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Abstract

This dissertation explores the mechanics of living cells, integrating the

role of intracellular activity to capture the emergent mechanical behav-

ior of cells. The topics covered in this dissertation fall into three broad

categories : (a) intracellular mechanics, (b) interaction of cells with the

extracellular matrix and (c) collective mechanics of multicellular colonies.

In part (a) I propose theoretical models for motor-filament interactions in

the cell cytoskeleton, which is the site for mechanical force generation in

cells. The models predict in a unified manner how contractility, dynamic

instabilities and mechanical waves arise in the cytoskeleton by tuning the

activity of molecular motors. The results presented in (a) holds relevance

to a variety of cellular systems that behave elastically at long time scales,

such as muscle sarcomeres, actomyosin stress fibers, adherent cells. In

part (b) I introduce a continuum mechanical model for cells adherent to

two-dimensional extracellular matrix, and discuss how cells can sense me-

chanical and geometrical cues from its surrounding matrix. The model

provides an important step towards a unified theoretical description of

the dependence of traction forces on cell size, actomyosin activity, matrix

depth and stiffness, strength of focal adhesions and makes experimentally

testable predictions. In part (c) we combine experiment and theory to re-

veal how intercellular adhesions modulate forces transmitted to the extra-

cellular matrix. We find that In the absence of cadherin-based adhesions,

cells within a colony appear to act independently, whereas with strong

cadherin-based adhesions, the cell colony behaves like a liquid droplet

wetting the substrate underneath. This work defines the importance of

intercellular adhesions in coordinating mechanical activity of cell mono-

layers and has implications for the mechanical regulation of tissues during

development, homeostasis, and disease.
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Chapter 1

Introduction

1.1 Scope

Living cells are highly sensitive to physical, chemical or geometrical cues in the extra-

cellular environment [1]. Environmental determinants such as friction, elastic mod-

ulus, chemical potential or geometry of the substrate largely control the emergent

behavior of adherent cells. Cellular mechanotransduction and response to extracellu-

lar cues are mediated by active intracellular processes. In typical living cells, activity

originates in the cytoskeleton, where molecular motors perform mechanical work on

cytoskeletal filaments, fueled by adenosine triphosphate (ATP) hydrolysis [2]. These

motor-filament interactions play a major role in cellular and tissue-scale mechan-

ical phenomena, and are capable of affecting the extracellular environment. The

inherent cooperativity and feedback between intracellular and extracellular forces de-

termine cell fate, physiology and mechanical functions. Important questions have

since opened up at the interface of soft matter physics, cell biology and materials

science - Can physical interactions between intra- and extracellular components ac-

count for emergent behavior on multicellular length scales? Can we identify universal

trends and characterize cellular material properties such as elastic modulus, viscos-

ity or surface tension? How can we control cell and tissue behavior by designing



1.2 Intracellular Mechanics 2

specific substrates? While experiments continue to reveal quantitative biophysical

data, the need for theoretical modeling has come forth with an aim to unify cellular

mechanics at various length scales. Using tools and ideas from continuum mechanics

and non-equilibrium statistical mechanics, this dissertation theoretically investigates

the emergent mechanical behavior in cells and tissues, stemming from intracellular

activity and controlled by extracellular physical properties.

1.2 Intracellular Mechanics

1.2.1 The Cytoskeleton : an active biopolymer gel

The cytoskeleton is a cellular scaffolding dissolved in the cytoplasm, and is responsi-

ble for the structural integrity and mechanical force generation in living cells. From

the viewpoint of polymer physics, the cytoskeleton can be described as a cross-linked

polymer gel made of semiflexible filaments and cross-linking proteins [3, 4]. Semiflex-

ible polymers are associated with a finite energy cost of bending in the presence of

thermal fluctuations. An individual semiflexible polymer can be characterized by its

persistence length Lp, defined as the distance along the polymer beyond which it loses

memory of its orientation [5]. Filaments with a persistence length larger than the con-

tour length are essentially rigid, whereas those with a smaller persistence length tend

to be flexible, with entropic degrees of freedom. In eukaryotic cells, the cytoskeleton

consists of three main kinds of filaments - actin filaments, intermediate filaments and

microtubules (Fig. 1.1, top frame). Actin filaments are the thinnest of the cytoskeletal

filaments with persistence length of the order of tens of microns (Lp ∼ 17 µm) [6] and

interact with myosin molecular motors. They play a key role in muscle contraction,

cell motility and mechanotransduction. The actin cytoskeleton is mostly abundant

in the cortical layer beneath the plasma membrane, and is also present in membrane

protrusions, such as lamellipodia and filopodia during cell motility. Depending on the

density of filaments and cross-linking proteins, actin gels can either respond elasti-
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cally or flow under mechanical perturbation. Elastic modulus of actin gels have been

measured to be of the order of 1− 10 kPa [7], with viscous relaxation over timescales

of minutes to hours. Microtubules are the stiffest of the cytoskeletal filaments, with

Lp ∼ 1 mm. They are responsible for cytoskeletal rigidity, intracellular transport

of organelles via kinesin or dynein motors, and are known to control mitotic spindle

formation during cell division. Intermediate filaments on the other hand are the most

flexible, with Lp ∼ 1 µm. Intermediate filaments are mostly found in the nuclear lam-

ina or cell-cell and cell-matrix junctions during mechanotransduction, and are also

associated with maintaining cell shape.

ATP � ADP + P

Figure 1.1: Top : (Left) Fluorescent image of an eukaryotic cell with actin labeled in red, mi-

crotubule in blue and intermediate filaments in green. (Right) Electron Micrograph image of actin

cytoskeleton in fish keratocytes [8]. Bottom : Schematic diagram of a myosin cluster (purple), known

as a minifilament, exerting contractile forces (black arrows) on neighboring actin filaments (red),

fueled by ATP hydrolysis.
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Mechanical processes in the cytoskeleton are largely controlled by active molecular

motors, that form temporary cross-links between filaments (Fig. 1.1, bottom frame).

During a chemical cycle fueled by ATP hydrolysis, molecular motors undergo a confor-

mational change, known as the power stroke, and walk along polar filaments carrying

food and cargo across the cytoskeleton. The total cycle duration is determined by the

sum of the time τon that the protein spends attached to the filament, performing its

working stroke, and the time τoff that it spends detached from the filament, making

its recovery stroke. Motor proteins are generally characterized by the value of the

duty ratio, r = τon/(τon + τoff). Myosin-II with r ∼ 0.05, spends most of its time

unbound, while two-headed kinesins have values of r close to unity and are classified

as processive motors that remain attached to the filament for most of the duration

of the cycle [2]. Motor-filament gels constantly consume chemical energy, thus main-

taining the cytoskeleton out-of-equilibrium. Hereafter we refer to these biopolymer

gels as active gels, whose internal activity originates from non-equilibrium chemical

reactions [9].

1.2.2 Collective behavior in motor-filament assemblies

Molecular motors such as myosin-II do not act individually on actin filaments, but

tend to form clusters known as minifilaments. By binding onto actin filaments, these

minifilaments generate internal stresses that can lead to macroscopic contraction of

the cytoskeleton. Collective effects in molecular motor ensembles have previously

been studied and have generically predicted dynamic instabilities [10]. These motor-

induced instabilities provide the likely route to traveling density waves and cluster

formations, as observed in recent experiments on dense actin motility assays [11].

Motility assays are in vitro substrates consisting of molecular motors with their one

end tethered to a rigid substrate and the other end free to interact with the fila-

ments [12] (Fig. 1.2, left frame). The assay constitutes an active substrate that can

spontaneously drive the motion of cytoskeletal filaments through motor attachment-
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detachment kinetics. Motor kinetics can induce effective self propulsion, enhanced dif-

fusivity, anomalous force-velocity relations and hysteretic effects on the filament [13].

Motility assay is perhaps the simplest realization of an active system that allows for

detailed semi-microscopic modeling and quantitative measurements.

Motor-filament assemblies exhibit a number of rich collective behaviors from self

organization into structures with the symmetries of topological defects [14], to or-

dering into liquid crystalline phases, to dynamic pattern formation [15]. To assess

collective properties in these active gels, experimentally controllable and quantifiable

set-ups have emerged. In-vitro reconstitution of active gels from purified extracts of

cytoskeleton components are now used extensively in experiments, enabling rheologi-

cal measurements [16–18]. These networks consist of filaments, cross-linking proteins

and molecular motors (Fig. 1.2, right frame), and are capable of generating controlled

contractile forces, sustained oscillations and structural patterns. In addition, experi-

ments have revealed novel rheological properties in these active networks as functions

of crosslinking and motor protein concentrations. For example, in vitro actomyosin

gels can stiffen by orders of magnitude, as one increases cross-link density, actin

concentration or motor activity [16, 19].

Figure 1.2: Left: Schematic of the experimental set-up for an actin motility assay, with actin

filaments (shown in red) propelled by myosin motors underneath (gray) [20]. Right : Schematic

of a cross-linked actomyosin gel showing actin filaments (blue lines), myosin-II motors (red) and

cross-linking proteins (solid blue dots). Myosin motors exert local contractile forces on the actin

network, as indicated by red arrows.
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Oscillations are ubiquitous in biological systems [21]. Examples of spontaneous

oscillations in active gels include - contraction waves in muscle sarcomeres [22], repo-

sitioning of mitotic spindles during asymmetric cell division [23], and in vitro cilia

like beatings of self assembled microtubule-dynein bundles [24]. Oscillations in these

active gels arise from a competition between the network elasticity and the chem-

ical activity of the molecular motors. The origin of contraction and spontaneous

oscillations are now fairly well understood for ordered actomyosin structures such as

muscle sarcomeres [25]. However it is more challenging to describe the mechanisms

of contraction and oscillations in actomyosin systems that lack such highly organized

structures, for example, isotropic active networks. During the past decade, contin-

uum models for active polar gels have been constructed by suitable modifications of

hydrodynamic equations of liquid crystals to incorporate the effect of chemical ac-

tivity and filament polarity [26–28]. Specific microscopic models of motor-filament

interactions have also been coarse-grained to derive continuum equations that respect

the symmetries as required by hydrodynamics [29, 30]. Although these derivations

have yielded expressions for the phenomenological parameters in terms of microscopic

quantities, these expressions are model dependent, thus rendering quantitative com-

parisons with experiments challenging. These models describe actomysoin gels as

Maxwellian viscoelastic fluids with long-time viscous stress σ ∼ ηε̇, where η is a vis-

cosity and ε̇ is the local strain rate. In addition, the gels can possess an internal

degree of freedom arising from polarity in filaments. Permanently cross-linked gels,

on the other hand, are more likely to behave as solids at long time scales with elastic

stress σ ∼ Eε, where E is the elastic modulus and ε is the local strain. These passive

internal stresses are counteracted by motor-induced contractile stresses that can be

estimated as σa ∼ ρξ〈f〉, where ρ is the density of bound motors, ξ is the network

mesh size and 〈f〉 (> 0) is the average force exerted by molecular motors on a fil-

ament. The estimated value for the active stress, as inferred from experiments on

crawling keratocytes [31], is found to be ∼ 1 kPa, comparable to the elastic modulus
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of actin gels [32]. Motor induced stresses depend strongly on the local strains and

strain rates in the gel, and are highly dynamical due to binding-unbinding kinetics

of individual molecular motors. However, the mechanical and physical properties

of active gels have not been theoretically investigated, thus leaving open a lot of key

questions in the physics of the cytoskeleton : What are the dynamic steady states and

hydrodynamic instabilities in active elastic gels? How sensitive are the steady states

to changes in network elastic modulus, filament density or chemical potential during

ATP hydrolysis? Are non-linear chemo-mechanical couplings necessary to describe

contractility and oscillations?

1.3 Cell-matrix Interactions

Forces that originate in the cytoskeleton are transmitted across the cell and eventu-

ally to the extracellular matrix (ECM) through specialized adhesion sites [35]. The

actin cytoskeleton plays the most prominent role during cell-ECM force transduc-

tion [36]. Interactions of the cell with its surrounding ECM are mediated by focal

adhesions, which are assemblies of integrin receptors, that are linked to actomyosin

bundles (stress fibers) in the cell interior (Fig. 1.3, top frame). Integrins bind to

specific ligands on the underlying ECM such as fibronectin, collagen, vitronectin or

laminin, thus forming a mechanical linkage between the cytoskeleton and the ECM.

This interior-exterior connection can modulate actomyosin activity as well as lead to

remodeling of integrin-ECM ligand-receptor bonds [37]. The ability of the cells to

respond to extracellular cues is strongly linked to myosin activity in the cytoskeleton,

whereas the organization of the actin cytoskeleton is in turn controlled by mechanical

and geometrical properties of the surrounding matrix. Micropatterning has emerged

as a useful tool to study the response of the actin cytsoskeleton by spatially control-

ling the distribution of ECM ligands [34, 38]. These studies have shown that when

strongly adhesive patterns force the cell boundary to exhibit regions of high curvature,
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Figure 1.3: Top : Cartoon of an adherent cell, showing nucleus (yellow), actin stress fibers (green),

focal adhesions (blue) and contractile traction forces (red arrows). Bottom : (Left) Fluorescently

labeled actin cytoskeleton in migrating fibroblasts on soft and stiff matrices. The figure illustrates

that substrate stiffness controls cell spread area, shape and cytoskeletal architecture [33]. (Right)

Actin organization (green) and focal adhesion distribution (vinculin, shown in red) are also controlled

by substrate geometry [34]. Underlying substrate here is a concave V-shape, coated with ECM

proteins.

contractile forces tend to be concentrated in these regions, while stress fibers develop

along cell boundaries linking non-adhesive zones (Fig. 1.3, bottom right). This ob-

servation confirms the crucial role of the cytoskeletal contractility and architecture in

controlling cellular stresses and morphology [34, 39, 40]. Matrix stiffness also plays

a profound role in regulating a myriad of cellular processes, from morphogenesis,

motility and spreading, to cell fate and survival [1]. For example, mesenchymal stem

cells differentiate into neurons on soft gels whereas on rigid substrates they become

bone cells [41]. Cells adhering to softer substrates spread less and prefer to have well

rounded morphologies, while they are more likely to exhibit branched patterns on

stiffer substrates with greater spread area (Fig. 1.3, bottom left) [33, 42, 43].
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1.3.1 Cellular force measurements

Cells exert traction forces on the surrounding ECM through focal adhesions causing

elastic deformations in the matrix. The traction forces are lateral to the adhesive

substrate, directed inward toward the cell center. This was first observed by Harris

and coworkers in 1980 as migrating fibroblasts caused wrinkling in the underlying sil-

icon gel [44, 45]. Powerful techniques have been developed in recent years to measure

the traction forces exerted by adherent cells on synthetic elastic substrates coated

with ECM proteins. To measure forces imparted to an elastic system, the stan-

dard technique is to measure the displacements of specified markers and then infer

forces from the material’s constitutive laws. Traction Force Microscopy (TFM) is

used to probe the traction stresses exerted by cells on continuous elastic gels. The

in-plane traction stresses are inferred from measurements of the displacements of

fiducial markers embedded in the gel, before and after cell detachment [46–48] (see

Fig. 1.4, left frame). Recent 3D measurements have also accounted for out-of-plane

traction stresses in migrating cells via rotational deformations in focal adhesions [49].

In a second technique, cells plated on microfabricated pillar arrays induce bending of

the elastic micropillars (Fig. 1.4, right frame). The traction forces are then obtained

by assuming a linear Hooke’s law relation between the measured bending and the

forces [50, 51]. These experimental techniques have revealed a number of important

trends in cell on gel experiments including localization of traction stresses to the cell

edge [46], relationship of cell shape and motility with substrate stiffness [52, 53], role

of substrate thickness [54] etc. For instance, traction forces are found to scale linearly

with focal contact area in cardiac myocites [55], giving a value for the stress of the

order ∼ 1 kPa. In 3T3 fibroblasts, traction forces are found to increase from 1-10

nN upon increasing substrate elastic modulus in the range 1-100 kPa [56]. While the

exact correlation between adhesion and actomyosin activity depends on the cell type,

recent TFM studies have claimed a biphasic (non-monotonic) relationship between

traction forces and actin retrograde flow speed [57].
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Figure 1.4: Left : Experimental set-up for Traction Force Microscopy. Traction stresses are inferred

using linear elasticity from displacements of embedded beads [58]. Image courtesy : Eric Dufresne

lab. Right : Cell adhering to a bed of micropilllars [50]

1.3.2 Mechanical modeling

Motivated by the experimental findings, relating the rigidity of the extracellular envi-

ronment to traction forces exerted by cells, a number of mechanical models have been

proposed over the past decade. These include, studying the relationship of matrix

rigidity with the growth and anisotropy of focal contacts [59–62], or analyzing the

cooperativity between adhesion dynamics and stress fiber contractility [63, 64]. In ad-

dition, a growing class of models, inspired by Eshelby theory [65], have modeled cells

as inclusions in an elastic matrix [66, 67], and have successfully captured rigidity in-

duced self polarization of cells. Other continuum mechanical approaches have studied

the interplay between cell elasticity and biochemical pathways using Finite Element

Modeling [68]. Much simpler approaches, including a two-spring model for focal ad-

hesions have provided key physical insights into cellular rigidity sensing [69]. Despite

these significant theoretical contributions a lot of important physical questions have

remain unanswered. What factors govern the spatial organization of traction forces?

How do cells sense the geometry of their extracellular environment? How deeply do

cells feel the substrate underneath? What is the relationship between mechanical

anisotropy of cellular stresses and geometrical anisotropy of the substrate?

Cellular force generation is necessarily accompanied by changes in cell shape and
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morphology. How do intercellular and extracellular forces cooperate to control the

geometry of cell shapes? Previous theoretical models have analyzed the competition

between bulk and peripheral contractility by suitable modification of soap film mod-

els [70, 71]. In analogy with the Laplace law of capillarity, the steady state cell con-

tour is then described by concave circular arcs connecting neighboring adhesion sites,

as seen in micropillar experiments [72]. The question then arises of whether these

circular arcs are always the stable configuration. As discussed before, recent experi-

ments suggest that on stiff environments, cells attain singular structures such as cusps

and protrusions, whereas they maintain rounded shapes on softer substrates [43, 73].

Hence, the need for a comprehensive theoretical model emerges, integrating the ge-

ometry of cell shapes with mechanical properties of the extracellular matrix.

1.4 Towards the Mechanics of Tissues

While the mechanical behavior of individual cells has been the topic of inquiry for

the past few decades, the focus has recently shifted to understanding the collec-

tive mechanics of groups of cells. Emergent mechanics at multicellular scales are

particularly important in developmental morphogenesis [74], homeostasis [75], and

wound healing [76] in epithelial tissues. Cells exert mechanical force on each other

at sites of intercellular adhesion, typically through cadherins [77, 78], as well as on

the underlying extracellular matrix (ECM) through integrins [55, 79, 80]. Cadherin-

based adhesions can alter physical aspects of cells such as the surface tension of

cellular aggregates [81] and the spreading [82] and migration [83] of cells adherent

to cadherin-patterned substrates. Integrity of intercellular adhesions may also con-

tribute to metastatic potential, the propensity of cancer cells to spread the disease

to their local and non-adjacent neighbours [84]. It has been shown that epithelial

cell clusters with strong cell–cell adhesions exhibit coordinated mechanical behavior

over length scales much larger than a single cell [85–87]. Earlier cell-doublet studies
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reported that during the formation of cadherin based adhesions, actomyosin contrac-

tility is down-regulated (decreased) at the cell-cell contact zones and are up-regulated

(increased) at the exterior cell boundaries (Fig. 1.5, left) [88]. This is consistent with

the claim that there is a direct relationship between cell-ECM traction forces and

cell-cell forces [86]. Several studies have implicated crosstalk between cell-ECM and

cell–cell adhesions [89, 90] that can be modulated by actomyosin contractility [91]. Re-

cent data suggest that integrin-mediated adhesions can modulate the composition [92]

and tension [93, 94] of cell–cell junctions. While cadherins have been shown to modify

local traction forces [95] and monolayer contractility [96], the effects of intercellular

adhesions on the spatial organization of cell-ECM forces remain unexplored.

Cadherin

Integrin

F-actin

ECM

Figure 1.5: Left : Schematic top view of an adherent cell pair anchored onto ECM. The diagram

illustrates the spatial organization of integrins (blue), cadherins (red) and F-actin (in green). Right

: Calcium alters morphology and cohesiveness of cells.

1.5 Outline

In the chapters that follow, we discuss mechano-chemical models of the cell cytoskele-

ton, integrating the role of internal cellular activity with the emergent mechanical

properties of cells. In chapter 2, we investigate the dynamics of cytoskeletal fila-

ments on a motility assay, randomized by stochastic binding/unbinding kinetics of

molecular motors [13]. Motility assay provides a simple mechanical set-up to analyze



1.5 Outline 13

in detail the interaction of cytoskeleton filaments with groups of molecular motors.

We demonstrate that individual cytoskeletal filaments in a motility assay behave like

self-propelled rods, paving the way to formulate simple continuum theoretical mod-

els to analyze collective behavior of motor-filament gels. In chapter 3, we propose

a generic continuum model describing the dynamics of a permanently cross-linked

active gel at hydrodynamic length and time scales, and examine its properties in the

linear regime [97]. The model allows us to capture the emergent mechanical phases

and rheology in actomyosin networks that are not necessarily endowed with well or-

ganized structures. In Chapter 4, we further explore the interplay of elasticity and

activity in a cross-linked active gel beyond the linear description, and propose a min-

imal nonlinear model of the cytoskeleton as a crosslinked active gel [98]. The model

describes in an unified manner, the origin of contractility and spontaneous waves in

isotropic networks. Our findings suggest that with increasing motor activity, the ac-

tive gel passes through periods of softening and stiffening, before settling down to a

macroscopic contracted state at high motor activity.

In chapter 5, we adopt the active gel approach to describe the mechanics of cells

adhering to elastic substrates. We model the cell as an active elastic medium me-

chanically coupled to a passive elastic medium [99, 100]. An elastic description of the

cell is valid on time scales shorter than cytoskeletal turnovers, that are indeed slowed

down by strong adhesion to the substrate. The model naturally leads to localization

of traction forces at the cell edge and buildup of tensile stresses at the cell center -

two features that are ubiquitously observed in TFM experiments. In addition, the

model has yielded key analytical results, capturing the relationship between traction

forces and substrate stiffness, substrate geometry and cell spread area, in quanti-

tative agreement with experimental trends [101, 102]. Furthermore, changes in the

mechanical properties of cells and in the matrix stiffness can reorganize cytoskeletal

architecture such that actin stress fibers may reorient in response to matrix strains.

This can lead to emergence of macroscopic polar order in actin organization. Since
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myosin clusters exert active dipolar stresses when attached to actin stress fibers, the

coupling of activity with adhesion can induce buildup of stress fiber polarization in

cells. We introduce an active polar gel model for an adherent cell, where local me-

chanical strains are slaved to changes in orientational order. Our study demonstrates

how cells can sense orientational cues with an optimal substrate stiffness for maximal

stress fiber polarization [99]. The optimal substrate stiffness is comparable to that of

the cell, as suggested by experiments on stem cells [66].

In chapter 6, we analyze the effect of mechanosensing on optimal cellular shapes.

We describe an adherent cell as a contractile film bounded by an elastic cortex and

connected to the substrate through compliant links, with bending elasticity in the

cortical layer [103]. Our analysis suggests that cells can indeed be driven through

geometric phase transitions by artificially tuning substrate stiffness or actomyosin

contractility. The contractile film model is equivalent to the adherent active gel

model when the substrate is much stiffer than the cell.

Going beyond the single cell description, in chapter 7, we introduce a coarse-

grained model of a cohesive cell monolayer. We discuss in detail the impact of sub-

strate thickness and non-local elastic interactions of the cells with the substrate on

traction stress generation. We provide justifications to the fact that non-local elastic

effects do not influence force generation in single cells but are important in large cell

sheets.

Chapter 8 describes a combined theoretical and experimental approach to analyze

the role of intercellular and extracellular adhesions in tissue-scale force generation,

using primary mouse keratinocytes as the model system [104, 105]. Our studies claim

that adherent cells in a tissue form a mechanically integrated system where cadherins

and integrins are mechanically coupled through the actomyosin cytoskeleton. Cell-

cell cohesion in a colony can be tuned by changing extracellular-calcium concentration

(Fig. 1.5, right). In a high-calcium environment cadherin based adherens junctions

form between cells, leading to strong cell-cell coupling. Whereas in a low calcium
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environment, cells in a colony are weakly coupled and react independently to inte-

grin mediated force transduction. Traction stresses were measured in colonies of 1-27

keratinocyte cells adherent to a fibronectin coated soft silicon gel ∗. Irrespective of

the number of constituent cells, it is found that traction stresses strongly localize to

periphery of the colony when cell-cell interaction is strong. In low-calcium environ-

ment when the cadherin based adhesions do not form, traction stresses distribute in

a disorganized fashion with strong traction stresses underneath the cell-cell junctions

and at the colony periphery. We investigate a mechanical model of the cell colony,

where cells are modeled as contractile elastic sheets adhering to a soft substrate and

to the neighboring cells through elastic links. The model quantitatively and qualita-

tively captures the spatial distribution of traction stresses as measured in experiments

in low and high calcium extracellular environments. Interestingly, we find that that

traction forces exerted by strongly cohesive cell colonies do not correlate with the

number of constituent cells but with the geometrical size of the colony. Furthermore,

for large colonies, total traction force scales linearly with the colony size. This scaling

suggests emergence of a scale-free material property in large sized colonies, namely

an effective surface tension (force per unit length), of the order of 10−3 N/m. The

theoretical model supports the scaling and implies that the effective surface tension

originates from actomyosin contractility. The measured value for the surface tension

in these epithelial colonies is of the same order as reported for adherent endothelial

cells [71] and 3D non-adherent cellular aggregates [106]. It is then tempting to think

of the adherent cell colonies as cohesive aggregates that wet the substrate underneath,

whose effective surface tension originate not only from the interfaces between different

ambient phases but also from actomyosin activity.

∗Experiments were performed by Aaron Mertz at the Soft Matter Lab of Eric Dufresene (Yale

University)
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Chapter 2

Motor-driven Dynamics of

Cytoskeletal Filaments

2.1 Collective action of molecular motors

There has recently been renewed interest in motility assays where semiflexible actin

filaments are driven to slide over a “bed” of myosin molecular motors. Recent exper-

iments at high actin density have revealed that the collective behavior of this simple

active system is very rich, with propagating density waves and large scale swirling

motion [11, 107], not unlike those observed in dense bacterial suspensions [108]. In

an actin motility assay the polymeric tails of myosin motor proteins are anchored to

a surface, while their heads can bind to actin filaments [12]. Once bound, the motor

head exerts forces and drives the filament’s motion. This system provides possibly

the simplest realization of an active system that allows detailed semi-microscopic

modeling.

Stochastic models of the collective action of motor proteins on cytoskeletal fila-

ments in one dimension have been considered before by several authors, with emphasis

on the acto-myosin system in muscles and on the mitotic spindle [109]. When work-

ing against an elastic load, the motor assemblies have been shown to drive periodic
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spontaneous activity in the form of oscillatory instabilities, which in turn have been

observed ubiquitously in a variety of biological systems [25, 110–113]. These insta-

bilities arise in the model from the collective action of the motors and the breaking

of detailed balance in their dynamics and manifest themselves as a negative effective

friction of the filament. When free to slide under the action of an external force, the

filament can exhibit bistability that manifests itself as hysteresis in the force velocity-

curve [10, 114]. A large body of earlier work has modeled the motors as rigid two-state

systems attached to a backbone and bound by the periodic potential exerted by the

filament on the motor head [10, 110, 115]. In a second class of models the motors have

been modeled as flexible springs [116, 117]. The motor heads bind to the filament

and unbind at a load-dependent rate. In this case the dynamic instability arises from

the dependence of the unbinding rate on the tension exerted by springs [118–120].

Recent work by Guérin et al. [121] has generalized the two-state model by taking into

account the flexibility of the motors, showing that both models can be obtained in a

unified manner for different values of a parameter that compares the stiffness of the

motors to the stiffness of the periodic potential provided by the filament.

In this chapter we consider a model of a rigid filament, free to slide in two di-

mensions under the driving action of motor proteins uniformly tethered to a two-

dimensional plane. The model considered is a modification of the “crossbridge” model

first introduced by Huxley in 1957 to describe motor-induced contractile behavior of

muscle fibers [122]. The motor proteins’ polymeric tails are modeled as linear springs

that pull back on the bound motor heads. After attachment, the motor heads slide

along the filament at a velocity that depends on the load exerted by the flexible mo-

tor tails. The sliding and subsequent detachment play the role of the motor’s power

stroke. The binding/unbinding dynamics of the motor heads and the dependence of

the transition rates on the load exerted by the motor tails play a crucial role in con-

trolling the dynamics of the filament, effectively yielding non-Markovian noise sources

on the filament. Related models have been studied numerically [116, 117, 123]. The
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results presented here are obtained by generalizing to two dimensions the mean field

approximation for the motor dynamics described for instance in Ref. [111]. The mean-

field theory neglects convective nonlinearities in the equation for the probability of

bound motors and correlations in the motors on/off dynamics, but it is expected to

be adequate on time scales large compared to that of the motor on/off dynamics and

for a large number of motors. This is supported by the results of [10] for a model of

rigid two-state motors.

We begin by revisiting the one-dimensional problem. We discuss the steady-state

response of the filament to an external force and present new results on the dynamics

of fluctuations about the sliding steady state. The force-velocity curve is evaluated

analytically and exhibits bistability and hysteresis, as obtained in Ref. [10] for a rigid

two-state motor model. A new result is an expression for the effective propulsion force

on the filament due to the motors in terms of physical parameters characterizing

the motor proteins. Next, we analyze the fluctuations about the steady state by

evaluating the mean-square displacement of the filament. We show that the coupling

to the motor binding/unbinding dynamics yields non-Markovian noise sources with

time correlations controlled by the duration of the motors’ binding/unbindig cycle.

Since the filament has a finite motor-induced velocity even in the absence of applied

force, the mean-square displacement is ballistic at long time. The fluctuations of

displacement about this sliding state are, however, diffusive at long times with an

enhanced diffusion constant. This enhancement is controlled by the dependence of

the motors’ unbinding rate on the load exerted on the bound motors’ heads by the

tethered tails and vanishes for unloaded motors.

We then consider the case of a filament in two dimensions, to analyze the effect

of the coupling of translational and rotational degrees of freedom in controlling the

dynamics. At steady state, motors yield an effective propulsion force along the long

axis of the filament, as in one dimension, but no effective torque. This is in contrast

to phenomenological models considered in the literature [124] that have considered
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the dynamics of active rod-like particles in the presence of both effective internal

forces and torques. As a result, in the steady-state the filament slides along its long

axis and the dynamics in this direction is essentially one dimensional, with a motor-

induced negative friction instability and bistability and hysteresis in the response to

an external force. Motors do enhance both the transverse and the rotational friction

coefficients of the filament. The enhancement of rotational friction could be probed

by measuring the response to an external torque. Since the finite motor-induced

propulsion is along the filament axis, whose direction is in turn randomized by rota-

tional diffusion, the mean velocity of the filament is zero in the absence of external

force, unlike in the one-dimensional case. The mean square displacement is therefore

diffusive at long times, with behavior controlled by the interplay of non-Markovian ef-

fects due to the coupling to motor dynamics with coupled translational and rotational

diffusions. The filament performs a persistent random walk that consists of ballistic

excursions at the motor-induced propulsion speed, randomized by both rotational

diffusion and the motor binding/undinding dynamics. The crossover to the long-time

diffusive behavior is controlled by the interplay of motor-renormalized diffusion rate

and duration of the motor binding/unbinding cycle. The effective diffusion constant

is calculated in terms of microscopic motor and filament parameters. Its dependence

on activity, as characterized by the rate of ATP consumption, could be probed in

actin assays.

Finally, this work provides a microscopic justification of a simple model used in the

literature [125] that describes a cytoskeletal filament interacting with motor proteins

tethered to a plane as a “self-propelled” rod, although it also shows that the effective

noise is rendered non-Markovian by the coupling to the motors’ binding/unbing dy-

namics. It also provides microscopic expressions for the self-propulsion force and the

various friction coefficients in terms of motor and filament parameters and shows that

this effective model fails beyond a critical value of motor activity, where the effective

friction changes sign and the filament exhibits bistability and hysteresis.
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2.2 The model

In this model the motor proteins are described as composed of polymeric tails attached

permanently to a two-dimensional fixed substrate and motor heads that can bind

reversibly to the filament. Once bound, a motor head moves along the filament

thereby stretching the tail. This gives rise to a load force on the motor head and on

the filament. Eventually excessive load leads to detachment of the motor head.

2.2.1 Filament dynamics

The actin filament is modeled as a rigid polar rod of length L that can slide in two

dimensions. It is described by the position r of its center of mass and a unit vector

û = (cos(θ), sin(θ)) directed along the rod’s long axis away from the polar direction

of the rod, which is in turn defined as the direction of motion of bound motors. In

other words, bound motors move along the rod in the direction −û. In contrast to

most previous work [110, 111, 115, 121], and given our interest in modeling actin

motility assays, we assume the substrate is fixed and consider the dynamics of the

filament. The goal is to understand the role of the cooperative driving by motors in

controlling the coupled rotational and translational dynamics of the rod.

The dynamics of the filament is described by coupled equations for the transla-

tional and orientational degrees of freedom, given by

Γ · ∂tr = Fa + Fext + χ(t) , (2.1a)

Γθ∂tθ = Ta + Text + χθ(t) . (2.1b)

Here we have grouped the forces and torques into the effects due to the motors, i.e.

the activity, Fa and Ta, external forces and torques Fext an Text and the stochastic

noise not due to motors. The friction tensor is given by Γ = Γ‖ûû + Γ⊥
(
δ − ûû

)
with Γ‖ and Γ⊥ the friction coefficients for motion longitudinal and transverse to the

long direction of the rod, and Γθ is the rotational friction coefficient. For the case of a

long, thin rod of interest here, Γ‖ = Γ⊥/2. The random force χ(t) and random torque
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χθ(t) describe noise in the system, including nonthermal noise sources. For simplicity

we assume that both χ(t) and χθ(t) describe Gaussian white noise, with zero mean

and correlations 〈χi(t)χj(t′)〉 = 2Aijδ(t − t′) and 〈χθ(t)χθ(t′)〉 = 2Aθδ(t − t′), where

Aij = A‖ûiûj + A⊥ (δij − ûiûi).

