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Discourse-level Analysis of Abstracts for Information Retrieval: 

A Probabilistic Approach 

 
Robert N. Oddy 

 

The objective of this research is to contribute to our knowledge of how people seek information, 

and how computer systems can be designed to help in this process.   Most information retrieval 

research since the field emerged in the 1950's has reduced these questions to that of trying to 

determine how documents relevant to a user's query might be selected from a large collection of 

texts---a question that has proved remarkably difficult to answer. The present work takes the stance 

that this particular reduction increasingly limits progress towards the objective stated above. It is 

directed instead towards the development of a framework for IR based on the notions of discourse 

and human communication. 

 

1.  Information Retrieval and Discourse 

 

An argument suggesting the use of discourse-level linguistic analysis of texts for information 

retrieval purposes was given in a previous paper [1]. 

 

"Much of human discourse is concerned with sharing experience of the situations with 

which we must cope.  It is directed towards improving our ability to recognize common 

situations, and to respond effectively to them.  Specifically, document abstracts are written 

with the intention of informing people who belong to the same community as the authors 

and are engaged in similar work.  They should, therefore, be able to recognise common 

situations.  The situations of interest to an author are discernable in the discourse-level 

structure of an abstract." [1, p124] 

 

Evidence for these claims was presented in the paper, as was some preliminary work on automatic 

discourse-level text analysis and implications for system design.   It was argued that the next step 

should be the development of a prototype IR system which makes use of discourse-level structures 

to allow users to express situation-related aspects of their information needs.  This is prerequisite to 

performing empirical work on our hypotheses to do with the role of situational information and 

discourse structure in IR. [1, pp166-7] 

 

2.  Discourse-level structure of empirical abstracts 

 

This work makes use of a hierarchical, componential text structure for empirical abstracts proposed 

and thoroughly investigated by Liddy[2].  The hierarchy is displayed in Figure 1, and an example 

of an analysed abstract is given in Figure 2.   There are 37 component types in the whole hierarchy 

(known as the Elaborated model), although one would not expect to see all of them in any 

particular abstract.   Also, the hierarchy reflects the logical relationships which are most obvious to 

abstractors and readers, and although abstracts frequently follow this scheme, components are 

displaced in a significant number of specific texts.   Liddy suggested two sub-structures, on the 

basis of increasing typicality in abstracts and abstractors' perceptions:  the Typical model (15 

component types) and the Prototypical model (7 component types).  These are also shown in Figure 

1. 



 

In the course of her Ph.D dissertation work, Liddy developed a small corpus of empirical abstracts, 

analysed into components (Elaborated model), by hand [2].   These abstracts were subsequently 

coded with a simple bracketing scheme to indicate the positions of the components in the texts 

(Figure 3).   In this corpus, abstracts from two online databases are represented: 

 

from ERIC (education): 150 abstracts containing 1754 components 

from PsycINFO (psychology): 126 abstracts containing 1464 components 

 

3.  Discourse analysis: a Probabilistic approach 

 

A perusal of typical abstracts leads to the impression that an analysis based on linguistic processes 

(syntactic and semantic analysis) would be complex, and involve high computation costs.   On the 

other hand, it has been clear since Liddy did the initial analysis that there are clues in the texts 

which might provide probabilistic evidence of the discourse-level structure.   This should lead us to 

relatively fast computer programs which could be applied to large databases.  A very primitive 

probabilistic model was described in [1], and this work is considerably extended in the present 

paper. 

 

In this work, the aim of a probabilistic analysis of texts into their discourse-level structure is taken 

to be: 

 

the assignment of text fragments to the discourse-level components of the text-type, with 

associated estimates of the probability of correct assignment. 

 

From these assignments, using a decision rule, one or more structural analyses of the whole text 

can be proposed with varying degrees of certainty.  However, this step is beyond the scope of the 

present paper. 

