*** -0.033*** -0.034*** 
 

-0.085*** -0.084*** -0.090*** 

  
(0.006) (0.006) (0.006) 

 
(0.035) (0.034) (0.030) 

 
(0.003) (0.003) (0.003) 

 
(0.013) (0.011) (0.012) 

Number of siblings 
 

-0.001 -0.003 -0.012 
 

-0.072*** -0.076*** -0.081*** 
 

-0.136*** -0.149*** -0.142*** 
 

-0.194*** -0.229*** -0.212*** 

  
(0.022) (0.022) (0.019) 

 
(0.020) (0.020) (0.018) 

 
(0.009) (0.011) (0.009) 

 
(0.031) (0.038) (0.030) 

Male 
 

0.237*** 0.162*** 0.207*** 
 

-0.301*** -0.325*** -0.339*** 
 

0.046*** 0.035** 0.037*** 
 

0.235** 0.182* 0.152 

  
(0.064) (0.060) (0.052) 

 
(0.062) (0.056) (0.060) 

 
(0.014) (0.014) (0.012) 

 
(0.103) (0.094) (0.094) 

White 
 

-0.270** -0.164 -0.185 
 

0.107 0.149 0.143 
 

0.256*** 0.211*** 0.173*** 
 

0.248* 0.225 0.177 

  
(0.110) (0.123) (0.120) 

 
(0.153) (0.114) (0.138) 

 
(0.037) (0.045) (0.043) 

 
(0.127) (0.172) (0.173) 

Black 
 

0.025 0.088 0.167 
 

-0.373* -0.446*** -0.419** 
 

-0.038 -0.095** -0.110** 
 

0.230 0.200 0.257 

  
(0.131) (0.142) (0.130) 

 
(0.199) (0.165) (0.184) 

 
(0.050) (0.038) (0.044) 

 
(0.161) (0.213) (0.209) 

Living in a metro area 
 

-0.123 -0.156* -0.169** 
 

0.035 0.038 0.066 
 

0.013 0.040 0.026 
 

-0.001 0.086 0.035 

  
(0.077) (0.094) (0.076) 

 
(0.074) (0.089) (0.076) 

 
(0.025) (0.031) (0.028) 

 
(0.097) (0.092) (0.081) 

Mother ‘s age 
 

0.006** 0.008** 0.011*** 
 

-0.001 -0.004 -0.005 
 

-0.000 -0.002 -0.002 
 

-0.013 -0.010 -0.006 

  
(0.003) (0.004) (0.003) 

 
(0.005) (0.006) (0.005) 

 
(0.002) (0.002) (0.002) 

 
(0.008) (0.007) (0.007) 

Mother being a high 
school dropout  0.452*** 0.424*** 

  
-0.315** -0.368*** 

  
-0.139*** -0.139*** 

  
0.076 0.091 

   
(0.084) (0.083) 

  
(0.155) (0.124) 

  
(0.038) (0.037) 

  
(0.090) (0.084) 
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Mother has post high 
school degree  -0.341*** -0.360*** 

  
0.037 0.026 

  
0.200*** 0.194*** 

  
-0.076 -0.034 

   
(0.074) (0.067) 

  
(0.079) (0.078) 

  
(0.025) (0.024) 

  
(0.116) (0.104) 

Unemployment 
 

-0.089 -0.058 -0.065 
 

0.026 -0.026 -0.039 
 

0.015 0.022* 0.020 
 

0.032 0.055 0.022 

  
(0.063) (0.054) (0.051) 

 
(0.059) (0.065) (0.057) 

 
(0.014) (0.012) (0.012) 

 
(0.088) (0.086) (0.070) 

Medicaid coverage 
 

0.002 0.000 0.007 
 

0.014 0.012 0.014 
 

-0.001 -0.002 -0.001 
 

-0.018 -0.023** -0.020* 

  
(0.008) (0.011) (0.010) 

 
(0.011) (0.010) (0.010) 

 
(0.004) (0.003) (0.002) 

 
(0.012) (0.012) (0.011) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt treatment): 
          waiver 

 
-0.005 -0.003 -0.004 

 
0.285 0.085 0.139 

 
-0.122 -0.014 -0.022 

 
0.022 0.004 -0.027 

  
(0.005) (0.003) (0.002) 

 
(0.293) (0.363) (0.254) 

 
(0.125) (0.177) (0.139) 

 
(0.039) (0.034) (0.026) 

TANF 
 

0.00004 -0.004 -0.005** 
 

0.126 0.018 -0.082 
 

-0.041 -0.454*** -0.320*** 
 

-0.027 -0.005 -0.030 

  
(0.003) (0.003) (0.002) 

 
(0.294) (0.301) (0.237) 

 
(0.117) (0.110) (0.083) 

 
(0.031) (0.031) (0.022) 

                 Marginal effect of the policy-treatment interaction at the mean (wrt policy): 
          waiver  -0.007 -0.006 -0.005*  0.301 0.107 0.161 

 
-0.119 -0.015 -0.023 

 
0.033 0.009 -0.031 

  (0.007) (0.004) (0.003)  (0.311) (0.460) (0.288) 
 

(0.121) (0.181) (0.140) 
 

(0.048) (0.048) (0.030) 
TANF  -0.002 -0.007* -0.007***  0.140 0.247 -0.089 

 
-0.040 -0.472*** -0.324*** 

 
-0.053 -0.025 -0.043 

  (0.004) (0.004) (0.003) 
 

(0.332) (0.381) (0.262) 
 

(0.114) (0.116) (0.083) 
 

(0.043) (0.049) (0.027) 

                 Average marginal effect (wrt treatment): 
             waiver 

 
-0.006 -0.005 -0.005 

 
0.307 0.092 0.152 

 
-0.127 -0.015 -0.024 

 
0.033 0.007 -0.037 

  
(0.006) (0.004) (0.003) 

 
(0.327) (0.393) (0.279) 

 
(0.130) (0.190) (0.150) 

 
(0.053) (0.049) (0.037) 

TANF 
 

-0.001 -0.005 -0.007** 
 

0.135 0.019 -0.089 
 

-0.042 -0.480*** -0.339*** 
 

-0.045 -0.013 -0.044 

  
(0.004) (0.004) (0.003) 

 
(0.314) (0.326) (0.261) 

 
(0.121) (0.119) (0.090) 

 
(0.047) (0.046) (0.033) 

                 Average marginal effect (wrt policy): 
              waiver 

 
-0.007 -0.006 -0.006* 

 
0.313 0.117 0.176 

 
-0.124 -0.015 -0.024 

 
0.042 0.011 -0.039 

  
(0.008) (0.004) (0.003) 

 
(0.341) (0.502) (0.317) 

 
(0.127) (0.193) (0.148) 

 
(0.061) (0.061) (0.040) 

TANF 
 

-0.002 -0.008* -0.008** 
 

0.153 0.027 -0.098 
 

-0.041 -0.502*** -0.344*** 
 

-0.067 -0.032 -0.054 

  
(0.004) (0.005) (0.003) 

 
(0.360) (0.415) (0.288) 

 
(0.118) (0.126) (0.090) 

 
(0.056) (0.062) (0.036) 

                 Observations 
 

125468 130810 152806 
 

17200 18672 21543 
 

116972 122833 144354 
 

116972 122833 144354 

                 P-value of Wald test on joint significance of… 
                  State dummies 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

 
0.00 0.00 0.00 

     Year dummies   0.00 0.00 0.00   0.00 0.05 0.00   0.27 0.00 0.00   0.00 0.00 0.00 
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Note: All models include state and year dummies. Standard errors are adjusted for clustering at the state level. 

* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 

a. Max benefit is measured in thousands. 
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Essay II : Hospital Treatment Rates and Spillover Effects: Does Ownership Matter? 
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1. Introduction  

The quality and cost effectiveness of the health care system in the U.S. are two of the major 

concerns of the Affordable Care Act (ACA).  According to World Health Organization (WHO), 

the total health expenditure of the U.S. accounted for 17.9% of the national GDP in 2010, which 

was the highest in the world. Despite spending this high expenditure on health, the health 

outcomes were not significantly better than those of other countries. In this paper we focus on 

ownership of the hospitals and their treatment rates. We distinguish between three types of 

hospital ownership: For-profit, not-for-profit, and government owned hospitals. There is an 

extensive literature focusing on hospital ownership, see for example Sloan (2000), McClellan 

and Staiger (2000), Sloan et al. (2001), Kessler and McClellan (2002), Horwitz and Nichols 

(2009), Bayindir (2012), to mention a few. A brief review of the different ownership theories and 

the empirical evidence is given in section 2. The empirical studies have mixed results. Both not-

for-profit and government hospitals enjoy tax exemptions and financial advantages. They may 

have the luxury of using their profits to finance less profitable services. Sloan (2000) finds that 

not-for-profit hospitals provide better overall quality to the community. Bayindir (2012) suggests 

that not-for-profit hospitals are more likely to treat uninsured patients and patients with public 

health insurance than for-profits hospitals. Some studies indicate that for-profits are profit-

seeking and have more financial incentives to provide better treatment and attract patients, while 

other studies suggest that there is no difference in quality between not-for-profits and for-profits 

hospitals. On the demand side, Jung, Feldman, and Scanlon (2011) find that hospitals with better 

reputation and higher quality of health care tend to increase patients’ willingness to revisit. 

Moscone, Tosetti, and Vittadini (2012) suggest that information from neighbors along with 

patients’ previous experience and hospital characteristics play important roles in their choice of 
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hospitals in Italy. Porell and Adams (1995) survey the literature and report that patients are more 

likely to choose hospitals with better health outcomes. The health care market is based on the 

interactions between hospitals and patients. We explore how this market generates externalities 

among hospitals. In particular, we study how the treatment rates of one hospital may be affected 

by the treatment rates and competition from other neighboring hospitals. 

The competition level of the market may be affected by the distance between hospitals, the 

hospital’s reputation and the quality of hospitals1. Tay (2003) suggests that patients have a 

tradeoff between the quality of the hospital and the distance to other hospitals2. Hospitals 

improve their quality to attract patients from other neighborhoods3. Horwitz and Nichols (2009) 

find that not-for-profit hospitals are more likely to provide relatively profitable services in a 

market with a higher proportion of for-profit admissions. Government hospitals are the least 

likely to offer profitable services and the most likely to offer unprofitable services. 

  Knowledge spillovers may also contribute to externalities of health care.  “A large 

medical literature has documented the important role of social networks in physician adoption of 

new technologies, suggesting that knowledge externalities are the source of the productivity 

spillovers.” See Chandra and Staiger (2007, p.133). Physicians may learn from each other and 

possibly transfer to another hospital, especially when a new technology or equipment is 

introduced. Hence, it is important to take into account the possible spillovers from one hospital 

to its neighboring hospitals.  

1 We do not argue that price of medical services is negligible, but most patients have insurance (Tay, 2003). Insurance companies 
cover a major part of medical expense. Moreover, patients who are aged 65 and above are most likely covered by Medicare. The 
out-of-pocket payments from patients are relatively low (Sloan, 2000).  Porell and Adams (1995) indicate that studies do not find 
significant price effects when they use gross charges as the price measure.  
2 While almost half of acute myocardial infarction (AMI, or heart attack) patients are admitted to the closest hospital from home, 
more than 50% of the patients are willing to travel four to five miles further on average for better quality health care. 
3 However, using mortality rates, other empirical studies show mixed results of the effects of the competition on quality (see 
Gaynor, 2006). 
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These spillovers create a spatial correlation of quality, which is presented in Figure II-1. 

The maps present the geographic distribution of the summary Hospital Compare quality scores 

by hospital referral region4 (HRR) in the United States in 2005 (The Dartmouth Atlas of Health 

Care). The scores indicate the average percentages of heart attack, heart failure, and pneumonia 

clinical processes that are given to patients in the HRR. Figure 1a shows the spatial patterns of 

the overall score. The treatment rates are above 90% in many HRRs in the middle and north 

eastern United States. One may argue that these HRRs are wealthier urban areas. Therefore, their 

overall medical quality is higher than the national average. The geographic clusters suggest 

heterogeneity of health care across the country. However, we also find geographic clusters of 

high treatment rates in some less wealthy HRRs, such as those in North Carolina. This confirms 

the results by Skinner (2012) that demographic variables cannot fully explain the geographic 

variations in health care. The clusters may also indicate that the medical quality of one HRR is 

correlated with that of its neighboring HRRs. Focusing on the treatment rates by illness 

condition, we find the geographic patterns of heart attack and heart failure treatments in Figures 

1b and 1c to be similar to that of the overall treatments. The geographic pattern of pneumonia 

treatments in Figure 1d is slightly different from heart disease treatments, but a spatial 

correlation persists.  

When examining the interaction among hospitals, most studies utilize the Herfindahl-

Hirschman Index (HHI) or similar market share variables as measures of competition level or 

market structure. While these indices are good measures of the aggregate competition level of the 

market, they do not take distances between hospitals into consideration. A market with three 

4 Dartmouth Atlas defines the hospital referral regions by the regional market of health care. Patients are able to transfer or be 
referred to another hospital for major cardiovascular surgical procedures and for neurosurgery in the same HRR. One HRR can 
cross different counties and states.  
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hospitals close to each other is considered to have the same competition as one with three 

hospitals spread out. 

In this paper, we utilize a spatial Durbin model of hospital treatment rates. This spatial 

model is able to identify the intensity of geographic correlations. Other studies using spatial 

analysis in health care include Mobley et al. (2006) who studied elderly access to primary care 

services. They use the spatial lag model, which includes the spatial lagged dependent variable to 

model spillovers. They find a strong and positive spatial correlation for hospital treatments. 

However, they do not consider hospital ownership as an aspect of quality disparity.  

In addition to spillover effects, the spatial Durbin model allows us to examine whether the 

market structure affects the treatment rates. The market of medical services is composed of 

hospitals with different characteristics, such as ownership and size. As suggested by Horwitz and 

Nichols (2009), hospitals have different treatment decisions based on the market structure they 

are facing. We cannot assume the spillover effects are the same for all types of markets. 

Operational strategies of hospitals may not only differ by the type of ownership but may also 

respond to the type of ownership of neighbors. 

We use clinical process treatment rates from Hospital Compare as our dependent variable. 