2.2.2 Individual motor dynamics

We model the interaction cycle of an individual motor protein with the filament

as shown in Fig. 2.1 for a one-dimensional system. The tail of a specific motor is

fixed at position xt in the plane. At a time t0 the head of this motor attaches to a

point on the filament. The position of the motor head at the time of attachment is

xh(t0) = r(t0)+s0û(t0), where r(t0) and û(t0) denote the position of the center of the

filament and its orientation t = t0 and s0 ∈ [−L/2, L/2] parametrizes the distance

of the point of attachment from the center of the filament (cf. Fig. 2.1(b)). We

assume that motor proteins will attach to parts of the filament which are within a

distance of the order of the size of the motor protein. The stretch of the motor tail

at the time of attachment is then of order of the motor size and will be neglected,

i.e. xh(t0) − xt = 0, or motors attach to the part of the filament directly overhead

without any initial stretch.

For t > t0 the motor head remains attached to the filament and walks along it

towards the polar head (−û direction) until detachment. The tails, modeled as a

linear spring of force constant k, exert a load f = −k∆(t, τ ; s0) on the head, where

∆(t, τ ; s0) = xh(t) − xt is the stretch at time t of a motor protein that has been

attached for a time τ , i.e. t = t0 + τ (cf. Fig. 2.1(c)). Since we assume ∆(t0) = 0,

we can also write

∆(t, τ ; s0) = r(t)− r(t− τ) + σ(t, τ)û(t)

+s0 [û(t)− û(t− τ)] , (2.2)

where σ(t, τ) = s(t)− s(t− τ) is the distance traveled along the filament at time t by



2.2 The model 22

+

(a)
v

s0+

(b)

D+

(c)

+

(d)

Figure 2.1: The figure shows the four steps of a motor cycle. In (a) a filament is sliding with

velocity v over a uniform density of unbound motors with tails tethered to the substrate. In (b) a

motor attaches to the filament at a position s0 from the filament’s mid-point. The stretch of the

motor tails at the time of attachment is neglected. In (c) the motor has walked towards the polar

head of the filament, stretching the tails by an amount ∆. Finally, in (d) the bound motor detaches

and relaxes instantaneously to its unstretched state. The filament has undergone a net displacement

in the direction opposite to that of motor motion.
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a motor head that has been attached for a time τ , measured from the initial attach-

ment position, s0. The kinematic constraint imposed by the condition of attachment

requires

∂t∆(t, τ ; s0) = v(t)− v(t− τ) + û(t) [vm(t)− vm(t− τ)]

+Ω(t)σ(t, τ) + s0 [Ω(t)−Ω(t− τ)] , (2.3)

where Ω(t) = ∂tû(t) = θ̇n̂(t) is the angular velocity of the rod and vm(t) = ∂ts(t)

the velocity of the motor head along the filament. We have introduced a unit vector

n̂ = ẑ×û normal to the long axis of the filament. Then (ẑ, û, n̂) defines a right-handed

coordinate system with in-plane axes longitudinal and transverse to the filament. We

note that Eq. (2.3) can also be written as

∂t∆(t, τ ; s0) + ∂τ∆(t, τ ; s0) = v(t) + vm(t)û(t)

+Ω(t)σ(t, τ) + s0Ω(t) . (2.4)

While the motor remains bound, the dynamics of the motor head along the filament

is described by an overdamped equation of motion

Γmṡ(t) = −fs + û · f (2.5)

where fs > 0 is the stall force, defined as the force where the velocity vm = ṡ of the

loaded motor vanishes. Since motors move in the −û direction, generally vm = ṡ < 0.

Letting f‖ = û · f = −k∆‖, Eq. (2.5) can also be written as

vm(t) = −v0

(
1− f‖(∆‖)

fs

)
, (2.6)

where v0 = fs/Γm ∼ ∆µ > 0 is the load-free stepping velocity, with ∆µ the rate

of ATP consumption. The motor velocity is shown in Fig. (2.2) as a function of

the load f‖. The motor head velocity also vanishes for f‖ < −fd, when the motor

detaches. The linear force-velocity relation for an individual motor is consistent with

experiments on single kinesin molecules [126].
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Figure 2.2: The velocity −vm of a loaded motor head as a function of the load f‖ = û ·∆. The

figure shows the stall force fs where vm = 0 and the detachment force −fd.

The active force and torque on the filament due to an individual bound motor can

then be expressed in terms of these quantities as

fa(t, τ ; s0) = −k∆(t, τ ; s0) , (2.7a)

τa(t, τ ; s0) = −ẑ · [(s0 + σ(t, τ))û(t)× k∆(t, τ ; s0)] . (2.7b)

Finally, after traveling along the filament for a time τdetach, the motor head detaches

and the head position relaxes instantaneously back to the fixed position xt of the tail.

We note that we shall not be considering the possibility of direct interactions of

motors with each other. We have also not considered stochastic aspects of the motor

motion along the filament (Eq. (2.5)).

2.2.3 Motor binding and unbinding

Next we need to describe the stochastic binding/unbinding dynamics of the motor

heads. We assume the motor tails are attached to the substrate with a homogeneous

surface density ρm, such that for a rod of length L and width b a maximum of

N = ρmLb motors can be bound at any given time. Following Guérin et al. [121],

we denote by Pb(t, τ ; s0) the probability that a motor head that has attached at s0

at a time t0, has remained attached for a duration τ at time t. For simplicity in the

following we assume that the probability that a motor attaches at any point along
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the filament is uniform, i.e., Pb(t, τ ; s0) = 1
L
Pb(t, τ). We further assume that when

motors unbind they relax instantaneously to the relaxed state. The time evolution of

the binding probability is then given by

∂tPb(t, τ) + ∂τPb(t, τ) =− 〈ωu(∆(τ))〉s0Pb(t, τ)

+ ωbδ(τ)pu(t) , (2.8)

where pu(t) is the probability that a motor be unbound at time t. The probability

distribution is normalized according to∫ ∞
0

dτ

∫ L/2

−L/2
ds0 Pb(t, τ ; s0) + pu(t) = 1 . (2.9)

In Eq. (2.8), ωu(∆(τ)) and ωb are the rates at which a motor head with tails stretched

by an amount ∆(t, τ) unbinds from and binds to the filament, respectively. The

binding rate ωb will be assumed to be constant. In contrast, the unbinding rate ωu

is a strong function of the stretch of the motor tails, that has to be obtained by

solving Eq. (2.4), with initial condition ∆(t = 0, τ) = 0. We will see below that the

nonlinear dependence of the unbinding rate plays an important role in controlling

the filament dynamics. In two dimensions the unbinding rate ωu also depends on the

initial attachment point s0 along the filament. To be consistent with our ansatz that

the probability that the motor attaches at any point along the filament is uniform,

we have replaced the rate in Eq. (2.8) with its mean value 〈ωu〉s0 , where 〈...〉s0 =∫ L/2
−L/2

ds
L
... denotes an average over the initial attachment points.

The unbinding rate is controlled by the work done by the force (load) acting on the

motor head, which in turn is a linear function of the stretch ∆. A form that has been

used extensively in the literature for one-dimensinal models is an exponential, ωu =

ω0e
α|∆|, where ω0 is the unbinding rate of an unloaded motor and α is a characteristic

length scale that control the maximum stretch of the tails above which the motor

unbinds ∗. The exponential form represents an approximation for the result of a

∗α can be estimated to be equal to ka/kBT , where a is a microscopic length scale of the order of

a few nm. Experiments are carried out at room temperatures which leads to kBT ∼ pN nm.
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detailed calculation of the average time that a motor moving along a polar filament

spends attached to the filament as a function of a tangentially applied load [127] and

is consistent with experiments on kinesin [128]. This form can easily be generalized

to to the case of a filament sliding in two dimensions where the motor load had both

components tangential and transverse to the filament. It is, however, shown in the

Appendix that within the mean-field approximation used below the exponential form

yields a steady-state stretch ∆ that saturates to a finite value at large velocity v of

the filament. This is unphysical as it does not incorporate the cutoff described by the

detachment force fd in Fig. 2.2. For this reason in the mean-field treatment described

below we use a parabolic form for the unbinding rate as a function of stretch,

ωu(∆) = ω0

[
1 + α2|∆|2

]
, (2.10)

where for simplicity we have assumed an isotropic dependence on the magnitude of

the stretch in terms of a single length scale, α−1. An explicit comparison of the two

expressions for the unbinding rates is given in the Appendix.

The total active force and torque on the filament averaged over the original posi-

tions and the times of attachment can be written as

Fa(t) = −Nk
∫ ∞

0

dτ 〈Pb(t, τ) ∆(t, τ ; s0)〉s0 , (2.11a)

Ta(t) = −Nk
∫ ∞

0

dτ 〈Pb(t, τ) ẑ · [(s0 + σ(t, τ))û(t)×∆(t, τ ; s0)]〉s0 . (2.11b)

2.3 Mean field approximation

To proceed, we introduce several approximations for the motor dynamics. First, we

restrict ourselves to the dynamics on times scales large compared to the attachment

time τ of individual motors. For t� τ we approximate

σ(t, τ) ' vm(t)τ , (2.12a)

∆(t, τ ; s0) ' [v(t) + vm(t)û(t) + s0Ω(t)] τ . (2.12b)



2.3 Mean field approximation 27

This approximation becomes exact for steady states where the filament and motor

velocities are independent of time. We also stress that in Eqs. (2.12a) and (2.12b)

σ and ∆ are still nonlinear functions of τ due to the dependence of vm on the load

force.

Secondly, we recall that we have assumed that the attachment positions s0 are

uniformly distributed along the filament and can be treated as independent of the

residence times τ . Finally, we make a mean field assumption on the probability

distribution of attachment times, which is chosen of the form P (t, τ) = δ(τ−τMF)pb(t),

with pb(t) the probability that a motor be attached at time t regardless of the its

attachment time. The mean-field value of the attachment time is determined by

requiring

τMF = [〈ωu (∆(τMF))〉s0 ]−1 . (2.13)

In previous literature a similar mean field assumption has been stated in terms of the

stretch, ∆ [25, 111]. In the present problem, however, where filaments can slide in two

dimensions, it is necessary to restate the mean-field theory in terms of the residence

time τ as the active forces and torques depend on both the stretch ∆ of the motor

tails and the distance σ traveled by a bound motor head along the filament. These

two quantities are in turn both controlled by a single stochastic variable, identified

with the residence time τ . The rate of change of the probability pb(t) that a motor

be bound at time t is then described by the equation

∂tpb(t) = −τ−1
MFpb(t) + ωb [1− pb(t)] , (2.14)

The mean field active force and torque due to the motors are then given by

FMF
a = −kN〈∆(t, τMF; s0)pb(t)〉s0 , (2.15)

TMF
a = −kN〈pb(t) ẑ · [(s0 + σ(t, τMF))û(t)×∆(t, τMF; s0)]〉s0 . (2.16)

In the following we will work in the mean-field approximation and remove the label

MF from the various quantities.
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2.4 Active filament sliding in one dimension

We first consider the simplest theoretical realization of a motility assay experiment,

where the actin filament is sliding over a one dimensional track of tethered motor

proteins. A closely related model, where the filament is elastically coupled to a

network, has been used extensively in the literature to study the onset of spontaneous

oscillations arising from the collective action of the bound motors [10, 110, 111].

Previous studies of freely sliding filaments, as appropriate for the modeling of motility

assays, have also been carried out both analytically and numerically [120]. Our work

contains some new results on the response to an external force of a filament free to

slide under the action of active crosslinkers and also on the filament fluctuations.

The Langevin equation for the center of mass coordinate x of the filament is given

by

Γẋ = Fa(t) + Fext + χ(t) , (2.17)

where ẋ is the center-of-mass velocity of the filament and the mean-field active force

is given by

FMF
a (t) = −kNpb(t)∆(ẋ, τ) . (2.18)

In one dimension the dependence on s0 drops out and Eq. (2.12b) simply gives ∆ '
(ẋ + vm)τ . Substituting Eq. (2.6) for vm, we can solve for ∆ as a function of ẋ and

τ ,

∆(ẋ, τ) =
(ẋ− v0)/ω0

τ̃−1 + ε
, (2.19)

and Eq. (2.13) for the mean attachment time becomes

τ̃−1(ẋ) = 1 +
(ẋ− v0)2α2

[τ̃−1(ẋ) + ε]2 ω2
0

, (2.20)

where τ̃ = ω0τ and ε = kv0/fsω0. The parameter ε is the ratio of the length `0 = v0/ω0

traveled by an unloaded motor that remains attached for a time ω−1
0 to the stretch
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Parameters Myosin-II Kinesin

`0 ∼ 2 nm ∼ 8 nm

δs ∼ 1 nm ∼ 25 nm

ε ∼ 2 ∼ 0.32

Table 2.1: Typical values of the length scales `0 = v0/ω0 and δs = fs/k introduced in the text and

the ratio ε for myosin II and kinesin. The parameters are taken from Refs. [2] and [116].

δs = fs/k of the motor tails at the stall force, fs. Typical values for these length

scales and the parameter ε are given in Table 2.1.

It is convenient to rewrite the mean residence time τ̃ as

τ̃−1 = 1 +
(u− 1)2Λ2

[τ̃−1 + ε]2
, (2.21)

where u = ẋ/v0 and we have introduced a dimensionless parameter Λ = `α that

controls the dependence of the unbinding rate on the load exerted on the bound

heads by the stretched motor tails, with

1

`
=

1

`0

+
1

δs
(2.22)

the geometric mean of the two length scales introduced earlier. For stiff motors, with

ε � 1 or `0 � δs, ` ∼ δs, while for floppy, easy to stretch motors, corresponding

to ε � 1 or `0 � δs, ` ∼ `0. Setting Λ = 0 corresponds to neglecting the load

dependence of the unbinding rate. The exact solution to Eq. (2.21) for the mean

residence time τ̃(ẋ) as a function of the filament velocity can be determined and is

discussed in the Appendix. Clearly τ has a maximum value at ẋ = v0, where τ = ω−1
0

and decays rapidly as |ẋ− v0| grows.

2.4.1 Steady state and its stability

We begin by characterizing the steady state dynamics of the filament in the absence

of noise. Incorporating for generality an external force Fext, the steady state velocity
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v of the filament is obtained from the solution of the nonlinear equation

Γv = Fext + Fa(v) (2.23)

where Fa(v) = −kNpbs(v)∆(v). The steady state stretch ∆(v) is given by Eq. (2.19)

with ẋ = v and

pbs(v) =
ωbτ(v)

1 + τ(v)ωb
, (2.24)

with τ(v) given by Eq. (2.21) for ẋ = v. To gain some insight in the behavior of the

system, we expand the active force as Fa(v) ' Fp +
(
∂Fa
∂v

)
v=0

v + O(v2), with Fp =

Fa(v = 0). Retaining only terms linear in v this gives a steady state force/velocity

relation of the form

(Γ + Γa)v = Fext + Fp (2.25)

with a filament “propulsion” force Fp

Fp =
Npbs0k`0

ε+ τ̃−1
0

, (2.26)

where pbs0 = r/[r+(1−r)τ̃−1
0 ], with r = ωb/(ω0+ωb) the duty ratio, and τ̃0 = τ̃(v = 0).

The active contribution Γa = −
(
∂Fa
∂v

)
v=0

to the friction is given by

Γa = Npbs0
k|∆0|
v0

[
1−

( |∆0|
`0

+ pbs0
1− r
r

)
2α2∆2

0`0

`0 + 2α2|∆0|3
]
, (2.27)

where ∆0 = ∆(v = 0) = −`0/(τ̃
−1
0 + ε). In the absence of external force, the filament

will slide at a velocity

vs = Fp/(Γ + Γa) (2.28)

due to the action of the motor proteins. This motion is in the polar direction of the

filament and opposite to the direction of motion of bound motors along the filament.

Phenomenological models of motility assays have described the actin filaments as

“self-propelled” Brownian rods. Our model yields a microscopic calculation of such
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a “self-propulsion” force Fp in terms of microscopic parameters characterizing the

motor proteins. We note that −Fp can also be interpreted as the “stall force” of the

filament, i.e. the value of Fext required to yield v = 0. This is a quantity that may

be experimentally accessible using optical force microscopy.

If we neglect the load dependence of the unbinding rate by letting Λ = 0, the mean

number of bound motors is simply Nr and F 0
p = Nrk`, with ` given by Eq. (2.22).

In this limit the sliding velocity v0
s in the absence of external force can be written as

v0
s =

v0

1 + Γ/Γ0
a

. (2.29)

where the active friction Γ0
a = Nrk`/v0 > 0 is always positive. The sliding velocity

vanishes when v0 → 0 and it saturates to its largest value v0 when the number Nr

of bound motors becomes very large and Γ0
a � Γ. The behavior is controlled by the

parameter ε. If the motors are easy to stretch, i.e., ε � 1, then the propulsion force

is determined entirely by the elastic forces exerted by these weak bound motors, with

F 0
p ' Nrk`0. On the other hand stiff motors, with ε� 1, stall before detaching. The

propulsion force is then controlled by the motor stall force, with F 0
p ' Nrfs.

The load-dependence of the unbinding rate changes qualitatively the behavior of

the system. In particular, the net friction Γ + Γa can become negative, rendering the

steady state unstable. This instability was already noted in Ref. [10] for a two-state

model of active linkers and in Ref. [121] for a two state “soft” motor model. The full

nonlinear force-velocity curves are shown in Fig. 2.3 for various values of the motor

stiffness k, for parameters appropriate for acto-myosin systems. In the steady state, as

we increase the active parameter k while keeping the substrate friction Γ constant, the

Fext−v curve becomes non-monotonic, and two distinct regions of bistability emerge.

To understand the increase of the bistability region with motor stiffness, we note that

the active force is simply proportional to k, hence naively one would indeed expect

its effect to be more pronounced for stiff motors. The detailed behavior is, however,

determined by the interplay of the mean residence time τ that motors spend bound to

the filament and the stretch, ∆. Soft, floppy motors have large stretches, controlled
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Figure 2.3: Force-velocity curves for Γ = 0.002 pNnm−1s and various values of the motor stiffness

k, showing the transition to non-monotonicity as k increases. The values of the stiffness k (in

pN/nm) and the corresponding values for α−1 (in nm) and ε are as follows: k = 0, α−1 = 0, ε = 0

(black dotted line); k = 1 , α−1 = 0.75, ε = 0.5 (red dashed line); k = 2, α−1 = 1.5, ε = 1 (blue

dashed-dotted line); k = 8, α−1 = 6, ε = 4 (black solid line). At high velocities the curves merge

into the linear curve Fext = Γv (black dotted line), corresponding to the case where no motors are

present. The remaining parameters have the following values: N = ρmLb = 100, v0 = 1000 nm/s,

fs = 4 pN, ω0 = 0.5 (ms)−1, r = 0.06.

mainly be the length `0 traveled by an unloaded motors advancing at speed v0. On

the other hand, their residence time is small and the overall effect of the active force

remains small. In contrast, stiff motors have a small stretch, of order of the stretch

δs = fs/k of a stalled motor, but long residence times and are collectively capable

of slowing down the filament and even holding it in place against the action of the

external force, driving the negative friction instability. At even larger values of the

external force motors are effectively always unbound due to the fast sliding of the

filament and the velocity-force curve approaches the linear form obtained when no

motors are present. This behavior is best seen from Fig. 2.5.

The region of non-monotonicity of the force-velocity curve and associated bista-
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Figure 2.4: Phase diagram in k-Γ plane showing the region where the Fext-v curves exhibit non-

monotonic behavior (blue shaded region) for N = ρmLb = 100 and v0 = 1 µm s−1, fs = 4 pN,

α/k = 1.33 pN, ω0 = 0.5 (ms)−1, r = 0.06.

bility can also be displayed as a phase diagram, as shown in Fig. 2.4. The stiffness

of myosins is about 5 pN/nm and the actin filament friction was estimated to be of

order 0.003 pNs/nm in Ref [12]. In actomyosin systems the negative friction instabil-

ity should therefore be observable in a range of experimentally relevant parameters.

Kinesin motors have floppier tails and a smaller stiffness of about 0.5 pN/nm. In

this case bistability effects should be prevalent only at very low filament friction,

Γ � 0.001 pNs/nm. A proper estimate of the region of parameters where the insta-

bility may be observable is rendered difficult by the fact that the onset of negative

friction is also a strong function of the density of motors tethered to the substrate,

which in turn affects the value of the friction Γ. In general, we expect that a high

motor density will be needed for the instability to occur. On the other hand, if the

density of motors is too high, the friction Γ will be enhanced and the instability

suppressed.

We stress that the force-velocity curves displayed in Fig. 2.3 have been obtained

by calculating Fext as a function of v. In an experiment one would tune the applied

force and measure the resulting velocity. The system would not access the unstable

regions of negative friction, but rather follow the hysteretic path sketched in Fig. 2.5.
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Figure 2.5: The figure sketches the hysteretic behavior that may be obtained in an experiment

where an external force Fext is applied to a filament in a motility assay. The response of the filament

will generally display two regions of hysteresis, at positive and negative forces.

The discontinuous jump may occur at the boundary of the stability region, as shown

in the figure, or before such a boundary is reached, corresponding to what is known

as “early switching”.

To summarize, motors have two important effects on the steady state dynamics

of the filament. First, they make the filament self-propelled, in the sense that in

the absence of an external force the filament will slide at a velocity vs given by

Eq. (2.28). The value of vs increases with increasing motor stiffness and of course

vanishes for v0 = 0, corresponding to the vanishing of the rate of ATP consumption

∆µ. The sliding velocity vs is shown in Fig. 2.6 as a function of the parameter

ε inversely proportional to the motor stall force for a few values of the maximum

number of motors that can bind to the filament. A second important effect of motor

activity is the discontinuous and hysteretic response to an external force displayed in

Fig. 2.5. When Fext = 0 the filament slides at the motor-induced velocity vs. If a

small force Fext > 0 is applied, the filament velocity remains an approximately linear

function of the applied force, but with an effective friction greatly enhanced by motor
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Figure 2.6: The motor-induced sliding velocity vs of an actin filament in the absence of external

force is shown as a function of ε = `0/δs for N = 10 (dotted line), N = 25 (dashed line), N = 100

(dashed-dotted line) and N = 500 (solid line). We observe that vs → v0 for stiff motors as N is

increased. Parameter values: Γ = 0.002 pN (nm)−1s, r = 0.06, α/k = 1.33 pN.

binding/unbinding. This enhancement of friction is also termed in the literature as

protein friction [129]. At high velocity, only a few motors are attached to the filament

and the filament velocity approaches the value it would have in the absence of motors

as the applied force is increased beyond a characteristic value. When the external

force is ramped down the filament velocity jumps to the lower branch corresponding

to a lower value of the force, resulting in hysteresis.

2.4.2 Fluctuation dynamics

We now examine the dynamics of noise-induced fluctuations about the steady state

by letting δẋ = ẋ − v, where v is the steady state velocity, given by the solution of

Eq. (2.23) discussed in the previous section. The dynamics of the fluctuation δẋ is

then described by the equation

Γδẋ = −kN∆(v)δpb − kNpbsδ∆ + χ(t) , (2.30)
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where both δ∆ = [∂v∆(v)]δẋ and δpb(t) depend on noise only implicitly through the

velocity ẋ, with

∂tδpb = −
[

1

τ(v)
+ ωb

]
δpb − pbs(v)

∂

∂v

[
1

τ(v)

]
δẋ (2.31)

The random force χ(t) in Eq. (2.30) describes noise on the filament, with 〈χ(t)〉 = 0

and 〈χ(t)χ(t′)〉 = 2Aδ(t− t′). Noise can arise in the system from a variety of sources,

including the fluid through which the filament moves and the motor on/off dynamics.

For simplicity we assume the spectrum is white, albeit with a non-thermal strength

B. By solving Eq. (2.31) with initial condition δpb(t = 0) = 0 and substituting in

Eq. (2.30), we obtain a single equation for δẋ,

[Γ + Γa(v)] δẋ(t) + ω0Γ′a(v)

∫ t

0

dt′ e−Ω(t−t′)δẋ(t′) = χ(t) (2.32)

where we have introduced an effective frequency Ω(v) = τ−1(v) + ωb and active

frictions

Γa(v) = kNpbs(v)∂v∆(v) (2.33)

Γ′a(v) = kNpbs(v)∆(v)
∂

∂v

(
1

τ̃

)
. (2.34)

In all the parameters defined above v has to be replaced by the steady state solution

obtained in the previous section. The time scale Ω−1 represent the duration of the

cycle of a loaded motor. Note that Γa(v = 0) = Γa, with Γa given by Eq. (2.27). It

is evident from Eq. (2.32) that motor dynamics yields a non-Markovian contribution

to the friction.

If we neglect the load dependence of the unbinding rate by letting Λ = 0, hence

τ−1 = ω0, then Γa(v) = Γa0 = Nrk`/v0 and Γ′a(v) = 0. In this limit 〈[δx(t) −
δx(0)]2〉 = 2Da0t and is diffusive at all times, with an effective diffusion constant

Da0 = A
(Γ+Γa0)2

.

When Λ is finite we obtain

〈[δx(t)− δx(0)]2〉 = 2Dat+ 4Da

[
Γ′a(v)ω0

[Γ + Γa(v)]Ωa

]2(
t− 1− e−Ωat

Ωa

)
, (2.35)
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where Da = A/[Γ+Γa(v)]2 and Ωa(v) = Ω(v)+ω0Γ′a(v)/[Γ+Γa(v)]. The characteristic

time scale Ω−1
a controls the crossover from ballistic behavior for t� Ω−1

a to diffusive

behavior for t� Ω−1
a . It is determined by the smaller of two time scales: Ω−1, defined

after Eq. (2.32), that represents the duration of the cycle of a loaded motor, and the

active time (ω0Γ′a/[Γ + Γa])
−1 that represents the correlation time for the effect of

motor on/off dynamics on the filament. At long times the mean-square displacement

is always diffusive, with an effective diffusion constant

Deff = Da

[
1 +

(
Γ′aω0

[Γ + Γa(v)]Ωa

)2
]

(2.36)

This result only describes the behavior of the system in the stable region, where

the effective friction remains positive. At the onset of negative friction instability

Γ + Γa(v)→ 0 and the effective diffusivity diverges. In other words the instability is

also associated with large fluctuations in he rod’s displacements due to the cooperative

motor dynamics.

To leading order in Λ the frequency Ωa that controls the crossover to diffusive

behavior is simply Ω ' ω0 + ωb +O(Λ2). For non-processive motors such as myosins

ω0 � ωb and Ω ∼ ω0. The effective diffusion constant is given by

Deff ' Da

[
1 +

2Γ2Γa0

(Γ + Γa0)3

(
v0α

ω0(1 + ε)

)2

+
[
(v0α/ω)4

]]
. (2.37)

This expression indicates that the enhancement of the diffusion constant comes from

the competition of the ballistic motor-driven motion of the filament at speed ∼
v0Γa0/(Γ + Γa0) and the randomization of such motion by the motor on/off dynamics

on time scales ∼ ω−1
0 . The result is that the filament dynamics is diffusive at long

times, but with an enhanced diffusion constant.

Finally, we stress that the correlation function 〈[δx(t) − δx(0)]2〉 describes the

fluctuations about the steady state value vt. if we write x(t) = vt+ δx(t) the actual

mean square displacement of the center of mass of the rod is given by 〈(x(t)−x(0))2〉 =

v2t2 +〈[δx(t)−δx(0)]2〉 and is ballistic at long times in one dimension due to the mean
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motion of the rod. In addition, due to nonlinearity of the Langevin equation (2.17)

the mean value 〈x〉 in the presence of noise will in general differ from the steady state

solution vt obtained in the absence of noise due to renormalization by fluctuations

〈Fa(ẋ, t)〉 − Fa(v, t). These fluctuations are neglected in mean field theory.

2.5 Active filament dynamics in two dimensions

In two dimensions the coupled translational and rotational dynamics of of the filament

is described by Eqs. (2.1a) and (2.1b). It is convenient to write the instantaneous

velocity of the center of the filament in terms of components longitudinal and trans-

verse to the long axis of the filament, ṙ = V‖û +V⊥n̂. Similarly the stretch is written

as ∆ = ∆‖û + ∆⊥n̂, where (see Eq. (2.12b))

∆‖ = û ·∆ = (V‖ + vm)τ , (2.38a)

∆⊥ = n̂ ·∆ = (V⊥ + s0θ̇)τ . (2.38b)

It is then clear that ∆‖ has the same form as in one dimension

∆‖ =
(V‖ − v0)/ω0

τ̃−1 + ε
, (2.39)

and the mean-field value of the attachment time τ is given by

τ̃−1(V‖, V⊥, θ̇) = 1 +
(V‖ − v0)2α2

(τ̃−1 + ε)2ω2
0

+
V 2
⊥τ̃

2α2

ω2
0

+
L2θ̇2τ̃ 2α2

12ω2
0

, (2.40)

where we have carried out the average over s0. Inserting these expressions in Eqs. (2.15)

and (2.16), the mean field active force and torque exerted by bound motors on the

filament can then be written as

Fa = −kNpb(t)
[

(V‖ − v0)/ω0

τ̃−1 + ε
û + V⊥τ n̂

]
, (2.41a)

Ta = −kNpb(t)τ
[
L2θ̇

12
+ V⊥vmτ

]
. (2.41b)
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2.5.1 Steady state and its stability

The steady state of the motor-driven filament in two dimensions in the absence of

noise is characterized by the center of mass velocity v = v‖û + v⊥n̂ and angular

velocity ϑ̇. In the absence of any external force or torque, ϑ̇ and v⊥ are identically

zero, whereas the longitudinal dynamics described by v‖ is identical to that obtained

in one-dimension: the filament will slide along its long axis at a steady longitudinal

velocity v‖ = Fp/(Γ+Γa), with Fp and Γa given by Eqs. (2.26) and (2.27), respectively.

To gain some insight into the stability of the system under application of external

forces or torques, we expand Fa and Ta to linear order in velocities v and ϑ̇ as,

Fa(v, ϑ̇) ' Fp +
(
∂Fa
∂v‖

)
0
v‖ +

(
∂Fa
∂v⊥

)
0
v⊥ +

(
∂Fa
∂ϑ̇

)
0
ϑ̇, and Ta(v, ϑ̇) '

(
∂Ta
∂v‖

)
0
v‖ +(

∂Ta
∂v⊥

)
0
v⊥ +

(
∂Ta
∂ϑ̇

)
0
ϑ̇, where Fp = Fa,0 = Fpû, is the tangential propulsion force due

to the motors. The subscript ‘0’ indicates that the expressions are evaluated at v = 0

and ϑ̇ = 0. This leads to steady state force/velocity and torque/velocity relations of

the form(
Γ + Γ

a

)
· v = Fext + Fpû , (2.42a)

(Γθ + Γθa) ϑ̇ = Text − gav⊥ , (2.42b)

where we have introduced an active “momentum” ga given by ga = −
(
∂Ta
∂v⊥

)
0
. The

active contributions to the longitudinal, transverse and rotational friction coefficients

are defined as Γ‖a = −û ·
(
∂Fa
∂v‖

)
0
, Γ⊥a = −n̂ ·

(
∂Fa
∂v⊥

)
0
, and Γθa = −

(
∂Ta
∂ϑ̇

)
0
. The longi-

tudinal friction coefficient Γ‖a is identical to the active friction Γa given in Eq. (2.27)

for a rod in one dimension, with ∆ → ∆‖. The transverse and rotational friction

coefficients are enhanced by motor activity. Their active components are given by

Γ⊥a =
kNrτ0

r + (1− r)τ̃−1
0

(2.43a)

Γθa =
kNrτ0L

2/12

r + (1− r)τ̃−1
0

. (2.43b)

Finally we have, ga =
kNrτ0v0(τ0+ε|∆0

‖|)
r+(1−r)τ̃−1

0

. When the load dependence of the unbinding

rate is neglected (Λ = 0), all friction coefficients are enhanced by motor activity.
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When the force/velocity and torque/angular velocity curves are calculated to non-

linear order, we find that the only instability is the negative longitudinal friction

instability obtained in one dimension. No instabilities are obtained in the angular

dynamics. We expect this will change if we include the semiflexibility of the fila-

ment [130, 131].

2.5.2 Fluctuations around the steady state

We now examine the dynamics of noise-induced fluctuations about the steady state

by letting δṙ = ṙ − v and δθ̇ = θ̇ − ϑ̇ where v and ϑ̇ are the steady state velocity

and angular frequency in the absence of external force and torque. As noted in the

previous section when Fext = 0 and Text = 0, v‖ = v 6= 0, with v given by the

solution of Eq. (2.23), and v⊥ = ϑ̇ = 0. Projecting velocity fluctuations longitudinal

and transverse to the filament, δṙ = ûδV‖ + n̂δV⊥, the dynamics of fluctuations is

described by the coupled equations,[
Γ‖ + Γ‖a(v)

]
δV‖ = −kN∆‖(v)δpb(t) + χ‖ , (2.44a)

[Γ⊥ + Γ⊥a(v)] δV⊥ = χ⊥ , (2.44b)

[Γθ + Γθa(v)] δθ̇ = −kNpbs(v)τ(v)vm(v)δV⊥ + χθ , (2.44c)

with

[Γθ + Γθa(v)] δṗb = −Ω(v)δpb − pbs(v)
∂

∂v

[
1

τ(v)

]
δV‖ , (2.45)

where the effective frequency Ω(v) = τ−1(v) + ωb and the longitudinal active friction

Γ‖a(v) are as in one dimension, Γ⊥a(v) = kNpbs(v)τ(v) and Γθa(v) = kNpbs(v)τ(v)L2/12.

In all the parameters, v ≡ v‖ has to be replaced by the steady state solution obtained

in one dimension in the absence of external force or torque.