 

The probabilities can be estimated by combining evidence from clues observed in the text once 

statistical information has been derived from a corpus of typical texts.   The information used here 

for the estimation is as follows: 

 

(i) Relative frequency of occurrence of the various component types in a corpus of 

typical texts; 

(ii) Frequency distributions of lexical clues (words, stems, word classes) in the 

components within the corpus; 

(iii) Structural information; specifically the frequency distribution of the adjacency of all 

possible pairs of component types in the corpus. 

 

There is another significant aspect to the problem, namely how are the text fragments to be 

obtained in the first place?   It was decided to treat this problem separately at first, even though it is 

unlikely that in a successful system fragmentation can be performed independently of the 

estimation of probabilities.   So, the research strategy was to explore first the probability 

estimation, assuming that the fragmentation could be done correctly (using test data that had been 

fragmented by hand).  Then some quite simple automatic fragmentation methods were explored. 



 

4.  The Probabilistic Models 

 

4.1  Lexical clues 

 

The model for the use of lexical clues is a simple application of Bayes’ theorem. 

 

Suppose a text fragment, F, contains a set of clues, S.  We can write this as follows: 

 

F is represented by the clue vector X = (x1, x2, ... , xn),  where n is the size of the clue 

vocabulary, 

 

and xi = 1, if clue i is present in S, otherwise xi = 0. 

 

For each component type, c (1 ≤ c ≤ C), we want P(c | X), i.e. the probability that the fragment F is 

a component of type c, given that clue vector X is observed.  Invoking Bayes’ theorem (and 

assuming clues occur independently): 
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From a typical, previously analyzed corpus of abstracts, the parts of this expression can be 

estimated as follows: 
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where  Nc = no. of components of type c 

            nci = no. of components of type c containing clue i 

            T  = total no. of components 

 

The denominator of (1) is the sum of the numerators (over c). 

 

A clue is a word (stem, or semantic class, for instance) whose occurrence in a text fragment can tell 

us something about the component type, i.e. one whose frequency distribution in components is not 

random. 



 

Finding a set of clues, using a small corpus is difficult, and was the subject of quite extensive work 

early in the present project.   This process will be described in the next section. 

 

 

4.2  Choice of lexical clues 

 

Potential clues are extracted from the corpus, and may include: 

(i) single whole words (no exception list) 

(ii) stems (optional), where different from the original words 

(iii) class names (optional), for those words which are found to 

         belong to predefined classes 

 

For a potential clue, i, and component type, c: 

nci = number of components of type c containing i; 

 n = number of different types of component containing i; 

 f = 


C

c

cin
1

; 

 Nc = number of instances of component type c. 

 

Firstly, a simple filter is applied.   Potential clue i is rejected if 

(i) nci ≤ A  for all c, or  

(ii) f ≤ B. 

The values A = 1 and B = 2 were found to be satisfactory (sample corpus size may be a factor here).   

The rationale for applying the filter is that with so little data statistical information about these 

words is extremely unreliable. 

 

Now, a score, Sci, is computed for the association of the potential clue, i, with each component type, 

c, in which it occurs.  (Note that a potential clue may have more than one score.) 

 

2

1
..).

1
1).(

1
1(

nf

n

N

n

Nf
S ci

c

ci

c

ci   

 

The first factor asymptotically approaches 1 from below as f increases, and serves as a way of 

reducing the score for the less frequent words, on the grounds that statistical errors will be greater 

for them.   The second factor has a similar purpose with respect to less frequent component types.   

The other factors reflect the following criteria for a good clue: 

 

(i) a large proportion of the components of type c should contain it (for some c) 

(ii) a large proportion of its occurrences should be concentrated in one type of component 

(iii) it should occur in relatively few different component types 

 

One might expect words whose distribution across component type was highly skewed to have 

these properties.   However, when the skew was tried as a means of selecting clues, performance 

(in terms of the success of the probability estimations) was inferior to that obtained with Sci. 

 



Finally, the association scores are ranked and words selected from the top until a specified number 

K of different clues have been found. 