Compared to other measures, like the mortality rate or the length of hospital stays, the process 

treatment rates are less noisy and reflect real hospital medical services. Our study finds strong 

and positive spillover effects among hospitals for heart attack patients. The spillover effects are 

even stronger for less acute illness conditions like heart failure and pneumonia. We find some 

evidence that not-for-profit hospitals provide better medical services than government and for-

profit hospitals, but the treatments also differ by the market structure. Hospitals in a market with 
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stronger intensity of not-for-profit hospitals are more likely to provide medications at discharge 

but less likely to perform percutaneous coronary intervention (PCI) in time. Moreover, the 

treatment rates of hospitals decrease if they are surrounded by large hospitals. The overall effect 

depends on the characteristics of the hospital, the spillover effects, and the market structure. 

2.  Literature Review 

Unlike most of the industries that are composed of for-profit firms, about 60% of the non-

federal hospitals in the United States were not-for-profit and only 20% were for-profit in 2010. 

As Horwitz and Nichols (2009, p.925) summarize in their Table 1, there are four theories of not-

for-profit hospitals: (1) maximizing own output (Newhouse, 1970): not-for-profits are profit-

seeking and maximize profitable services as for-profits do. They will offer more health care until 

profits are driven to zero; (2) maximizing the community output (Lee and Weisbrod, 1977): the 

goal of not-for-profits is to benefit the whole community and to maximize market output 

including unprofitable services; (3) for-profit in disguise (Pauly and Redisch, 1973): nonprofits 

would be essentially identical to for-profit hospitals in equilibrium, with economic profits 

counted as costs (salaries or perquisites accruing to staff physicians); and (4)  a mixture of (1) 

and (2) (Hirth, 1997): not-for-profits behave depending on the competition level of the market. 

They are profit-seeking when facing competition.  

The empirical studies have mixed results. Tax exemptions allow not-for-profit and 

government hospitals to provide better quality to the community or more medical care to 

uninsured patients (Sloan, 2000; Bayindir, 2012). Clement et al. (2002) note that for-profit 

hospitals provide less charity care than not-for-profits. Sloan et al. (2001) find that for-profit 

hospitals are more likely to use high-tech procedures with higher costs, while Kessler and 

McClellan (2002) find that areas with for-profit hospitals have lower hospital expenditures, but 
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virtually the same patient health outcomes. They conclude that for-profit hospitals have 

important spillover benefits for medical productivity. Geweke, Gowrisankaran, and Town (2003) 

use a Bayesian model to estimate hospital quality in Los Angeles County. Focusing on elderly 

pneumonia patients, they find that there is not a definitive difference in mortality rates by 

hospital ownership. This is in line with the results of Sloan et al. (2001) and Sloan and Taylor 

(1999). These studies find weak evidence that the mortality rate of Medicare patients and the 

probability of readmission differ by hospital ownership.  

However, when competition and market structure are taken into consideration, several 

studies suggest that the first or the last theory has more support. Horwitz and Nichols (2009) find 

not-for-profit hospitals are more likely to provide profitable services in a high for-profit market 

(15% of for-profit admissions or higher). The spillovers of medical services provided make not-

for-profit hospitals behave more like for-profits in a high for-profit market. The role of hospital 

ownership is less important when the competition level increases. Not-for-profits compete with 

for-profit hospitals by providing better quality of health care (Sloan, 2000). McClellan and 

Staiger (2000) also suggest that the growing difference in mortality rates of the elderly AMI 

patients between for-profit and not-for-profit hospitals may be attributed to various factors, 

including location. The treatment decisions may depend on the competition level of the market 

hospitals are located in.  

Besides competition, knowledge spillovers among physicians could also cause spatial 

correlations. Physicians are more likely to practice intensive treatments in a market with 

advanced medical technologies. Chandra and Staiger (2007) find that spillovers of technology 

increase the treatment rate in the market. Cardiac catheterization rate of AMI patients is higher in 

a market with a higher propensity for intensive treatments. Physicians learn practice skills from 
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other physicians, and possibly transfer these skills to other hospitals due to job movement or due 

to these physicians working at multiple hospitals. About 40% of physicians with inpatient duty 

work at more than one hospital (Fisher et al., 2007). This mobility increases the probability of 

exchanging knowledge among physicians. Therefore, interactions and spatial correlations of 

treatments among hospitals should not be neglected when we examine hospital treatment rates. 

Mobley et al. (2006) study this geographic correlation of health care in the U.S. They use 

Admissions for Ambulatory Care Sensitive Conditions (ACSCs) among elderly patients in the 

late 1990s as the preventive care utilization measure. ACSCs are preventable admissions and 

therefore can be an indicator of poor quality. They use a spatial lag model with both maximum 

likelihood and two stage least squares methods. They find strong and positive spatial 

correlations. More ACSCs in neighboring hospitals are associated with an increase in ACSCs for 

the hospital itself. The utilization rates are not significantly different between the elderly living in 

poor rural areas and those living in urban areas.  

3.  Data and methodology 

We model hospital treatment rates using the spatial Durbin panel model given by 

y𝑡𝑡 = 𝜆𝜆Wy𝑡𝑡 + H𝑡𝑡γ1 + X𝑡𝑡β + WH𝑡𝑡γ2 + 𝜀𝜀s + τ𝑡𝑡 + u𝑡𝑡      t=1,2,..,T 

u𝑖𝑖𝑡𝑡 = µ𝑖𝑖 + v𝑖𝑖𝑡𝑡      i=1,2,..,N 

where y𝑡𝑡 is an (Nx1) vector of treatment rates for N hospitals at time t. W is an (NxN) spatial 

weight matrix, whose diagonal elements are zero and whose off diagonal elements are the 

normalized inverse distance from hospital i to hospital j. This weight matrix is row-normalized, 

i.e., the elements in each row sum to one, ∑ w𝑖𝑖𝑖𝑖 = 1N
j=1 . Wy𝑡𝑡 is the spatial lagged dependent 
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variable, which presents the weighted average treatment rates of neighboring hospitals. λ thus 

measures the spillover effect of hospital treatment rates. H𝑡𝑡 is an (Nxk) matrix of hospital 

characteristics, and X𝑡𝑡 is an (Nxc) matrix of county demographic variables where hospital i is 

located. 𝜀𝜀𝑠𝑠 and τ𝑡𝑡 are state and year fixed effects. u𝑡𝑡 is an (Nx1) vector of error component 

disturbances. As the second equation shows, the typical element of  u𝑖𝑖𝑡𝑡 is the hospital random 

effect µ𝑖𝑖 and a remainder classical disturbance v𝑖𝑖𝑡𝑡. µ𝑖𝑖 is assumed to be i.i.d. (0, σµ2) and v𝑖𝑖𝑡𝑡 is 

assumed to be i.i.d. (0, σv2). µi and v𝑖𝑖𝑡𝑡 are independent of each other and the regressors H𝑡𝑡  and X𝑡𝑡. 

 Our panel data consists of all hospitals in the 48 continental states that reported their 

treatment rates every year from 2005 to 2008. Neighboring hospitals are those within a 30 miles 

radius. Thirty miles may seem arbitrary, but Horwitz and Nichols (2007) indicate that 90% of the 

discharges are from a mean radius of 21.5 miles of non-rural hospitals, compared to 25.2 miles 

for rural hospitals. Therefore, 30 miles seems reasonable to cover the potential market.  