The time-correlation function of orientational fluctuations, ∆θ(t) = δθ(t)− δθ(0),

can be calculated from Eqs. (2.44b) and (2.44c), with the result

〈∆θ(t)∆θ(t′)〉 = 2Dθa min(t, t′) . (2.46)
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The effective rotational diffusion constant is enhanced by the transverse diffusivity

and is given by

Dθa(v) =
Aθ

[Γθ + Γθa(v)]2
+

A⊥/`
2
p(v)

[Γ⊥ + Γ⊥a(v)]2
(2.47)

with `p(v) = [Γθ + Γθa(v)] /kNpbs(v)τ(v)vm(v). Using Eq. (2.46), one immediately

obtains the angular time-correlation function as [132],

〈û(t′) · û(t′′)〉 = e−Dθa|t
′−t′′| . (2.48)

The fluctuations in the probability of bound motors are driven by their coupling to

the stochastic longitudinal dynamics of the filament. Assuming δpb(0) = 0, we obtain

〈δpb(t)δpb(t′)〉 =

(
Γ′aω0

vp

)2 A‖
Ωa

[
e−Ωa|t−t′| − e−Ωa(t+t′)

]
, (2.49)

where Ωa(v) = Ω(v) + ω0
Γ′a(v

Γ‖+Γ‖a(v)
, Γ′a(v) = kNpbs(v)∆‖(v) ∂

∂v

(
1
τ̃

)
, and vp(v) =

Nk∆‖(v)

[Γ‖+Γ‖a(v)]
is a longitudinal propulsion velocity. Notice that vp(v = 0) = vs/pbs0,

with vs given in Eq. (2.28). Finally, we can compute the correlation function of the

fluctuation δṙ of the filament’s position. In the laboratory frame the dynamics of δṙ

can be recast in the form of a simple equation,

δṙ = −vpδpb(t)û +
[
Γ + Γa(v)

]−1 · χ (2.50)

Fluctuations in the probability of bound motors do not couple to orientational fluctu-

ations to linear order. It is then straightforward to calculate the correlation function

of displacement fluctuations, with the result

〈[δr(t)− δr(0)]2〉 = 2Deff t+ (2.51)

D‖aΓ
′2
a ω

2
0/Ω

2
a

(D2
θa − Ω2

a)(Γ‖ + Γ‖a)2

[
−(Dθa + Ωa)

(
1− e−2Ωat

)
+

4Ω2
a

Dθa + Ωa

(
1− e−(Ωa+Dθa)t

)]
where effective longitudinal and transverse diffusion constants have been defined as

D‖a = A‖/[Γ‖ + Γ‖a(v)]2 , (2.52a)

D⊥a = A⊥/[Γ⊥ + Γ⊥a(v)]2 . (2.52b)
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Finally, using r(t) = δr(t) +
∫ t

0
dt′vû(t′), the mean square displacement (MSD) can

be written as,

〈[r(t)− r(0)]2〉 = 〈[δr(t)− δr(0)]2〉+
v2

Dθa

[
t− 1− e−Dθat

Dθa

]
. (2.53)

The MSD is controlled by the interplay of two time scales, the rotational diffusion

time, D−1
θa , that is decreased by activity as compared to its bare value, D−1

θ , and

the time scale Ω−1
a , which is turn controlled by the duration of the motor bind-

ing/unbinding cycle. If D−1
θa � Ω−1

a , which is indeed the case for actomyosin systems

† then on times t� Ω−1
a the MSD is given by

〈[r(t)− r(0)]2〉 = 2Defft+
v2

Dθa

[
t− 1− e−Dθat

Dθa

]
, (2.54)

with

Deff = D‖a +D⊥a +
D‖aΩa

Dθa + Ωa

(
Γ′aω0

[Γ‖ + Γ‖a(v)]Ωa

)2

. (2.55)

In other words the rod performs a persistent random walk consisting of ballistic

segments at speed v randomized by rotational diffusion. The behavior is diffusive

both at short and long times, albeit with different diffusion constants, Deff and Deff +

v2/(2Dθa), respectively. This is indeed the dynamics of a self-propelled rod. If the

noise strengths B‖, B⊥ and Bθ are negligible, then Eq. (2.54) reduces to

〈[r(t)− r(0)]2〉 ' v2

Dθa

[
t− 1− e−Dθat

Dθa

]
. (2.56)

and the MSD exhibits a crossover from ballistic behavior for t� D−1
θa to diffusive at

long times.

It is worthwhile to note that if one neglects load dependence of unbinding rate by

taking Λ = 0, effective diffusivity at long time is enhanced with, D0
eff = D0

‖a +D0
⊥a +

(v0)2/2D0
θa, due to the interplay between ballistic motion driven by the tethered mo-

tors and rotational diffusion, unlike the situation in one dimension.

†A naive estimate for actin-myosin systems (neglecting the load dependence of the unbinding

rate) gives Ω0
a ' 5 ms−1 and D0

θa ' 0.17 s−1 for N = 1.
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2.6 Summary and Outlook

We have investigated in this chapter the dynamics of a single cytoskeletal filament

modeled as a rigid rod interacting with tethered motor proteins in a motility assay

in two dimensions. Motor activity yields both an effective propulsion of the filament

along its long axis and a renormalization of all friction coefficients. The longitudinal

friction can change sign leading to an instability in the filament’s response to external

force, as demonstrated by previous authors [10]. The effective propulsion force and

filament velocity in the steady state are calculated in terms of microscopic motor and

filament parameters.

We also considered the fluctuations of the filament displacement about its steady

state value and demonstrated that the coupling to the binding/unbinding dynamics

of the the motors yields non-Markovian fluctuations and enhanced diffusion. Future

work in this direction should investigate the interplay between stochasticity in motor

displacements and semiflexibility of filaments, which is expected to lead to buckling

instabilities [133] and anomalous fluctuations [134].

Appendix 2.A Solution of mean-field equation

Here we discuss the solution of the mean-field equation (2.13) for the attachment time

τ , For simplicity, we consider the one-dimensional case in detail. The discussion is

then easily generalized to two dimensions. The mean-field equation for the residence

time τ is rewritten here for clarity:

τMF = ω−1
u (∆(τMF )) . (2.57)

The solution clearly depends on the form chosen to describe the dependence of the

motor unbinding rate on the stretch ∆, in turn given by ∆(τMF ) = (ẋ− v0)/(τ−1
MF +

εω0). The mean-field equation must be inverted to determine τMF as a function of

the filament velocity ẋ = v. For compactness we drop the label ‘MF’. It is clear that
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Figure 2.7: Mean field attachment time τMF as a function of v for parameter values appropriate

for acto-myosin systems: v0 = 1000 nm s−1, k = 10 pN nm−1, fs = 4 pN, α−1 = 7.5 nm, ω0 =

0.5 (ms)
−1

, r = 0.06, corresponding to ε = 5. The dashed line is the numerical solution of Eq. (2.57)

obtained using the exponential dependence of the unbinding rate on the stretch. The solid line is

obtained using the parabolic ansatz given in Eq. (2.59).

τ has a maximum at v = v0, where τ = ω−1
0 . This simply corresponds to the fact

that the time a motor protein spends attached to the actin filament is largest when

the motors’ tails are unstretched (∆ = 0) and the motors advance at the unloaded

motor velocity, v0.

It is convenient to use the dimensionless variable and parameters introduced in

the text and write the stretch ∆ as

∆ =
(u− 1)`0

ω̃u + 1
, (2.58)

where u = v/v0, ω̃u = ωu/ω0 and `0 = v0/ω0. A form commonly used in the literature

is the exponential form ωu(∆) = ω0e
α|∆|, with α−1 a characteristic length scale.

The dimensionless combination α∆ can then be written in terms of the parameter

Λ = α` = α`0/(1+ε) and setting Λ = 0 corresponds to neglecting the load dependence

of the unbinding rate. The numerical solution of Eq. (2.57) for the mean attachment

time as a function of v is shown as a dashed line in Fig. 2.7 for parameter values

appropriate for acto-myosin systems. As expected it has a sharp maximum at v = v0.

At large v the attachment time decays logarithmically with velocity. As a result, the
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Figure 2.8: Stretch ∆ as a function of velocity v obtained using the mean-field value of the

attachment time displayed in Fig. 2.7. The parameter values are the same as in Fig. 2.7. The

dashed line is obtained using the exponential dependence of the unbinding rate on the stretch. The

solid line is obtained using the parabolic ansatz given in Eq. (2.59).

stretch is found to saturate at large velocity, as shown by the dashed curve in Fig. 2.8.

This behavior is unphysical as it does not incorporate the fact that when the stretch

exceeds a characteristic value of the order fd/k, the motor head simply detaches, as

shown in Fig. 2.2. Instead of incorporating this cutoff by hand, we have chosen to

use a simple quadratic form for the dependence of the unbinding rate on the stretch,

given by

ωu(∆) = ω0

[
1 + α2∆2

]
. (2.59)

With this form the mean field equation (2.57) can be solved analytically, although the

explicit solution is not terribly informative and will not be given here. The resulting

attachment time is shown as a solid line in Fig. 2.7. The quadratic form reproduces

the sharp maximum of τ at v = v0 and yields τ ∼ v−3/2 at large v. The stretch then

decays with velocity, as shown in Fig. 2.8.



46

Chapter 3

Linear Hydrodynamics and

Rheology of Cross-linked

Motor-Filament Gels

3.1 Active gel approach

In the previous chapter we studied in detail the dynamics of a single cytoskeletal

filament interacting with groups of molecular motors. In this chapter we consider

the limit when the filaments form a network, cross-linked by specific binding pro-

teins and are driven by molecular motors. As discussed in the introductory chapter,

the cytoskeleton is a highly heterogenous polymer gel, mainly composed of filamen-

tous actin crosslinked by a myriad of globular proteins [135]. These include proteins

that preserve the isotropic nature of the network (e.g., filamin), proteins that in-

duce bundle formation (e.g., fascin or vilin), and molecular motor proteins, such as

kynesins and myosins, that are capable of transforming chemical energy into mechan-

ical work [2]. Motor proteins hydrolyze adenosine-tri-phosphate (ATP) and convert

it to adenosine-di-phosphate (ADP) and inorganic phosphate(P). The free energy re-

leased from this chemical reaction is used to generate conformational changes of the
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motor proteins that yield mechanical forces along cytoskeletal filaments. The dy-

namics of the resulting polymer network is controlled by active process on a range of

time scales, including the polymerization/depolymerization of the polar filaments, the

force-generation form crosslinking motor proteins, and the load-dependent dynamics

of these active crosslinkers.

Theoretical work has modeled the cytoskeleton via generic continuum hydrody-

namics as an active liquid, where the effect of activity is incorporated via suitable

modification of the hydrodynamic equations of equilibrium liquid crystals [27, 28, 136].

The continuum theory has led to several predictions, including the onset of sponta-

neous deformation and flow in active films [137, 138], the formation of spiral and aster

patterns reminiscent of those observed in in-vitro extracts of cytoskeletal filaments

and motor proteins[14, 27, 136, 139–143], and activity-induced thinning and thicken-

ing in sheared active suspensions [144–147]. Viscoelasticity has also been incorporated

in the continuum theory using the Maxwell model that modifies the response of the

liquid by introducing a characteristic time scale controlling the crossover from fluid

behavior at long times to elastic behavior at short times [9]. Given, however, that

the active liquid viscoelastic model cannot support elastic stresses at long times, its

direct relevance for the understanding of the crawling dynamics of the lamellipodium

and of active contractions in living cells remains to be established. In addition, the

active liquid model is inadequate to describe cross-linked contractile systems, such as

stress fibers (cross-linked bundles of actin filaments and myosin minifilaments that

play a crucial role in controlling the ability of non-muscle animal cells to generate

and resist forces) [148] or muscle sarcomeres that often exhibit spontaneous oscilla-

tions [22]. Such oscillations require long-wavelength elastic restoring forces [25, 110]

not accounted for in an active (even viscoelastic) liquid. This suggests that the long-

wavelength properties of stress fibers or sarcomeres may be better described as those

of an active elastic medium or active solid. Polarity is generally expected to also play

an important role in these systems indicating that a suitable continuum model maybe
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that of an active polar elastomer gel.

Passive polymer gels are often classified on the basis of the nature of the crosslink-

ing forces [149]. Chemical gels have strong cross-links bound by covalent bonds.

These crosslinks have an essentially infinite lifetime on all experimentally relevant

time scales and the gel behaves elastically at long times, with a finite shear mod-

ulus. At short times, however, dissipation induced by internal frictional processes

can result in “liquid-like” response, with the loss (viscous) component of the elastic

moduli exceeding the storage (elastic) component. In physical gels, in contrast, the

crosslinks are held together by weaker interactions (e.g., dipolar or ionic) and have

finite lifetimes, ranging from minutes to a fraction of a second. This yields a broad

spectrum of behavior, from strong physical gels, that are similar to chemical gels, to

weak physical gels, with reversible links formed by temporary associations between

chains. The latter are liquids at long time and exhibit elasticity on short time scales.

Similarly, active polymer gels also may or may not exhibit low frequency elas-

ticity, depending on the nature of the crosslinkers. Cross-linked reconstituted actin

networks exhibit some of the properties of strong physical gels and display large active

stiffening driven by molecular motors [19]. It has been showed that elastic networks

with contractile forces induced by myosin II motors, described as static force dipoles,

can account for both the large scale contractility and stiffening observed in experi-

ments [150–152]. In a recent paper Günther and Kruse [25] also demonstrated that a

continuum theory obtained by coarse graining a specific microscopic model of coupled

sarcomeres does yield oscillatory states, as observed ubiquitously in these systems,

provided the load-dependent on/off dynamics of motor proteins is included in the

hydrodynamic model. Motor proteins are also directly involved in controlling me-

chanical oscillations and instabilities in cilia and flagella [113, 118] and in the mitotic

spindle during cell division [111]. In all these cases the elastic nature of the network

at low frequency is crucial to provide the restoring forces need to support oscillatory

behavior, i.e., these systems are best modeled as active solids, rather than active
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liquids.

In this chapter we formulate a generic continuum theory of isotropic cross-linked

active gels that incorporates the on/off dynamics of crosslinking motor proteins. We

model the gel as a two-component system composed of an elastic network coupled

frictionally to a permeating fluid. The active forces arising from motor proteins are

incorporated phenomenologically through an active contribution to the stress tensor

of the elastic network and are controlled by the load-dependent on/off dynamics of the

motors. We then proceed to examine the hydrodynamic modes of the active gel and

show that a large activity can change the sign of the effective compressional modulus,

yielding a contractile instability. Spontaneous oscillations are obtained in the regime

of weak activity where the compressional modulus is softened by bound motors, but

remains positive. Next, we consider the case of an overdamped gel relevant to muscle

fibers and show that it can exhibit propagating waves and oscillatory instabilities

as parameters are varied. We describe the macroscopic homogeneous response of the

active medium as probed in creep experiments and by macroscopic rheology measure-

ments. The two-component gel model exhibits viscous response on short time scales

and elastic response at long times [153] even in the absence of activity, when the time

scale controlling the crossover between these two responses is set by the ratio of the

viscosity and the compressional modulus of the network. Activity renormalizes the

time scale controlling this crossover.

3.2 Hydrodynamic model

We adopt a phenomenological symmetry-based approach to formulate a continuum

hydrodynamic description of a cross-linked gel (e.g., a network of actin filaments

crosslinked by filamins or other ”passive” linkers) under the influence of active forces

exerted by clusters of crosslinking motor proteins (e.g., myosin II minifilaments).

Hydrodynamics is a systematic method to study the behavior of extended systems
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on long times and length scales by focusing on the dynamics of conserved and broken

symmetry fields. We consider a three-dimensional isotropic polymer gel of mesh size

ξ, viscously coupled to an incompressible permeating Newtonian fluid [153]. This two

component model has been used previously to determine viscoelastic response of a

filamentous isotropic network in solution [150, 151, 153, 154], and more recently to

discuss mechanical response of a coupled network-solvent system when probed by an

active agent [155]. At length scales larger than ξ the deformations of the polymer

network can be described by isotropic elasticity in terms of a continuum displacement

field, u(r, t) and an elastic free energy given by

Fe =
1

2

∫
r

(
λu2

ii + 2µuijuij
)
, (3.1)

with λ and µ the usual bulk and shear Lamé coefficients and uij = 1
2
(∂iuj + ∂jui) the

strain tensor. The permeating viscous fluid is characterized by a velocity field v(r, t)

and the coupling between the network and the fluid is controlled by a friction per

unit volume, Γ. The equation of motion for the displacement field can be written as

ρü = −Γ(u̇− v) + ∇ · σ , (3.2)

where ρ is the mass density of the network and σ is the stress tensor of the gel. The

permeating fluid is described by the Navier-Stokes equation,

ρf v̇ − η∇2v +∇P = Γ (u̇− v) (3.3)

where ρf is the mass density of the fluid, η the fluid shear viscosity, and P is the

pressure. We have assumed a low Reynolds number regime for the fluid and omit-

ted the convective term from the Navier-Stokes equation. It is also assumed that

motor proteins do not exert any direct forces on the permeating fluid. As discussed

elsewhere [153], the friction Γ between the elastic network and the permeating fluid

can be estimated by considering a polymer strand of length ξ moving relative to the

background fluid at a velocity v = u̇. By equating the viscous force density ∼ ηv/ξ2

on the strand to the viscous friction ∼ Γv due to the permeating fluid, one obtains



3.2 Hydrodynamic model 51

an estimate of the friction as Γ ∼ η/ξ2. The frictional drag per unit volume Γ is

then determined by the force density required to drive a fluid of viscosity η through

network pores of characteristic cross section ξ2.

The stress tensor of the gel can be written as the sum of elastic, dissipative and

active parts,

σ = σe + σd + σa . (3.4)

The elastic contribution is given by σeij = δF
δuij

, with

σeij =

(
λ+

2µ

3

)
δij∇ · u + 2µ

(
uij −

1

3
δij∇ · u

)
. (3.5)

The dissipative component σd is given by

σdij = ηbδij∇ · u̇ + 2ηs

(
u̇ij −

1

3
δij∇ · u̇

)
, (3.6)

where ηb and ηs are bulk and shear viscosities arising from internal friction in the

gel. Changes in the density ρ of the network are slaved to changes in volume, thus

δρ = −ρ0∇ ·u, with ρ0 the mean mass density of the elastic network. In addition, we

neglect here for simplicity energy fluctuations and assume that the fluid surrounding

the network serves as a heat bath and maintains the temperature constant. This ap-

proximation is not adequate to describe real muscle fibers that heat upon contraction.

The active contribution, σa, to the stress tensor arises from the forces exerted by

motor proteins bound to the filaments. We assume a total concentration c = cb + cu

of motor proteins in the gel, with cb and cu the concentrations of bound and unbound

motors, respectively. In an isotropic network the active contribution to the stress

tensor can generically be written as [27],

σaij = δij ζ(ρ, cb) ∆µ , (3.7)

where ∆µ is the change in chemical potential due to the hydrolysis of ATP and ζ(ρ, cb)

is a scalar function with dimensions of number density describing the stress per unit

change in chemical potential due to the action of active crosslinkers.
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To complete the hydrodynamic description we need equations describing the dy-

namics of bound and unbound motors. We assume unbound motors diffuse in the

permeating fluid, while bound motors are convected with the polymer network. Their

dynamics is controlled by prescribed binding and unbinding rates, kb and ku according

to first-order reaction kinetics. The resulting equations are

∂tcb + ∇ · (cbu̇) = −kucb + kbcu , (3.8)

∂tcu = D∇2cu + kucb − kbcu , (3.9)

where D is the diffusion coefficient for free motors. The rates kb and ku depend of

course on the specific type of motor protein considered. Each motor protein under-

goes a conformational transformation during a cycle fueled by a chemical reaction,

generally the hydrolysis of ATP [2]. The total cycle duration is determined by the

sum of the time τon that the protein spends attached to the filament, doing its working

stroke, and the time τoff that it spends detached from the filament, making its recov-

ery stroke. The binding and unbinding rates are then estimated as ku ∼ 1/τon and

kb ∼ 1/τoff. For individual myosins II, τon ∼ 2 ms and τoff ∼ 40 ms [2], correspond-

ing to kb � ku. During the working stroke and in the absence of external load, the

protein moves along the filament at a speed v0 ∼ ∆µ. The time τon ∼ 1/v0 ∼ 1/∆µ

depends on motor activity, while τoff is essentially independent of ∆µ. For myosin-II

this gives ku ∼ ∆µ� kb.

Finally, we assume that the four-component active gel described by the set of

coupled equations (3.2), (3.3), (3.8) and (3.9) is incompressible. This requires

∇ · [(1− φp) v + φpu̇] = 0 , (3.10)

where φp denotes the combined volume fraction of the polymer network with bound

motors. We assume that the volume fraction of the network is very small, i.e. φp <<
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1. In this case Eq. (3.10) reduces to the condition of incompressibility of the ambient

fluid, ∇ · v ' 0.

In the homogeneous steady state the network and fluid densities have constant

values ρ0 and ρf , respectively. The relative concentrations of bound and free motors

are controlled by the binding/undinding rates and are given by

cb0 =
kb

kb + ku
cm0 , (3.11a)

cu0 =
ku

kb + ku
cm0 , (3.11b)

with cm0 the total steady state concentration of motor proteins. In the following

we are mainly interested in non-processive motors like myosins II that are mostly

unbound on average, with cb0 << cu0. In this case we neglect the dynamics of free

motors that essentially provide a ”motor reservoir” and assume that cu ∼ cu0 in (3.8).

In addition, we expand ζ(ρ, cb) to linear order in fluctuations of the network density

and motor concentration from their equilibrium values, δρ = ρ−ρ0 and δcb = cb−cb0,

as

ζ(ρ, cb) = ζ0 + ζ1
δρ

ρ0

+ ζ2
δcb
cb0

. (3.12)

The microscopic parameter ζ0 is related to a stall force, but will not play a role in

the following. The parameter ζ1 arises from spatial variations in the motor density.

Both ζ1 and ζ2 are expected to be positive for contractile systems.

3.3 Hydrodynamic modes and linear stability anal-

ysis

In this section we consider the linear stability of the homogeneous stationary state,

with u = v = 0, ρ = ρ0 and cb = cb0 by examining the hydrodynamic modes of

the incompressible gel. The fluid density ρf is fixed due to the condition of incom-

pressibility. Using (3.12) for the active parameter ζ, the linearized hydrodynamic
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equations are given by

ρ0ü− µ∇2u− (λ+ µ− ζ1∆µ)∇(∇ · u) = Γ (v − u̇)

+ηs∇2u̇ +
(
ηb +

ηs
3

)
∇(∇ · u̇) + ζ2∆µ∇φ , (3.13a)

ρf v̇ − η∇2v + ∇P = Γ (u̇− v) , (3.13b)

φ̇+ ∇ · u̇ = −kuφ , (3.13c)

with φ = δcb/cb0 and the condition ∇ · v = 0.

We now discuss the hydrodynamic modes of the three-component system described

by Eqs. (3.13a-3.13c) obtained by neglecting fluctuations in free motors. We expand

the fluctuations δyα = (u,v, φ) in Fourier components according to

δyα(r, t) =

∫
q

e−iq·r δỹα(q, t) (3.14)

and look for solutions with time dependence of the form δỹα(q, t) ∼ e−iωtδỹα(q).

We also write ũ into its components transverse and longitudinal to q by letting

ũ = q̂uL + ũT , with q̂ = q/q and q̂ · ũT = 0. Due to incompressibility of the

background fluid, ṽ does not have any longitudinal component, and incompressibility

allows us to eliminate the pressure P from (7.9). In Fourier space, dropping for

simplicity of notation the tilde on the Fourier components of the fluctuations, the

equations for the longitudinal fluctuations are given by

[
−ρ0ω

2 + (B − ζ1∆µ)q2 − ıω(Γ + ηLq
2)
]
uL = −ıqζ2∆µφ , (3.15a)

(−ıω + ku)φ = ωquL , (3.15b)

where we have defined the longitudinal modulus of the gel as B = λ + 2µ and a

longitudinal viscosity of the network as ηL = ηb + (4/3)ηs. The longitudinal part of

the displacement couples to motor density, but not to the velocity of the permeating

fluid in the incompressible limit considered here. Fluctuations in the longitudinal

displacement are slaved to fluctuations in the network density, with δρ = ρ0iquL.

The longitudinal equations (3.15a) and (3.15b) can then also be rewritten as coupled
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equations for fluctuations in the network and bound motor densities,[
−ρ0ω

2 + (B − ζ1∆µ)q2 − ıω(Γ + ηLq
2)
] δρ
ρ0

= ζ2∆µq2φ , (3.16a)

(−ıω + ku)φ = −ıω δρ
ρ0

, (3.16b)

Finally, the equations for the transverse components are given by[
−ρ0ω

2 − ıω(Γ + ηsq
2) + µq2

]
uT = Γv , (3.17)

(
−ıωρf + Γ + ηq2

)
v = −ıωΓuT . (3.18)

and are decoupled from the equations for the longitudinal modes. We therefore pro-

ceed to analyze the two groups separately.

3.3.1 Longitudinal modes

In the incompressible limit considered here, the only role of the permeating fluid is

to provide the frictional damping Γ. The longitudinal deformations of the polymer

network do, however, couple to fluctuations in the bound motor density. It is instruc-

tive to first review the behavior of a passive gel, as obtained by letting ∆µ = 0 in

Eq.(3.15a).

Passive gel.

In the absence of motor proteins, longitudinal fluctuations in an incompressible gel

are controlled by a single equation, given by{
−ρ0ω

2 +Bq2 − ıω
[
Γ + ηLq

2
]}
uL = 0 . (3.19)

We stress that this equation also describes the behavior of fluctuations in the network

density, as δρ = ıqρouL. The hydrodynamic modes are the roots of the quadratic

polynomial in curly brackets in Eq. (3.19) and are given by

ω = − ı

2ρ0

[
Γ + ηLq

2 ±
√

(Γ + ηLq2)2 − 4ρ0Bq2
]
. (3.20)
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The behavior is controlled by the interplay of two length scales, ξd =
√
ηL/Γ, the

length scale over which intrinsic viscous dissipation within the network is comparable

to dissipation due to friction with the permeating fluid, and `Γ = 2
√
ρ0B/Γ controlling

the ratio of elastic restoring forces in the network to viscous drag from the permeating

fluid. At small wavevector (q � `−1
Γ ) the dispersion relations are always imaginary,

corresponding to diffusive modes, and take the form

ω0
L,Γ = −ı

[
Γ

ρ0

+

(
ηL
ρ0

− B

Γ

)
q2

]
+O(q4) , (3.21)

ω0
L = −ıB

Γ
q2 +O(q4) , (3.22)

where the superscript 0 is used to denote the passive gel limit. The mode ω0
L,Γ is

non-hydrodynamic and describes the relative motion of the polymer network and the

permeating fluid. The mode ω0
L describes the diffusive relaxation of network density

fluctuations. In the two-fluid incompressible gel model considered here there are

no propagating longitudinal sound waves [153] and the network density δρ relaxes

diffusively, while the solvent density ρf remains fixed. The limit q � `−1
Γ holds if

`Γ < ξd. On the other hand, when `Γ > ξd, the modes are diffusive as given in

Eqs. (3.21) for q � `−1
Γ , but there is an intermediate regime of `−1

Γ < q < ξ−1
d where

the gel can support propagating sound-like density waves. Propagating density waves

exist if the argument of the square root on the right hand side of Eq. (3.20) is positive,

i.e., 4ρ0Bq
2 > [Γ + ηLq

2]2. It is convenient to scale lengths by ξd, with q̃ = qξd. The

condition for the existence of propagating waves can then be written as

B∗ ≥ (1 + εq̃2)2

4q̃2
, (3.23)

where B∗ = Bρ0
Γ2ξ2d

and ε = ηL/η. The propagating waves are controlled by the interplay

of inertia and elasticity and decay on time scales of the order of the relaxation time

τΓ = ρ0/Γ, which is set by the frictional damping from the solvent. The equality sign

in Eq. (3.23) defines the critical line shown in Fig. 3.1 separating the region of diffusive

density relaxation from the region where the system supports propagating sound-like
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Figure 3.1: The critical line B∗(q̃) given in Eq. (3.23) for ε = 1 separating the region of parameters

where density fluctuations in a passive incompressible gel relax diffusively, from the region where

the system supports propagating density waves. In the chosen dimensionelss units, the same line

also describes the boundary B∗a(q̃) obtained for the case ku →∞ and boundary B′∗a (q̃) obtained for

the case ku = 0.

waves. No propagating waves exist for B < Γ2ξ2
d/ρ0, corresponding to the minimum

of the curve in Fig. 3.1. We stress that the modes are always diffusive at the longest

wavelengths, when q → 0. These finite wavevector sound-like waves persist down to

very small wavevector in the limit of vanishing friction Γ with the surrounding fluid.

This is seen by setting Γ = 0 first, followed by the small wavevector approximation.

The dispersion relations then take the form

ω0
± = ±q

√
B

ρ0

− ıq2 ηL
2ρ0

. (3.24)

These are indeed sound waves propagating at the longitudinal sound speed ∼
√
B/ρ0.

Neglecting bound motor fluctuations (ku →∞).

We now proceed to incorporate the effect of motor proteins. We first consider the

case of stationary bound motors. This can be obtained in two ways, either by letting
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ku → ∞, which corresponds to neglecting bound motor fluctuations, or by letting

ku = 0, which corresponds to neglecting the motor on/off dynamics. In both limits

motor activity can yield a contractile instability of the system, but no spontaneous

oscillations [25].

When ku → ∞, then φ = 0 and the concentration of bound motors is constant,

cb = cb0. We then obtain a single decoupled equation for fluctuations in the longitu-

dinal displacement (or equivalent, in the network density δρ) of the form

{
−ρ0ω

2 + (B − ζ1∆µ)q2 − ıω
[
Γ + ηLq

2
]}
uL . (3.25)

In this limit the only effect of motor activity is a contractile reduction of the com-

pressional modulus, which is given by

Ba = B − ζ1∆µ . (3.26)

The hydrodynamic modes are identical to those described in the previous subsection,

with the replacement B → Ba. If Ba < 0 the imaginary part of the mode ω0
L changes

sign, signaling a contractile instability of the system driven by motor activity. When

Ba > 0, the modes can be real at finite wavevector, corresponding to propagating

waves. The condition for the existence of propagating waves is precisely as given

in Eq. (3.23) for the passive gel, with the replacement B → Ba. A plot of B∗a =

Baρ0/(Γ
2ξ2
d) as a function of q̃ is that identical to that shown in Fig. 3.1 for the

passive case. We stress that the existence of these propagating density waves is not

a consequence of activity. There is in fact a maximum value of activity, given by

ζ1∆µc = B − Γξ2
d/τΓ, and corresponding to the minimum of the curve plotted in

Fig. 3.1 above which there are no propagating modes. In addition, since `Γ ∼
√
Ba

decreases with increasing activity ∆µ, the range of wavevectors where propagating

waves exist for a fixed B∗a decreases with increasing activity and is given by ∆q̃ =

2[B∗a(B
∗
a − 1)]1/4.
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Neglecting bound motor dynamics (ku = 0).

In this case bound motors remain bound at all times and bound motor fluctuations are

slaved to network density fluctuations, with φ = δρ/ρ0. The relaxation of longitudinal

fluctuations is described by

{
−ρ0ω

2 + [B − (ζ1 + ζ2)∆µ] q2 − ıω
[
Γ + ηLq

2
]}
uL = 0 . (3.27)

and the only effect of static bound motors is a further downward renormalization of

the elastic modulus, which is now given by

B′a = B − (ζ1 + ζ2)∆µ . (3.28)

The modes are again formally identical to those obtained for the passive gel, but with

B → B′a. The gel exhibits a contractile instability for B′a < 0 and finite wavevector

progating density waves for B′a > 0. Note that the limit where all motors are bound

can be obtained for instance after full hydrolysis of ATP to ADP. Myosin has a high

affinity to actin, hence in a pure ADP environment it will act as a “permanent” bound

crosslinker [156]. In this case, however, there will also be no reduction of the elastic

modulus due to activity, hence no contractile instability. In fact muscles become rigid

as ATP runs out, which is one of the causes of rigor mortis.

Including bound motors dynamics (finite ku).

We now incorporate the dynamics of the bound motors and consider the hydrody-

namic modes of the the two coupled equations (3.16a) and (3.16b). These yield a

cubic eigenvalue equation, given by

ıρ0ω
3 − ω2(Γ + kuρ0 + ηLq

2)− ıω
{
ku(Γ + ηLq

2)

+ [B − (ζ1 + ζ2) ∆µ] q2
}

+ kuBaq
2 = 0 . (3.29)

The behavior is now controlled by the competition of two time scale, the network

relaxation time τΓ = ρ0/Γ and the time scale τon = k−1
u characterizing the motors
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on/off dynamics. Solving perturbatively for small wave numbers q, the three modes

are given by

ωL = −ıBa

Γ
q2 +O(q4) , (3.30)

ωb = −ıku + ıq2 ζ2∆µ

Γ− kuρ0

+O(q4) , (3.31)

ωL,Γ = −ı Γ

ρ0

+ ıq2

(
Ba

Γ
− ζ2∆µ

Γ− kuρ0

− ηL
ρ0

)
+O(q3) (3.32)

The mode ωL describing the relative mass diffusion of network and solvent in the

gel is unchanged at small wavevector. Again, it changes sign when ∆µ > B/ζ1,

corresponding to a contractile instability of the gel that occurs when the active stresses

exceed the elastic restoring forces from the passive elements of the polymer network.

The other two modes are non-hydrodynamic and always stable at long wavelengths.

The mode with relaxation rate ωb describes the decay of fluctuations in the density

of bound motors. The mode with relaxation rate ωL,Γ describes the damping of the

network due to its motion with respect to the permeating fluid. Even when the on/off

dynamics of the bound motors is taken into account, no spontaneous oscillations are

generated by motor activity in the long wavelength limit. Oscillatory solutions do,

however, occur at finite wavevector, as described below. We note that, although the

modes always remain stable, the coupling to motor activity can yield a change in

sign of the O(q2) damping in ωb and ωL,Γ. This effective ”negative viscosity” due to

motors occurs when the time scale of the motor on/off dynamics is fast compared to

the frictional relaxation of the network, i.e., for τΓ > τon. This ”negative friction”

effect of motors will become important below and was also discussed in Prost et

al [10].

As in the passive case, the dispersion relations of the hydrodynamic modes of our

model viscoelastic gel depend on the order in which the limits Γ → 0 and q → 0



3.3 Hydrodynamic modes and linear stability analysis 61

are taken. Above we considered the small q limit for fixed Γ. If in contrast we take

Γ→ 0 first, followed by q → 0 we obtain propagating modes (for Ba > 0). The mode

ωb describing relaxation of bound motor fluctuations is qualitatively unchanged and

takes the form

ωb = −ıku − ıq2 ζ2∆µ

kuρ0

+O(q4) . (3.33)

The two modes ωL and ωL,Γ describing the dynamics of network density fluctuations

are replaced by two propagating modes (for Ba > 0), with dispersion relation

ωL,± = ±q
√
Ba

ρ0

+ ı
q2

2ρ0

(
ηL −

ζ2∆µ

ku

)
. (3.34)

In contrast to the case of a passive gel or a gel with static bound motors, these

oscillatory density waves can now become unstable when the (negative) viscosity

induced by the motors overcome the internal viscous dissipation of the network, i.e.,

for ζ2∆µτon ≥ ηL. Above the critical value of activity defined by the vanishing of the

damping in Eq. (3.34), the propagating waves become unstable and the uniform state

is presumably replaced by a state that supports spontaneous oscillations.

3.3.2 Transverse modes

The transverse equations (3.17) and (3.18) do not couple to motor dynamics. They

yield a cubic eigenvalue equation. There are therefore three transverse modes in the

system. Of these two are propagating shear waves, with dispersion relation for small

q given by

ω(q) = ±q
√
µ

ρg
− ıq2

2ρg

(
η + ηs +

µρ2
f

Γρg

)
+ O(q3) , (3.35)

with ρg = ρ0 + ρf the mass density of the gel. The third transverse mode is a non-

hydrodynamic mode with a finite decay rate at q = 0. It describes the relative motion

of the polymer network and the permeating fluid. The dispersion relation is given by
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ω(q) = − ıΓρg
ρ0ρf

− ıq2

ρg

(
ηρ2

0 + ηsρ
2
f

ρ0ρf
−
µρ2

f

Γρg

)
+ O(q4) . (3.36)

Transverse fluctuations always decay and to linear order do not destabilize the station-

ary homogeneous state. Finally, if B and µ are comparable, the speed of propagation

of the transverse waves given in Eq. (3.35) is generally much smaller than that of the

longitudinal waves given in Eq. (3.24), since ρf >> ρ0.