 

 

4.3  Use of structural evidence 

 

Consider an abstract consisting of N fragments, fn (1 ≤ n ≤ N).  As a first attempt to capture the 

structural relationships between components,  in a probabilistic way,  we expand the probability 

P(fn = ci), that fragment fn is a component of type ci (1 ≤ ci ≤ C), in terms of the probability 

distribution for the preceding fragment: 
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Now, we already have an estimate of P(fn = ci) based on clue data, which we do not wish to 

discard, so we need to revise the probabilities P(fn = ci).  This can be done in a sequential manner, 

working forwards through the abstract, using Jeffrey's rule of conditioning: 
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P*() denotes revised probabilities.  This step depends on the assumption that the conditional 

probabilities do not change while the revision is taking place, which seems reasonable in this 

application because they express quite stable structural properties of the text-type. 

 

In these formulae, f0 is the (virtual) fragment preceding the first in the abstract, interpreted as the 

beginning of the abstract, and c0 is its notional (fixed) component type. 

 

Thus P(fn = c0) = P*(fn = c0) = 1, if n = 0 

                                               = 0, otherwise 

 

and P(f0 = ci) = P*(f0 = ci) = 1, if i = 0 

                                            = 0, otherwise 

 

Now, inverting the conditional probabilities, we can express the revision for fragment fn in terms of 

the revisions that have just taken place for the preceding fragment, and knowledge about the 

probabilities of component sequences in abstracts. 
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where  qij = P(fn-1 = cj | fn = ci) 

 

The initial value of  P(fn = ci)  could be the one derived from lexical clues, or an estimate based on 

relative frequency of component types, or a constant over all i, indicating no prior belief. 

 

To estimate  P*(fn = ci), we use an estimate of qij: 
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where  seq(j,i) = number of occurrences of components of type j followed by components of type i, 

in a sample of abstracts.  In particular, seq(0,i) = number of occurrences of components of type i 

occurring at the beginning of abstracts. 

 

So, to calculate P*(), we have two cases: 

 

Case (i):  n = 1 
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Case (ii):  n > 1 
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Another possible revision procedure is to work through the abstract from the end towards to 

beginning.   The mathematics is analogous to forward revision.   So, corresponding to equation (4) 

is equation (5): 
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where  pji = P(fn+1 = cj | fn = ci) 

 

Here, fN+1 is interpreted as the end of the abstract (a virtual fragment after the last), and c0 is its 

notional (fixed) component type. 
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where  seq  is the same function as above, and in particular, seq(i,0) = number of occurrences of 

components of type i occurring at the end of abstracts. 

 

Again, there are two cases: 

 

Case (i):  n = N 
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Case (ii):  n < N 
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The two revision methods described above are not the same, and they may be used iteratively 

and/or alternately.   In the description of experiments, below, structure-based revision strategies are 

denoted by strings of f's (for forward revision) and b's (for backward), e.g. fbfbfb. 

 

 

4.4  Automatic text fragmentation 

 

At the present time, automatic text fragmentation is very simple, and the problem cannot be 

regarded as adequately solved.   Initially, the abstract is divided into fragments at punctuation 

characters.   Two types of error can occur in this approximate analysis: the omission of a 

component boundary when it is not marked by punctuation, and the addition of a false component 

boundary when punctuation occurs within a component.   In our data, the second type of error 

(extra false boundaries) is much more common than the first.   Therefore, the idea of merging 

adjacent fragments under certain circumstances has been explored. 

 

Two strategies have been devised for reducing the number of fragments in an attempt to 

approximate the known composition of components in abstracts: 

 

(i) Merging adjacent fragments, according to their size (number of words) and the specific 

punctuation separating them. 

(ii) Merging adjacent fragments, according to size and punctuation, but conditional upon 

there being a component type that has a comparatively high probability for both 

fragments. 

 

Both procedures use a function, w(p), of the punctuation, p, between fragments.  w(p) is the 

proportion of occurrences of p that coincide with component boundaries in a sample corpus. 