Our dependent variables are the treatment rates from Hospital Compare of the Centers for 

Medicare and Medicaid Services. This data set was released in 2004. The treatment rates are the 

percentages of the eligible adult patients who were actually given seven clinical processes of care 

for heart attack treatments5. Instead of examining the spillover effects on each of the seven AMI 

clinical processes separately, we combine them into four categories: (1) overall treatment rate; 

(2) giving aspirin and/or beta blockers at arrival; (3) prescribing aspirin/beta 

blockers/angiotensin converting enzyme (ACE) inhibitors at discharge; and (4) giving 

percutaneous coronary intervention (PCI) within 120 minutes of arrival6. The first category 

refers to the average of all treatments offered to AMI patients. The medications are similar in the 

5 Hospital Compare includes 17 clinic processes of care in total for heart attack, heart failure, and pneumonia. 
6 Smoking consultation is also included in the overall treatment receiving rate.  
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second and third categories, but the timing of prescriptions indicates different treatment 

purposes. The second category indicates timely treatments that can relieve the conditions. The 

third category implies preventive treatments to reduce the probability of readmissions. These 

three categories are obtained using a weighted average where the weights are the number of 

cases in each process. PCI is a coronary angioplasty. It is a relatively high intensity treatment, 

which requires skilled staff and equipment. 

A heart attack is a very acute condition, and patients need immediate medical care. They 

are most likely to be taken to hospitals in distinct local markets7. This precludes patients from 

travelling long distances to seek care and in turn being less likely to select the hospital they like. 

In addition, hospitals need to treat patients who check in to the emergency room, regardless of 

their insurance type. Focusing on heart attack processes allow us to reduce the selection issue 

between patients and hospitals. As Chandra and Staiger (2007, p.117) put it: “markets for heart 

attack treatment are geographically distinct…mobility is limited, and it is possible to observe 

production in many distinct local markets.” 

There are several advantages of using Hospital Compare as our quality measures. First, the 

processes reflect the real medical services that are delivered to patients in a timely manner. Even 

though using health outcomes, such as mortality rate, as quality measures can cover 

unobservable factors, they could be noisy due to relatively low mortality probability (McClellan 

and Staiger, 2000). The processes in Hospital Compare are timely and effective for patients. 

Many of the processes for AMI patients are recommended in the ACC/AHA Guidelines for the 

Management of Patients with Acute Myocardial Infarction (1999). Second, most of these 

processes are not intensive or require advanced technologies. Hospitals should be able to provide 

7 Even if patients travel four to five miles for better treatments as suggested by Tay (2003), these hospitals may still be within one 
market according to our definition of neighborhood. 
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the treatments regardless of the size and the specialization of the hospital. We acknowledge that 

these are the basic treatments, which can be achieved easily. One hospital with lower treatment 

rates may not guarantee a worse overall quality. It may focus on other medical and non-medical 

services that are not included in the data, such as open heart surgery. However, these non-

intensive treatments, such as giving beta blockers, serve as a marker of the quality of non-

intensive medical management in a hospital, see Chandra and Staiger (2007, p.118). Heidenreich 

and McClellan (2001) and Rogers et al. (2000) find that giving aspirin/beta blockers/ACE 

inhibitors is the major reason for increasing survival rate following AMI. Third, these measures 

only include patients who are appropriate for the treatments. One limitation of our data is that it 

is at the hospital level. Without patient-level data, we have no information about the 

characteristics and illness severity of patients.  

Data for the hospital characteristics are taken from the AHA Guide and Provider of 

Services File, which includes: indicators of not-for-profit hospitals, for-profit hospitals, teaching 

hospitals8, and locating in an MSA; number of beds; number of nurses per bed; and HHI. 

Herfindahl-Hirschman Index (HHI) is the sum of squares of each hospital’s market share based 

on the number of beds within its neighborhood. HHI is an indicator of market 

concentration/competition. A larger index indicates a lower concentration of the health care 

market. The market may be dominated by one large hospital and few small hospitals. The spatial 

lagged hospital characteristics, WH𝑡𝑡, include indicators of for-profit, not-for-profit, and teaching 

hospitals; number of beds; and number of nurses per bed. γ2 represents the spillover effects of 

neighboring hospitals’ characteristics.  

8 Teaching hospitals include hospitals with Council of Teaching Hospitals designation, hospitals approved to participate in 
residency and/or internship training by the Accreditation Council for Graduate Medical Education, and those with medical school 
affiliation reported to the American Medical Association. 

 
 

                                                 



49 
 

The characteristics of potential patients are controlled by county demographic variables, 

which are from the American Community Survey of the U.S. Census Bureau. This data set 

includes only counties with a population of 65,000 and above in 2005 and 2006. Therefore, 

hospitals in our data are located in relatively more urbanized areas. We control for percentages of 

never married individuals age 15 and above, high school dropouts, high school graduates, male, 

Hispanic, black, and elderly (age 65 and above); median earnings; and population density per 

square mile. One may argue the disparity of health care quality is due to geographic 

heterogeneity. Patients receive better treatment because they are located in an area with better 

medical care resources. These county demographic variables are good proxies for geographical 

heterogeneity.  

Table II-1 presents the descriptive statistics of our data. The treatment rates of the four 

heart attack treatment categories have large means and small minimum values. This suggests that 

the distributions of treatment rates are skewed. Out of 2342 hospitals in our sample, 18.5% are 

for-profit, 68.7% are non-profit hospitals. The proportion of non-profit hospitals is slightly 

higher than the national average but closer to that in the non-rural areas (Horwitz and Nichols, 

2007). Of these hospitals, 41.2% have teaching status and 89.4% are located in MSAs. The 

average number of beds is 263 and the average number of nurses per bed is 1.1. The average 

(median earnings) is $33,790 and the average population density is 2,230 individuals per square 

mile. Among the potential patients, 30.9% are never-married, 44% have at most a high school 

degree, 12.5% are elderly, 14.5% are Hispanic and 12.5% are black.  
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4.  Empirical Results  

We estimate our spatial Durbin panel data model using the generalized moments (GM) 

estimator9 with random effects.  See LeSage and Pace (2009) for a nice introduction of the 

spatial Durbin model and Kapoor, Kelejian and Prucha (2007) for details on the GM 

methodology. Also, Mutl and Pfaffermayr (2010) for an extension of the GM methodology to the 

spatial lag model and Debarsy (2012) for the spatial Durbin model. See also Elhorst (2003) for 

maximum likelihood estimation of spatial lag panel models, and Lee and Yu (2010) and Baltagi 

(2011) for recent surveys of spatial panels.  

Table II-2 presents the spillover effects of the heart attack treatment rates using a GM 

estimator. Some of the diagnostics performed include testing the joint significance of the state 

dummies as well as the time dummies. These were jointly significant for all models considered. 

Similarly, the hospital random effects are significant for all models. The first two columns show 

the GM estimation of the overall heart attack treatment rate. Without controlling for the market 

structure in the first column, we find that not-for-profit hospitals provide better health care to 

heart attack patients than government hospitals. Surprisingly, the treatments in for-profit 

hospitals are not significantly different from government hospitals. The number of beds, the 

number of nurses per bed, and being a teaching hospital are all positively associated with 

hospital quality. These are in line with the studies of Keeler et al. (1992) and Geweke, 

Gowrisankaran, and Town (2003). Yuan et al. (2000) also find that teaching not-for profit 

hospitals have lower mortality rates and infer that they provide over-all better quality of care. 