3.4 Application to muscle sarcomeres

In the overdamped limit of large friction Γ, the inertial term in Eq. (3.13a) is negligible

and the relaxational dynamics of the fiber density is controlled by the viscous coupling

to the permeating fluid. This is the limit that is relevant to most biological systems,

such as muscle sarcomeres. We show here that in this limit the on/off dynamics of

bound motor yields an effective inertia that results in spontaneous oscillations even

in this overdamped limit.

The approximation of neglecting the inertial terms can be quantified as follows.

The inertial term in Eq. (3.13a) can be neglected relative to the frictional damping

from the fluid provided ρ0ω
2 << Γω or ω << Γ/ρ0 ∼ η/(ξ2ρ0), which is simply the

condition of low Reynolds number for an object of typical size ξ moving in a medium

of kinematic viscosity η/ρ0 at a typical speed ∼ ξω. A sarcomere of typical rest length

ξ ∼ 2.5 µm [135], moves in an ambient viscous medium of viscosity η ∼ 10 pNs/µm.

The mass density ρ0 of a sarcomere is approximately 103 kgm−3 [157]. Inertial effects

can be neglected if the velocity of a sarcomere unit, typically of order 10 µm/s, is

small compared to η/ξρ0. From the known values of sarcomere parameters, as quoted

above, η/ξρ0 ∼ 10−2 m/s, which is three orders of magnitude higher than the typical

velocity of a sarcomere. Hence the ignoring of the inertial forces is justified.

A sarcomere chain can be described as a one dimensional elastic system in terms

of a displacement field u(z, t), with z the coordinate along the sarcomere’s length. In
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the overdamped limit the equation for the displacement field and the deviation of the

fraction of bound motor from the steady state value are given by(
Γ− ηL∂2

z

)
∂tu = Ba∂

2
zu+ ζ2∆µ∂zφ , (3.37)

∂tφ = −∂z [(1 + φ) ∂tu]− kuφ . (3.38)

We note that in the overdamped limit discussed in this section our model is formally

similar to the model introduced by Murray and Oster [158] to describe the role of

the mechanochemistry of the cytogel in epithelium movements (albeit with calcium

dynamics taking the place of motor dynamics), but with one important difference:

here we consider a gel frictionally coupled to a permeating fluid, while Refs. [158, 159]

consider a gel elastically coupled to a substrate. As shown below, both models yield

oscillations and traveling waves.

When linearized by approximating the convective term on the right hand side of

Eq. (4.3) as ∼ −∂z∂tu, these equations are identical to those derived by Günther-

Kruse [25] from a microscopic model of muscle sarcomeres. Here we show that the

same equations can be obtained by a purely phenomenological approach that includes

both the dissipation due to the coupling to the permeating fluid and the on/off motor

dynamics. We also note that the bound motor fraction can be eliminated from the

linearized equations by transforming them into a single differential equation for the

displacement. Solving the linearized form of Eq. (4.3) for φ with φ(z, t = 0) = 0,

substituting in Eq (7.1a) and differentiating with respect to time, we obtain a single

differential equation for the displacement u(z, t), albeit second order in time, given

by

τon
(
Γ− ηL∂2

z

)
∂2
t u+

[
Γ− ηL∂2

z − ηa∂2
z

]
∂tu = Ba∂

2
zu (3.39)

where

ηa = τon [B − (ζ1 + ζ2) ∆µ] . (3.40)

It is clear from Eq. (3.39) that the effect of motor on/off dynamics is to provide

an ”inertial” contribution to the dynamics of the network. On length scales large
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compared to ξd we can neglect the internal dissipation intrinsic to the network pro-

portional to the viscosity ηL compared to the friction Γ with the permeating fluid.

Eq. (3.39) then simplifies to

τonΓ∂2
t u+

[
Γ− ηa∂2

z

]
∂tu = Ba∂

2
zu (3.41)

In this limit Eq. (3.41) describing deformations of the active network is formally

identically to Eq. (3.19) for the passive gel, with τonΓ playing the role of a mass

density, and a viscosity ηa and an elastic modulus Ba, both renormalized by activity.

The effective viscosity and the elastic modulus can change sign at high activities,

yielding instabilities.

First we consider the hydrodynamic modes of the systems described by the lin-

earized form of Eqs. (7.1a) and (4.3) or by Eq. (3.39). These are given by the solutions

of the eigenvalue equation, given by

ω2(Γ + ηLq
2) + ıωku

[
Γ + (ηL + ηa) q

2
]
− kuBaq

2 = 0 . (3.42)

The general solutions of the eigenvalue equation are

ω =
ku

2(Γ + ηLq2)

{
− ı
[
Γ + (ηL + ηa) q

2
]

±
√
− [Γ + (ηL + ηa) q2]2 +

4Baq2

ku
(Γ + ηLq2)

}
(3.43)

For small wavevector (q → 0) we obtain two modes,

ωb = −ıku + ı
ζ2∆µ

Γ
q2 (3.44)

ωL = −ıBa

Γ
q2 (3.45)

describing motor and network density relaxation, respectively. Again, the system

exhibit a contractile instability when Ba < 0, but there are no oscillatory waves in

the long wavelength limit.

Propagating wave solutions exist if the argument of the square root on the right

hand side of Eq. (3.43) is positive. The active viscosity can be written as ηa =
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(Ba−ζ2∆µ)/ku, hence it depends on the renormalized elastic modulusBa. If we choose

to treat B̃a = Ba/(Γξ
2
dku) and ζ̃2 = ζ2∆µ/(Γξ2

dku) as independent parameters the

condition for existence of propagating waves can be written as B̃−a (q̃) ≤ B̃a ≤ B̃+
a (q̃),

with

B̃±a (q̃) =
1

q̃2

[
1 + q̃2 + ζ̃2q̃

2 ± 2

√
q̃2(1 + q̃2 + ζ̃2q̃2)

]
, (3.46)

where we assumed ηL ∼ Γξ2
d. Propagating waves then exist in a band in the (B̃a, q̃)

plane, as shown in Fig. 3.2. The width of the band is ∆B̃a = 4
√

1 + ζ̃2 + 1/q̃2. It

vanishes at small wavevectors and goes to the constant value 4(1 + ζ̃2)1/2 at large

wavevectors. In contrast to the propagating density waves obtained in a damped

passive gel, the oscillatory behavior results here from motor activity and the range of

parameter where it exists grows with the time τon that characterizes motor dynamics.

Since τon ∼ 1/∆µ to leading order ζ̃2 is independent of activity for small activity.

In addition, the propagating waves are unstable when the imaginary part of the

eigenvalues given by Eq. (3.43) is positive. This corresponds to

B̃a ≤ ζ̃2 −
1 + q̃2

q̃2
(3.47)

and defines a region where the overdamped active gel exhibits an oscillatory instabil-

ity. We expect that when nonlinear terms are included in the equations, the gel will

exhibit spontaneous oscillations in this region of parameters. The transition from

diffusive to oscillatory behavior is controlled by the interplay between τon and the

characteristic time τd ∼ ξ2
dΓ/B for the diffusive relaxation of a network fluctuation

of size ξd. If τon � τd the on/off motor dynamics provides an ”inertial drag” to the

network that opposes the elastic restoring forces, yielding propagating waves. Alter-

natively, the result can be understood in terms of two length scales in the problem, ξd

and lb ∼
√
B/(kuΓ). If ξd > lb then density relaxation is always diffusive in the range

of wavevectors (qξd � 1) described by the present theory. If in contrast lb > ξd the

network supports propagating density waves in the wavevector range l−1
b ≤ q ≤ ξ−1

d .
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Figure 3.2: A phase diagram for the overdamped active gel. The vertical axis is B̃a = Ba/(Γξ
2
dku)

and the horizontal axis is qξd. The boundaries separating the regions of diffusive relaxation of

network density fluctuations from the region where traveling waves exist are given by Eq. (3.46),

plotted here for ζ̃2 = 2. Below the horizontal line B̃a = 0, the system exhibits a contractile instability.

3.5 Linear response

3.5.1 Dynamic compressional moduli

In this section we characterize the macroscopic homogeneous viscoelastic response of

the active gel in frequency space in terms of the dynamical compressional modulus.

To describe a traditional compressional experiment, we consider a slab the three-

fluid active gel model with only longitudinal degrees of freedom, held between two

plates at z = 0 and z = L and unbounded in the other two directions. We imagine

applying a harmonic compressive strain at one end, where u(z = L) = u0e
−ıωt, while

holding the other end fixed, i.e., u(z = 0) = 0. In general, both the cases of an

oscillating boundary that is permeable or impermeable to the permeating fluid are

experimentally relevant. To implement a calculation that allow to treat both cases one

needs to include a finite compressibility so that the longitudinal elasticity equations
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couple to the fluid velocity v. Here we limit ourselves to a permeable boundary and

impose no boundary conditions on v. With these boundary conditions we calculate

the stress σ(z = L) required at the oscillating boundary and define the complex

compressional modulus Bexpt(ω) measured in experiments as the ratio of the stress

to the applied compressional strain, u0/L. We will see below that at low frequency

we recover the complex bulk compressional modulus, B(ω) = B − ıωηL, obtained

assuming an affine compression over the entire sample.

First we analyze for comparison the case of the passive gel with inertia and damp-

ing. The elastic response is governed by the equation

ρ0∂
2
t u+ Γ∂tu = B∂2

zu+ ηL∂t∂
2
zu . (3.48)

We assume a solution of the form u(z, t) = f(z)e−ıωt, where f(z) = fie
λiz, yielding a

characteristic equation for the eigenvalues λ,

λ2 = −ω
2ρ0 + ıωΓ

B(ω)
(3.49)

Boundary conditions, f(0) = 0 and f(L) = u0 lead to the solution,

f(z) = u0
sinh (λz)

sinh (λL)
(3.50)

The complex dynamic compressional modulus is then given byBexp(ω) = L
u0
B(ω)

(
df
dz

)
z=L

which gives

Bexpt(ω) = B(ω)λL coth (λL) (3.51)

The eigenvalue can be written as

λ2L2 = −
[
ωL

vs(ω)

]2

+ i

[
L

δ(ω)

]2

(3.52)

where we have defined the frequency dependent sound speed, vs(ω) =
√
B(ω)/ρ0,

and the penetration depth δ(ω) =
√
B(ω)/ωΓ which controls the penetration of

rarefaction/compression waves of frequency ω [151]. At low frequency, where |λL| �
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1, we recover Bexpt(ω) → B(ω), provided ωL/vs(ω) � 1 and L � δ(ω). The first

condition means that the frequency of applied oscillations is small compared to the

frequency of sound wave propagation across the entire sample. When this is not

satisfied there is an appreciable time lag between the imposed deformation at one

end of the sample and the deformations realized at other material points across the

sample, resulting in nonuniform strain and preventing the experimental determination

of a macroscopic compressional modulus. The second condition demands that the

boundary compressional waves fully penetrated the sample, which is again necessary

to achieve a uniform compressional strain. For a similar discussion of shear rheological

experiments see Appendix C of Ref. [153]. Finally, the compressional modulus to

second order in frequency as measured in a macroscopic experiment is given by

Bexpt(ω) = B − ω2ρ0L
2/3− ıω(ηL + ΓL2/3) +O(ω3) (3.53)

We now turn to the compressional response of an active gel. In this case we

ignore the inertial contributions relative to the damping from the permeating fluid

and look for solutions of the linearized version of Eqs. (7.1a) and (4.3) of the form

u(z = L) = u0e
−ıωt and φ(z, t) = g(z)e−ıωt, with f(z) = fie

λiz and g(z) = gie
λiz. The

eigenvalues are given by

λ2L2 = −i
[

L

δa(ω)

]2 [
1 +

ıωζ2∆µ/Ba(ω)

−ıω + ku

]−1

, (3.54)

where δa(ω) =
√
Ba(ω)/ωΓ and Ba(ω) = Ba − iωηL. Using, −ıωf ′(z) = (−ıω +

ku)g(z) and the boundary conditions on f(z) and proceeding as in the passive case,

we obtain

Ba
expt(ω) =

[
Ba(ω) + ζ2∆µ

iωτon
1− iωτon

]
λL coth (λL) . (3.55)

The real and imaginary parts of Ba
expt(ω) = B′expt(ω) − iB′′expt(ω) representing the

storage and loss moduli, respectively, are shown in Fig.(3.3) for generic values of

parameters. The storage or elastic modulus has a frequency independent plateau

at frequencies lower than the motor’s unbinding rate, indicating that the system
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Figure 3.3: Storage (B′expt(ω)) and loss (B′′expt(ω)) moduli, for B̃a = 1.15, ζ̃2 = 1.1 and ξd/L = 0.5.

behaves like an elastic gel in this region. The linear frequency dependence of the loss

modulus is the hallmark of a dissipative gel. At low frequency B′expt > B′′expt and the

system behaves elastically, while at high frequency B′′expt > B′expt and the response is

dominated by viscous losses. This response is reminiscent of the Kelvin-Voigt model

of viscoelasticity. Finally, at low frequency the compressional modulus is given by

Ba
expt(ω) = Ba − ω2τ 2

onζ2∆µ− iω
(
ηL +

ΓL2

3
− τonζ2∆µ

)
+O(ω3) , (3.56)

whereas, at high frequencies since λ ∼
√

Γ/ηL = 1/ξd, we obtain

Ba
expt(ω) ∼ (Ba − ζ2∆µ− ıωηL) (L/ξd) coth (L/ξd) . (3.57)

3.5.2 Creep

Here we study the macroscopic behavior of our active elastic medium by considering

the creep response, i.e., the time evolution of the average strain ε(t) = 1/L
∫ L

0
dz ∂zu

in response to a homogeneous external stress, σ(t). In particular we are interested in

characterizing the load and recovery creep of the material following the sudden appli-

cation and removal, respectively, of a constant stress. Both responses are measured

experimentally in cells [160, 161].



3.5 Linear response 70

Consider a muscle fiber of length L with free boundary conditions at the ends

z = 0 and z = L, i.e. ∂zu(z = 0, L) = 0, and no fluctuation in motor densities being

imposed at the ends. Hence one assumes normal mode expansions for u and φ to be

of the form u(z, t) =
∑∞

m=0 um(t) cos (m̂z), and φ(z, t) =
∑∞

m=1 φm(t) sin (m̂z), where

m̂ = mπ/L.

Neglecting nonlinearities, the evolution of the normal modes um(t) and φm(t) in

the material in response to a small external stress σ(t) is governed by the equations

(Γ + ηLm̂
2)u̇m(t) +Bam̂

2um(t)− ζ2∆µm̂φm(t) = fm(t) , (3.58a)

φ̇m(t) = m̂u̇m(t)− kuφm(t) . (3.58b)

With, fm(t) = 2σ(t)
L2

∫ L
0
dz sin (m̂z).

Eliminating the fluctuations φm(t) in the density of bound motor, we obtain an

effective equation for um(t), given by

τon(Γ + ηLm̂
2)üm(t) +

[
m̂2 (τon(Ba − ζ2∆µ) + ηL) + Γ

]
u̇m(t)

+Bam̂
2um(t) = τonḟm + fm ,

(3.59)

where τon = k−1
u . The decay rates of the individual modes are

2g(m) = ku +
Ba − ζ2∆µ

ηL

(
1 + L2

m2ξ2dπ
2

) . (3.60)

Eq. (3.60) shows that g(m) is an increasing function of m, hence the higher modes

decay at a faster rate. For simplicity we then consider only the first mode, m =

1. Thus we approximate the averaged strain developed in the material as ε(t) '
−2u1π/L. Also note that neglecting viscous coupling to the fluid Γ amounts to

considering the limit of the fastest mode m→∞.

In the limit τon → 0, when motors are unbound at all times, Eq. (3.59) reduces to

the familiar Kelvin-Voigt viscoelastic equation [162]. In this case the creep following

application of a sudden load at t = 0, σ(t) = σ0Θ(t) has the familiar form

ε(t) =
8σ0/π

ηLπ2 + ΓL2
(1− e−t/(τB+ΓL2/π2Ba)) ,
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where τB = ηL/Ba is the Kelvin-Voigt relaxation time.

For finite values of τon, the creep response is controlled by the interplay of the two

times scales τB and τon. We assume Ba > 0, corresponding to weak activity. When

Ba < 0 the system exhibits a contractile instability and the strain becomes arbitrarily

large at long times for any applied σ(t). The evolution of the strain in response to an

applied stress is then controlled by the two eigenvalues of Eq. (3.59) for m = 1, given

by

λ± = −g ±
√
g2 − τB

J(L)τon
, (3.61)

where time is measured in units of τB, and

2g =

(
1− ζ2∆µ

Ba

+
τB
τon

+
ΓL2

π2Baτon

)
/J(L),

J(L) =

[
1 +

(
L

πξd

)2
]
.

The linear creep response of the active gel can then be classified as follows:

I. g > 0 , g2 > τB
J(L)τon

: stable monotonic behavior

II. g > 0 , g2 < τB
J(L)τon

: stable oscillatory behavior

III. g = 0 : sustained oscillations

IV. g < 0 , g2 > τB
J(L)τon

: unstable oscillatory growth

V. g < 0 , g2 < τB
J(L)τon

: unstable monotonic growth

The behavior is summarized in the phase diagram of Fig. 3.4 displaying the various

regions in the (τon, ζ2) plane for fixed J(L). We note that when τon/τB is increased for

fixed ζ2∆µ/Ba ≥ 1, the material eventually becomes unstable to stretching. Figures

3.5(a) and 3.5(b) show the time evolution of the strain in response to a step stress of

height σ0 and duration T , σ(t) = σ0 [Θ(t)−Θ(t− T )], with initial condition ε(0) = 0.
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Figure 3.4: A phase diagram displaying the various types of creep response obtained for Ba > 0.

I) Stable Monotonic Decay, II) Stable Oscillatory, III) Line of Sustained Oscillations, IV) Unstable

Oscillatory Growth, V) Unstable Monotonic Growth.

The response in region I of stable monotonic decay is similar to conventional Kelvin-

Voigt response. In region II of stable oscillatory decay the interplay of the two time

scales τon and τB yields the possibility of a strain overshoot. For finite τon we also

need to specify an additional initial condition determined by the initial distribution

of bound motors, since ε̇(0) = φ̇(0)− φ(0)/τon. Fig. 3.5(b) displays the response in

region III of sustained oscillations.

3.6 Discussion

We have presented a generic continuum theory of active gels, modeled as a viscoelas-

tic solid with bound motor proteins that induce active stresses in the medium. In the

limit where the inertia of the network is neglected and the equations are specialized to

one dimension, the model is equivalent to that proposed by Günther and Kruse [25]

by coarse-graining of a specific mechanical model of coupled muscle sarcomeres. For

large values of the motor activity as measured by the rate of ATP consumption, ∆µ,

the contractile action of bound motors yields a diffusive (contractile) instability of
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Figure 3.5: Strain ε(t) in response to a step-stress σ(t) (dashed line, red online) with T = 10.

Strain and stress are measured in units of σ0 and σ0/Ba, respectively and time is in unites of τB .

The various curves correspond to different values of τon, spanning the regimes described above.

Left frame: τon = 0 (dotted line, green online), corresponding to a passive gel with Kelvin-Voigt

response; τon/τB = 0.2 (solid line, black online), corresponding to region I of monotonic stable

response; τon/τB = 0.5 (dashed line, purple online), and τon/τB = 1 (dashed-dotted line, blue

online), corresponding to region II of oscillatory stable response. All curves are for ζ2/Ba = 1.

Right frame: τon/τB = 0.5 and ζ2/Ba = 3, corresponding to region III of sustained oscillations.

the gel. This result has been obtained earlier in models of muscle sarcomeres [25]

and actin bundles [163]. Here we show that it is a generic property of active elas-

tic media. For smaller values of motor activity the interplay of solid elasticity and

the binding/unbinding dynamics of the motor proteins yields propagating waves and

eventually oscillatory instabilities in the linear theory. Both stable and unstable os-

cillatory modes are obtained even in the case of an overdamped gel, as relevant to

muscle fibers. We show that the finite time scale of motor on/off dynamics yields an

effective inertial contribution to the dynamics of the elastic medium controlled by

the time τon that motors spend bound to filaments (see Eq. (3.39)). One of the new

results of the paper is the phase diagram displayed in Fig. 3.4 for the macroscopic

response of the system to external stresses. In the linear model sustained oscillations

are only obtained for special parameter values corresponding to a line in the (τon, ζ2)

phase diagram. It is expected that nonlinearities neglected in the present work will

have a stabilizing effect and replace the unstable oscillatory response with stable
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self-sustained oscillations. The model considered is relevant for the description of

motor-induced spontaneous oscillations in muscle sarcomeres and other active elastic

media, and may provide a useful framework for the understanding of lamellipodium

crawling.

Our linear elasto-hydrodynamic model can be extended in various ways. First,

an analysis of the effect on nonlinearities is needed. Two classes of nonlinear terms

are important in our model of an active gel. The first is provided by nonlinear

convective terms in the equation describing the dynamics of bound motors, as shown

in Eq. (4.3), and also including dependence of the unbinding rate ku on the elastic

strain ∂zu developed in the gel. These are the simplest continuum manifestation of

the highly nonlinear load dependence of the microscopic motor unbinding rate, which

in turn plays an important role in controlling the motor-induced negative friction

induced by the cooperative action of motor proteins on biological systems elastically

coupled to their environment [10, 111, 115]. A second class of nonlinearities arise

from higher order terms in the expansion of the active parameter ζ given in Eq. (3.7).

A preliminary estimate of the effect of these terms suggest that they stabilize the

oscillatory growing modes and yield stable sustained oscillations. A detailed study of

the nonlinear active gel model will be presented in Chapter 4.

In the liquid state of an active system the polarity of actin filaments plays an

important role. The coupling of polarity and flow has been shown to yield spontaneous

flow [137], banded states of inhomogeneous concentration, and oscillatory states [138].

It is similarly expected that the coupling of polarity and elasticity will yield new

phenomena in active solids, including spontaneous deformations and oscillations. To

incorporate the effect of polarity we have begun to consider the properties of an active

polar elastomer, where the orientational order can be induced either by elongated

passive crosslinkers [164] or by the myosin minifilaments themselves. In addition, the

latter exert active force dipoles on the medium that induce active stresses coupled to

the orientational order.
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Chapter 4

Emergent Mechanical Phases of

Cross-linked Motor-Filament Gels

4.1 Active solids

There is great variation in the organization of actin, myosins, and other cross-linking

proteins in the actomyosin structures found in cells. Myofibrils in striated muscle

cells are examples of highly organized structures [135], composed of repeated sub-

units of actin and myosin, known as sarcomeres, arranged in series. Each sarcomere

consists of actin filament of alternating polarity bound at their pointed end by large

clusters of myosins, known as myosin “thick filaments”. The periodic structure of

the myofibril allows it to generate forces on large length scales due to the collective

dynamics of individual units of microscopic size, giving rise to muscle oscillation and

contraction. More difficult is to understand the origin of spontaneous oscillations

and contractility in cytoskeletal filament-motor assemblies that lack such a highly

organized structure [23, 165].

In this chapter we consider a nonlinear version of the generic continuum model

of an isotropic active solid discussed in Chapter 3. We go beyond the linear stability

analysis and show that the presence of nonlinearities leads to both stable contracted
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and oscillatory states in different regions of parameters. The acto-myosin network

is modeled as an elastic continuum, as appropriate for a cross-linked polymer gel

embedded in a permeating viscous fluid, with elastic response at long times and

liquid-like dissipation at short times. The active solid model describes the various

phases of acto-myosin systems as a function of motor activity, including spontaneous

contractility and oscillations. It provides a unified description of both phenomena and

a minimal model relevant to many biological systems with motor-filament assemblies

that behave as solids at low frequencies. When the active solid is isotropic, as assumed

in the present work, the coupling to a non-hydrodynamic mode provided by the

binding and unbinding kinetics of motor proteins is essential to generate spontaneous

sustained oscillations.

The main results are summarized in Fig. 4.1, where we sketch the steady states of

the system as we tune the activity, defined as the difference ∆µ between the chemical

potential of ATP and its hydrolysis products, and the compressional modulus B

of the passive gel. For a fixed value of B we find a regime where the active gel

supports sustained oscillating states and a contracted steady state as ∆µ is increased.

For fixed ∆µ spontaneous contractility is only observed below a critical network

stiffness. This is consistent with experiments on isotropic acto-myosin networks with

additional cross-linking α-actinin where spontaneous contractility was seen only in

an intermediate range of α-actinin concentration [17]. Our model does not, however,

yield a lower bound onB below which the contracted state does not exist. This may be

because, in contrast to the experiments where a minimum concentration of α-actinin

is required to provide integrity to the network, our system is always by definition

an elastic solid, even at the lowest values of B. The phase diagram resulting from

our model also resembles the state space diagram of a muscle sarcomere obtained

experimentally [166].

Interestingly, we find that a simplified dynamical system obtained by a one-mode

approximation to our continuum theory corresponds to the half-sarcomere model pro-
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Figure 4.1: Mechanical phases of a cross-linked active gel obtained by varying the gel compressional

modulus B and motor activity ∆µ.

posed recently [25], for a particular set of parameters. Our analysis shows, however,

that the phase behavior described above is generic and can be expected in a wide

variety of active elastic systems, as it relies solely on symmetry arguments. It pro-

vides a unified description of both oscillatory and contracted states and predicts their

regions of stability as a function of the elastic properties of the network and motor

activity.

4.2 Nonlinear gel model

In the previous chapter, on the basis of symmetry arguments, we formulated a phe-

nomenological hydrodynamic model of a cross-linked gel (a network of actin filaments

crosslinked by filamins or other ”passive” linkers) under the influence of active forces

exerted by clusters of crosslinking motor proteins (e.g., myosin II minifilaments). Only

linear terms were retained in the continuum equations, where the linear modes of the

system and their stability were analyzed. Here we consider a nonlinear continuum

model and show how nonlinearities can stabilize oscillatory and contracted states.

The active gel consists of a polymer network in a permeating fluid. On length scales

large compared to the network mesh size, the gel can be described as a continuum
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elastic medium, viscously coupled to a Newtonian fluid. The model follows closely

that formulated for a passive gel [153]. We focus on compressional deformations and

consider for simplicity a one-dimensional model. We assume the permeating fluid to

be incompressible and consider the case of small volume fraction of the gel. In this

limit the permeating fluid simply provides a frictional drag to the polymer network.

The hydrodynamic description is then obtained in terms of two conserved fields: the

density ρ(x, t) of the gel and the one-dimensional displacement field, u(x, t). The

momentum density of the gel is not conserved due to drag exerted by the perme-

ating fluid. In addition, density variations are determined by the local strain, with

δρ = ρ − ρ0 = −ρ0∂xu and ρ0 the equilibrium mean density. The elastic free energy

density of the gel can be expanded in the strain s = ∂xu about the state s = 0. To

describe the possibility of swelling and collapse of a gel (even a passive one) one needs

to keep terms up to fourth order in s in the elastic free energy density (dropping a

linear term that can be eliminated by redefining the ground state) [167, 168]

fe =
B

2
s2 +

α

3
s3 +

β

4
s4 , (4.1)

where B is the longitudinal compressional modulus of the gel and α, β > 0 are

phenomenological parameters capturing the effects of many-body interactions and

nonlinear elasticity of the components [16, 169].

It is straightforward to show that within mean-field theory the free energy given

in Eq. (4.1) yields a line of first order phase transitions at B ≡ Bc = 2α2/(9β)

between an unstrained state with s = 0 for B > Bc and a strained state with finite

s for B < Bc. The stable strained state is one of higher density (s < 0) for α > 0,

corresponding to a contracted state, and one of lower density (s > 0) for α < 0,

corresponding to an expanded state. The transition line terminates at a critical point

at α = 0.

Activity is induced by the presence of a concentration c(x, t) of bound active

cross-linkers that undergo a cyclic binding/unbinding transformation fueled by ATP,

exerting forces on the gel. The dynamics of the active gel on time scales larger than
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the Kelvin-Voigt viscoelastic relaxation time is described by coupled equations for

u(x, t) and c(x, t), given by

Γ∂tu = ∂xσe − ∂xpa , (4.2)

∂tc = −∂x(c∂tu)− k(s)(c− c0) (4.3)

where σe = ∂fe
∂s

= Bs + αs2 + βs3 is the elastic stress, Γ is a friction constant

describing the coupling of the polymer network to the permeating fluid, and pa(ρ, c)

is the active contribution to the pressure, describing the isotropic part of the active

stresses induced by myosins. Equation (4.3) allows for convection of bound motors

by the gel at speed ∂tu and incorporates the binding/unbinding dynamics, with k(s)

the strain-dependent motor unbinding rate and c0 the equilibrium concentration of

bound motors. Since highly non-processive motor proteins such as myosins are on

average largely unbound, we neglect the dynamics of free motors that provide an

infinite motor reservoir.

The active pressure is taken to be linear in the rate ∆µ of ATP consumption, with

pa = ∆µ ζ(ρ, c). This is a reasonable approximation for weakly active systems, where

the number of active elements make up a small fraction of the total mass of the gel,

as is the case in most experiments. ∗ We then expand

ζ(ρ, c) '− ζ0 − ζ1δρ̃− ζ2φ− ζ3 (δρ̃)2 + ζ4δρ̃φ+ ζ5φ
2 + ζ6 (δρ̃)3 ... (4.4)

with δρ̃ = δρ/ρ0 and φ = (c − c0)/c0 the fluctuations in the gel and bound motor

concentrations, respectively, and all parameters ζi defined positive. The positive

sign of ζ0, ζ1 and ζ2 corresponds to a contractile acto-myosin system and describes

the reduction in the longitudinal stiffness of the gel from contractile forces exerted

by motor proteins. The parameters ζ3, ζ4 and ζ5 describe excluded volume effects.

A positive ζ3 favors contracted over expanded states. A positive ζ6 guarantees the

stability of the network in regions of negative effective compressional modulus.

∗We note that the effects of nonlinearities in ∆µ can taken account of by expanding in δµ =

∆µ−∆µ0 about a stationary state with finite ∆µ0.
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There are several sources of nonlinearities in Eqs. (4.2,4.3): the nonlinear strain

dependence of the elastic free energy, the nonlinear terms in the active pressure, and

the dependence of the motor unbinding rate k on the load force on bound motors,

which in turn is proportional to the strain s of the elastic gel. We assume an exponen-

tial dependence of the form k(s) = k0e
εs [127], with k0 the unbinding rate of unloaded

motors and ε a dimensionless parameter determined by microscopic properties of the

motor-filament interaction. In the following we expand the unbinding rate for small

strain as k(s) ' k0

[
1 + εs+ ε2

2
s2 +O(s3)

]
. Keeping higher order terms in ε does not

change qualitatively the behavior described below. Finally, the first term on the rhs

of Eq. (4.3) contains a convective nonlinearity that does not affect the key features

of dynamics observed and will be neglected in most of the following. The equations

for the active gel can then be written as

Γ∂tu = ∂xσ
a
e + ∆µ∂x

[
ζ2φ+ ζ4sφ− ζ5φ

2
]
, (4.5a)

∂tφ = −∂x [(1 + φ) ∂tu]− k0

[
1 + εs+

ε2

2
s2

]
φ , (4.5b)

where σae = Bas+ αas
2 + βas

3, with renormalized elastic constants, Ba = B − ζ1∆µ,

αa = α + ζ3∆µ and βa = β + ζ6∆µ.

We render our equations dimensionless by letting u → u/L and t → tk−1
0 . We

then define dimensionless parameters as B̃ = B
Γk0L2 , α̃ = α

Γk0L2 , β̃ = β
Γk0L2 , ∆µ̃ = ∆µ

Γk0L3

and ζ̃i = ζiL. In the following we drop the tilde to simplify notation and all quantities

should be understood as dimensionless.

4.3 Linear stability analysis

There are three steady state solutions of Eqs. (7.1b,4.5b): an unstrained state,

with (us, φs) = (0, 0), and two strained states, with (us, φs) = (s±x, 0) and s± =(
−αa ±

√
α2
a − 4Baβa

)
/2βa, provided Ba < α2

a/4βa. For concreteness we choose

αa, βa > 0. Then if Ba > 0, s± < 0 and δρ̃± > 0, so that both strained solutions
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correspond to contracted states. If Ba < 0, then s− < 0 and s+ > 0, corresponding

to contracted and expanded states, respectively.

In this section we examine the linear stability of each of these states. Letting s =

s0 + δs, where s0 = (0, s±) represents the constant value of strain in the steady state

and δs = ∂xδu, the linearized equations for the displacement and motor concentration

fluctuations are given by

∂tδu = B∂2
xδu+ Z∂xφ , (4.6a)

∂tφ = −∂x∂tδu− κφ , (4.6b)

where

B = Ba + 2αas0 + 3βas
2
0 , (4.7a)

Z = ∆µ(ζ2 + ζ4s0) , (4.7b)

κ = 1 + εs0 + εs2
0/2 . (4.7c)

Looking for solution of the form δu, φ ∼ ezt+iqx we find that the dynamics of fluctua-

tions is controlled by two eigenvalues, with dispersion relations

zu,φ(q) = −b(q)
2
± 1

2

√
[b(q)]2 − 4κBq2 (4.8)

where b(q) = κ+ (B−Z)q2 and zu(q) and zφ(q) correspond to the root with the plus

and minus signs, respectively.

If motor fluctuations are neglected (φ = 0), corresponding to letting Z = 0 in

Eq. (4.8), one finds zu = −Bq2 and the linear stability of the steady states is entirely

determined by the sign of B, with B > 0, corresponding to a linearly stable state.

When φ = 0 the problem is equivalent to an equilibrium problem, with q2B being

the curvature of a free energy of the form given in Eq. (4.1), albeit with elastic

constants renormalized by activity. In this case the unstrained state s = 0 is the

global minimum of the free energy for Ba > 2α2
a/(9βa), while the contracted state

s = s− is the global minimum for Ba < 2α2
a/(9βa). The line Ba = 2α2

a/(9βa) defines
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Figure 4.2: Phase diagram obtained by analyzing the linear stability of the modes. The left frame

is for ζ2 = ζ4 = 0, corresponding to φ = 0. The right frame is obtained including motor fluctuations,

with ζ2 = ζ and ζ4 = ηζ. The other parameter values are α = 0.1, β = 0.1, ζ1 = ζ = 1, ζ3 = ηζ,

and ζ6 = η2ζ, with η = 0.1.

a line of first order phase transitions in the (B,∆µ) (see Fig. 4.2, left frame). If, on

the other hand, we consider the problem dynamically, the condition of stability of

linear fluctuations given by B > 0 is a necessary, but not a sufficient condition to

identify the stable steady states of the system, as multiple fixed points with different

basins of attraction coexist in the same region of parameters. In particular, both

the unstrained s = 0 state and the contracted s = s− state are linearly stable for

Ba < B < α2
a/(4βa), while both the contracted and expanded states (s = s∓) are

stable for Ba < 0. If we assume that among these linearly stable states the system

dynamically selects the steady state with the fastest decay rate q2B, then we recover

the linear phase diagram of Fig. 4.2 obtained form the equilibrium analysis.