 

Strategy (i) ("merge small fragments") is applied before any probabilities are computed.   Two 

adjacent fragments are merged into one if the size, in words, of either is less than or equal to s, 

where  s = a.w(p) + b  (a and b constants).  The slope, a, of this linear function is negative, so the 



less likely the punctuation is to signal a component boundary, the longer the fragments that will be 

merged.   In experiments, values of a and b yielding the following values of s have been used: 

 

 punctuation s 

 

 , 4 

 ; 4 

 : 4 

 ? 3 

  . 1 

  ! 1 

 other 2 

 

Strategy (ii) can only be applied after component probabilities for the fragments of an abstract have 

been computed.   In this strategy, two adjacent components, fn and fn+1, are merged if there exists a 

component type, cj, for which  P(fn = cj) × P(fn+1 = cj) > H, where 
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(0.75 has been found to be a good value for k when this merge step is applied before structural 

revision) 

 

Probabilities are recalculated for merged fragments, using the combined sets of lexical clues. 

 

 

5.  Performance evaluation 

 

How do we measure and compare performance of the discourse-level structure analysis programs?   

To some extent, this must depend upon the use to be made of the structures, and this is a little 

problematic because the IR system that will use them has not yet been designed.  In general terms, 

there will be at least two uses: 

 

(i) as an additional factor in matching or selection of documents; 

(ii) as information to be included in the display of a retrieved abstract to the user. 

 

Uncertainty in the structure may have a quite different impact on these two processes.   For 

retrieval purposes, we could retain a number of alternative analyses, with associated probabilities, 

and design a suitable probabilistic matching function.   For display, we may need to commit 

ourselves to the most likely analysis, although some vagueness could be allowed in the layout, and 

less certain aspects could be omitted. 

 

In the following discussion, a "target" component is defined as a component type known to occur 

(through human text annotation) in the fragment. 

 

5.1  Criteria for good performance 



 

(i) Target components should be at the top of the list, ranked by probability estimate. 

(ii) Target components should be close to the top of the ranked list. 

(iii) Target components should have high probability. 

(iv) Target components should have high probability relative to others. 

(v) The fragmentation of the text should be close to that given by human experts. 

(vi) Some errors are better than others.   It is preferable that a fragment be mistaken for a 

component closely related in the hierarchy to the target, than for a more distant one. 

 

Criterion (i) is more important for display purposes than for retrieval.  Criteria (ii), (iii) and (iv) are 

related, but are not necessarily equivalent.   It is possible to imagine on the one hand a fairly flat 

distribution of probabilities in which the target is more frequently near the top than it is, on the 

other hand, in a highly skewed distribution.  Now, the probability distributions are constrained: the 

sum of the probabilities of all the component types for a particular text fragment is always 1.   

Therefore, the skew of the distribution is directly related to the magnitude of the highest 

probability.  Throughout the experiments, it has been found that reasonably motivated versions of 

the processing model invariably produce mean target probabilities substantially higher than what 

one would expect from a flat distribution.   In these circumstances, measuring the rank order of the 

target seems the most useful (criteria (i) and (ii)), and will capture criteria (iii) and (iv) quite well.   

(So far, criteria (v) and (vi) have not been systematically applied.) 

 

5.2  Processing framework 

 

The data available was generated by Elizabeth Liddy, in the course of her Ph.D dissertation 

research. [2]   It is a collection of abstracts of empirical research papers and reports, obtained from 

the ERIC and PsycINFO databases.   Each abstract has been segmented into its discourse-level 

components, according to Liddy's Elaborated model.  This structuring was validated as part of the 

experimental work in her project, and is regarded as reliable.   During subsequent work [1], each 

abstract was marked-up, manually, with a specially designed bracketing system, to facilitate 

computer processing of the structured abstracts.   This corpus consists of the following: 

 

eric.text 150 abstracts  1754 components 

psyc.text 126 abstracts  1464 components 

 

For present purposes a random sample of 75 abstracts was extracted from eric.text, forming 

eric.smpl.  The complementary file is eric.cmpl: 

 

eric.smpl 75 abstracts  915 components 

eric.cmpl 75 abstracts  839 components 

 

In the Elaborated model of the discourse-level structure, there are 37 component types, 15 of which 

are in the Typical model, and 7 of these are in the Prototypical model. 