Aiken et al. (2002) report that a higher patient-per-nurse ratio increases the mortality rate of 

9 We use the full set of moment conditions, see Millo and Piras (2012) for details. We also estimate the model using maximum 
likelihood estimation (MLE) using XSMLE: Stata module for spatial panel data model estimation, see Belotti, Hughes, and 
Mortari (2013). The MLE results were similar to those using the GM estimator except for smaller estimates of lambda. However, 
all the lambda estimates were statistically significant at the 1% significance level. These results are presented in Appendix Table 
II-1 and Appendix Table II-2. 
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AMI. We find little evidence that demographic variables affect hospital treatments. Hospitals 

provide better quality in an area with a higher never-married population, and lower quality in an 

area with more blacks and higher population density.  

The estimate of lambda indicates the magnitude of spillover effects among hospitals. For 

the overall treatment rate in column (1), the spatial correlation coefficient estimate is 0.414 

without the measures of market structure. This suggests that when the average heart attack 

treatment rate of neighboring hospitals increases by 1%, the hospital’s treatment rate also 

increases by 0.414%. This effect is large and close to the results found by Mobley et al. (2006). 

After adding the market structure variables in column (2), the estimation results are similar 

to those in column (1). However, the effects of blacks and population density are no longer 

significant. The lambda estimate increases to 0.5. Ownership of neighboring hospitals does not 

impact its own quality, while the effect of its own not-for-profit status becomes weaker. 

Hospitals provide fewer treatments in a market with teaching hospitals and larger neighboring 

hospitals. The significance of market structure variables suggest that ignoring these may generate 

biased results. In addition, these results suggest that the treatment decisions of hospitals may be 

associated with a higher quality of neighbors rather than the distribution of hospital ownership in 

the market. Larger hospitals provide more health care, but when a hospital is close to larger 

hospitals, its treatment rates are lower. Columns (3) to (8) decompose the overall treatment into 

more specific heart attack treatments. Focusing on the estimation with market structure variables, 

we find weak evidence that for-profit hospitals provide fewer medications to patients after they 

arrive than government hospitals. Not-for-profit hospitals have a higher PCI treatment rate than 

government hospitals. We find that number of beds, number of nurses per bed, and teaching 

status are positively associated with the medication treatment rates at both arrival and discharge, 
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but not with PCI. The number of nurses per bed has relatively strong effects, but the number of 

beds is not significant. Teaching hospitals are more likely to give medications to heart attack 

patients. This is in line with the suggestion of Sloan (2000) that major teaching hospitals have 

better quality and non-teaching government hospitals have the worst outcome for elderly 

patients. What is interesting is that teaching status is negatively associated with the PCI 

treatment rate. This could be because teaching hospitals have longer waiting time to perform PCI 

than other hospitals (Nallamothu et al, 2005).  

Hospitals provide more medications but fewer PCI treatments in areas with a more never-

married population. The percentage of high school graduates has a negative relationship with 

medications at discharge and PCI. Hospitals give more medications at discharge in an area with 

an older population and a higher population density.  

The lambda estimates range from 0.4 to 0.48. Focusing on estimation with market 

structure, a 1% increase in average treatment rate of each category in neighboring hospitals is 

associated with an increase of 0.45%, 0.48%, and 0.41%, respectively, in the hospital’s own 

treatment rate. The spillover effect of PCI is relatively smaller than other treatments. This may be 

due to a technology specialty, and proficiency of doctors and nurses. However, the strong and 

positive spatial correlation of PCI confirms the results of Chandra and Staiger (2007). Hospitals 

are more likely to perform these treatments in a market with a high propensity of intensive 

treatments. 

Except for the number of beds, market structure has different impacts on each treatment 

category. With not-for-profit hospitals in the market, a hospital is more likely to prescribe 

medications at discharge but less likely to perform PCI. All the treatments decrease when there 
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are larger hospitals nearby. Interestingly, a hospital prescribes fewer medications at discharge 

when there are teaching hospitals in its neighborhood. 

5. Spillover Effects on Other Illness Conditions 

Hospital Compare also includes four processes of heart failure and six processes of 

pneumonia10. These two illness conditions are less acute in the sense that patients have more 

likelihood to travel further for treatments, or for preferred physicians, or for insurance reasons. 

Hence, we expect the effects of competition among hospitals and the geographic heterogeneity to 

be stronger. We combine these treatments for each illness condition and apply the previous 

spatial panel Durbin model to the average treatment rates of heart failure and pneumonia.  

The GM estimation results are presented in Table II-3. The first two columns are the 

estimation of heart failure treatments and the latter two columns are for pneumonia treatments. 

Focusing on the estimation with market structure, the results in column (2) suggest that not-for-

profit hospitals provide more treatments than government hospitals. Both the number of beds and 

the number of nurses per bed increase the treatment rates of heart failure patients. The lambda 

estimate indicates that when neighboring hospitals increase their heart failure treatment rate by 

1% on average, it increases its own hospital treatment rate by around 0.67%. Similar to heart 

attack treatments, larger hospitals in the neighborhood decrease the treatment rates of own 

hospital. 

Column (4) suggests that both for-profit and not-for-profit hospitals provide more 

pneumonia treatments than government hospitals. Teaching hospitals, however, are less likely to 

10 The processes of heart failure include an evaluation of the left ventricular systolic function, ACE inhibitor, discharge 
instructions, and smoking cessation advice during a hospital stay. The processes of pneumonia include giving initial antibiotic 
within 4 hours of arrival, screening for pneumococcal vaccination status, giving oxygenation, performing blood culture prior to 
the first hospital dose of antibiotics, giving smoking cessation advice, and giving appropriate initial antibiotics to immune-
competent patients with pneumonia during the first 24 hours after arrival. 
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provide these pneumonia treatments. Hospitals also provide fewer treatments to areas with high 

minority populations. The lambda estimate indicates that when neighboring hospitals increase 

their pneumonia treatment rates by 1% on average, it increases its own hospital treatment rate by 

around 0.56%. Hospitals have lower treatment rates when they have for-profit, not-for-profit and 

teaching hospitals in their neighborhoods.  

6. Discussion 

Our results suggest that not-for-profit hospitals provide better quality, especially for 

cardiac treatments. McClellan and Staiger (2000) also suggest that not-for-profit hospitals treat 

elderly patients with heart diseases slightly better than for-profits. One of the possible 

explanations is that for-profit hospitals are more aggressive on cost control. Eggleston and Shen 

(2011) find that the mortality rate for elderly heart attack patients is higher in for-profit hospitals, 

because they have more restrictive budget constraints. McKay and Deily (2008) also suggest that 

reductions in costs are associated with adverse consequences on health outcomes. In addition, 

not-for-profit hospitals enjoy tax exemptions. They are able to transfer the profit to services that 

are beneficial to patients. If the not-for-profit hospitals provide better services due to tax 

exemption, charitable obligations may benefit heart attack patients.  

However, the effect of ownership depends on treatments and market structure. The results 

on PCI treatments suggest that not-for-profit hospitals provide better quality of heart attack 

treatments in an inter-sectoral market. When a market has only for-profit or only not-for-profit 

hospitals, there is no significant effect or the effects are traded off. However, when a not-for-

profit hospital is located in a high for-profit market, the PCI treatment rate is significantly higher. 