When the coupling to motor concentration fluctuations is included, we find a

region of parameters where Re [zu,φ] > 0 for all three homogeneous solutions s =

(0, s±). This is the white region in Fig. 4.2 (right frame), where the dynamical system

is linearly unstable. The instability occurs in a region where the modes are complex,

describing oscillatory states, and Z − κ/q2 > B > 0. The linear stability diagram

for the system is shown in Fig. 4.2 for the shortest wavevectors ∼ 1/L, with L the
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system size. The phase diagram is constructed again by assuming that the system

will relax to linearly stable states characterized by the fastest relaxation rates. To

linear order, the coupling to motor fluctuations yields oscillatory or propagating (as

opposed to purely diffusive) fluctuations. Some of these oscillatory states are linearly

unstable in a region of parameters, as shown in the phase diagram in Fig. 4.2.

Next we consider the effect of nonlinearities by first examining a minimal model

that only retains the longest wavelength mode in the Fourier expansion of the nonlin-

ear equations, Eqs. (4.2,4.3), and then comparing the latter to the numerical solution

of the full nonlinear partial differential equations.

4.4 One-mode model

We begin by incorporating only the nonlinearities in the unbinding rate, while ne-

glecting convective, elastic and pressure nonlinearities. We impose boundary con-

ditions [∂xu]x=0 = [∂xu]x=L = 0 and [φ]x=0 = [φ]x=L = 0, and seek a solution of

Eqs. (4.2,4.3) in the form of a Fourier series as, u(x, t) =
∑∞

m=0 um(t) cos (m̂x) and

φ(x, t) =
∑∞

m=1 φm(t) sin (m̂x), where, m̂ = mπ/L. We perform a 1-mode Galerkin

truncation, and only consider the dynamics of the first nontrivial mode, m = 1 (set-

ting um = φm = 0, ∀ m 6= 1). This corresponds to approximating the system by only

its longest wavelength excitations, ignoring all the shorter wavelength modes.

The coupled equations for u1 and φ1 are given by

u̇1 = −Baπ
2u1 + ζ2∆µπφ1 , (4.9a)

φ̇1 = πu̇1 −
(

1− 8

3
εu1 +

3

8
π2ε2u2

1

)
φ1 . (4.9b)

These equations can be recast into an effective second order differential equation for

u1 that has the structure of the equation for a Van der Pol oscillator [170] coupled to

a nonlinear spring, of the form

ü1 + u̇1 [λ− f(u1)] + u1Ba [1− f(u1)] = 0 , (4.10)
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Figure 4.3: Left frame : Time evolution of u1(t) for various values of activity : ∆µ = 1.0 (black),

corresponding to an unstrained steady state, ∆µ = 2.0 (red) and ∆µ = 3.5 (green), corresponding

to the region of sustained oscillations and ∆µ = 4.5 (blue), corresponding to the contracted steady

state. Right frame: Bifurcation diagram obtained from the 1-mode model. The figure shows a plot

of the value us1 of u1 at long times (t = 100) vs ∆µ. A supercritical Hopf bifurcation occurs at

∆µ = ∆µc1 ' 1.5. As one increases ∆µ within the range ∆µc1 < ∆µ < ∆µc2, the amplitude of

oscillations grows continuously. At ∆µ = ∆µc2 the limit cycle disappears and the system settles

into a contracted steady state for ∆µ > ∆µc2. The dashed line indicates unstable fixed point.

Parameters : B = 3.0, ε = 0.1. Other parameter values are same as in Fig. 4.2.

with f(u1) = 8ε
3
u1 − 3ε2π2

8
u2

1 and friction λ = π2(Ba − ζ2∆µ) + 1. Equations (4.9a)

and (4.9b) admit one fixed point (u1, φ) = (0, 0). Linear stability analysis about

this null fixed point shows that the fixed point is unstable (a repeller) when λ < 0

and is stable for positive λ. From a global analysis [170] of Eqs. (4.9a) and (4.9b)

with the ε nonlinearity, we find that the existence of the unstable fixed point signals

the appearance a stable limit cycle as λ crosses zero. In other words the system

undergoes a supercritical Hopf bifurcation at ∆µ = ∆µc1 = (B + π−2)/(ζ1 + ζ2),

with sustained oscillations for ∆µ > ∆µc1 and stable spirals or nodes in the two-

dimensional, (u1, φ1) phase space, otherwise. We now consider the role of pressure

and elastic nonlinearities, while letting ε = 0. Within the one-mode model we find

that in this case if βa = αa = 0 and Ba > 0 there is again only one fixed point at

(u1, φ) = (0, 0) and the linear stability analysis is identical to that of the model with

only rate nonlinearity. In other words, if ε = 0, the pressure nonlinearities do not
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stabilize the system for λ < 0. When αa 6= 0, βa 6= 0 and Ba < 16α2
a/27βaπ

2, we

have two new nonzero fixed points (u1, φ) ≡ (u±, 0), describing a contracted and an

expanded state of the gel, respectively, with

u± =
8αa

9π2βa
± 2

3βaπ2

√
16α2

a

9
− 3π2βaBa . (4.11)

Since δρ ' πρ0u1, u+ corresponds to a contracted state whereas u− corresponds

to an expanded state when B > ζ∆µ. The contracted/expanded state is linearly

unstable when λ∗± = −Ba + 8αau±
3
− 9βaπ2u2±

4
+ ζ2 − 8ζ4u±

3
− 1

π2 > 0 . For λ∗± < 0 the

nonzero fixed points are unstable if Ba > 16α2
a/27βaπ

2. When Ba < 16α2
a/27βaπ

2

and λ∗± < 0 the nonzero fixed points are stable and the orbits in the two-dimensional,

(u1, φ1) phase-space describe nodes or spirals settling at long times to (u±, 0). When

λ∗± > 0, the contracted/expanded states are linearly unstable. The nonlinearities in

the active pressure stabilize these unstable states into stable asymmetric limit cycles.

A supercritical Hopf bifurcation occurs when ∆µ > ∆µc1 = (B+π−2)/(ζ1+ζ2), which

terminates to a stable contracted steady state for ∆µ > ∆µc2 (∆µc2 is determined by

the solution of λ∗±(B,∆µ) = 0).

It is instructive to note that when αa = βa = 0, our 1-mode model corresponds

to that of a half-sarcomere derived in Ref. [25]. The bifurcation diagram for the

complete 1-mode model is shown in Fig. 4.3, with all the nonlinearities incorporated.

The diagram summarizes the steady state crossovers of the system as we increase ∆µ

keeping B fixed. Finally, the steady states of the nonlinear gel within the 1-mode

approximation are shown in the phase diagram in Fig. 4.4 (indicated by dashed lines),

in the (B,∆µ) plane. The unstrained state of the gel is stable when λ > 0 whereas

the contracted state is stable for λ∗+ > 0. When λ < 0 and λ∗+ < 0 the gel exhibits

sustained oscillations.
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4.5 Numerical analysis of the continuum nonlinear

model

In this section we discuss the numerical solution of the nonlinear PDEs given in

Eqs. (7.1b,4.5b) (but with no convective nonlinearities) with boundary conditions

[∂xu(t)]x=0,L = 0 and [φ]x=0,L = 0 and an initial strained state. We spatially discretize

the PDEs using finite difference method and then integrate the resulting coupled

ODEs using the rkf45 method.

The behavior of the system as we vary B and ∆µ, keeping all other parameters

constants, is summarized in the numerically constructed phase diagram, shown in

Fig. 4.4. Assuming ζ1 = ζ2 = ζ, the system settles into an unstrained state for

B > Bc1 ' 2ζ∆µ and Hopf bifurcates to sustained oscillations for B < Bc1. We

note that the phase boundary in the 1-mode model B = 2ζ∆µ − 1/π2, although

different from the numerical phase boundary B = Bc1, lies within the error bar of

the numerics. For B < Bc2 ' 0.85ζ∆µ the system settles into a stable contracted

state. The basin of attraction of the expanded state is much smaller than that of the

contracted state. This is due to the choice of the sign of the coupling constants, αa

and ζ4. The regimes predicted by our continuum phenomenological model may be

used to classify the behavior seen in a number of experimental systems [17, 18, 166].

To estimate the parameter in real systems we assume Γ ∼ η/ξ2, with η the viscosity

of the permeating fluid and ξ the gel mesh size [153] and use experimental values of

B. For muscle fibers, using B ∼ 2 kPa [171], η ∼ 2 × 10−3 Pa s [2], ξ = 0.5 µm,

L ∼ 100 µm and k−1
0 = 40 ms, we estimate the dimensionless modulus B̃ = B/ΓL2k0

as B̃ ∼ 1. For isotropic cross-linked actomyosin gels only direct measurements of the

low frequency shear modulus G are available, with G ∼ 1 − 10 Pa [18]. It has been

argued, however, that these networks may support much higher compressional forces,

of the order of buckling forces on the scale of the mesh-size, yielding a value of B

comparable to that of muscle fibers [172]. For B ∼ 1−103 Pa and η comparable to that
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Figure 4.4: Phase diagram in the (B,∆µ) plane for the continuum nonlinear model described by

Eqs. (7.1b) and (4.5b). U : Unstrained, SO : Sustained Oscillations, C : Contracted. The points

are obtained by numerical solution of the full PDE’s; the error bars are determined by the step size

used in the ∆µ increments. The dashed lines indicate the 1-mode phase boundaries. Inset : Plot

of extension ∆`(t) = u(0, t) − u(L, t) for B = 3.0 and ∆µ = 1.0 (black), ∆µ = 2.0 (red), ∆µ = 3.5

(green) and ∆µ = 4.5 (blue). Parameter values are same as in Fig. 4.3.

of water, we obtain B̃ ∼ 10−3 − 1. The active coupling ζ∆µ can be estimated as [25]

ζ∆µ ∼ ξnbkm∆m, where nb is the number density of bound motors, km is the stiffness

of the myosin filaments and ∆m is the steady state stretch of the bound motor tails.

Using nb ∼ 102−104 µm−3, km = 4 pN/nm and ∆m ∼ 1 nm, we obtain ζ∆µ ∼ 0.1−10

in dimensionless units. In the phase diagram in Fig. 4.4, these parameter values would

put muscle fibers in the regions U, SO and C respectively as we increase nb. Isotropic

actomyosin networks may have a much lower value of B̃, possibly corresponding to

the contracted region. Indeed, while spontaneous contractility has been observed in

vitro in reconstituted actomyosin networks [17], no experimental evidence has yet

been put forward of spontaneous oscillations in these systems.

In summary, we have presented a generic continuum model of a cross-linked active

gel which can be used to describe a wide variety of isotropic elastic active systems.

We find an elastic active gel system can, in general, be tuned through three classes of
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dynamical states by increasing motor activity: an unstrained steady state of homoge-

neous constant density, a state where the local density exhibits sustained oscillations,

and a spontaneously contracted steady state, with a uniform mean density. The con-

tinuum model is not strictly hydrodynamic due to presence of the fast variable φ,

describing the dynamics of motor proteins. The motor binding/unbinding kinetics

plays a crucial role in generating oscillating states at finite wavevectors. The one-

mode model is in excellent qualitative agreement with the results described by the

solutions to the nonlinear continuum equations and is comparable to a variety of

one dimensional models for active elastic systems. Quantitative agreement in the

phase boundaries between the one-mode model and the continuum model fails due

to the non hydrodynamic nature of the model and we expect the oscillatory and/or

contractile behaviour to depend on system size [173, 174].
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Chapter 5

Rigidity and Geometry Sensing by

Adherent Cells on Elastic

Substrates

5.1 Mechanosensing

A variety of cellular properties, including cell shape, migration and differentiation,

are critically controlled by the strength and nature of the cell’s adhesion to a solid

substrate and by the substrate’s mechanical properties [1]. For instance, it has been

demonstrated that cell differentiation is optimized in a narrow range of matrix rigidi-

ties [52] and that the stiffness of the substrate can direct lineage specification of hu-

man mesenchymal stem cells [41]. In endothelial cells, adhesion to a substrate plays

a crucial role in guiding cell migration and controlling a number of physiological pro-

cesses, including vascular development, wound healing, and tumor spreading [175].

Fibroblasts and endothelial cells seem to generate greater traction forces and develop

a broader and flatter morphology on stiff substrates than they do on soft but equally

adhesive surfaces [73, 176]. They show an abrupt change in their spread area within a

narrow range of substrate stiffnesses. This spreading also coincides with the appear-
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ance of stress fibers in the cytoskeleton, corresponding to the onset of a substantial

amount of polarization within the cell [73]. Finally, such cells preferentially move from

a soft to a hard surface and migrate faster on stiffer substrates [177]. The mechanical

interaction of cells with the surrounding matrix is to a great extent controlled by

contractile forces generated by interactions between actin cytoskeleton and myosin

proteins in the cytoskeleton. Such forces are then transmitted by cells to their sur-

roundings through the action of focal adhesions that produce elastic stresses both in

the cell and in the surrounding matrix. Cells in turn are capable of responding to the

substrate stiffness by remodeling their own adhesion and elastic properties [1, 178].

In this chapter we present a simple mechanical model of the coupling between

cells and substrate that accounts for some of the observed substrate-stiffness depen-

dence of cell properties. The cell itself is modeled as an elastic active gel, adapting

recently developed continuum theories of active viscoelastic fluids [27, 136]. In these

models the transduction of chemical energy from ATP hydrolysis into mechanical

work by myosin motor proteins pulling on actin filaments yields active contractile

contributions to the local stresses. As discussed before, the continuum theory of such

active liquids has led to several predictions, including the onset of spontaneous de-

formation and flow in active films [137, 138] and the retrograde flow of actin in the

lamellipodium of crawling cells [32]. Active liquids cannot, however, support elastic

stresses at long times, as required for the understanding of the crawling dynamics of

the lamellipodium and of active contractions in living cells. Models of active elastic

solids on the other hand have been shown to account for the contractility and stiffen-

ing of in-vitro actomyosin networks [19, 150, 152] and the spontaneous oscillations of

muscle sarcomeres [25]. Very recently a continuum model of a one-dimensional polar,

active elastic solid has also been used to describe the alternating polarity patterns

observed in stress fibers [179]. In all these cases the elastic nature of the network at

low frequency is crucial to provide the restoring forces needed to support deformations

and oscillatory behavior.
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The role of adhesion geometry in controlling traction force distribution has been

addressed theoretically using network models and continuum mechanical models [68,

180]. Network models of the contractile cytoskeleton have also been used to describe

the relation between force distribution and shape of adherent cells [180, 181], including

networks of Hookean springs as well as cable networks that incorporate the asymmetry

of the elastic response of biopolymers such as filamentary actin to compression and

extension, with and without the explicit inclusion of contractility. In particular,

the active cable network reproduces the arc morphology of cell boundaries pinned

by strong local adhesions that has been seen in experiments [72]. The relationship

between cell shape and adhesion geometry has also been studied by modeling cells as

contractile films bounded by the elastic cortex [70, 71].

We model the adherent cell as an elastic active film anchored to a solid substrate

and study the static response of the film to variations in the strength of the anchoring.

Although in the following we refer to our system as a cell, we stress that, on different

length scales, the active elastic gel could also serve as a model for a cohesive cell

monolayer on a substrate. The coupling of the cell to the substrate enters via a

boundary condition controlled by a substrate rigidity parameter that depends on

both the cell/substrate adhesion as well as the matrix stiffness. The description is

macroscopic and applies on length scales large compared to the typical mesh size of

the actin network in the cell lamellipodium (or large compared to the typical cell size

in the case of a cell monolayer).

5.2 Active gel model of an adherent cell

The cell is modeled as an active gel described in terms of a density, ρ(r, t), and a

displacement field, u(r, t), characterizing local deformations. In addition, to account

for the possibility of cell polarization as may be induced by directed myosin motion

and/or filament treadmilling, we introduce a polar orientational order parameter field,
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P(r, t). Although we are describing a system out of equilibrium, it is convenient to

formulate the model in terms of a local free energy density f = fel + fP + fw, with

fel =
B

2
u2
kk + µũ2

ij , (5.1a)

fP =
a

2
|P|2 +

b

4
|P|4 +

K

2
(∂iPj)(∂jPi) , (5.1b)

fw =
w

2
(∂iPj + ∂jPi)uij + w′(∇ ·P)ukk , (5.1c)

Here fel is the energy of elastic deformations, with B and µ the compressional and

shear elastic moduli of the gel, respectively. Alternatively, cellular elastic constants

can also formulated in terms of Young’s modulus E and poisson ratio ν with the

relations, B = E(1 − ν)/(1 + ν)(1 − 2ν) and µ = E/2(1 + ν). uij = 1
2
(∂iuj + ∂jui)

represents the symmetrized strain tensor, with ũij = uij − 1
3
δijukk representing the

deviatoric strain tensor. The first two terms in Eq. (5.1b), with b > 0, allow the onset

of a homogeneous polarized state when a < 0; the last term is the energy cost for

spatially inhomogeneous deformations of the polarization. We have used an isotropic

elastic constant approximation, with K a stiffness parameter characterizing the cost

of both splay and bend deformations. Finally, the contribution fw couples strain and

polarization and is unique to polar systems [138, 179]. It describes the fact that in the

active polar system considered here, like in liquid crystal elastomers, a local strain is

always associated with a local gradient in polarization. Such gradients will align or

oppose each other depending on the sign of the phenomenological parameters w and

w′, which are controlled by microscopic physics. A positive sign indicates that an

increase in gel density is accompanied by a positive splay (or enhanced polarization

in one dimension). In active actomyosin systems filament polarity can be induced

by both myosin motion and actin treadmilling. If the polarization is defined as posi-

tive when pointing towards the plus (barbed) end of the filament, i.e., the direction

towards which myosin proteins walk, the forces transmitted by myosin procession

will yield filament motion in the direction of negative polarization, corresponding to

w < 0 [142]. In contrast, treadmilling, where polarization occurs at the pointed end,
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corresponds to w > 0. Density variations δρ = ρ − ρ0 from the equilibrium value,

ρ0, are slaved to the local strain according to δρ/ρ0 = −∇ · u. The stress tensor is

written as the sum of reversible and active contributions as σij = σrij + σaij, where

σrij = ∂f
∂uij

. The two contributions are given by

σrij = δijBukk + 2µũij +
w

2
(∂iPj + ∂jPi) + w′∇ ·P , (5.2a)

σaij = σaδij + αPiPj . (5.2b)

Active stresses arise because the gel is driven out of equilibrium by continuous input of

energy from the hydrolysis of ATP, characterized by the chemical potential difference

∆µ between ATP and its products. For simplicity, we assume here ∆µ to be constant,

although situations where inhomogeneities in ∆µ may arise, for instance, from inho-

mogeneous myosin distribution within the actin lamellipodium are also of interest.

The experimentally observed contractile effect of myosin corresponds to positive val-

ues of the coefficients σa and α, that characterize the isotropic and anisotropic stress

per unit ∆µ, respectively, due to the action of active myosin crosslinkers [26, 27, 144].

In polar gels there are also active stresses proportional to (∂iPj +∂jPi) [138, 182]. We

neglect these terms here as terms of similar structure already arise from the coupling

terms in fw. Finally, we note that the parameters a, w and w′ may also in general

depend on ∆µ as cell polarity is induced by ATP-driven processes. For simplicity we

keep these parameters fixed below.

In mechanical equilibrium, the condition of local force-balance translates to

∂βσαβ = 0 ,

where the greek indices take values x, y and z. For a thin cellular film we average

the cellular force-balance equation over the cell thickness h. In-plane force balance is

given by

∂jσij + ∂zσiz = 0 , (5.3)
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with i, j denoting in-plane coordinates. We assume that the top surface of the cell is

stress free, σiz(r⊥, z = h) = 0, whereas at the cell-substrate interface z = 0, the cell

experiences lateral traction stresses given by σiz(r⊥, z = 0) = Y ui(r⊥, z = 0). Here,

Y denotes the substrate rigidity parameter, representing the cell-substrate anchoring

strength, and u(r⊥, z) is the in-plane deformation field of the cellular medium. The

thickness-averaged force balance equation then reads,

h∂jσij = Y ui , (5.4)

where σij(r⊥) =
∫ h

0
(dz/h)σij(r⊥, z). It is worthwhile to mention that the assumption

of in-plane traction forces is a good approximation for fully spread stationary cells

making almost zero contact angle with the substrate. During the early stages of

spreading and migration, cells can exert appreciable out-of-plane traction forces via

rotation of focal adhesions [49]. In the following we will drop the overbar indicating

the average and refer to thickness averaged quantities throughout. The quantity

Ti = Y ui is a stress in three dimensions, i.e., a force per unit area. It describes the in-

plane traction force per unit area that the cell exerts on the substrate. The assumption

of local elastic interactions with the substrate strictly holds on elastic substrates that

are much thinner than the lateral size of the cell or on micropillar substrates. The

substrate rigidity parameter Y depends on the stiffness of the underlying substrate as

well as on the density ρf and stiffness kf of focal adhesions. For an elastic substrate

of shear modulus µs and thickness hs, Y takes the simple form, Y −1 = 1
kfρf

+ 1
µs/hs

.

A detailed calculation of the rigidity parameter Y in various limits is provided in

Chapter 7. Anisotropic substrates are not considered here, but can be described by

a generalized boundary condition where Y is a tensor quantity. Finally, variations in

the polarization are described by the equation

∂tP + β (P ·∇) P = Γh , (5.5)

with β an advective coupling arising from ATP driven processes, such as tread-

milling [138, 182], Γ an inverse friction, and h = − δf
δP

the molecular field, given
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by

hi = −
(
a+ b|P|2

)
Pi +K∇2Pi + w∂juij + w′∂iukk . (5.6)

Here β is an active velocity and is controlled by actomyosin activity.

Equations (5.4), (5.2a), (5.2b) and (5.5), subject to the boundary condition σijnj|Ω =

0, with Ω the cell boundary and n the outward unit normal on Ω, completely describe

the equilibrium of an adherent cell. As a consequence of the stress-free boundary con-

dition, the net traction force transmitted by the cell to the substrate vanishes, i.e.,∫
A
d2r Y ui =

∮
Ω
ds σijnj = 0. It is instructive to consider two limiting cases for the

anchoring strength Y . First, when the cell is rigidly anchored onto the substrate,

corresponding to Y → ∞, we find u = 0, defining the reference state for elastic de-

formations. In our model the reference cell shape is then dictated by the geometry of

the adhesion patch, which can be controlled in experiments by micropatterning sub-

strates by adhesion proteins. In contrast, when Y → 0, the cell does not adhere to

the substrate and the equilibrium state is uniformly contracted state, with a density

enhancement δρ = −∇ · u = σa(1 + ν)(1− 2ν)/E(1− ν).

5.3 Adherent cell in one dimension

5.3.1 Isotropic cell

We begin by considering the case of an isotropic cell and neglect the coupling to

polarization. For simplicity, we consider a quasi-one-dimensional model where the

cell is a thin sheet of active gel of thickness z extending from x = 0 to x = L, with

L >> h. The substrate is flat and located at z = 0. Although this is of course a gross

simplification, we will see below that it captures the substrate-induced stresses and

deformations and their dependence on substrate stiffness, as observed in experiments.
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In this 1D situation cellular constitutive relation and force balance is given by :

σ(x) = B∂xu+ σa (5.7a)

h∂xσ = Y u (5.7b)

Combining then the expression for the internal stress, σ with the force-balance con-

dition we obtain

σ = `2
p

d2σ

dx2
+ σa , (5.8)

where `p =
√
Bh/Y is a length scale controlled by the ratio of cell and substrate

stiffness, describing the length upto which traction forces penetrate inside the cell.

The solution of this equation with boundary conditions σ(x = 0) = σ(x = L) = 0 is

given by :

σ(x) = σa

(
1− cosh [(L− 2x)/2`p]

cosh (L/2`p)

)
. (5.9)

The deformation field (proportional to traction stress) is then given by

u(x) =
σa`p
B

sinh [(L− 2x)/2`p]

cosh (L/2`p)
. (5.10)

A finite activity σa 6= 0 generates stresses and deformations in the cell, as shown in

the left frame of Fig. 5.1. In an isotropic gel, both the stress and the displacement

profiles are symmetric about the cell’s mid point and the cell is uniformly contracted.

The deformation is localized near the cell’s boundaries. From the plots, it is clear

that the length scale `p determined by the ratio of cell to substrate stiffness controls

the penetration of the deformation to the interior of the cell. If `p ∼ L, corresponding

to a substrate rigidity Y ∼ Bh/L2, the active stresses and deformation extend over

the entire cell. For an isolated cell of length 10 µm, thickness 0.1 µm and elastic

modulus B ∼ 10 kPa, the substrate rigidity parameter Y can be estimated to be

∼ 10 Pa/µm. The total deformation ∆` = u(0) − u(L) grows with activity and is

shown in Fig. 5.1 (middle frame) as a function of `p/L ∼ 1/
√
Y . The contraction
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Figure 5.1: Left: stress σ(x)/σa (dashed line) and traction stress T (x) = Y u(x)/σa (solid line)

profiles as functions of the position x inside a cell of length L. Middle: the cell’s total deformation

∆` = u(0) − u(L) as a function of `p/L. In the plot the net contraction ∆` is normalized by its

maximum value σaL/B. Right: The stress σ(x)/σa (dashed line) and traction stress T (x)/σa (solid

line) profiles of a cell on a substrate a constant stiffness gradient, described by Y (x) = Y0x/L are

shown as functions of the position x inside the cell. The profiles are asymmetric and the stress is

localized near x = L where the stiffness is largest. Parameters : `p/L = 0.25

decreases with increasing substrate stiffness and saturates to a finite value for soft

substrates.

It is also interesting to consider a substrate of varying stiffness, as such substrates

can be realized in experiments [1]. We consider a constant stiffness gradient, corre-

sponding to Y (x) = Y0x/L. In this case Eq. (5.8) becomes

σ =
`2
pL

x

(
d2σ

dx2
− 1

x

dσ

dx

)
+ σa (5.11)

A closed solution can be obtained in terms of hypergeometric functions. The cor-

responding stress and displacement profiles are now asymmetric and are shown in

Fig. 5.1 (rightmost frame). The stress is largest in the region of stiffest substrate,

with a correspondingly smaller cell deformation. In other words, the largest cell de-

formation is obtained in the boundary region where the substrate is softest. In real

cells the region where the substrate is softer and the resulting stresses in the cell

are smaller may correspond to region of reduced focal adhesions. Hence the gradient

stiffness may yield a gradient in the strength of cell-substrate adhesion, providing a



5.3 Adherent cell in one dimension 98

possible driving force for durotaxis, the tendency of cells to move from softer to stiffer

regions [176, 183].

5.3.2 Polarized Cell

We now consider the case of a polarized cell, described by the full free energy f . The

cell is modeled again as a thin film of length L in the quasi-1d geometry described

earlier. We are interested in steady state configurations. In the chosen geometry

these are given by the solutions of the equations

h
dσ

dx
= Y u (5.12a)

σ = B
du

dx
+ σa + αp2 + 2w

dp

dx
(5.12b)

β′Lp
dp

dx
= K

d2p

dx2
+ 2w

d2u

dx2
−
(
a+ bp2

)
p (5.12c)

where P = p(x)x̂ and we have let w′ = w and β/(LΓ) = β′. In the following we scale

lengths with the cell’s length L and stresses with the cell’s compressional modulus B.

By combining Eqs. (5.12a)-(5.12c), we can eliminate u and rewrite them as coupled

equations for σ̃ = σ/B and p as

σ̃ =
`2
p

L2
σ̃′′ + ζ0 + ζαp

2 + w̃p′ (5.13a)

(ζβ + 2ζαw̃) pp′ = K̃p′′ + w̃σ̃′ −
(
ã+ b̃p2

)
p (5.13b)

where the prime denotes a derivative with respect to x/L, ζ0 = σa/B, ζα = α/B and

ζβ = β′/B, w̃ = 2w/BL, ã = a/B, b̃ = b/B, and K̃ = K/(BL2)−w̃. Thermodynamic

stability requires K̃ > 0. As discussed in Ref. [179] there could be possible active

contributions to the coupling w, which at high activity leads to an alternating polarity

pattern in the gel. Here we restrict ourselves to K̃ > 0.

In the absence of contractility (ζ0,α,β = 0) Eqs. (5.13a) and (5.13b) have two

homogeneous solutions that satisfy the boundary condition σ(0) = σ(L) = 0, corre-

sponding to an isotropic state for a > 0, with p(x) = u(x) = 0 and to a polarized

state for a < 0, with p(x) = p0 =
√
−a/b and u(x) = 0. In both cases σ(x) = 0.
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Figure 5.2: Stress σ(x)/B (dashed line), deformation field u(x)/L (solid line), and polarization

δp(x) = p(x)− p0 (dotted line) profiles obtained by numerical solution of Eqs. (5.13a) and (5.13b)

for two sets of boundary conditions on the polarization: p(0) = p(L) = 0 (left frame) and p(0) =

p(L) = p0 (right frame). Both plots are for `p/L = 0.25, w̃ = 4, ζ0 = ζα = ζβ = 1, ã = b̃ = 1, K̃ = 1.

For finite contractility (ζ0,α,β 6= 0), we find two qualitatively different solutions,

depending on the boundary conditions used for the polarization. When Eqs. (5.13a)

and (5.13b) are solved with boundary condition p(0) = p(L) = 0, consistent with an

isotropic state in the limit ζ0,α,β = 0, the stress is an even function of x, as shown

in the left frame of Fig. 5.2. It exhibits a maximum at x = L/2 and is symmetric

about the mid point of the cell. Both the displacement and the polarization vanish

at x = L/2 and are odd functions of x about this point. For a < 0 we solve the

nonlinear equations with boundary condition p(0) = p(L) =
√
−a/b, consistent with

a polarized state in the limit ζ0,α,β = 0. In this case the stress, deformation and

polarization profiles are all asymmetric, as shown in the right frame of Fig. 5.2. The

sign of the anisotropy is controlled by the sign of the polar coupling w. The figure

displays the case w > 0, corresponding to filament convection towards the direction

of positive polarization.

To quantify the distinct properties of these two states, we define an excess mean

polarization averaged over the cell as 〈δp〉 =
∫ L

0
dx
L

[p(x) − p0]. The excess polariza-

tion 〈δp〉 is zero for the symmetric polarization profiles obtained with the bound-
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Figure 5.3: Excess mean polarization 〈δp〉 as a function of L/`p ∼
√
Y obtained from averaging

the numerical solutions of Eqs. (5.13a) and (5.13b) for three different values of contractility ζ =

ζ0 = ζα = ζβ : ζ = 0.5 (dashed line), ζ = 1.0 (dotted line) and ζ = 1.5 (solid line). The plots are

for w̃ = 4, ã = b̃ = 1 and K̃ = 1.

ary condition p(0) = p(L) = 0, whereas 〈δp〉 obtained for the boundary condition

p(0) = p(L) =
√
−a/b is a non-monotonic function of substrate stiffness, as shown in

Fig. 5.3 for three different values of contractility. The excess polarization is largest at

a characteristic substrate stiffness, comparable to the stiffness of the cell, suggesting

that enhancement of stress fiber and resulting cell polarization may be obtained for

an optimal substrate rigidity, as reported in Ref. [66]. The excess polarization 〈δp〉
vanishes in the absence of contractile activity and its maximum value increases with

contractility.

5.4 Planar adherent cell

In this section, we investigate force distribution in planar adherent cells and study the

role of extracellular geometry in controlling cell-matrix traction forces. For simplicity,

we ignore any feedback of elastic stresses with polarization, and drop the role of P

altogether. This is the limit when polarization relaxes at a time scale faster than

internal elastic stress relaxation.
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Figure 5.4: Equilibrium cell shapes for various adhesion patterns : Circle (top left), ellipse (top

right), square (bottom left) and equilateral triangle (bottom right). The color map indicates mag-

nitude of the traction |T| = Y |u|, and the arrows demote the direction of the traction vectors. The

reference shapes for all the four patterns have an equal area of 1000 µm2. The other parameters

are: E = 1 kPa, ν = 0.4, σa = 1 kPa, µs = 10 kPa, hs = 30 µmm, h = 0.2 µm.

5.4.1 Spatial distribution of traction stresses

The spatial distribution of traction stresses exerted by cells on substrate and the

corresponding organization of stress and deformation inside the cell are affected by

the geometry of adhesive patterns. Using micropatterning techniques, cell shapes can

be constrained to adhere to controlled geometrical patterns [34, 184]. In our model

the shape determined by the pattern in the limit of infinite adhesion strength provides

the reference shape for the cell. Here we investigate four reference cell shapes: circle,

ellipse, square and equilateral triangle. These are chosen to have the same reference

area but different perimeters. The case of a circular cell can be treated analytically,

as described below. For the other shapes the force-balance equations (5.4) are solved

numerically using the MATLAB pde toolbox. We assume the contractility σa to be

uniform and of order of the cellular Young’s modulus. Heatmap of traction stresses
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are shown in Fig. 5.4. In all cases the traction stresses are concentrated at the cell

periphery, irrespective of the reference shape. The magnitude of the local traction

stress is, however, higher in regions of high curvatures or at sharp corners.

For a circular cell, Eq. (5.4) can be solved analytically. Assuming in-plane rota-

tional symmetry, it is convenient to use polar coordinates r and θ, denoting radial

and angular coordinates, and demand that no quantity depend on θ. The equation

for the radial displacement ur about a circular reference state of radius R0, is then

given by

r2∂2
rur + r∂rur − (1 + r2/`2

p)ur = 0 , (5.14)

where the penetration length `p describes the localization of traction stresses at the

cell boundary. It is given by : `2
p = Bh/Y . The penetration length is short on stiff

substrates and increases with decreasing substrate rigidity. The solution of Eq. (8.4)

with the boundary conditions σrr(r = R0) = 0 and ur(r = 0) = 0 is given in terms of

modified Bessel functions of the first kind as,

ur(r) = −σaR0

B
I1(r/`p)g(R0/`p) , (5.15)

with g(s) =
[
sI0(s)− 1−2ν

1−ν I1(s)
]−1

. As anticipated, the deformation ur vanishes for

all r when Y → ∞, when the adherent circular cell is maximally spread and has its

largest undeformed radius R0.

5.4.2 Rigidity dependent cell spreading

The optimal spread area of the cell is controlled by the interplay between cell contrac-

tility, as described by the active pressure σa, and the traction forces on the substrate.