 

The first processing step is to extract clues, and various statistical information from some part of 

this corpus (usually eric.smpl). 

 



The second stage is to analyze texts from one or more of the files, using the information from step 

one for estimation of probabilities, and concurrently to measure performance in relation to the 

components given by the bracketing. 

 

In each step, there are several parameters that need to be set, so a very large number of runs are 

possible. 

 

5.3  Performance measurement 

 

The result of the analysis of each text fragment is a list of  <component type, probability> pairs 

ranked in descending order of probability.   We can thus obtain the probabilities and rank order of 

target components.   Also calculated is a standardized score for each target: the ratio of the 

probability of the target to the probability at rank position 1 for the fragment.   The mean 

probability and standardized score over the whole run is reported, as is the t-test score computed 

for the difference between probabilities actually obtained for target components and expected 

values for a uniform distribution. 

 

The measure of overall quality of component ranking is calculated as follows (see Figure 4): 
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and   jij TK 1   where Tj = number of targets in fragment j if a target is ranked in 

position i, or 

   = 0, otherwise. 

 

If the correspondence between fragment and component boundaries is exact, Tj is always 1, and Ri 

is just the proportion of targets ranked in position i.   Ri are tabulated as percentages, along with 

cumulative percentages, beginning with rank 1.   The normalized area under the cumulative curve 

is the final measure of performance, M.  Specifically, 
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M can vary between 0 and 1.   We would get 1 if the target were always ranked first, and 

fragmentation were always correct. 

 

A method of testing the significance of differences between the M's obtained from two different 

runs has yet to be decided.  The problem is that if fragmentation differs from one run to another, it 

would not be possible to pair up the individual observations and do a matched-pairs test.   On the 

other hand, an unrelated samples test seems weaker than necessary, because there would usually be 

substantial correspondences between the fragments.   Hence, conclusions must be thoroughly 

hedged at this time. 

 



 

6.  Experiments and Results 

 

6.1  Variables: 

 

The discourse-level model described above is relatively simple.  In other words, one can quite 

easily think of modifications which hold promise of improving the performance.  Even within the 

confines of the present model, however, there are many possible variations.  The variables which 

have been considered for investigation so far are as follows: 

 

I. Clue-set generation: (see section 4.2) 

 

I.1 sub-corpus used: eric.smpl, eric.cmpl or psyc.text (see section 5.2) 

I.2 words and/or stems 

I.3 lowfrequency filters: 

 A  [nci ≤ A] 

 B  [ Bn
c

ci  ] 

I.4 K = number of clues 

 

II. Fragmentation: (see section 4.4) 

 

“given” (i.e. using the manual marking-up of the test corpora) or “automatic” (i.e. using 

punctuation) 

 

III. Use of structural information: (see section 4.3) 

 

The strategy for dynamic revision of component probabilities, given by a string of f’s 

(forward revision) and b’s (backward revision) 

 

IV. Fragment merging, for use with automatic fragmentation: (see section 4.4) 

 

IV.1  “merge small fragments” 

    IV.1.1  fragment size parameters: a and b in s = a.w(p) + b 

 

 IV.2  “probabilistic merge” 

     IV.2.1  position of merge relative to structural revision strategy 

     IV.2.2  fragment matching parameter: k in formula for H 

 

V. Discourse structure model: (see section 2) 

 

Elaborated, Typical or Prototypical 

 

VI. Sub-corpus analyzed: 

 

Eric.smpl, eric.cmpl or psyc.text 

 



 

6.2  Experimental runs: 

 

All runs reported below relate to the Elaborated Model of the discourse-level structure of empirical 

abstracts, which has 37 component-types. 