According to the study of Horwitz and Nichols (2009), PCI is a relatively profitable service. This 

result is in line with their study that not-for-profits provide more profitable services in a high for-
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profit market. We also do not find strong evidence that hospitals provide different quality by 

ownership on heart attack treatments other than PCI. Not-for-profit hospitals provide better heart 

failure treatment regardless of the ownership composition in the market. Ownership of 

neighboring hospitals offset the high pneumonia treatment rates of for-profit and not-for-profit 

hospitals. Therefore, our results on hospital ownership are mixed.  

Our results support the competition hypothesis. Hospitals have lower treatment rates when 

they compete with hospitals of better quality. Competition may generate both positive and 

negative externalities at the same time. Hospitals compete by providing better quality, while 

improving quality can be very costly (Morey et al., 1992). Fournier and Mitchell (1992) and 

Robinson and Luft (1985) suggest that the level of competition is associated with increasing cost. 

The overall effect could be in line with studies of Propper, Burgess, and Green (2004) that 

competitions lower hospital quality11. Also, when a hospital has a larger neighbor, there is a 

higher probability of empty beds which is costly (Gaynor and Anderson, 1995). Hospitals with 

more beds have diseconomy of scale. The cost may increase with increasing beds (Keeler, 

Melnick, and Zwanziger, 1999). Hospitals may offer fewer treatments for financial reasons. 

As expected, we also find that the spillover effect is stronger for less acute illness 

treatments than heart attack treatments. Less acute illnesses allow patients to travel further, 

making the competition among hospitals to increase. Positive externalities from competition and 

knowledge spillover improve medical services in the whole market.  

Our results corroborate similar findings for France by Gobillon and Milcent (2012). These 

authors find that local composition of ownership and demographic variables have limited effects 

11 There are other studies that suggest competitions improve cost-effectiveness and generate economy of scale (Dranove, Shanley, 
and Simon, 1992; Kessler and McClellan, 2000, Zwanziger and Melnick, 1988). In addition, Bloom et al. (2010) find that 
competition increases management quality of the public hospitals in the UK. 
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on spatial disparity of innovative treatments in France. They also find strong spillover effects and 

suggest that regional unobservable factors account for 20% of spatial disparities.  

 Since the overall effect depends upon the characteristics of the hospital itself, spillovers 

and market structure, this may explain why Gaynor (2006) suggests a mixed result for the effect 

of competition on hospital quality. Vickers and Yarrow (1988) also conclude that the competition 

level in the market could be a more important determinant of performance than type of 

ownership.  

7. Conclusion  

Our study employs a spatial Durbin panel data model to control for geographic correlation 

of treatments among hospitals. Our results suggest strong and positive spillover effects among 

hospitals. Our results should be tempered by the fact that we included basic treatments which 

were limited by data availability. Some hospitals may perform other effective treatments which 

are not available in our data set. In addition we only focused on three illness conditions. Some 

hospitals may provide better quality care treatments for other illness conditions not reported in 

our data set. 

Our results on hospital ownership are mixed. While we find some evidence that hospitals 

have different operation strategies by ownership, this also depends on the market structure where 

the hospital is located. One thing that policy makers should not ignore is the effect of spillovers 

which we found to be strong and significant.  
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Figure II-1. Geographic Distribution of the Summary Hospital Compare Quality Score in Hospital Referral Regions  

Figure 1a. Overall 

 

Figure 1b. Heart Attack 

 

Figure 1c. Heart Failure 

 

Figure 1d. Pneumonia 

 

 Source: The Dartmouth Atlas of Health Care (The Dartmouth Institute for Health Policy and Clinical Practice).
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Table II-1. Descriptive Statistics 

  Mean Std. Dev. Min Max 

Dependent Variables: 
  Heart Attack Treatments: 
  Overall 0.921 0.065 0.257 1 

Medication at arrival 0.934 0.063 0.28 1 

Medication at discharge 0.917 0.086 0 1 

PCI 0.627 0.197 0 1 

     Heart Failure Overall Treatments: 0.797 0.129 0.05 1 

Pneumonia Overall Treatments: 0.835 0.082 0.447 1 

     Independent Variables: 
  For-profit 0.185 0.389 0 1 

Not-for-profit 0.687 0.464 0 1 

Number of beds (in 100's) 2.632 2.103 0.04 22.07 

Nurses per bed 1.102 0.522 0.2 7.04 

Teaching Status 0.412 0.49 0 1 

Located in an MSA 0.894 0.308 0 1 

HHI 0.137 0.172 0.001 0.971 

% never married 0.309 0.06 0.166 0.557 

% HS dropouts 0.151 0.059 0.018 0.418 

% HS grads 0.29 0.067 0.116 0.55 

Median earnings (in 10,000's) 3.379 0.061 1.741 6.09 

% male 0.49 0.011 0.445 0.58 

% Hispanic 0.145 0.159 0 0.951 

%  black 0.126 0.129 0 0.668 

%  elderly 0.125 0.033 0.046 0.335 

Population density  (in 10,000's) 0.223 0.668 0.001 0.716 
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Table II-2. Estimates of Spillover Effects and Hospital Characteristics on Heart Attack Treatments 

Treatment Overall Medication at arrival Medication at discharge PCI 

  (1) (2) (3) (4) (5) (6) (7) (8) 

         For-profit -0.005 -0.005 -0.008** -0.007* -0.008 -0.007 0.010 0.013 

 
(0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.018) (0.018) 

Not-for-profit 0.007** 0.006* 0.003 0.003 0.005 0.003 0.058*** 0.058*** 

 
(0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.016) (0.016) 

Number of beds 0.004*** 0.005*** 0.004*** 0.004*** 0.007*** 0.007*** 0.003 0.002 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) 

Nurses per bed 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.038*** 0.036*** 

 
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.009) (0.009) 

Teaching Status 0.011*** 0.013*** 0.011*** 0.013*** 0.018*** 0.020*** -0.019* -0.019* 

 
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.010) (0.010) 

Located  in an MSA 0.003 0.005 0.001 0.003 0.006 0.008 0.030 0.031 

 
(0.005) (0.005) (0.004) (0.004) (0.006) (0.006) (0.033) (0.033) 

HHI -0.010 -0.010 -0.011 -0.012 -0.013 -0.012 -0.009 -0.001 

 
(0.009) (0.010) (0.009) (0.009) (0.012) (0.013) (0.050) (0.050) 

% never married 0.061** 0.064** 0.051* 0.053* 0.076** 0.077** -0.286* -0.280* 

 
(0.028) (0.029) (0.028) (0.028) (0.038) (0.039) (0.153) (0.153) 

% HS dropouts -0.037 -0.033 -0.030 -0.032 -0.060* -0.045 -0.080 -0.118 

 
(0.032) (0.032) (0.031) (0.031) (0.044) (0.044) (0.175) (0.176) 

% HS grads -0.015 -0.019 -0.018 -0.022 -0.054 -0.057* -0.256* -0.236* 

 
(0.025) (0.025) (0.025) (0.025) (0.034) (0.034) (0.133) (0.133) 

Median earnings 0.003 0.004 0.003 0.004 0.001 0.004 -0.010 -0.010 

 
(0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.017) (0.017) 

% male 0.013 -0.026 0.094 0.064 0.035 -0.026 0.606 0.688 

 
(0.111) (0.112) (0.111) (0.112) (0.151) (0.154) (0.640) (0.639) 