In the case of a circular cell, where the deformation induced by adhesion is given by

Eq. (5.15), the steady state cell area is given by,

A = π(R0 + u(R0))2 , (5.16)
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Figure 5.5: Optimal shape of a triangular cell for different values of the active pressure σa and

the substrate shear modulus µs, with E = 1 kPa. The color map represents the magnitude of the

displacement vector |u| (proportional to the traction force) about an equilateral triangular reference

shape of area 1000 µm2. The cell spread area increases with increasing substrate stiffness and

decreases with increasing σa. Inset (Left) : Least-square fit of the relative cell spread area A/A∞

obtained from the model using Eq. (5.16) (solid) to the experimental data reported in Ref. [43] (solid

red circles). The fitting parameters are E = 911 Pa and σa = 1589 Pa. Inset (Right) : Relationship

between cellular Young’s modulus E and contractility σa. Here we tune σa to desired values and then

determine the fitting parameter E using data in Ref. [43]. Other parameters : ν = 0.4, hs = 30 µm,

h = 0.2 µm.

with R0 the reference radius corresponding to the maximal spread area A∞ = πR2
0

attained on an infinitely rigid substrate, where ur(r) = 0. To make contact with

experiments, we investigate the ratio A/A∞, the relative cell spread area, as a function

of substrate stiffness and contractility.

On stiff substrates, where R0 � `p, i.e., the traction stress extends over a length

much smaller than the reference cell radius, ur(R0) ' −σa`p/B. The relative spread

area then takes the simple form A/A∞ '
(

1− σa
R0

√
h/BY

)2

. Letting Y ' µs/hs, we

note that increasing substrate stiffness increases relative spread area, with A/A∞ → 1
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as µs → ∞, in qualitative agreement with experiments [43, 56, 73]. In contrast, in-

creasing the contractile pressure σa reduces the optimal cell spread area, consistent

with the experimental observation that myosin-II activity retards cell spreading [185].

To make a quantitative comparison with experiments, we fit Eq. (5.16) to experimen-

tally reported data on the projected area of cardiac myocytes cultured on N-cadherin

coated Polyacrylamide gels of varying stiffnesses [43]. Here the maximal spread area

A∞ is taken to be equal to the cell projected area on a glass substrate (shear modulus

∼ 30 GPa), which is ' 690 µm2. The fit, shown in the left inset of Fig. 6.1, is obtained

using the active contractility σa and the cellular Young’s modulus E as the fitting

parameters. A least-square fit gives us E = 911 Pa and σa = 1589 Pa. Although the

strength of contractility is likely to depend on cell type, it is worth highlighting that

the fit value for σa is of the same order of magnitude as used in later in Chapter 8 to

fit the measured value of the surface tension of a colony of epithelial cells. Next, we

tune the contractility σa, which can be artificially controlled through pharmacological

interventions, and determine the corresponding best fit value of the cellular Young’s

modulus E. Our result (Fig. 6.1, right inset) indicates a linear relationship between

the cellular Young’s modulus and the contractile stress. There are indeed experi-

mental data available [186] that show that the cell stiffness increases linearly with

contractility for adherent cells. This suggests that our model could be used to infer

contractility from measurements of cellular stiffness. Figure 6.1 also demonstrates the

competing roles of contractility and adhesion in controlling optimal cell shapes for a

chosen triangular reference state. On softer substrates the triangular cell retains its

topology and contracts by an amount proportional to σa, whereas on stiffer substrates

the corners tend to form protrusions.

5.4.3 Curvature-induced traction

When the boundaries of the adhesion pattern exhibits non-uniform curvature, the

traction stresses are higher at regions of high curvatures. This is seen for example
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Figure 5.6: (a) Force-balance on a thin slice of cellular material at the cell boundary. (b) Force-

balance at a generic sharp corner with opening angle φ. (c) Traction stress magnitude at the cell

edge as a function of the local curvature κ for the elliptical cell of Fig. 5.4.

in Fig. 5.4 for the case of an elliptical reference shape. To justify this we propose

a simple analytical argument based on local force balance. Consider a thin slice of

cellular material at the cell periphery of width comparable to penetration length `p

and arc length R∆θ much less than the cell perimeter (Fig. 5.6(a)), with 1/R the

local curvature of the cell element. At the outer edge of this element, the only force

on the cell is the reaction to the traction by the cell on the substrate traction, of areal

density −T, with T = Y u. This yields an outward total force on the outer edge of

the cell element of magnitude TR∆θ`p, with T > 0. At the interior edge, the cellular

element experiences a contractile force of magnitude σn(R− `p)∆θ`p, where σn is the

normal stress pulling the inner contour inwards and has contributions from active as

well as passive elastic stresses. The lateral stresses σt contributes to an effective line

tension σt`pR∆θ of the cell element. Due to the curvature of the boundary element,

the line tension generates an inward Laplace pressure of magnitude σt`p/R. Local



5.4 Planar adherent cell 106

balance of forces then yields,

TR∆θ`p − σn(R− `p)∆θ`p = R∆θ`pσt
`p
R
. (5.17)

The above law can be written down in a compact form as,

T = σn + (σt − σn)`pκ , (5.18)

with κ = 1/R, the local curvature of the boundary element. Equation (5.18) then

tells us that local magnitude of traction increases linearly with increasing boundary

curvature. The lateral and normal stresses σt and σn can be expressed in terms of the

local cellular stresses in polar coordinates as σt = σθθ−∂θσrθ and σn = σrr. The linear

dependence of T on κ strictly holds in the limit `pκ� 1. In addition, non-local elastic

interactions can also affect the dependence of traction magnitude on local curvature.

Figure. 5.6(c) shows the dependence of the magnitude of the traction stress at the

cell boundary on local curvature for an elliptical cell as shown in Fig. 5.4. For low κ,

the traction stress magnitude increases linearly with κ before reaching a plateau at

higher values of κ.

When the cell boundary exhibits a sharp corner with opening angle φ, as shown

in Fig. 5.6(b), the local force-balance is given by,

T = σn + 2σt cos (φ/2) , (5.19)

where σn acts along the bisecting line of the corner. Hence smaller the opening angle,

the larger is the traction force.

5.4.4 Mechanical anisotropy is linked to geometric anisotropy

The spatial distribution of internal stresses σij within the cell depends on cell shape,

which is in turn controlled by the geometry of the adhesive region. Experimentally

σ(x, y) can be obtained from the measured distribution of traction stresses T(x, y),

inverting the local force-balance condition ∂jσij = Ti [87]. The elasticity equations
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Figure 5.7: Cell shape anisotropy correlates with internal stress anisotropy. (a) Heatmap of internal

compressive stress σ (left) and maximum shear stress σs (right) corresponding to various reference

shapes : circle, ellipse, square and equilateral triangle. The reference shapes all have an equal area

of 1000 µm2. (b) Average maximum shear σ̄s as a function of eccentricity e for elliptical cells of

same reference area (1000 µm2). Equilibrium shapes with colorplot of µ are given as plot markers.

Parameters : E = 1 kPa, ν = 0.4, σa = 1 kPa, µs = 10 kPa, hs = 30 µm, h = 0.2 µm.
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can be recast as a single partial differential equation for the internal stress tensor σij,

given by

`2
p [∂i∂kσkj]

S + δijσa = σij +
1− 2ν

ν
δij (σkk − 2σa) , (5.20)

where [...]S denotes symmetrization with respect to indices that are not summed over,

i.e., [∂i∂kσkj]
S = 1

2
[∂i∂kσkj + ∂j∂kσki]. We have investigated numerically the solution

of Eq. (5.20) with stress free boundary condition σijnj = 0. To understand the role

of shear and compressional deformations in different geometries, it is instructive to

diagonalize the stress tensor and display the results in terms of linear combinations of

the eigenvalues σ1 and σ2. The sum σ = 1
2
(σ1+σ2) is simply half the trace of the stress

tensor and describes compressional deformations. The difference σs = 1
2
|σ1 − σ2| =√

[σxx − σyy]2 + 4σ2
xy, is controlled by normal stress σxx − σyy and shear stress σxy.

For an isotropic reference shape, such as the circle, σ1 = σ2 and σs = 0, whereas

for anisotropic shapes such as the ellipse, one expects nonzero values for the local

maximum shear σs.

Fig. 5.7(a) shows heatmaps of the spatial distribution of σ and σs for various

reference shapes - circle, ellipse, square and equilateral triangle. Irrespective of the

shape of the adhesion geometry, σ is maximum at the cell center, indicating build-up of

compressive stresses. The compressional stress σ always vanishes at the boundary, and

it does so more rapidly at regions of high curvature or at sharp corners. In contrast,

the shear stress σs is identically zero for isotropic shapes, defined as those that have

a gyration tensor that is diagonal, with equal eigenvalues. The circle, triangle and

square are all in this class. Local stress anisotropy as measured by σs is nonzero for

elliptical shapes and shear stresses build up at the center of the ellipse. The shape

anisotropy of ellipses can be quantified by their eccentricity e =
√

1− (b/a)2, with a

and b the semi-major and semi-minor axes. Figure 5.7(b) shows the spatial average

of σs over the area A of the cell, defined as σ̄s = 1
A

∫
A
d2r σs, as a function of the

eccentricity e. The average shear stress σ̄s increases with e with a sharp rise as e→ 1,

indicating a positive relationship between geometrical and mechanical anisotropy in
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adherent cells. Our theoretical model thus confirms the experimental result that cell

mechanical anisotropy increases with increasing aspect ratio, as previously reported

for single endothelial cells with the same spread area [39].

In summary, we have proposed a continuum model of an adherent cell on a sub-

strate as an active contractile medium to study the role of adhesion geometry in

controlling cell shape, cell spreading and the spatial distribution of traction stresses.

More realistic future modeling should take into account that a cell is a highly het-

erogeneous material with spatially varying stiffness [187]. It is however intriguing to

note that the simplified assumption of homogeneity and isotropy in the underlying

cytoskeletal network can reproduce several of the known experimental results. The

central input of the model is the cell contractility or activity σa, a negative contribu-

tion to the pressure that enters the constitutive equation for the cellular material. In

general, σa will be determined by the concentration and activity of myosin proteins

cross linking the actin cortex and controlling the formation of stress fiber. In our

model σa is assumed to be a constant parameter, to be determined by fitting exper-

iments. We consider cells adhering to flat substrates that have been patterned with

adhesive patches, consisting for instance of fibronectin coatings, of specific geometry

and examine the role of the geometry of the adhesive patch in controlling the spatial

distribution of stresses in the cellular material. The reference state for our cell is

the limit of infinitely strong adhesion, where the cell shape and lateral extent and

determined entirely by the shape and size of the adhesive patch. For finite adhesion

strength, cell elasticity and contractility yield deviations form this reference state.

We restrict ourselves to considering continuous or densely spaced adhesion sites. As

discussed in the next chapter, for discrete or sparsely distributed adhesion sites, non-

adherent segments in the cell boundary could likely exhibit morphological transitions

induced by contractile activity and substrate stiffness. In agreement with experimen-

tal observations, we find that cells spread more on stiff substrates and we provide an

expression for the cell area versus substrate stiffness for the case of a circular cell.
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We show that this expression fit the data for spread areas of cardiac myocytes on

substrates of various sitffness values. We demonstrate analytically and numerically

that strong traction stresses correlate with regions of high cell boundary curvature,

in agreement with experimental observations. Further, as reported in experiments

on single endothelial cells, our model demonstrates that cell mechanical anisotropy is

higher on elongated cells than on rounded ones for fixed area [39].

Understanding the relation between cell morphology, the cell’s mechanical re-

sponse and cell fate is an important question in cellular biophysics. Our simple

model highlights the correlation between the geometry of adhesion sites and cell mor-

phology and demonstrates that traction forces by cells can be tuned by controlling

the geometry of adhesive regions. An important open question not addressed by our

model is how cell morphology is determined by the interplay of cell-substrate adhesion

and dynamical reorganization of the cytoskeletal architecture in response to the ad-

hesion stimulus. To understand this it will be necessary to incorporate the dynamical

feedback between actin reorganization and adhesion kinetics.
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Chapter 6

Optimal Shapes of Adherent Cells

Cellular response to extracellular determinants is strongly linked to myosin dependent

activity of the cell cytoskeleton [188]. While myosin activity can influence force trans-

mission by regulating the growth of focal adhesions [189], it can also drive changes in

cell morphology, as seen by pharmacologically disrupting the cell cytoskeleton [70, 190]

or by inhibiting myosin-II activity [34]. In this chapter we present a minimal mechano-

geometric model for isolated adherent cells that addresses a fundamental question in

cell mechanics and morphogenesis: How do intercellular and extracellular forces co-

operate to control the geometry of cell shapes? At time scales when the cell is fully

spread and develops stronger focal adhesions, the dominant forces in the cell stem from

surface tension induced by actomyosin contractility and elasticity in the actomyosin

cortex. These intracellular forces act in opposition to receptor-mediated adhesive

forces in determining optimal cell shapes [191, 192]. Although chemical pathways can

trigger a feedback between cell activity and cell-substrate adhesion [193], we instead

focus on their mechanical cooperativity in regulating cell shapes. Tuning stiffness of

the matrix and acto-myosin contractility, we discuss how cells can be driven through

a series of morphological transitions - convex, concave, cusps and protrusions with

associated hysteresis. In addition, we provide several analytical results relating ge-

ometrical properties of cells e.g. curvature, spread radius to mechanical properties
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such as substrate stiffness and contractile surface tension, that are amenable to ex-

perimental verification and quantitative comparison.

6.1 Contractile Film Model

We consider a thin film of an adherent cell subject to internal contractile forces. The

shape of the cell contact line is parametrized by the contour r(s), where s represents

arc-length. The total mechanical energy of the cell can be approximated, on the basis

of symmetry arguments, in the form:

E = γ

∫
dA+

∮
ds
(
bκ2 + λ

)
+ ks

∮
ds ρ |r − r0|2 , (6.1)

where γ is the effective surface tension in the cell due to cytoskeletal contractility,

κ is the local curvature of the cell boundary, b the associated bending rigidity and

λ represents line tension at the cell boundary. The last term in Eq. (6.1) represent

the strain energy induced by the cell on a substrate of stiffness ks through focal

adhesions localized at the cell edge, with density ρ(s), so that the total number of

adhesions is NA =
∮
dsρ. For cells adhering to a thin continuous substrate, r0 can be

considered as the position of the cell boundary once the cell is fully spread and forces

are predominately contractile, while for cells cultured on elastomeric pillars, this is

simply the pillar’s rest position at the adhesion points. In the analytical framework

presented here, we will generally treat the reference shape as an adjustable parameter

to investigate different experimental situations.

The model assumes that the overall effect of acto-myosin contractility, that pulls

the cell contour inwards reducing its contact area with the substrate, can be described

by an effective surface tension γ. Thus the first term in Eq. (6.1) should not be

interpreted as the classic hydrostatic tension that occurs at the interface between

two fluids, but as an active normal stress resulting from the action of the motors.

In order to estimate the order of magnitude of γ, we assume that the active myosin

motors cross-linked with the cortical F-actin gel of mean thickness h ' 0.1 µm,
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are distributed with an average areal density ρm ' 104µm−2, with effective stiffness

km ' 1 pN/nm and mean stretch ∆m ' 1 nm [2]. Surface tension γ can then be

estimated as γ ' hρmkm∆m ' 1 nN/µm. This estimate comes to the same order of

magnitude as reported for endothelial cells [71, 72] and epithelial cells [104].

The second term in Eq. (6.1) describes the elasticity of the cell cortex. This

consists of a bending energy density bκ2, reflecting the resistance of cortical actin in

response of a change in curvature, and an effective line tension λ that, similarly to

the bulk tension γ, embodies the contractile forces due to the actin fibers lining the

cell periphery [71, 194]. The Euler-Lagrange equations for the shape that minimizes

the energy (6.1) can be derived with standard methods [195, 196]. This yields:

b
(
2κ′′ + κ3

)
− λκ− γ + 2ksρ(r − r0) · n = 0 (6.2)

Here prime denotes derivative with respect to arc-length s and n = r′′/|r′′| is the

normal vector. Eq. (6.2) expresses the balance between the total stress acting on a

cross-section of the cortex and the body force K = 2ksρ(r − r0) due to adhesion:

d

ds
(F +Σ +Λ) +K = 0 (6.3)

where F = bκ2t + 2bκ′n (with t the tangent vector) is the elastic stress resultant,

Σ = −γ[(r ·t)n−(r ·n)t] is the stress contribution of bulk contractility and Λ = −λt
that of peripheral contractility.

Previous theoretical models [70, 71, 194] have analyzed the competition of bulk

and peripheral contractility and ignored the bending elasticity of the actin cortex (i.e.

b = 0). In analogy with the Laplace law of capillarity, the steady state cell contour is

then described by concave circular arcs of radius λ/γ connecting adhesion sites. Here

we focus on the opposite limit and consider the regime in which the force balance is

dominated by the competition between cortex elasticity and bulk contractility, while

the effect of peripheral contractility is negligible (i.e. λ = 0). In this scenario, the

curvature is generally non-uniform, especially in the neighborhood of adhesion sites.

As we will see in the remainder of this chapter, incorporating bending elasticity leads
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Figure 6.1: Relative cell size R/R0 as a function of substrate stiffness ks (solid black circles) for

smooth muscle cells, 4 hours after plating on continuous elastic gels [52]. Cell radius is estimated

from the projected cell area reported in [52] as R =
√

area/π. Substrate stiffness ks is determined

from substrate Young’s modulus Es as : ks = aEs, where a is the characteristic focal adhesion size,

with a ∼ 1 µm. Solid (red) line represents the solution to Eq. (6.4) with γ = 1.05 nN/µm and

b/R3
0 = 0.16 nN/µm.

to an extremely rich polymorphism and allows for a transition from purely convex

to purely concave cell shape reminiscent of that observed in experiments on cardiac

myocytes [43].

6.1.1 Continuous adhesions

In this case the periphery of the cell forms contact with a single continuous adhesion

site, so that ρ = 1/L with L =
∮
ds the perimeter of the cell. In presence of a uniform

and isotropic substrate, we can assume the reference configuration to be a circle of

radius R0 so that a natural minimizer of the energy (6.1) would be a circle or radius

R. Thus, setting λ = 0, κ = R−1 and ρ−1 = 2πR in Eq. (6.2) yields the following

cubic equation:

(ks + πγ)R3 − ksR0R
2 − πb = 0 , (6.4)
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The equation contains two length scales, R0 and ξ = (b/γ)1/3, and a dimensionless

control parameter ks/γ expressing the relative amount of adhesion and contraction.

For very soft anchoring ks � γ and Eq. (6.4) admits the solution R = ξ. Thus in

non-adherent cell segments, corresponding to the limit ks = 0, radius of curvature

scales with surface tension as R ∼ γ−1/3. The same scaling law is also predicted

using active cable network models of an adherent cell [180]. If the cell is rigidly

pinned at adhesion sites, ks � γ and R → R0. For intermediate values of ks/γ the

optimal radius R interpolates between ξ and R0 and is an increasing function of the

substrate stiffness ks, in case ξ < R0, or a decreasing function if ξ > R0. For ξ = R0,

the lower and upper bound coincide, and the solution is R = R0. In particular,

the case R0 > ξ reproduces the experimentally observed trend that cell projected

area increases with increasing substrate stiffness before reaching a plateau at higher

stiffnesses [43, 52, 73]. We fit the solution to Eq. (6.4) to the measured projected

areas of smooth muscle cells (SMCs) adhering to continuous elastic gels of varying

substrate elastic modulus [52], as shown in Fig. 6.1. Data for the spread area of

SMCs are taken 4 hours after plating onto the substrate, when they retain rounded

morphologies. The fitted value for surface tension γ = 1.05 nN/µm comes to the

same order of magnitude as reported for endothelial cells [71, 72], epithelial cells [104]

and is consistent with the numerical estimate provided earlier. The fit also provides

a value for the bending rigidity b = 4.62× 10−16 Nm2. The asymptotic behavior and

various limits of the solution are well captured by the interpolation formula:

R ≈ ksR0 + 3πγ ξ

ks + 3πγ
(6.5)

indicating that larger surface tension, hence larger cell contractility γ leads to lesser

spread area, consistent with the experimental observation that myosin-II activity

retards the spreading of cells [185]. Standard stability analysis of this solution under

a small periodic perturbation in the cell radius shows that the circular shape is always

stable for any values of the parameters γ, ks and R0.
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(a) 

ksR
3
0/b

(b) (c) 

Figure 6.2: Cell anchored onto three pointwise adhesions located at the vertices of an equilateral

triangle. (a) The total cell length L as a function of adhesion stiffness. For small stiffnesses the cell

boundary form a curve of constant width (lower inset) and L = πw, with w the width of the curve.

This property breaks down for larger stiffnesses when inflection points develops (upper inset). The

curvature (b) and the tangent angle (c) as function of arc-length for γR3
0/b = 10, ksR

3
0 = 50 and

NA = 3. The circles are obtained from a numerical minimization of a discrete version of the energy

(6.1), while the solid lines are obtained respectively from our analytical approximation.

6.1.2 Discrete adhesions

For cells adhering to discrete number of adhesion sites, one can show that the circu-

lar solution for the cell boundary is never stable and there is always a non-circular

configuration with lower energy. For simplicity, we assume that NA adhesion sites

are located at the vertices of a regular polygon of circumradius R0, with density

ρ(s) =
∑NA−1

i=0 δ(s− iL), and L the distance between subsequent adhesions. Optimal

cell shape is given by the solution of the equation:

b
(
2κ′′ + κ3

)
− γ + 2ks

NA−1∑
i=0

δ(s− iL) (r − r0) · n = 0 . (6.6)

Due to the NA-fold symmetry of the adhesion sites, adhesion springs stretch by

an equal amount ∆ in the direction of the normal vector: (ri − r0i) · ni = ∆,

i = 1, 2 . . . NA. As a consequence of the localized adhesion forces, the curvature

is non-analytical at the adhesion points. Integrating Eq. (6.6) along an infinitesimal

neighborhood of a generic adhesion point i, one finds the following condition for the

derivative of the curvature at the adhesion points:

κ′i = −ks
2b

∆ . (6.7)
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The local curvature of the segment lying between adhesion points is on the other

hand determined by the equation b (2κ′′ + κ3)−γ = 0, with the boundary conditions :

κ(iL) = κ((i+1)L) = κ0. Without loss of generality we consider a segment located in

s ∈ [0, L]. Although an exact analytic solution of this nonlinear equation is available

(see Ref. [197]), an excellent approximation can be obtained by neglecting the cubic

nonlinearity (Fig. 6.2b-c). With this simplification, Eq. (6.6) admits a simple solution

of the form:

κ(s) = κ0 +
γ

4b
s(s− L) . (6.8)

Eqs. (6.8) and (6.7) immediately allow us to derive a condition on the cell perimeter:

L = 2ks∆/γ. Furthermore, the latter condition leads to a linear relation between

traction force T = 2ks∆, and cell size :

T = γL , (6.9)

which is indeed observed in traction force measurements on large epithelial cells [104].

To determine the end-point curvature κ0, we use the turning tangents theorem for

a simple closed curve [198], which requires
∫ L

0
ds κ = 2π/NA. This leads to following

relation between local curvature and segment length, or equivalently traction force,

at the adhesion sites :

κ0 =
γL2

24b
+

2π

NAL
=

T 2

24 bγ
+

2πγ

NAT
. (6.10)

Finally, to determine the optimal length of the cell segment L, we are going to

make use of a remarkable geometrical property of the curve obtained from the solution

of Eq. (6.6) with discrete adhesions: the fact of being a curve of constant width [198].

The width of a curve is the distance between the uppermost and lowermost points on

the curve (see lower inset of Fig. 6.2a). In general, such a distance depends on how

the curve is oriented. There is however a special class of curves, where the width is

the same regardless of their orientation. The simplest example of a curve of constant

width is clearly a circle, in which case the width coincides with the diameter. A
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fundamental property of curves of constant width is given by the Barbier’s theorem

[198], which asserts that the perimeter L of any curve of constant width is equal to

width w multiplied by π: L = πw. As illustrated in Fig. 6.2a, this is confirmed by

numerical simulations for low to intermediate values for contractility and stiffness.

With our setting, the cell width is given by:

w = (R0 −∆)(1 + cos π/NA) + h(L/2) , (6.11)

where h(s) =
∫ s

0
ds′ sin θ(s′) is the height of the curve above a straight line connecting

subsequent adhesions and

θ(s) =

∫ s

0

ds′ κ(s′) = θ0 + κ0s+
γ

24b
s2(2s− 3L) (6.12)

the angle formed by the tangent vector with the x−axis of a suitable oriented Carte-

sian frame (Fig. 6.3b). For small angles h can be approximated as : h(s) ≈ s(L −
s) [π/(NAL)− (γ/48b) s(L− s)]. Using this together with Eq. (6.11) and the Bar-

bier’s theorem with L = NAL allow us to obtain a quartic equation for the cell length

and the traction force, whose approximate solution is given by:

T ' γR0(
g0 + γ

2ks

)[
1 +

7γR3
0

bg1

(
g0 + γ

2ks

)−4
]1/7

, (6.13)

where, g0 = (4N2
A−π2)/ [4πNA(1 + cos π/NA)] and g1 = 768(1+cosπ/NA). Eq. (6.13)

supports the experimental trend that traction force increases monotonically with

substrate stiffness ks before plateauing to a finite value for higher stiffnesses [56, 161].

The plateau value increases with increasing contractility (Fig. 6.4a). Traction force

grows linearly with increasing contractility for γR3
0/b � 1, before saturating to the

value 2ksR0 at large contractility γR3
0/b � 1, as shown in Fig. 6.4b. Eq. (6.13)

is also consistent with experimentally observed trend that reducing contractility by

increasing the dosage of myosin inhibitor Blebbistatin, leads to monotonic drop in

traction forces [161].
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Figure 6.3: Cell anchored onto three pointwise adhesions located at the vertices of an equilateral

triangle. (a) γ < γc1, cell contour is everywhere convex with constant width. (b) γ = γp, cell contour

is purely concave with cusps at adhesion points and without protrusions. (c) γ > γc2, cusps are

connected to the substrate by means of a protrusion of length `.

In the calculation presented in this section we have neglected the contribution of

peripheral contractility embodied in the effective line tension λ. From the point of

view of force balance, increasing λ has the effect of rotating the stress resultant toward

the tangential direction. This creates a boundary layer between the adhesion points,

where the curvature κ0 is dictated by the balance between adhesion and bending, and

the central region, where the curvature κ ≈ γ/λ is dominated by the balance between

normal and tangential contractility. The size of the boundary layer is approximatively√
b/λ.

6.2 Inflections, cusps and protrusions

For low to intermediate values of γ and ks, cell shape is convex and has constant width.

Upon increasing γ above a ks−dependent threshold γc1, however, the cell boundary

becomes inflected (see Fig. 6.5 and upper inset of Fig. 6.2a). Initially a region of

negative curvature develops in proximity of the mid point between two adhesions, but

as the surface tension is further increased, the size of this region grows until positive

curvature is preserved only in a small neighborhood of the adhesion points. Due to

the presence of local concavities, the cell boundary is no longer a curve of constant

width. Convex and concave regions are separated by inflection points, given by the
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Figure 6.4: Traction force as a function of substrate stiffness (a) and contractility (b) obtained

from a numerical minimization of a discrete analog of Eq. (6.1). Solid curves denote the approximate

traction values obtained from Eq. (6.13). (c) Boundary length L obtained by increasing (squares)

and then decreasing (triangles) the contractility for substrate stiffnesses ksR
3
0/b = 100 (green squares,

black triangles) and ksR
3
0/b = 120 (red squares, blue triangles). The diagram shows bistability in

the range γp < γ < γc2. (d) The critical contractility γc1 and γc2 as functions of substrate stiffness.

solution to κ = 0, or explicitly: s2 − Ls + 4bκ0/γ = 0. In order for this equation to

have real solutions one needs γL3 > 96πb/NA. Fig. 6.4d shows γc1 as a function of

ks.

Upon increasing γ above a further threshold value γc2, the inflected shape collapses

giving rise to the star-shaped configurations shown in upper right corner of Fig. 6.5.

These purely concave configurations are made by arcs whose ends meet in a cusp.

The cusp is then connected to the substrate by a protrusion consisting of a straight

segment of length ` that extends until the adhesion point rest position, so that ∆ ≈
0 (Fig. 6.3c) (see Appendix B). The cell boundary becomes pinned at adhesion

sites as a result of having to satisfy force-balance, Eq. (6.6), and adhesion-induced

boundary condition, Eq. (6.7), while accommodating large contractile tensions at its

neighbourhood. This results in spontaneous expansion in the cell perimeter. Unlike
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the previous transition from convex to non-convex shapes, this second transition

occurs discontinuously and is accompanied by a region of bistability in the range

γp < γ < γc2, where γp < γc2 is the value of γ at which the protrusions have zero

length and the shape of the cell is that sketched in Fig. 6.3b. This is clearly visible in

the hysteresis diagram in Fig. 6.4c showing the optimal length obtained by numerically

minimizing a discrete analog of Eq. (6.1) in a cycle and using as initial configuration

the output of the previous minimization. The onset of bistability is regulated by

substrate stiffness as shown in Fig. 6.4d, with stiffer substrates promoting transition

to cusps at lower γc2. Away from the protrusion, the curvature has still the form given

in Eq. (6.8), with κ0 = 0 so that the boundary is everywhere concave or flat and the

bending moment M = 2bκẑ does not experience any unphysical discontinuity at the

protrusion’s origin.

From the shape of the cell at γ = γp we can construct all the shapes at γ > γp by

mean of a similarity transformation. To see this, let us set ` = 0 at γ = γp so that the

shape of the cell will be of the kind illustrated in Fig. 6.3b. In the following we will

refer to this as the reference shape. The approximated expression for the curvature

is the same as given in Eq. (6.8), but with κ0 = ∆ = 0 and κ′ unconstrained since

the last term in Eq. (6.6) vanishes identically. The quantities γp and the length Lp

of the reference shape are left to determine. To achieve this, a first condition can be

obtained by observing that: x(Lp/2) = R0 sin π/NA, where x(s) is the projection of

the curve on the edge of the circumscribed polygon (see Fig. 6.3b). A second condition

is given by the theorem of turning tangents for a simple closed curve with NA cusps:∫ Lp
0
ds κ = π(2 − NA)/NA. In the case NA = 3, for instance, the right-hand side is

equal to −π/3, corresponding to the fact that the tangent vector rotates clockwise by

60◦ as we move counterclockwise along the curve from one cusp to the next. These
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Figure 6.5: Phase diagram in γ-ks plane showing optimal configuration obtained by numerical

minimization of the energy (6.1) for NA = 3.

allow us to approximate:

Lp ≈
2NAR0

π(NA − 2)
sin

π

NA

, (6.14a)

γp ≈
3bπ4

R3
0 sin3 π

NA

(
NA − 2

NA

)4

, (6.14b)

which define the reference shape shown in Fig. 6.3b.

Next, following Ref. [199, 200], we notice that the force balance equation 2κ′′ +

κ3 − γ/b = 0 is invariant under the scaling transformation:

(s, κ, γ)→
(

Λ s,
κ

Λ
,
γ

Λ3

)
. (6.15)

Consequently, the equilibrium shape obtained for a given value of γ > γp are similar

to the reference shape with a scaling factor Λ = (γp/γ)1/3 < 1. Accordingly, the closed

curve is rescaled so that L = ΛLp and A = Λ2Ap with Ap the area of the reference

shape. This beautiful geometric property immediately translates into the following

algorithm to construct shapes with protrusion (Fig. 6.3c): 1) Given the surface



6.2 Inflections, cusps and protrusions 123

tension γ > γp we calculate the scaling factor Λ. 2) We rescale the reference curve so

that L = ΛLp. 3) Finally, we fill the distance between the adhesion points and the

cusps with straight segments of length ` = R0(1−Λ) (since R0 is the circumradius of

the reference shape and ΛR0 that of the rescaled shape). This latter step, ultimately

allows us to formulate a scaling law for the length of protrusions that can be tested

in experiments:

`/R0 = 1− (γp/γ)1/3 . (6.16)

It should be stressed that our knowledge of the convex/concave transition is still

very preliminary. This instability is different from the classical Euler buckling [201],

which originates from the trade-off between compression and bending and is a su-

percritical pitchfork bifurcation. The appearance of cusps is reminiscent, to some

extent, of the sulcification instability in neo-Hookean solids [202–205], but there is far

from being a precise mapping. One of the fundamental aspects that distinguishes our

model form classical elasticity relies on the fact that the perimeter is not hardly con-

strained, but only subject to a soft constraint by mean of the adhesion springs. The

length of an elastic object affects its overall flexibility (i.e. long filaments are floppy

and easy to bend, while short filaments are stiff), thus, when the effective surface

tension is increased, the whole cell boundary becomes shorter and stiffer. Because

stiff materials are difficult to bend, but easy to break, a possible interpretation could

be the following. For sufficiently large adhesion, increasing the surface tension has

the effect of bending and stiffening the cell boundary in proximity of the adhesion

sites, until, above a certain surface tension, the cell boundary is too stiff to continue

bending and fractures. The cracks are localized at the adhesion points, where the cur-

vature initially focuses, giving rise to the cusps observed in the simulations. However,

a thorough understanding of this phenomenon remains a challenge for the future.
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Appendix 6.A Numerical simulations

The data shown in Figs. 6.1 and 6.4a,b,d have been obtained by numerically mini-

mizing the following discrete version of the energy (6.1):

E1 =
γ

2

N−1∑
i=1

(xiyi+1 − xi+1yi) + b

N∑
i=1

〈si〉κ2
i + ks

NA∑
i=1

|ri − r0i|2 (6.17)

where the first term corresponds to the area of the irregular polygon of vertices

ri = (xi, yi), with i = 1 2 . . . N , and the third sum represents the energetic con-

tribution of the NA adhesion points. κi is the unsigned curvature at the vertex i:

κi = |ti − ti−1|/〈si〉 with ti = (ri+1 − ri)/|ri+1 − ri| the tangent vector at i and

〈si〉 = (si + si−1)/2, with si = |ri+1 − ri|. The discrete energy (6.17) was mini-

mized using a standard conjugate gradient algorithm. Using (6.17) allows a direct

comparison between simulations and the analytical results presented in the previous

sections. However, for very large substrate stiffness, the discrete curve develops self-

intersections and the energy becomes ill-defined. In this regime, it is more convenient

to approximate the cell as a simplicial complex consisting of mesh M of equilateral

triangles. The edges of the triangles can then be treated as elastic springs of zero

rest-length, so that the total energy of the mesh is given by:

E2 = Σ
∑
e∈M

|e|2 + b
∑
v∈∂M

〈sv〉κ2
v + ks

NA∑
i=1

|ri − r0i|2 (6.18)

where v and e represent respectively the vertices and the edges of the mesh and Σ is

a spring constant. If the triangles in the mesh are equilateral, this yields a discrete

approximation of the interfacial energy γA, with the spring stiffness proportional to

the surface tension: i.e. γ ≈ 4Σ
√

3/(2− B/E), where B/E is the ratio between the

number of boundary edges B and the total number of edges E of the triangular mesh

[196].
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Figure 6.6: Example of singular points: kink (left), cusps (center), protrusion (right). The red dot

indicated the adhesion point rest position a, while ∆̂ = (r − r0)/|r − r0|. For a cusp n ·∆ = 0,

while for a protrusion, the normal vector is undefined at the point of adhesion.