 

6.2.1 Clue-set runs 

 

To find out how to generate clues, and establish a performance base line. 

 

[Early runs established low frequency filter values: A = 1 is best, B = 2 is good – little 

difference with B = 3.] 

 

These runs look at the number of clues, K, the use of stems, and sub-corpora variations. 

 

We generate K (varying from 0 to 1000) clues (words or words and stems) from eric.smpl, 

then apply lexical clues only (i.e. no structural revision) to eric.smpl, eric.cmpl and 

psyc.text, using given fragmentation into components.  This looks at only the component 

probabilities estimation, assuming ideal text fragmentation.  The results are given in Tables 

1 – 4 and Figure 5. 

 

Comments: 

 

1.1 When K = 0 (i.e. no clues), the model gives us the effect of using just relative 

frequency of occurrence of the various types of component.  We can think of this as 

a benchmark. 

1.2 For “words”, the maximum number of clues that can be extracted from the eric.smpl 

file (with A = 1, B = 2) is 670.  With “words + stems”, this goes up to about 1100. 

1.3 The shapes of the curves are similar – a general climb from the benchmarks. 

1.4 Eric.smpl > eric.cmpl > psyc.text, as expected. 

1.5 Benchmarks for eric.smpl and eric.cmpl are very close, reflecting the fact that the 

relative frequency distributions of component types in the two sub-corpora are very 

similar. 

1.6 Adding stems does not do much for performance. 

 

6.2.2 Structural information runs 

 

[Early runs established that performance increases as f → fb → fbfb → fbfbfb → fbfbfbfb.  

Improvement with the last step is very small, and run-time is increasing noticeably, so we 

use fbfbfb.] 

 

Clues are words from eric.smpl: A = 1, B = 2, K = {0, 120, 670}.  The given fragmentation 

into components is used.  Sub-corpora analyzed are eric.smpl, eric.cmpl, and psyc.text.  The 

results are given in Tables 5 – 7 and Figure 6. 

 

Comments: 



 

2.1 Good improvements are observed for all values of K and each sub-corpus. 

2.2 Differences for K = 0 indicates that structure-based probability revision is beneficial 

even in the absence of lexical clues. 

2.3 Difference in the performance at K = 0 for eric.smpl and eric.cmpl indicates 

differences in the adjacency profiles between the two sub-corpora. 

 

6.2.3 Automatic fragmentation runs 

 

These runs test the use of punctuation characters to divide text into fragments. 

 

Clues are words or words + stems from eric.smpl: A = 1, B = 2, K from 0 to 1000.  The sub-

corpora analyzed are eric.smpl, eric.cmpl, and psyc.text.   The results are given in Table 8 – 

11 and Figure 7. 

 

Comments: 

 

3.1 Extraordinary!  Performance declines as more clues are added (Benchmark > lexical 

clues). 

3.2 Pattern is repeated in all three sub-corpora. 

3.3 Eric.smpl > eric.cmpl > psyc.text (analyzed using estimates from eric.smpl) as 

expected. 

3.4 Adding stems adds little to performance. 

3.5 Why the degradation? 

a) If a component is divided between two or more fragments, its clues will also 

be divided and this will have two effects: (i) clues for one component will 

not reinforce each other; and (ii) some parts of the component may have no 

clues at all. 

b) If a fragment contains parts of more than one component, the clues may 

work against each other. 

 

6.2.4 Automatic fragmentation with structural information 

 

These runs test the use of punctuation characters to do initial fragmentation, followed by structural 

revision strategy S = fbfbfb and/or fragment merging. 

 

Clues are words from eric.smpl: A = 1, B = 2, K = {0, 120, 670}.  Fragment merging 

methods are “small fragments” (ms), and “probabilistic” (mp) with k = 0.75.   The 

combinations tested are: ms, msmp, S, msS, msmpS.  The sub-corpora analyzed are: 

eric.smpl, eric.cmpl, and psyc.text.   Results are shown in Tables 12 – 14 and Figures 8 – 

10. 