% Hispanic -0.016 -0.003 -0.004 0.005 -0.031* -0.010 -0.069 -0.068 

 
(0.014) (0.014) (0.013) (0.013) (0.018) (0.019) (0.075) (0.075) 

% black -0.029* -0.019 -0.018 -0.009 -0.031 -0.018 -0.134* -0.119 

 
(0.015) (0.015) (0.015) (0.015) (0.020) (0.021) (0.081) (0.008) 

% elderly 0.071 0.078 0.078 0.083 0.122* 0.132* -0.010 -0.091 

 
(0.052) (0.053) (0.050) (0.051) (0.070) (0.070) (0.271) (0.271) 

Population density -0.004** -0.004 -0.003* -0.003 -0.006** -0.005* -0.008 -0.007 

 
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.011) (0.011) 

         Spatial (λ) 0.414*** 0.500*** 0.424*** 0.452*** 0.350*** 0.476*** 0.401*** 0.414*** 

 
(0.067) (0.076) (0.071) (0.079) (0.068) (0.080) (0.087) (0.082) 
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Market Structure: 
        For-profit 
 

-0.001 
 

-0.0004 
 

0.005 
 

-0.001 

  
(0.007) 

 
(0.007) 

 
(0.010) 

 
(0.028) 

Not-for-profit 
 

0.007 
 

0.007 
 

0.015* 
 

-0.056** 

  
(0.006) 

 
(0.006) 

 
(0.008) 

 
(0.024) 

Number of beds 
 

-0.004*** 
 

-0.003*** 
 

-0.005*** 
 

-0.007** 

  
(0.001) 

 
(0.001) 

 
(0.002) 

 
(0.003) 

Nurses per bed 
 

0.003 
 

0.005 
 

0.004 
 

-0.022 

  
(0.004) 

 
(0.004) 

 
(0.005) 

 
(0.016) 

Teaching Status 
 

-0.008** 
 

-0.005 
 

-0.011** 
 

0.020 

  
(0.004) 

 
(0.004) 

 
(0.005) 

 
(0.015) 

         State fixed effect? Yes Yes Yes Yes Yes Yes Yes Yes 

Year fixed effect? Yes Yes Yes Yes Yes Yes Yes Yes 

         

         F-test for state fixed 
effects 3.33*** 2.92*** 3.68*** 3.11*** 3.50*** 3.10*** 3.37*** 3.42*** 
F-test for year fixed 
effects 63*** 62*** 77*** 77*** 90*** 89*** 21*** 22*** 

         Number of hospitals 2,094 2,094 2,094 2,094 2,094 2,094 941 941 

Observations 8,376 8,376 8,376 8,376 8,376 8,376 3,764 3,764 
 
Standard errors are in parentheses. 
* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 
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Table II-3. Estimates of Spillover Effects and Hospital Characteristics on Heart Failure and Pneumonia Treatments 

Treatment Heart Failure Pneumonia 

  (1) (2) (3) (4) 

     For-profit 0.002 0.003 0.011*** 0.010*** 

 
(0.007) (0.007) (0.004) (0.004) 

Not-for-profit 0.024*** 0.024*** 0.020*** 0.020*** 

 
(0.006) (0.006) (0.003) (0.003) 

Number of beds 0.005*** 0.005*** -0.001 -0.001 

 
(0.001) (0.001) (0.001) (0.001) 

Nurses per bed 0.011*** 0.010*** 0.000 0.000 

 
(0.004) (0.004) (0.002) (0.002) 

Teaching Status 0.002 0.004 -0.008*** -0.007*** 

 
(0.004) (0.004) (0.002) (0.002) 

Located in an MSA 0.006 0.009 -0.001 0.001 

 
(0.009) (0.009) (0.004) (0.004) 

HHI -0.025 -0.026 -0.010 -0.012 

 
(0.018) (0.018) (0.008) (0.009) 

% never married -0.047 -0.036 -0.003 0.001 

 
(0.055) (0.056) (0.027) (0.027) 

% HS dropouts -0.030 -0.036 0.007 0.004 

 
(0.059) (0.060) (0.029) (0.029) 

% HS grads 0.004 -0.008 0.015 0.012 

 
(0.048) (0.049) (0.024) (0.024) 

Median earnings 0.002 0.002 0.004 0.004 

 
(0.006) (0.006) (0.003) (0.003) 

%  male -0.310 -0.354* -0.046 -0.057 

 
(0.210) (0.212) (0.105) (0.105) 

%  Hispanic 0.013 0.023 -0.022* -0.025* 

 
(0.025) (0.026) (0.013) (0.013) 

% black -0.011 0.002 -0.028* -0.031** 

 
(0.029) (0.030) (0.014) (0.015) 

% elderly 0.039 0.039 -0.002 -0.003 

 
(0.101) (0.102) (0.049) (0.051) 

Population density -0.002 -0.002 -0.002 -0.002 

 
(0.004) (0.004) (0.002) (0.002) 

     Spatial (λ) 0.694*** 0.669*** 0.777*** 0.555*** 

 
(0.078) (0.077) (0.073) (0.067) 
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Market Structure: 
    For-profit 
 

-0.015 
 

-0.017** 

  
(0.014) 

 
(0.007) 

Not-for-profit 
 

-0.010 
 

-0.013** 

  
(0.012) 

 
(0.006) 

Number of beds 
 

-0.006** 
 

-0.001 

  
(0.002) 

 
(0.001) 

Nurses per bed 
 

0.001 
 

-0.001 

  
(0.007) 

 
(0.003) 

Teaching Status 
 

-0.007 
 

-0.006* 

  
(0.007) 

 
(0.004) 

     State fixed effect? Yes Yes Yes Yes 

Year fixed effect? Yes Yes Yes Yes 

     

     F-test statistic for state fixed 
effects 5.74*** 5.39*** 8.72*** 8.20*** 
F-test statistic for year fixed 
effects 244.7*** 244*** 634*** 636*** 

     Number of hospitals 2,192 2,192 2,134 2,134 

Observations 8,768 8,768 8,536 8,536 
 

Standard errors are in parentheses. 
* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 
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Appendix Table II-1: ML Estimates of Spillover Effects and Hospital Characteristics on Heart Attack Treatments 

  Overall Medication at arrival Medication at discharge PCI 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) 

                  

For-profit -0.005 -0.005 -0.007 -0.007 -0.006 -0.006 0.005 0.008 

 
(0.005) (0.004) (0.004) (0.004) (0.007) (0.007) (0.021) (0.021) 

Not-for-profit 0.008** 0.008** 0.004 0.004 0.007 0.006 0.051*** 0.050*** 

 
(0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.018) (0.017) 

Number of beds 0.004*** 0.005*** 0.004*** 0.004*** 0.007*** 0.007*** 0.002 0.001 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003) 

Nurses per bed 0.009*** 0.009*** 0.009*** 0.008*** 0.009*** 0.008*** 0.036*** 0.035*** 

 
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.010) (0.010) 

Teaching Status 0.012*** 0.012*** 0.012*** 0.012*** 0.019*** 0.020*** -0.017* -0.017 

 
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.010) (0.010) 

Locate in a MSA 0.005 0.007 0.003 0.004 0.009 0.010 0.034 0.039 

 
(0.006) (0.006) (0.006) (0.006) (0.008) (0.008) (0.027) (0.027) 