Appendix 6.B Kinks, cusps and protrusions

We present here some additional mathematical aspect on the occurrence of cusps and

formation of protrusions in the large contractility and stiffness regime. In particular

we show that the shape consisting of NA cusps that extend until the adhesion rest

point through a set of straight protrusions, is the only regular convex NA-fold star

shape to be mechanically stable within the Contractile Film Model.

A kink is a singular point on a curve where the tangent vector switches discontin-

uously between two orientations (Fig. 6.6, left). The magnitude of the discontinuity

can be measured from the external angle φ. A cusp, is a kink with φ = π, so that the

tangent vector switches between equal and opposite orientation (rotation by a larger

angle would give rise to self-intersections). In the case of a simple closed curve with

kinks, the theorem of turning tangents can be reformulated as follows:∮
ds κ+

∑
i

φi = 2π , (6.19)

where the summation runs over all the kinks. In the case of a convex polygon, for

instance, κ = 0 and (6.19) asserts that the sum of the external angle of a polygon

is equal to 2π. In a convex NA-fold star, the external angle is bounded in the range

φ ∈ [2π/NA, π], where φ = 2π/NA corresponds to a regular polygon. As described in
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the main text, Euler-Langrange equation for cellular force-balance is given by:

b(2κ′′ + κ3)− γ + 2ks

NA∑
i=1

δ(s− si)(r − r0) · n = 0 . (6.20)

Let s1 = 0 be the position of a generic adhesion point. Then, integrating Eq. (6.20)

in the range s ∈ [−ε, ε] and taking the limit ε→ 0 yields:

2bκ′(0) + ksn(0) ·∆(0) = 0 , (6.21)

which expresses that the elastic restoring force originating in the boundary must

balance the body force ksn ·∆ due to the adhesion spring. For a kink, as that shown

on the left of Fig. 6.6, n ·∆ = ∆ cos(π − φ/2) = −∆ cos(φ/2), force balance gives

us:

κ′(0) =
ks
2b

∆ cos(φ/2) , (6.22)

Now, in a configuration consisting of a regular convex NA-fold star, the signed curva-

ture is everywhere negative and has single minimum at the midpoint between kinks.

The latter property implies κ′(0) < 0, which however contradicts Eq. (6.22) being

the right-hand side always positive for any positive value of ks, b and ∆. From this

we conclude that such a configuration cannot be a possible equilibrium shape.

In the case of a cusp, n ·∆ = 0 and the adhesion force is all exerted along the

tangent direction, hence κ′(0) = 0. Using the full nonlinear equation it can be shown

that Eq. (6.20) has no solution with κ′(0) = 0 that satisfies (6.19) with φ = π. The

only case left is then that illustrated on the right of Fig. 6.6, in which the cusp

extends through a straight protrusion until the adhesion rest position, so that ∆ = 0.

In this configuration, the adhesion force exerted by the substrate is zero and so is the

elastic force acting in the protrusion, this being straight. In other words, the cell is

pinned at the adhesion rest position while the elastic force is zero. The case in which

the protrusion has zero length, is a special instance of this scenario from which one

can construct all the shapes having nonzero protrusion length by mean of a similarity

transformation.
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Chapter 7

Cohesive Cell Layers on Elastic

Substrates of Finite Thickness

7.1 Non-local cell-substrate interactions

In this chapter we examine the effect of substrate thickness and stiffness on traction

forces exerted by strongly adherent cell layers. We build on the model introduced in

Chapter 5, where we described the cell or cell layer as a contractile elastic medium,

with local elastic response of the substrate (as appropriate for micropillar arrays or

very thin substrates). In contrast, here we consider substrates of finite thickness

where the nonlocality of the elastic response must be included. It is found that trac-

tion stresses by isolated fibroblasts and epithelial cells on pillar arrays are localized

near the cell edge, while contractile stresses (referred to below as cellular stresses)

build-up inside the cellular material and is largest near the cell center [46, 56], as

shown schematically in Fig. 7.1. This behavior, also observed in adherent cell sheets

and in migrating cell colonies [85, 206], is predicted by our model. Further, both

substrate thickness and stiffness affect cellular and traction stresses [207]. The mag-

nitude of the traction stress increases with substrate stiffness, saturating at large

stiffness [56], and it decreases sharply with substrate thickness, indicating that cell
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Figure 7.1: Schematic of a cell layer of lateral extent L and thickness hc << L adhering to a

substrate of thickness hs. The build-up of contractile stress σ in the cell layer is indicated by the

color map, while the traction stresses in the substrate are shown as vectors (blue online). The spatial

variation of both traction and cellular stresses in the lateral (x) direction are characterized by the

length scale `p, referred to as the penetration length.

colonies on thick substrates only probe a portion of substrate of effective depth com-

parable to the lateral extent of the cell colony [208]. While previous studies have

analyzed the deformations of finite-thickness substrates due to point traction forces

on their surface [209, 210], our work considers the inhomogeneous traction due to an

extended contractile cell layer. A central result for our work is the expression for

the scaling parameter referred to as the lateral penetration length `p (Fig. 7.1). This

length scale characterizes the in-plane spatial variations of both adhesion-induced

traction stresses on the substrate and cellular stresses within the cell layer in terms of

cell and substrate elastic and geometrical properties. Our model also quantifies the

experimentally-observed role of substrate thickness hs in controlling the mechanical

response of adhering cell layers [207]. If hs is small compared to the lateral extent

L of the cell sheet, the substrate elasticity plays a negligible role in determining the

mechanical response of the cell. This may explain why traction forces exerted by cell

colonies with L � hs appear insensitive to substrate stiffness [85]. If, in contrast,

L � hs, then substrate nonlocality controls stress build-up in the cell sheet. This

crossover may be observable in large cell colonies on thick substrates. Finally, the im-

portance of long-range substrate elasticity has also been emphasized in recent models
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of cells as active dipoles on a soft elastic matrix, where it is crucial in controlling cell

adhesion [211, 212]. Long-range interfacial elastic stresses coupled with gel thickness

have also been shown to have a profound effect on focal adhesion growth [61] and

to enhance cell polarization [213, 214]. These important effects will not be discussed

here.

7.2 Contractile cell on a thick substrate

To illustrate the importance of substrate nonlocality, we first analyze a single cell,

modeled as a contractile spring of stiffness kc and rest length `c0, adhering to a

continuum substrate (described as an elastic continuum of Young’s modulus Es and

Poisson’s ration νs) via two focal adhesion bonds (linear springs of stiffness ka) located

at x1 and x2 (Fig. 7.2, top left) [69]. This is motivated by the experimental observation

that in adhering cells focal adhesions tend to be localized near the cell periphery [215].

For simplicity we consider a one dimensional model, where the cell lies on the x axis

and the substrate lies in the 0 ≤ z ≤ hs region of the xz plane. Contractile acto-

myosin fibers connect the focal adhesions and exert active forces of magnitude FA.

Once the cell has fully adhered, the cell-substrate system is in mechanical equilibrium.

Force balance at x1 and x2 yields

ka [u1 − us(x1)] = FA − kc(u1 − u2) , (7.1a)

ka [u2 − us(x2)] = −FA + kc(u1 − u2) , (7.1b)

with ui the displacements of the contact points xi from their unstretched positions

x0
2 − x0

1 = `c0, and us(xi) the displacement of the substrate’s surface at xi. All

displacements are defined with respect to an initial state where the cell has length

`c0. The net contraction is then ∆` = lc0 − (x2 − x1) = u1 − u2. The traction force

by the cell on the substrate is localized at x1 and x2, yielding a traction force density

fT (x) = FT δ(x−x1)−FT δ(x−x2), with FT = FA−kc∆`. Assuming linear elasticity,
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Figure 7.2: Top : Schematic of a contractile cell adhering to a soft substrate (left) and effective

spring constant keff versus cellular strain ∆`, showing strain stiffening (right). Bottom : Cell con-

traction ∆` (solid blue line) and traction force FT (red dashed line) vs substrate stiffness (left) for

hs = 10 µm and as a function of substrate thickness (right) for Es = 500 Pa. Other parameters :

FA = 10 nN, kc = 1 nN/µm, ka = 2.5 nN/µm, Es = 1 kPa, hs = 10 µm, `c0 = 10 µm, νs = 0.4.

the substrate deformation is [216],

us(x) =

∫ ∞
−∞

dx′G(x− x′)fT (x′) , (7.2)

where G(x) is the elastic Green’s function at z = hs. For a substrate of thickness hs

we use the approximate form ∗

G(x) =
2

π`c0Es
K0

[
a+ |x|

hs(1 + νs)

]
(7.3)

derived in the Appendix, with a the size of adhesion complexes, providing a short-

distance cut-off, and K0 denotes the modified Bessel function of the second kind. We

obtain FT (∆`) = 1
2
keff(∆`)∆`, with k−1

eff = k−1
a + [G(0) − G(lc0 − ∆`)] the effective

stiffness of the cell-substrate adhesions. For ∆` � lc0, keff is independent of ∆` and

FT scales linearly with ∆`. Stiffening sets in for ∆` > `c0|1−hs(1+νs)/`c0|, as shown

∗To enable a direct comparison between the penetration lengths obtained below and experimen-

tally accessible parameters, Es is the Young modulus of a three dimensional elastic medium.
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in Fig. 7.2 (top right), with a crossover controlled by the thickness of the substrate

hs.

Using FT = FA−kc∆`, we solve for both ∆` and FT , shown in Fig. 7.2 (bottom) as

functions of the substrate thickness and stiffness. For very thin (hs → 0) or infinitely

rigid substrates, where the substrate elasticity becomes local, ∆` = FA/(kc + ka/2),

corresponding to a spring kc in parallel with a series of two focal adhesions springs

ka. In this limit the traction force saturates to FT = kaFA/(2kc +ka). Conversely, for

a very soft substrate with Es → 0, the contraction is maximal and given by FA/kc,

and FT → 0. The substrate thickness above which both cell contraction and traction

force saturate is controlled by the cell size and the substrate elasticity, in qualitative

agreement with experiments [207].

7.3 Contractile cell layer

The continuum limit can be obtained by considering a multi-mer of N = [L/lc0]

contractile elemental “cells”, connected by springs representing cell-cell interactions.

The outcome is a set of coupled equations for a contractile elastic medium. For a cell

layer of thickness h << L (Fig. 7.1), the force balance equation, averaged over the

cell thickness, is

Ya [u(x)− us(x)] = h∂xσ(x) , (7.4)

where Ya = ka/(L`c0) describes the effective strength of the focal adhesions, u(x) is the

displacement field of the cellular medium at z = hs, and σ is the thickness-averaged

cellular stress tensor, σ(x) = 1/h
∫ hs+h
hs

dz σxx(x, z), given by σ(x) = B∂xu + σa,

with B the longitudinal elastic modulus of the cell layer. The one dimensional model

presented here may be relevant to wound healing assays, where the cell layer is a

strip with y-translational invariance. Although we have neglected components of the

cellular displacements and spatial variations along z, the cell elastic constants are

those of a three-dimensional cellular medium.
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The active stress σa = FA/(Lh) arises from acto-myosin contractility. The sub-

strate deformation at the surface is

us(x) = h

∫
dx′G(x− x′)∂′xσ(x′) , (7.5)

with G(x) the elastic Green’s function of a substrate of infinite extent in x, occupying

the region 0 ≤ z ≤ hs, evaluated at z = hs. Eqs. (7.22)-(7.23) can be reduced to

integro-differential equations for the cellular stress, as

`2
a∂

2
xσ + σa = σ −BLh∂2

x

∫ L

0

dx′G(|x− x′|)σ(x′) . (7.6)

The length scale `a =
√
Bh/Ya controls spatial variations of cellular stresses induced

by the stiffness of the focal adhesions. It is the size of a region where the areal elastic

energy density Ya`
2
a associated with focal adhesions is of order of the areal elastic

energy density Bh of the cell layer. For a cell monolayer with B = 1 kPa, h = 0.1 µm,

L = 100 µm, `c0 = 10 µm and ka = 2.5 nN/µm [55], we get `a ' 6.3 µm, comparable

to traction penetsration length seen in experiments on stiff microposts [217, 218].

The second term on the right hand side of Eq. (7.6) describes spatial variations in

the cellular stress due to the (generally nonlocal) coupling to the substrate. In the

following we examine solutions to Eq. (7.6), considering various limiting cases for

the substrate thickness and analyze the dependence of traction stresses on cell size,

substrate stiffness and substrate depth. The equation governing stress distribution in

two dimensional cell layers is derived in the Appendix.

7.3.1 Thin substrate

For completeness we revisit the case of a thin elastic substrate as was discussed in

detail in Chapter 5. If the substrate’s elastic response can be approximated as local,

as it is the case for hs << L or for cells on micropillar arrays, the Green’s function is

given by

G(x) =
2hs(1 + νs)

LEs
δ(x) .
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Eq. (7.6) can then be written as `2
p∂

2
xσ + σa = σ, where, `p =

√
Bh/Yeff and

Y −1
eff = Y −1

a + 2hs(1 + νs)/Es describes the combined action of the focal adhe-

sions and the substrate, acting like two linear elastic components in series. As-

suming zero external stresses at the boundary, i.e., σ(0) = σ(L) = 0, the internal

stress profile is σ(x) = σa (1− cosh [(L− 2x)/2`p]/ cosh [L/2`p]). The traction stress

T (x) = Yeffu(x), is localized within a length `p from the edge of the cell layer. The

penetration length `p can be written as `p =
√
`2
a + `2

s, with `s =
√

2Bhhs
Es/(1+νs)

the

square root of the ratio of the cell’s elastic energy to the elastic energy density of

the substrate. This form highlights the interplay of focal adhesion stiffness and sub-

strate stiffness in controlling spatial variation of stresses in the lateral (x) direction.

The two act like springs in series, where the weaker spring controls the response. If

Ya <<
Es

2(1+ν−s)hs , then `p ' `a and the stiff substrate has no effect. Conversely, if the

focal adhesions are stiffer than the substrate, then `p ' `s. For an elastic substrate

with hs = 10 µm, νs = 0.4 and Es in the range 0.01 − 100 kPa, `s lies in the range

0.2 − 17 µm. This leads to typical values of `p in the range 6.3 − 18 µm for a cell

layer of length 100 µm, consistent with experimentally observed traction penetration

lengths on thin continuous substrates [104] and on microposts [206].

7.3.2 Infinitely thick substrate

If hs >> L, the substrate Green’s function can be approximated as that of an elastic

half plane,

G(x) = − 2

πLEs
[γ + log (|x|/L)] ,

with γ the Euler constant [219]. The solution of Eq. (7.6) with boundary condi-

tions σ(0) = σ(L) = 0 can be obtained by expanding σ(x) in a Fourier sine series

as, σ(x) =
∑∞

n=1 σn sin (nπx/L) and solving the coupled algebraic equations for the

Fourier amplitudes σn given in the Appendix. The effect of the nonlocal elasticity of

the substrate is controlled by yet another length scale `s∞ =
√

4BhL
πEs

that can be ob-

tained from the length `s introduced in the case of thin substrate by the replacement
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Figure 7.3: Internal stress σ(x)/σa (top left), substrate displacement us(x) (top right) and traction

stress T (x)/σa (bottom) vs position x along the cell layer, for Es = 500 Pa (solid, blue), 50 Pa

(dotted, green) and 10 Pa (dashed, red). The vertical dashed lines in the top right frame denote

the cell layer’s edges. Inset (bottom right): magnitude of contractile moment |P| vs Es/B. Inset

(bottom left): |P| as a function of substrate thickness for Es = 10 Pa. Other parameters: B = 1 kPa,

h = 0.1µm, `a = 6.3µm, L = 100µm, νs = 0.4.
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hs → L and (1+νs)→ 2/π. This highlights the known fact that cells or cell layers only

“feel” the substrate up to a thickness comparable to their lateral size L. For parame-

ter values quoted in the preceding paragraphs, `s∞ takes values between 0.35−35µm

for Es in the range 0.01− 100 kPa, indicating that the thin/thick substrate crossover,

although not observable in isolated cells, should be seen experimentally in cohesive

cell layers where the lateral extent can exceed 100µm. The cellular stress and sub-

strate displacement profiles obtained numerically by summing the Fourier series are

shown in Fig. 7.3 (top). The lateral variation of stresses is now controlled by the

length scale `p =
√
`2
a + `2

s∞. One consequence of nonlocal substrate elasticity is that

the substrate deformation shown in the top right frame of Fig. 7.3 extends outside

the region occupied by the cell layer, indicated by the two vertical dashed lines. The

profile of the local traction stress displayed in Fig. 7.3 (bottom frame) shows that the

traction stress is localized near the edge of the cell layer and its magnitude increases

with substrate stiffness. The inset to Fig. 7.3 (bottom right) shows the magnitude of

the net contractile moment defined as P =
∫∞
−∞ dxxT (x). This quantity is negative,

as expected for contractile systems. Its magnitude increases with Es at a rate consis-

tent with experiments, with a 25% rise in |P| upon increasing the substrate stiffness

by 40% [186], and saturates for very stiff substrates.

7.3.3 Substrate of finite thickness

Finally, we consider a substrate of finite thickness, hs. The calculations are carried

out using the approximate Green’s function given in Eq. (7.3), with the replacement

`c0 → L. The variation of the net contractile moment with hs for Es = 10 Pa is

shown in Fig. 7.3 (bottom left inset). As seen previously in experiments [207], |P|
drops sharply with increasing substrate thickness, quickly reaching the asymptotic

value corresponding to infinitely thick substrates. Thinner substrates are effectively

stiffer than thick ones, inducing larger contractile moments. Our analysis suggests a

general expression for the penetration length `p that interpolates between the thin
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and thick substrates limits,

`p =

√
Bh

Ya
+
Bh

πEs
heff . (7.7)

Stress penetration is controlled by a substrate layer of effective thickness h−1
eff =

1
hs2π(1+νs)

+ 1
L

given by the geometric mean of the actual substrate thickness hs and the

lateral dimension L of the cell or cell layer. If hs << L, then heff ≈ 2πhs(1 + νs) and

stress penetration is not affected by cell layer size. On the other hand, if hs >> L,

then cells only feel the effect of the substrate down to an effective depth L.

Appendix 7.A Green’s Function for elastic substrate

of finite thickness

Here we outline the derivation of the Green’s function at the surface of the elastic

substrate using Fourier techniques. We assume that the substrate is an isotropic and

homogeneous elastic material in two dimensions, with Young’s modulus E2d
s
† and

Poisson ratio νs. The substrate displacement field is denoted by v. In the plane

stress approximation, the constitutive relation for the substrate stress is given as,

σsij =
E2d
s

1 + νs

[
νs

1− νs
∇.v δij +

1

2
(∂ivj + ∂jvi)

]
. (7.8)

In equilibrium, the substrate deformations v are governed by the standard equation

of elastostatics for plane stress deformations,(
1− νs
1 + νs

)
∇2v +∇(∇.v) = 0 . (7.9)

†The Young modulus E2d
s of an elastic sheet has dimensions of force per unit length. In the

preceding sections we express our results in terms of the Young modulus Es of a three dimensional

elastic medium, with dimensions of force per unit area. The reason for this choice is to express the

various length scales in terms of experimentally accessible quantities. ln general the two quantities

can be related via a length scale d as E2d
s = Esd, with d describing the thickness of the substrate

in the y direction normal to the direction of linear extent of the putative one-dimensional cell. We

choose d = `c0 when describing an individual cell and d = L when describing a cell layer. The results

do not depend on this length.
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Turning to boundary conditions, we assume that there are negligible normal stresses

at the substrate surface letting σszz(z = hs) = 0. Assuming that the substrate is

plated on a rigid surface, displacements at the bottom of the substrate are zero,

v(z = 0) = 0. The x−displacements at the top layer of the substrate, denoted by

us(x) = vx(x, z = hs), can then be written in terms of the Green’s function of Eq. (7.9)

as,

us(x) =

∫
x′
G(|x− x′|)σsxz(x′, z = hs) . (7.10)

The shear stress at the cell-substrate interface σsxz(x)|z=hs , represents the traction

stress exerted by the adherent cell. Working in Fourier space with respect to x, we

write all functions as f(x, z) =
∫∞
−∞ dqf(q, z)eıqx. Eq.(7.9) then becomes,(

1− νs
1 + νs

)
∂2
zvx + ıq∂zvz −

(
2

1 + νs

)
q2vx = 0 , (7.11a)(

2

1 + νs

)
∂2
zvz + ıq∂zvx −

(
1− νs
1 + νs

)
q2vz = 0 . (7.11b)

Eqs. (7.11a) and (7.11b) can now be conveniently solved for v with the given boundary

conditions. In particular we seek the traction stress at the cell-substrate interface

given by Tx(q) = σxz(q, z = hs) as a function of usx. The final result can be compactly

written as, Tx(q) = Q(q)us(q), where

Q(q) = µsq
(3− νs)(1 + νs)(e

4hsq + 1) + 2e2hsq [(5− 2νs + ν2
s ) + 2h2

sq
2(1 + νs)

2]

(3− νs)(e4hsq − 1) + 4e2hsqhsq(1 + νs)
,

(7.12)

where µs = E2d
s /2(1+νs) is the shear modulus of the substrate. The stiffness function

Q(q) is related to the elastic Green’s function at the top surface of the substrate as,

G(x) =
1

2π

∫
dq Q−1(q)e−ıqx . (7.13)

For long wavelengths qhs � 1, which corresponds to a thin substrate, we get Q(q)→
µs/hs. The Green’s function is then given by,

G(x) =
hs
µs
δ(x) . (7.14)
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For short wavelengths qhs � 1, corresponding to an elastic half-plane we obtain

Q(q)→ µsq(1 + νs), and the Green’s function is given by

G(|x|) = − 2

πE2d
s

[γ + log (|x|/L)] . (7.15)

For an elastic slab of finite thickness we use the following approximate form interpo-

lating between the limits of thin and infinitely thick substrates,

Q ' µs
hs

√
1 + [qhs(1 + νs)]

2 . (7.16)

Fig. 7.4 shows a comparison between the exact stiffness function given in Eq. (7.12)

and the interpolated form given in Eq. (7.16). Using Eq. (7.16) we can perform the

Fourier inversion analytically to obtain the Green’s function in real space in terms of

a modified Bessel function of the second kind, as

G(x) =
2

πE2d
s

K0

[ |x|
hs(1 + νs)

]
. (7.17)

Νs = 0.4 Νs = -0.2

Νs = 0.1

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

qhs

ΜQ-1�hs

Figure 7.4: The inverse local stiffness Q−1µs/hs as a function of wavenumber qhs, comparing the

exact solution in Eq. (7.12) (solid lines) with the approximate form in Eq. (7.16) (dashed lines).

Poisson ratios : νs = 0.1 (green), νs = 0.4 (red), νs = −0.2 (blue).
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Appendix 7.B One dimensional cell layer on elas-

tic half plane

In this section we derive the solution for the internal stress distribution in a one-

dimensional cell layer adhering to an elastic half plane, using the Green’s function

given by Eq. (7.15). The stress σ(x) obeys the integro-differential equation,

`2
a∂

2
xσ + σa = σ +

`2
s∞
2L

p.v.

∫ L

0

dx′
σ′(x′)

x− x′ , (7.18)

where, `s∞ =
√

4BhL/πEs and p.v. denotes principal value. We then expand σ(x)

in a Fourier sine series as σ(x) =
∑∞

n=1 σn sin (nπx/L), which satisfies the boundary

condition σ|x=0 = σ|x=L = 0. Eq (7.18) then becomes,

σa =
∞∑
n=1

σn sin (n̂x)
[
n̂2`2

a + 1
]

+
`2
s∞
2L

∞∑
m=1

m̂σm

∫ L

0

dx′
cos (m̂x′)

x− x′ , (7.19)

where n̂ = nπ/L. We then integrate both sides of Eq. (7.19) by 2
L

∫ L
0
dx sin (n̂x)

to reduce Eq. (7.18) to a linear system of algebraic equations for the Fourier mode

amplitudes, σn, given by

2(1− (−1)n)

nπ
σa =

(
1 + `2

an̂
2
)
σn +

(
`s∞
L

)2 ∞∑
m=1

Hmnσm , (7.20)

where the dimensionless mode coupling matrix Hmn is given by,

Hmn = mπ

∫ 1

0

dx′
∫ 1

0

dx sin (nπx)
1

x− x′ cos (mπx′) . (7.21)

Hmn can be analytically or numerically evaluated after regularizing the integral by

providing a short-distance cut-off a as introduced earlier. Using computed values for

Hmn, we solve numerically for the Fourier amplitudes σn, and then obtain σ(x) by

summing a series.

Appendix 7.C Two dimensional cell layers

For completeness we show here that the elastic deformation of a planar cell layer

adhering to a two-dimensional substrate can also be described by a single equation
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for the thickness-averaged stress tensor of the cellular material, although in general

shear and compressional deformations are coupled. The case of a circular cell layer

where spatial variation only occur along the radial direction can again be reduced to

a one-dimensional problem. Considering a cell layer in the xy plane of thickness h in

the z direction, with h small compared to the lateral dimension L of the layer, the

force balance equation, averaged over the cell thickness, is

Ya [ui(x)− usi (x)] = h∂jσij(x) , (7.22)

where x is a position in the xy plane, i, j denote in-plane cartesian components, Ya

describes the effective strength of the focal adhesions, u(x) is the two-dimensional

displacement field of the cellular medium at z = hs, and σij is the in-plane cellular

stress tensor averaged over the thickness of the cell, σij(x) = 1/h
∫ hs+h
hs

dz σij(x, z),

given by σij(x) = Bukkδij+2µ [uij − δijukk]+σaδij, with B and µ the longitudinal and

shear elastic moduli of the cell layer and σa is the isotropic active stress. Although we

have neglected components of the cellular displacements along the cell thickness and

spatial variations along z, the cell elastic constants are those of a three-dimensional

cellular medium. The substrate deformation at the surface is

usi (x) = h

∫
dx′Gij(x− x′)∂′kσjk(x

′) , (7.23)

with G the elastic Green’s tensor of a substrate of infinite extent in the xy plane,

occupying the region 0 ≤ z ≤ hs, evaluated at z = hs. Eqs. (7.22)-(7.23) can be

reduced to integro-differential equations for the cellular stress, as

`2
a [∂i∂kσkj]

S+δijσa = σij+
2µ

B − 2µ
δij (σkk − 2σa)−(B+2µ)h

∫
dx′ [∂i∂lGik(x− x′)σkl(x

′)]
S
,

(7.24)

where, `a =
√

(B + 2µ)h/Ya, and [...]S denotes symmetrization with respect to in-

dices that are not summed over, e.g., [∂i∂kσkj]
S = 1

2
[∂i∂kσkj + ∂j∂kσki]. The one

dimensional case can then be obtained by letting µ = 0 and considering only spatial

variations along x.
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Chapter 8

Collective Mechanics of Adherent

Cell Colonies

Mechanical interactions of individual cells play a crucial role in the spatial organiza-

tion of tissues [220, 221] and in embryonic development [222–224]. The mechanical

cooperation of cells is evident in dynamic processes such as flow-induced alignment of

vascular endothelial cells [225] and muscle contraction [226]. However, mechanical in-

teractions of cells within a tissue also affect the tissue’s static mechanical properties

including elastic modulus [52], surface tension [227], and fracture toughness [228].

Little is known about how these tissue-scale mechanical phenomena emerge from

interactions at the molecular and cellular levels [229].

In this chapter, we first describe measurements of traction forces in colonies of

cohesive epithelial cells adherent to soft substrates. We find that the spatial distri-

bution and magnitude of traction forces are more strongly influenced by the physical

size of the colony than by the number of cells. For large colonies, the total traction

force, F , that the cell colony exerts on the substrate appears to scale as the equivalent

radius, R, of the colony. This scaling suggests the emergence of a scale-free material

property of the adherent tissue, an apparent surface tension of order 10−3 N/m. A

simple physical model of adherent cell colonies as contractile elastic media captures



8.1 Cohesive epithelial cell colonies 142

this behavior.

Next, we address the impact of intercellular adhesions on cell-ECM traction forces.

We measure traction forces exerted by colonies of keratinocytes before, during, and

after formation of cadherin-mediated intercellular adhesions. As cadherin-dependent

junctions form, there is dramatic rearrangement of cell-ECM traction forces from a

disorganized, punctate distribution underneath the colony to an organized concen-

tration of force at the colony periphery. Through perturbations of cadherin-based

adhesions, we demonstrate an essential role for cadherin in organizing cell-matrix

mechanics. Finally, the spatial reorganization of cell-matrix forces is reproduced by

a minimal physical model of a cell colony as two-dimensional objects connected by

springs and adherent to a soft substrate. While downstream signaling pathways regu-

late responses to cadherin-based-junction formation, our experimental data and phys-

ical model suggest that the simple physical cohesion created by intercellular adhesions

is sufficient to organize traction forces. These results have implications for intercellu-

lar adhesions’ role in the mechanical relationship of tissues to their surroundings and

the emergence of tissues’ bulk material properties.

8.1 Cohesive epithelial cell colonies

8.1.1 Traction stress measurements

To measure traction stresses that the cells exert on their substrate, we used traction

force microscopy (TFM) [46]. The TFM setup consisted of a film of highly elastic

silicone gel with thickness hs = 27µm on a rigid glass coverslip (Fig. 8.1A). Using

bulk rheology, we estimated the Young’s modulus of the gel to be 3 kPa. To quantify

the gel deformation during the experiments, the substrates contained two dilute lay-

ers of fluorescent beads (radius 100 nm): one layer between the glass and gel and a

second at height zo = 24µm above the coverslip [58]. To image the fluorescent beads,

spinning-disk confocal microscope was used. After determining bead positions using
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centroid analysis in Matlab [230], the deformation of the substrate was calculated,

usi (r, zo), across its stressed (with cells) and unstressed (with cells removed) states.

In Fourier space, the in-plane deformation field is related to the traction stresses at

the surface of the substrate via linear elasticity, σsiz(k, hs) = Qij(k, zo, hs)u
s
j(k, zo),

where k represents the in-plane wave vector. Here, σsiz(k, hs) and usj(k, zo) are the

Fourier transforms of the in-plane traction stress on the top surface and the dis-

placements just below the surface, respectively. The tensor, Q, depends on the

thickness and modulus of the substrate, the location of the beads, and the wave

vector [58, 231]. We calculated the strain energy density, w(r) = 1
2
σsiz(r, hs)u

s
i (r, hs),

which represents the work per unit area performed by the cell colony to deform

the elastic substrate [47]. The deformation on the surface was determined using

usi (k, hs) = Q−1
ij (k, hs, hs)Qjk(k, zo, hs)u

s
k(k, zo).

Primary mouse keratinocytes were isolated and cultured as described in [232]. We

plated keratinocytes on fibronectin-coated TFM substrates. After the cells prolifer-

ated to the desired colony sizes over 6–72 hr, the concentration of CaCl2 was raised

in the growth medium from 0.05 mM to 1.5 mM. After 18–24 hr in the high-calcium

medium, cadherin-based adhesions formed between adjacent keratinocytes, which or-

ganized themselves into cohesive single-layer cell colonies [233]. After imaging the

beads in their stressed positions, we removed the cells by applying proteinase K and

imaged the beads in their unstressed positions.

Stress fields and strain energy densities for representative colonies of one, two, and

twelve keratinocytes are shown in Fig. 8.1. Traction stresses generically point inward,

indicating that the colonies are adherent and contractile. Regions of high strain energy

appear to be localized primarily at the periphery of the single- or multi-cell colony.

For single cells, these findings are consistent with myriad previous reports on the

mechanics of isolated, adherent cells [234–237]. Recent reports have also observed

localization of high stress at the periphery of small cell colonies on micropatterned

substrates [238] and at edges of cell monolayers [51, 206, 239]. To visualize cell–
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cell and cell–matrix adhesions, we immunostained multi-cell colonies for E-cadherin

and zyxin. Additionally, we stained the actin cytoskeleton with phalloidin. Actin

stress fibers were concentrated at colony peripheries and usually terminated with focal

adhesions, as indicated by the presence of zyxin at the fibers’ endpoints. In contrast,

E-cadherin was localized at cell–cell junctions, typically alongside small actin fibers.

Despite differences in the architecture of the relevant proteins, the stresses and strain

energy distributions are remarkably similar in the single-cell and multi-cell colonies.

To explore these trends, traction stresses of 45 cohesive colonies of 1–27 cells were

measured. For each colony, we defined an equivalent radius, R, as the radius of a disk

with the same area. The equivalent radii ranged from 20 to 200µm. We calculated

the average strain energy density as a function of distance, ∆, from the colony edge

(Fig. 8.2 inset). Figure 8.2 shows the normalized strain energy profiles, w̄(∆)/w̄(0),

of all 45 colonies. Usually, the strain energy density was largest near the colony edge

(∆ = 0). Because of the finite spatial resolution of the implementation of TFM, there

were nonzero strain energy outside colony boundaries (∆ < 0).

8.1.2 Effective surface tension

Next, we examined how global mechanical activity of the colony changes with the

cell number and geometrical size of the colony. To this end, we calculated the “total

traction force”,

F =

∫
dA

√
(σsxz)

2 +
(
σsyz
)2
, (8.1)

exerted by the cell colony onto the substrate. This quantity is meaningful when

stresses have radial symmetry and are localized at the colony edge, which is the case

for the majority of colonies in this study. We observed a strong positive correla-

tion between equivalent radius and total force over the range of colonies examined

(Fig. 8.3). Similar trends have been seen for isolated cells over a smaller dynamic

range of sizes [50, 240–242]. We see no systematic differences in F for colonies of the
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Figure 8.1: Traction stresses and strain energies for colonies of cohesive keratinoctyes. (A)

Schematic of experimental setup (not to scale) with a cell colony adherent to an elastic substrate

embedded with two dilute layers of fluorescent beads. (B, D, F) Distribution of traction stresses, σiz,

and (C, E, G) strain energy, w, for a representative single cell, pair of cells, and colony of 12 cells.

Traction stress distribution is overlaid on a DIC image (B) or images of immunostained cells (D,

F). Solid lines in (B–C, E, G) mark cell boundaries. For clarity, only one-quarter of the calculated

stresses are shown in (B, D) and one-sixteenth of the stresses in (F). Scale bars in (B–G) represent

50µm.
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Figure 8.2: Spatial distribution of strain energy for colonies of different size. Each curve represents

a colony’s measured strain energy density as a function of distance from the edge of the colony, ∆. For

clarity, the profiles are spaced vertically according to the size of the colony. Each profile terminates

at the point where the inward erosion of the outer edge covers the entire area of the colony, at

∆ ≈ R. The erosion proceeds in discrete steps of size δ, as illustrated in the inset.
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Figure 8.3: Mechanical output of keratinocyte colonies versus geometrical size. Total force trans-

mitted to the substrate by the cell colonies, defined in Eq. (8.1), is plotted as a function of the

equivalent radius of the colonies. The dashed line represents scaling expected for surface tension,

F ∼ R. The solid line shows the a fit of the data to the minimal contractility model in Eq. (8.6).

same size having different numbers of cells, suggesting that cohesive cells cooperate

to create a mechanically coherent unit.

The data in Fig. 8.3, while scattered, show clear monotonic growth of the mechan-

ical output of cell colonies with their geometrical size, independent of the number of

cells. For smaller colonies (R < 60µm), the increase of total force with colony ra-

dius is superlinear. As the cell colonies get larger, the scaling exponent appears to

approach unity. We hypothesize that the transition to an apparently consistent ex-

ponent for the large colonies reflects the emergence of a scale-free material property

of a tissue, defined by the ratio F/(2πR) = (8 ± 2)× 10−4 N/m, with dimensions of

surface tension.

Just as intermolecular forces yield the condensation of molecules into a dense

phase, cohesive interactions between cells, mediated by cadherins, cause them to form

dense colonies [81, 243]. For large ensembles of molecules, these molecular interactions

manifest as an energy penalty per unit area for creating an interface between two

phases, known as surface tension. It is tempting to think of the adherent colonies
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studied here as aggregates of cohesive cells that have wet the surface [244]. Indeed,

when matter wets a surface, the traction stresses are localized at the contact line

[245], as we found in our cell colonies (Figs. 8.1 and 8.2).

Effective surface tension of cell agglomerates has been invoked to explain cell

sorting and embryogenesis [246]. Previous measurements of non-adherent aggregates

of cohesive cells reported effective surface tensions between 2 and 20 mN/m [227,

247, 248]. However, the origins of the effective surface tension of cohesive cells are

distinct from conventional surface tension. Recently it was suggested that the surface

tension is not only determined by contributions from cell–cell adhesions but also the

contraction of acto-myosin networks [249, 250]. It is important to distinguish the

effective surface tension due to active processes from the familiar surface tension

defined in thermodynamic equilibrium. To elucidate the origin of the effective surface

tension in these experiments, we consider the minimal physical model introduced in

Chapter 5 and 7 to describe cell–substrate interactions.

8.1.3 Minimal physical model

We describe a cohesive colony as an active elastic disk of thickness h and radius R

(Fig. 8.1A). The mechanical properties of the cell colony are assumed to be homo-

geneous and isotropic with Young’s modulus E and Poisson’s ratio ν. Acto-myosin

contractility is modeled as a negative contribution to the local pressure. In our model,

the strength of cell–cell adhesions is implicitly contained in the material parameters

of the colony, E and ν. The constitutive equations for the stress tensor, σij, of the

colony are then given by

σij =
E

2(1 + ν)

[
2ν

1− 2ν
∇ · u + ∂iuj + ∂jui

]
+ σaδij, (8.2)

where u is the displacement field of the cell colony and σa > 0 represents the active

pressure due to actomyosin contractility. Mechanical equilibrium requires that ∂jσij =

0.
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We use cylindrical coordinates and assume in-plane rotational symmetry. The

top surface is stress-free, σrz|z=h+hs = 0, and we employ a simplified coupling of the

colony to substrate. Ignoring all nonlocal effects arising from the substrate elasticity,

σrz|z=hs = Y ur(z = hs) ≈ Y ūr. Here, ur is the radial component of the displacement

field, the bar denotes z-averaged quantities, and the rigidity parameter, Y , describes

the coupling of the contractile elements of the cell to the substrate. The local equiv-

alence of stress and displacement is accurate only when the substrate thickness is

much smaller than the characteristic length scale of the stress distribution or when

the cells are on substrates of soft posts [50].

With these assumptions, the equation of force-balance simplifies to

[∂r(rσ̄rr)− σ̄θθ] /r = Y ūr/h . (8.3)

Combining Eqs. (8.2) and (8.3), we find the governing equation for the radial defor-

mation, ur:

r2∂2
rur + r∂rur −

(
1 + r2/`2

p

)
ur = 0, (8.4)

where the penetration length, `p, describing the localization of stresses near the

boundary of the cell colony, is given by `2
p = E(1− ν)h/ [Y (1 + ν)(1− 2ν)].

The solution of Eq. (8.4) with boundary conditions ur(r = 0) = 0 and σrr(r =

R) = 0 can be expressed in terms of modified Bessel functions as

u(r) = −σa
[

(1 + ν)(1− 2ν)

E(1− ν)

]
RI1(r/`p)g(R/`p), (8.5)

with [g(s)]−1 = sI0(s)−
(

1−2ν
1−ν

)
I1(s).

As in our experiments, the resulting deformations and traction stresses are local-

ized near the colony edge (Fig. 8.2). To compare quantitatively to experiments, we

calculate the total force,

F(R) = 2πY

∣∣∣∣∫ R

0

rdr ur(r)

∣∣∣∣ . (8.6)
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In the large colony limit, for R � `p, we find F(R) ' 2πσahR ∼ R, yielding the

anticipated linear growth of total force for large colonies. In this limit, the contractile

active pressure dominates over internal elastic stresses and underlies the observed

apparent surface tension.

The theory matches the scaling of the data reasonably well with `p = 11µm

and apparent surface tension σah ≈ 8 × 10−4 N/m, as shown by the solid line in

Fig. 8.3. The penetration length, `p is comparable to the spatial resolution of the

measurements. For single cells, recent measurements have suggested apparent surface

tensions of 2×10−3 N/m in an endothelial cell [71] and 1×10−4 N/m in Dictyostelium

cells [236]. From previously published data on a millimeter-scale adherent sheet of

cohesive cells, we calculated the apparent surface tension by integrating the average

stress profiles near the sheet edge and found a value of about 7×10−4 N/m [85]. For the

keratinocyte cell colonies of thickness h ≈ 0.2µm, estimated from confocal imaging

of phalloidin-stained colonies, the fitted value of the apparent surface tension implies

σa ≈ 4 kPa. This value is consistent with that inferred from experiments in crawling

keratocytes [32]. We can estimate the active pressure by assuming σa ≈ ρmkm∆m,

where ρm is the areal density of bound myosin motors, km the stiffness of motor

filaments, and ∆m their average stretch. Using km ≈ 1 pN/nm, ∆m ≈ 1 nm, and

ρm ≈ 103 µm−2, we find σa ≈ 1 kPa.

8.2 Role of intercellular adhesions

8.2.1 Traction Stresses Systematically Reorganize in High-

Calcium Medium

To investigate the relationship between cadherin-based intercellular adhesions and

cell-matrix traction stresses, the formation of cadherin-based adhesions were induced

in primary mouse keratinocytes by elevating extracellular-calcium concentrations. In

low-calcium medium, keratinocytes plated at low density proliferated into colonies of
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Figure 8.4: (A–C ) DIC images of a three-cell colony at 45 min (A), 6 h (B), and 12 h (C ) after

calcium elevation. (D–F ) Distribution of in-plane traction stresses (red arrows) for cell colony at

timepoints in A–C overlaid on DIC images. For clarity, one-quarter of calculated traction stresses

are shown. (G–I ) Distribution of strain energy density, w, for cell colony at timepoints in A–C.

Blue lines mark individual cell boundaries. (J ) Schematic for calculating azimuthal-like averages for

strain energy. Colony outline is eroded inward by distance, ∆, in discrete steps, δ, until entire colony

area has been covered. Average strain energy density is then calculated for each concentric, annular-

like region. (K ) Strain energy profiles for three-cell colony at six timepoints after calcium elevation.

Solid colored lines represent colony’s average strain energy density as a function of distance, ∆, from

colony edge. Each profile is mirrored about ∆ ≈ R, the effective colony radius. Colony periphery

(∆ = 0) is indicated by dashed vertical black lines. Strain energy at ∆ < 0 corresponds to regions

outside colony periphery. (L) Average strain energy density for entire colony at 15 min intervals

from 30 min to 12 h after calcium elevation. Plot colors in K and L are scaled according to time,

t, after calcium elevation, from cyan at t = 0 to magenta at t = 12 h. Scale bars in A–I represent

50µm.
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cells with weak cell–cell interactions. Exposing keratinocytes to high-calcium medium

resulted in formation of cadherin-based cell–cell adhesions after 6–12 h.

Over 12 h in high-calcium medium, keratinocytes developed cell–cell junctions [233]

and contracted [251] (Fig. 8.4 A–C ). Prior to adhesion formation, in-plane traction

stresses emanated from both the colony periphery and the interior junction of the

three cells in a colony. Forces at the colony periphery pointed radially inward, while

interior forces pointed in various directions (Fig. 8.4D). During the timecourse, trac-

tion stress in the middle of the colony gradually weakened (Fig. 8.4E ), and by 12 h

after calcium elevation, interior traction stress all but disappeared (Fig. 8.4F ).

From substrate displacement and traction stresses, we calculated the strain energy

density, w, the mechanical work per unit area performed by the colony to deform the

substrate. Shortly after calcium elevation, high strain energy was localized both un-

derneath and at the periphery of the colony (Fig. 8.4G). 12 h after calcium elevation,

strain energy was limited to the colony edge (Fig. 8.4I ).

To quantify these spatial changes, we calculated azimuthal-like averages of strain

energy during the timecourse. We eroded the colony outline inward by distance,

∆, in discrete steps, δ, until the entire colony area was covered (Fig. 8.4J ). We

calculated the average strain energy, w̄(∆), in each of these concentric, annular-like

regions and plotted it as a function of distance from the colony edge, ∆ (Fig. 8.4K ).

During the first 3 h after calcium elevation, three peaks exist in the strain-energy

profiles, corresponding to localization of strong strain energy at the colony periphery

(∆ = 0) and center. Between 5 and 9 h, the center strain-energy peak diminishes

and disappears, and high strain energy is only at the colony periphery. We measured

some strain energy outside the colony (∆ < 0) due to the finite spatial resolution of

our implementation of TFM.

Although strain-energy localization changed after calcium elevation, the colony’s

overall average strain energy density was relatively consistent during the timecourse

(Fig. 8.4L). Hotspots of strong strain energy (yellow regions in Fig. 8.4G) were no
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longer present by the end of the experiment (Fig. 8.4I ), but overall average strain

energy density was compensated by a decrease in colony area.

To probe how intercellular adhesions alter traction forces across a large range

of colony geometrical size and cell number, we analyzed the magnitude and local-

ization of traction force in 32 keratinocyte colonies in low-calcium medium and 29

keratinocyte colonies after 24 h in high-calcium medium. A total of 117 low-calcium

cells and 150 high-calcium cells comprised these colonies, each containing 2–27 cells,

and spanned a geometrical dynamic range of nearly a factor of 100 in spread area.

In general, low-calcium colonies exhibited traction stresses throughout the colony,

usually pointing radially inward from the colony edge and in various directions in

the interior (Fig. 8.5A). Regions of high strain energy were found throughout the

interior (Fig. 8.5B). In contrast, high-calcium colonies displayed traction stresses

generically pointing radially inward from the colony edge (Fig. 8.5C ) with hardly any

strain energy beyond the colony edge (Fig. 8.5D). This observation is reminiscent of

measurements on cohesive Madin-Darby canine kidney cells showing enhancement of

traction force at the edges of cell pairs [86] and large cell sheets [85].

To quantify these spatial distributions, we plotted average strain energy density

as a function of distance, ∆, from the colony edge (as depicted in Fig. 8.4J ). Average

strain energy densities, w̄(∆), were normalized by the average strain energy density at

the colony periphery, w̄(0). These profiles (Fig. 8.5 E and F ) terminate where inward

erosion covered the entire area of the colony, at ∆ ≈ R, where R is the effective radius

of the colony, given by the radius of the disk with the same area as the colony.

In most low-calcium colonies, we observed some localization of strain energy at

the colony periphery (∆ = 0) and high amounts of strain energy throughout the

colony (∆ > 0), sometimes at the colony center (∆ ≈ R) (Fig. 8.5E ). In contrast,

the strain energy of nearly all the high-calcium colonies was strongly localized at the

colony periphery, generally decaying to zero toward the colony center (Fig. 8.5F ).

Although this trend seems to hold regardless of number of cells in the colony, the
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Figure 8.5: (A) Distribution of in-plane traction stresses (red arrows) of an eight-cell wildtype

colony in low-calcium medium overlaid on DIC image of colony. For clarity, one-ninth of calculated

traction stresses are shown. (B) Strain energy distribution, w, of low-calcium colony in C with

individual cell outlines in blue. (C ) Distribution of traction stresses (red arrows) of a six-cell wildtype

colony in high-calcium medium for 24 h overlaid on DIC image of colony. For clarity, one-ninth of

calculated traction stresses are shown. (D) Strain energy distribution, w, of high-calcium colony in

E, with individual cell outlines in blue. (E ) Strain energy profiles for n = 32 low-calcium colonies.

(F ) Strain energy profiles for n = 29 high-calcium colonies. In E and F, each solid curve represents

a colony’s average strain energy density as a function of distance, ∆, from colony edge. Each profile

terminates where inward erosion covers entire colony area, at ∆ ≈ R, the effective colony radius,

indicated by dashed line. Average strain energy is normalized to value at colony periphery, w̄(0),

giving each colony the same height on the graphs, indicated by the vertical scale bar. For clarity,

profiles are spaced vertically according to colony size, with profiles for larger colonies (terminating

at larger values of ∆) appearing higher up the y axis. Profile colors correspond to colony cell

number given in the legend. (G) Quantification of relative distance from colony periphery (∆/R)

corresponding to 75% of total strain energy, 3W/4, in colonies in low- or high-calcium medium.

Small colonies (R < 50µm, below hash marks in E and F ), in low- (n = 8) or high-calcium (n = 8)

medium showed no significant difference, whereas large (R > 50µm) low-calcium colonies (n = 24)

had significantly more strain energy closer to colony center than large high-calcium colonies (n = 21).

(H ) Relationship between total strain energy, W , and area, A, of colonies in low- and high-calcium

medium. Open symbols correspond to low-calcium colonies, closed symbols to high-calcium colonies.

Symbol colors indicate colony cell number, given in the legend. (I and J ) Keratinocytes in low-

calcium medium (I ) or after 24 h in high-calcium medium (J ) labeled with anti-E-cadherin and

anti-paxillin antibodies and stained with phalloidin to mark F-actin. Scale bars in A–D, I, and J

represent 50µm. Data for high-calcium colonies in F–H are adapted from [104].
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difference is much less pronounced for the smallest colonies (R . 50µm). The radii

of small colonies are comparable to the traction-stress penetration length, `p, which

measures how far from the periphery traction stresses penetrate the colony. Thus in

small colonies, the stress measurements do not readily distinguish the colony center

and periphery.

Next, we quantitatively compared the spatial distributions of strain energy across

these two colony populations with and without cadherin-based intercellular adhesions.

We calculated the total strain energy, W , exerted by each colony and the relative

distance into the colony from its periphery, ∆/R, required to capture 75% of the total

strain energy, 3W/4. We separated larger colonies (R � `p, or R > 50µm) of the

low- and high-calcium populations. Large, low-calcium colonies required on average

10% more inward erosion to achieve 75% of the total colony strain energy than large,

high-calcium colonies, whereas there was no significant difference in strain energy

distribution for the populations of small (R < 50µm) colonies (Fig. 8.5G). These

data suggest that formation of cadherin-based adhesions in high-calcium medium

results in a shift in localization of traction stress from internal regions of the colony

to the periphery.

The low- and high-calcium colonies did not seem to exhibit different amounts of

average strain energy density. A plot of total strain energy versus colony area, A,

while scattered, shows no apparent difference between these populations (Fig. 8.5H ).

In both cases, larger colonies tended to perform more work on the substrate.

Because low- and high-calcium keratinocyte colonies have different arrangements

of cytoskeletal and adhesion proteins, we characterized spatial localizations of actin,

E-cadherin-mediated cell–cell adhesions, and focal adhesions in keratinocyte colonies

using phalloidin staining and immunohistochemistry. E-cadherin is highly expressed

in keratinocytes, mediates adhesive activity, and is essential for adherens-junction

formation. In high-calcium colonies, E-cadherin was localized at keratinocyte junc-

tions (Fig. 8.5I ). Positions of actin stress fibers were correlated with areas of strong
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Figure 8.6: (A) Schematic of planar colony of three hexagonal cells. (B–D) Strain energy dis-

tributions for colony of three hexagonal cells with different spring stiffness, k, expressed in units of

E/L, where E is the Young’s modulus of the cell and L the side length of each hexagon. (E–G)

Spatial profiles of average strain energy as a function of distance, ∆, from colony edge for different

values of k corresponding to data in B–D. Other parameters: `p/L = 0.2, E = 1 kPa, ν = 0.4,

σa = 4 kPa, h = 0.2µm, Y = 2× 106 N/m3 (SI Text). Scale bars in B–D represent 50µm.

E-cadherin localization, and there was coordination of the orientation of actin fibers

across multiple cells, consistent with earlier reports on cytoskeletal rearrangement

after calcium elevation [75]. While traction stresses of low- and high-calcium colonies

had different spatial distributions, focal adhesions, marked by paxillin, were concen-

trated at the colony periphery in both cases.

8.2.2 Planar model of cell colonies as elastic media

Because of the simple spatial trends of traction stresses observed in colonies with and

without intercellular adhesions, we examined whether a minimal physical model could

reproduce the experimental results. We model each cell in a colony as a homogeneous

and isotropic elastic material with constitutive relation given in Eq. (8.2) In our

model, each cell exerts a contractile “pressure” σa opposed by strong adhesion to a

compliant substrate. This model ignores all active processes modulated by cell–cell

adhesions, including downstream signaling, and represents each intercellular adhesion

as a purely physical connection described by linear springs. Cell–cell interactions are
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then characterized by a spring constant k per unit area, exerting a harmonic force

f per unit area normal to the interface between two cells. The addition of springs

translates into boundary conditions at the intercellular interfaces as σijnj = fi, with

n denoting the outward unit normal. The edge of the colony, however, respects the

stress-free boundary condition, σijnj = 0. We numerically solve the coupled elasticity

equations subject to the aforementioned boundary conditions using the matlab PDE

Toolbox. We evaluate strain energy density, w, given by w = 1
2
T · u, where T = Y u

is the local traction stress exerted by the colony.

To mimic the cell geometry in the timecourse experiment (Fig. 8.4), we consider

the case of three hexagonal cells (Fig. 8.6A). We find that, for increasing cell–cell-

coupling strength, k, traction stress and strain energy disappear under cell–cell junc-

tions (Fig. 8.6 B–D), recapitulating the transition seen in real cells stimulated by

calcium elevation (Fig. 8.4 D–F ). The similarity between model and experiment is

also evident in plots of strain energy density as a function of distance from the colony

edge (Fig. 8.6 E–G and Fig. 8.4K ).

The model demonstrates the importance of intercellular-adhesion strength in spa-

tially organizing cell-ECM forces. For weak cell–cell coupling (small k), individual

cells deform the substrate independently of each other, with significant substrate de-

formation at all edges of each cell. On the other hand, strongly coupled colonies

(large k) behave as a cohesive, contractile unit, with substrate deformation only at

the colony periphery.

This planar model is an extension of an analytically tractable, one-dimensional

model, described in detail below.

8.2.3 Model of cell colonies as elastic media in one dimension

As in the planar case, individual cells are described in one dimension as thin active

elastic materials adherent to an elastic substrate. We consider N cells, each of rest

length L/N and average height h, with cell–cell adhesions modeled by linear springs
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Figure 8.7: Minimal one-dimensional picture of N cells adhering via cadherin-based adhesions,

modeled as linear springs of stiffness k.

of stiffness k (Fig. 8.7). Let σ(α) denote the internal stress in the αth cell and u(α)

the corresponding displacement field. The one-dimensional constitutive relation and

force-balance condition for the αth cell are given by

σ(α)(x) = B∂xu
(α) + σa (8.7)

and

h∂xσ
(α) = Y u(α), (8.8)

respectively, where B is the longitudinal elastic modulus of the cell. Internal stress

distribution in the colony is then governed by equations

`2
p∂

2
xσ

(α)(x) + σa = σ(α)(x) for 1 ≤ α ≤ N (8.9)

subject to boundary conditions

σ(1)|x=0 = 0, (8.10a)

σ(α)|x=αL/N = σ(α+1)|x=αL/N

= k
[
u(α+1) − u(α)

]
x=αL/N

for 1 ≤ α < N, (8.10b)

σ(N)|x=L = 0. (8.10c)

For simplicity, we assume that the cell–cell adhesion springs have zero rest length and

that the colony ends (x = 0, L) respect stress-free boundary conditions.

Explicit solutions for cellular stresses in an adherent cell-pair (N = 2) are given
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Figure 8.8: (A) Internal stress and (B) strain energy density in a one-dimensional adherent cell-

pair for kL/σa = 0.004 (dotted), kL/σa = 0.4 (dashed), and kL/σa = 40 (solid). Parameters:

`p/L = 0.2, B/σa = 2, h/L = 0.1. (C) Intercellular force, f versus intercellular adhesion strength,

k (in units of σa/L) for `p/L = 0.2. Inset: f as a function of `p/L for kL/σa = 10.

by

σ(1)(x)/σa = 1− exp

(
− x
`p

)
(8.11a)

+
2 sinh

(
x
`p

) [
2k`p
B

+ exp
(

L
2`p

)
− 1
]

2k`p
B

[
1 + exp

(
L
`p

)]
+ exp

(
L
`p

)
− 1

,

σ(2)(x)/σa = 2 sinh

(
L− x

2`p

)
(8.11b)

×
cosh

(
x

2`p

)
− cosh

(
L−x
2`p

)
+ 2k`p

B
sinh

(
x

2`p

)
2k`p
B

cosh
(

L
2`p

)
+ sinh

(
L

2`p

) .

For weak intercellular coupling, k � B/`p, internal stresses are maximal at the center

of individual cells and negligible at the cell–cell junction. For a strongly coupled cell-

pair, k � B/`p, internal stresses build up at the junction between the cells, which

corresponds to the limit of a cohesive cell colony (Fig. 8.8A). In this case, internal

stress takes the simple form

σ(x)

σa
= 1−

cosh
(
L−2x
2`p

)
cosh

(
L

2`p

) . (8.12)

Strain energy density, w, in the cell-pair is determined using w(x) = 1
2
T (x)u(x),

where the traction T (x) = Y u(x). For a weakly coupled cell-pair (k → 0), w is
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localized at the edges of individual cells, and the net traction force on each individual

cell vanishes. In contrast, a strongly cohesive cell-pair (k → ∞) behaves as a single

cell, with strain energy density localized at the edge of the pair and vanishing at the

junction (Fig. 8.8B). For intermediate strengths of cell–cell adhesion, there is finite

but small strain energy at the junction compared to the edges of the cell-pair. Traction

force imbalance at each cell gives the estimate of the total force, f , transmitted to

the intercellular adhesion,

f =

∣∣∣∣∣
∫ L/2

0

dx T (1)(x)

∣∣∣∣∣
= h |σ(0)− σ(L/2)|

=
hσa

∣∣∣1− cosh
(

L
2`p

)∣∣∣
cosh

(
L

2`p

)
+ B

2k`p
sinh

(
L

2`p

) (8.13)

' hσa
k

k +B/2`p
for L� `p.

Intracellular force, f , grows monotonically with adhesion strength, k, before reaching

a plateau when k is large (Fig. 8.8C ). However, the dependence of f on penetra-

tion length, `p, which is inversely related to substrate stiffness, is non-monotonic

(Fig. 8.8C, inset). This biphasic relation arises from the competition among different

elastic components (cell, substrate, and the intercellular spring) connected in series.

For small `p, the substrate is deformed less compared to the cells and to the inter-

cellular spring, leading to a rise in intercellular force. A more compliant substrate

with large `p is likely to accommodate larger cellular forces, reducing the net force

transmitted to the intercellular adhesion.

In summary, our results show that cadherin-based cell–cell adhesions modulate

force transmission to the ECM. In particular, our traction-force data on cohesive cell

colonies suggest that intercellular-adhesion formation through classical cadherins re-

organize the spatial distributions of traction stress. In colonies of cells with strong

E-cadherin-based adhesions, cell-ECM traction stresses are localized in a ring around

the colony periphery. In weakly cohesive colonies, regions of high traction stress ap-



8.2 Role of intercellular adhesions 161

pear throughout the colony. Comparison of our experimental data with our minimal

physical model suggests that strong physical cohesion between cells is sufficient to

drive the relocalization of cell-ECM forces to the periphery of cell colonies. While

our data show that E-cadherin is necessary to reorganize traction forces, E-cadherin

alone may not be sufficient. Further study is required to determine whether addi-

tional adhesive processes downstream of adherens junctions, such as the formation

of desmosomes by nonclassical cadherins [252], are necessary to achieve sufficient

cohesion.

Our findings resonate with recent studies on cellular adhesion pointing toward

crosstalk of cadherin- and integrin-based adhesions. Focal adhesions have been ob-

served to disappear underneath cell–cell contacts [88], but this effect may depend

on substrate stiffness [90] and the extent of cell spreading [253]. Recent work has

also suggested that forces transmitted through focal adhesions can modulate inter-

cellular forces [86, 90], which in turn can modulate intercellular-junction assembly

and disassembly [77]. Our study highlights intercellular adhesions’ ability to impact

cell-ECM force generation, which allows for bidirectional feedback between cell–cell

and cell-matrix forces. Indeed, tension at cadherin junctions [75] is known to elicit

cell-signaling events and actin dynamics [254–256] and contribute to collective cell

migration [87, 257]. In light of these prior results on integrin-cadherin feedback, it is

somewhat surprising that a minimal physical model can capture the observed depen-

dence of cell-matrix forces on the strength of cadherin-mediated cell–cell adhesions.

Reorganization of cell-ECM forces is likely one important mechanism by which

cadherin-based adhesions drive tissue morphogenesis and homeostasis. In develop-

ment, differential adhesion has been shown to play an important role in cell sort-

ing [246], and the reorganization of intercellular forces in this context is entirely

unexplored. Furthermore, in wound healing, we expect strong cell-ECM forces to be

generated at a wound edge due to the local loss of intercellular adhesion. These forces

could act as a signal, inducing migratory behavior in epithelial cells [85], activating
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responses of stromal cells, and organizing the ECM [258, 259]. A key avenue for

future investigations will be to explore how organization of force stimulates cellular

responses within tissues.

Appendix 8.A Materials and Methods

Preparation of Substrates for Traction Force Microscopy

A borate buffer solution was made from deionized water with 3.8 mg/ml sodium

tetraborate and 5 mg/ml boric acid. Silane (3-aminopropyl triethoxysilane) (Poly-

sciences) was vapor-deposited onto 35 mm glass-bottom dishes (WillCo Wells) to

allow florescent beads to be bonded to the surface. Beads were deposited by filling

the dish with a solution containing dark-red florescent (660/680) carboxylate-modified

microspheres with radius 0.1 µm (Life Technologies) at a volume ratio of 1:3,000 and

1 wt% 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (Sigma-Aldrich) at a

volume ratio of 1:100 in borate buffer. Silicone elastomer was then prepared by mixing

a 1:1 weight ratio of CY52-276A and CY52-276B (Dow Corning Toray). After being

degased for 10 min, the elastomer was spin-coated onto the glass of the dish at 2,000

rpm for 60s. The dish was cured at 50◦C for 3 min and resulted in an elastic film

∼21 µm thick. With the elastomer cross-linked, silane was vapor-deposited on the

elastomer-coated dish. A second layer of florescent polystyrene beads was deposited

at a higher concentration, volume ratios of 1:1,000 beads and 1:100 EDC in borate

buffer. A second layer of fresh, degased elastomer was spin-coated at 10,000 rpm for

90s resulting in a layer ∼3 µm thick. The sample was cured at RT overnight. We

estimated the Young’s modulus, E, of the cured elastomer to be ∼3 kPa using bulk

rheology. Before cells were plated, the elastomer surface was coated with fibronectin

from bovine plasma (Sigma-Aldrich) at a concentration of 0.2 mg/ml, which sat for

20 min at RT before being washed off with PBS.
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Confocal Microscopy

Images for TFM experiments were acquired using an Andor Revolution spinning-

disk confocal system (Andor Technology) mounted on an inverted microscope (Nikon

Eclipse Ti) with a Plan Apo 60× water-immersion objective lens with numerical aper-

ture of 1.2 (Nikon). A 640 nm laser and DIC channel were used to image florescent

beads and cells, respectively. Images were acquired with an iXon EMCCD camera

with a resolution of 1,024 × 1,024 pixels (Andor Technology). The field of view was

113 × 113 µm2. Because a single field of view was too small to image an entire cell

colony, between 9 and 42 fields of view per colony were acquired, with adjacent fields

of view overlapping by ∼25% and stitched together with sub-pixel precision by align-

ing bead positions in overlapping regions. The stage was controlled through Motion

Controller/Driver SMC100CC high-speed motorized actuators (Newport). We im-

aged fluorescent beads with confocal image stacks of total thickness 5µm to cover the

beads’ entire point-spread function in z. Confocal image slices were spaced 200 nm

apart. These stacks were reduced to single images for particle-tracking by averaging

the slices from five below to five above the slice with the highest total intensity.

Live-Cell Imaging

Confocal image stacks of the fluorescent beads were acquired for each cell condition.

Control images of the beads in their unstressed state were acquired after removing

the cells from the elastomer with proteinase K (Life Technologies) at 0.5 mg/ml for

5 min and then washing with PBS. The cells on the microscope were maintained at

37◦C using a heated microscope stage. pH was controlled using HEPES solution at

15mM (Sigma-Aldrich). To inhibit the formation of cadherin-based adhesions, we

added anti-E-cadherin antibody DECMA-1 (Abcam) at 6µg/ml to the high-calcium

medium. For consistency across cellular conditions, we controlled for colonies that

deviated significantly from disk-shaped and contained cells with long protrusions by

selecting for colonies whose actual perimeter, P , was no more than 1.5 times the
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perimeter of a circle of the same area, A, as the colony (P ≤ 3
√
πA).

Calculation of Traction Stresses and Strain Energies

After determining bead positions using centroid analysis in matlab [230], we cal-

culated the deformation of the substrate, usi (r, zo), across its stressed (with cells)

and unstressed (with cells removed) states, where zo is the distance between the

substrate bottom and the bead layer. In Fourier space, the deformation field is

related to the traction stresses at the surface of the substrate, hs, via linear elastic-

ity, σsiz(k, hs) = Qij(k, zo, hs)u
s
j(k, zo), where k represents the in-plane wave vector.

Here, σsiz(k, hs) and usj(k, zo) are the Fourier transforms of the traction stress on the

top surface and the displacements of the bead layer just below the surface, respec-

tively. The tensor, Q, depends on the thickness and modulus of the substrate, the

location of the beads, and the wave vector [58, 231]. We calculated the strain en-

ergy density, w(r) = 1
2
σsiz(r, hs)u

s
i (r, hs) [47]. The deformation on the surface was

determined using usi (k, hs) = Q−1
ij (k, hs, hs)Qjk(k, zo, hs)u

s
k(k, zo). Because of their

small size and immersion in a viscous medium, we expect the colonies of cells to be

in mechanical equilibrium (net force of zero). Due to experimental error in deter-

mining substrate displacement fields, we occasionally calculated non-zero net trac-

tion forces on a colony. We discarded colonies with more than 15% residual force,∣∣∫ dA (σsxzx̂ + σsyzŷ
)∣∣ ≥ 0.15

∫
dA
∣∣σsxzx̂ + σsyzŷ

∣∣.
Primary Keratinocyte Culture

Primary wildtype keratinocytes were isolated as described [260]. Briefly, isolated

backskin of newborn CD1 mice was floated on dispase overnight at 4◦C. The epider-

mis was separated from the dermis with forceps and incubated in 0.25% trypsin for

10min at RT. Individual cells were released by trituration and plated on mitomycin-C-

treated J2 fibroblasts in low-calcium medium (0.05mM CaCl2). After 2–4 passages,

cells were plated on plastic dishes without feeder cells. Primary keratinocytes were
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also isolated as described [261] from newborn epidermis in which E-cadherin was

conditionally deleted as described [262]. KO/KD cells were generated by lentiviral

transduction of E-cadherin-deficient keratinocytes using shRNA directed against P-

cadherin, as described [252]. Cadherin-junction formation was induced by raising the

concentration of CaCl2 of the low-calcium medium to 1.5mM.

Immunohistochemistry

Cells were fixed in 3.7% formaldehyde for 10min and then washed twice for 2min

in PBS. A blocking solution of normal goat serum, normal donkey serum, bovine

serum albumin, gelatin, and triton X in PBS was used to prevent non-specific binding.

Cells were stained using 3,000 units/µl Alexa Fluor 594 phalloidin (Life Technologies)

and primary antibodies 8 ng/µl monoclonal mouse anti-E-cadherin (TaKaRa) and 4

ng/µl rabbit anti-paxillin (Sigma-Aldrich). After being washed in PBS, cells were

incubated with secondary antibodies 8 ng/µl goat anti-rabbit Alexa Fluor 488 (Life

Technologies) and 8 ng/µl goat anti-rat Alexa Fluor 647 (Life Technologies) and again

with 3,000 units/µl Alexa Fluor 594 phalloidin. Cells were then mounted in ProLong

Gold with DAPI (Life Technologies).

Fluorescent images of immunohistochemical staining were acquired using confocal

laser scanning microscopy on a Zeiss LSM 510 system equipped with Ar, HeNe 543,

and HeNe 633 laser lines allowing imaging with lasers of wavelengths 488, 568, and

633 nm and a Plan Apo 40× oil-immersion objective with numerical aperture 1.3

(Zeiss). The field of view was 313× 313 µm2 with a maximum resolution of 2,048×
2,048 pixels. The stage was controlled using an MCU 28 unit (Zeiss).

Statistical Analyses

Statistical significance for strain-energy distributions was assessed with p values de-

termined by two-sided Student’s t tests. Statistically significant p values were those

lower than 0.05.
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[21] K. Kruse and F. Jülicher, Current opinion in cell biology 17, 20 (2005).

[22] T. Anazawa, K. Yasuda, and S. Ishiwata, Biophysical journal 61, 1099 (1992).

[23] D. G. Albertson et al., Developmental biology 101, 61 (1984).

[24] T. Sanchez, D. Welch, D. Nicastro, and Z. Dogic, Science 333, 456 (2011).

[25] S. Günther and K. Kruse, New J. Phys. 9, 417 (2007).



Bibliography 168

[26] R. Aditi Simha and S. Ramaswamy, Physical review letters 89, 058101 1 (2002).
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