HHI -0.017 -0.019 -0.021* -0.022* -0.021 -0.022 0.015 0.021 

 
(0.012) (0.012) (0.011) (0.011) (0.015) (0.015) (0.049) (0.049) 

% of never married 0.066** 0.065** 0.062** 0.060** 0.084** 0.081** -0.368** -0.366** 

 
(0.027) (0.027) (0.028) (0.028) (0.035) (0.035) (0.158) (0.158) 

% of HS dropouts -0.074** -0.075** -0.059* -0.059* -0.115** -0.115** -0.083 -0.125 

 
(0.035) (0.035) (0.034) (0.034) (0.047) (0.047) (0.179) (0.179) 

% of HS grads -0.026 -0.029 -0.030 -0.031 -0.068** -0.071** -0.294** -0.274** 

 
(0.025) (0.025) (0.026) (0.026) (0.033) (0.034) (0.129) (0.128) 

Median earnings 0.002 0.002 0.003 0.004 -0.002 -0.001 -0.018 -0.018 

 
(0.003) (0.003) (0.003) (0.003) (0.005) (0.005) (0.017) (0.017) 

% of male 0.045 0.027 0.115 0.100 0.089 0.070 0.777 0.836 

 
(0.138) (0.138) (0.135) (0.136) (0.185) (0.184) (0.725) (0.720) 

% of Hispanic -0.029** -0.020 -0.013 -0.003 -0.048** -0.036* -0.112 -0.104 

 
(0.014) (0.014) (0.014) (0.014) (0.020) (0.019) (0.079) (0.080) 

% of black -0.026* -0.019 -0.014 -0.008 -0.024 -0.017 -0.176** -0.158* 

 
(0.016) (0.016) (0.016) (0.016) (0.021) (0.021) (0.084) (0.084) 

% of elderly 0.051 0.056 0.063 0.069 0.106 0.113* -0.137 -0.207 

 
(0.053) (0.052) (0.052) (0.051) (0.069) (0.068) (0.284) (0.282) 

Population density -0.004** -0.004* -0.003* -0.003 -0.006*** -0.006** -0.007 -0.006 

 
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.009) (0.009) 

         Spatial (λ) 0.104*** 0.104*** 0.081*** 0.079*** 0.068*** 0.068*** 0.111*** 0.100*** 

 
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.018) (0.020) 
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Market Strucure: 
       For-profit -0.002 

 
-0.002 

 
0.004 

 
-0.012 

  
(0.008) 

 
(0.008) 

 
(0.010) 

 
(0.028) 

Not-for-profit 0.012* 
 

0.012* 
 

0.021*** 
 

-0.054** 

  
(0.006) 

 
(0.007) 

 
(0.008) 

 
(0.023) 

Number of beds -0.002* 
 

-0.003** 
 

-0.002 
 

-0.008** 

  
(0.001) 

 
(0.001) 

 
(0.001) 

 
(0.004) 

Nurses per bed 0.006* 
 

0.008** 
 

0.009* 
 

-0.007 

  
(0.004) 

 
(0.004) 

 
(0.004) 

 
(0.017) 

Teaching Status -0.004 
 

0.001 
 

-0.005 
 

0.015 

  
(0.004) 

 
(0.004) 

 
(0.005) 

 
(0.015) 

         sigma2 0.001*** 0.001*** 0.001*** 0.001*** 0.002*** 0.002*** 0.015*** 0.015*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) 

Invlogit(theta) -0.573*** -0.563*** -0.474*** -0.465*** -0.468*** -0.460*** -0.257*** -0.248*** 

 
(0.053) (0.053) (0.057) (0.058) (0.054) (0.054) (0.061) (0.062) 

         Observations 8,376 8,376 8,376 8,376 8,376 8,376 3764 3764 

R-squared 0.214 0.221 0.183 0.189 0.212 0.218 0.200 0.207 

Number of id 2,094 2,094 2,094 2,094 2,094 2,094 941 941 
 

        Standard errors are in parentheses. 
* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 
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Appendix Table II-2: Estimates of Spillover Effects and Hospital Characteristics on Heart Failure and Pneumonia 

Treatments 

  Heart Failure Pneumonia 

VARIABLES (1) (2) (3) (4) 

          

For-profit 0.002 0.002 0.009** 0.009** 

 
(0.009) (0.009) (0.004) (0.004) 

Not-for-profit 0.027*** 0.027*** 0.020*** 0.020*** 

 
(0.007) (0.007) (0.003) (0.003) 

Number of beds 0.005*** 0.005*** -0.001 -0.001 

 
(0.001) (0.001) (0.001) (0.001) 

Nurses per bed 0.010** 0.010** 0.000 -0.000 

 
(0.004) (0.004) (0.002) (0.002) 

Teaching Status 0.003 0.004 -0.009*** -0.008*** 

 
(0.004) (0.004) (0.002) (0.002) 

Locate in a MSA 0.013 0.015 -0.003 -0.001 

 
(0.009) (0.009) (0.004) (0.004) 

HHI -0.058*** -0.061*** -0.007 -0.011 

 
(0.018) (0.018) (0.008) (0.009) 

% of never married -0.064 -0.064 -0.007 -0.002 

 
(0.059) (0.059) (0.028) (0.028) 

% of HS dropouts -0.065 -0.063 -0.001 -0.004 

 
(0.066) (0.065) (0.032) (0.032) 

% of HS grads 0.013 0.008 0.023 0.018 

 
(0.048) (0.048) (0.024) (0.024) 

Median earnings 0.001 0.002 0.003 0.003 

 
(0.006) (0.006) (0.003) (0.003) 

% of male -0.331 -0.367 -0.013 -0.040 

 
(0.293) (0.294) (0.109) (0.109) 

% of Hispanic -0.011 -0.003 -0.046*** -0.043*** 

 
(0.030) (0.030) (0.014) (0.014) 

% of black -0.015 -0.011 -0.049*** -0.045*** 

 
(0.030) (0.030) (0.015) (0.015) 

% of elderly 0.035 0.037 0.003 0.000 

 
(0.099) (0.099) (0.048) (0.048) 

Population density 0.000 0.001 -0.001 -0.000 

 
(0.005) (0.005) (0.003) (0.003) 

     Spatial (λ) 0.107*** 0.107*** 0.155*** 0.154*** 

 
(0.014) (0.014) (0.013) (0.013) 
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Market Structure: 
   For-profit -0.016 

 
-0.014* 

  
(0.014) 

 
(0.007) 

Not-for-profit 0.002 
 

-0.008 

  
(0.012) 

 
(0.006) 

Number of beds -0.002 
 

-0.001 

  
(0.002) 

 
(0.001) 

Nurses per bed 0.003 
 

-0.002 

  
(0.006) 

 
(0.003) 

Teaching Status -0.004 
 

-0.009** 

  
(0.008) 

 
(0.004) 

     sigma2 0.005*** 0.005*** 0.001*** 0.001*** 

 
(0.000) (0.000) (0.000) (0.000) 

Invlogit(theta) -0.457*** -0.454*** -0.559*** -0.558*** 

 
(0.040) (0.040) (0.033) (0.033) 

     Observations 8,768 8,768 8,536 8,536 

R-squared 0.233 0.235 0.512 0.513 

Number of id 2,192 2,192 2,134 2,134 
 
Standard errors are in parentheses. 
* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 
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