 

Comments: 

 

4.1 Use of structural information has a large impact, raising performance above 

benchmark levels. 



4.2 Merging small fragments has a small beneficial effect. 

4.3 Merging “probabilistically” has a larger effect. 

4.4 The effects do compound. 

4.5 The patterns for analyzing eric.cmpl and psyc.text (using estimates from eric.smpl) 

are similar to that for eric.smpl, though less pronounced. 

 

Conclusions: 

 

The results are encouraging enough to indicate that further work would be worthwhile.  The most 

important results are those obtained from runs in which clues and text-structure distributions were 

obtained from one sub-corpus (eric.smpl) and then applied to the other sub-corpus (eric.cmpl).  

This approximates a real-life application in which a sample of texts of a particular type are 

analyzed by hand to provide statistical information that can be used with a large collection of 

similar texts.   When the fragmentation into components is given, the M value reaches 0.722 (Table 

6).  With the best automatic fragmentation methods devised so far, the M value reaches 0.695 

(Table 13).   Applying clues obtained from texts on education to the task of discourse-level analysis 

of texts on psychology clearly does not work so well, presumably because the vocabularies are 

different.   Some limitations of this study are: (i) the corpus used (and hence the sub-corpus used 

for clue-derivation) is very small; (ii) the types of clues were limited to words and/or stems; (iii) 

the basic automatic fragmentation technique is based only upon punctuation.  Further development 

in any of these areas can be expected to improve what are already quite good results.  An 

additional, important limitation of the work is that the only text type included is the empirical 

abstract in the behavioral science literature.  Other text-types should be explored. 
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clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.063 11 69 0.462 

20 0.139 24 79 0.572 

50 0.188 31 81 0.620 

80 0.221 34 84 0.648 

120 0.270 39 84 0.673 

160 0.296 41 84 0.683 

204 0.312 42 84 0.680 

302 0.339 44 85 0.677 

400 0.424 50 86 0.708 

500 0.485 52 86 0.728 

600 0.521 55 85 0.738 

670 0.564 58 86 0.766 

 

Table 1: Model: Elaborated 

 Fragments: given 

 Clues: words from eric.smpl 

 Applied to: eric.smpl 

 

 

 

clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.063 11 69 0.462 

20 0.143 22 77 0.556 

60 0.209 30 81 0.607 

83 0.250 33 83 0.636 

120 0.299 40 85 0.675 

163 0.330 42 87 0.691 

205 0.349 43 87 0.696 

300 0.395 46 87 0.706 

408 0.417 48 86 0.708 

500 0.454 51 87 0.717 

600 0.488 54 87 0.730 

700 0.539 57 87 0.756 

800 0.568 59 87 0.761 

900 0.583 61 86 0.764 

1000 0.611 63 86 0.785 

 

Table 2: Model: Elaborated 

 Fragments: given 

 Clues: words and stems from eric.smpl 

 Applied to: eric.smpl 



 

clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.062 9 68 0.460 

20 0.115 18 74 0.526 

50 0.154 24 75 0.558 

80 0.179 26 77 0.580 

120 0.213 29 76 0.597 

160 0.239 31 77 0.603 

204 0.244 29 76 0.594 

302 0.255 33 78 0.595 

400 0.305 37 79 0.627 

500 0.362 41 80 0.644 

600 0.371 41 78 0.640 

670 0.404 42 80 0.667 

 

Table 3: Model: Elaborated 

 Fragments: given 

 Clues: words from eric.smpl 

 Applied to: eric.cmpl 

 

 

 

clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.057 11 60 0.414 

20 0.083 16 61 0.443 

50 0.109 21 62 0.465 

80 0.131 23 63 0.465 

120 0.153 24 62 0.480 

160 0.165 25 62 0.479 

204 0.174 24 62 0.480 

302 0.185 23 61 0.478 

400 0.231 27 63 0.497 

500 0.256 29 62 0.497 

600 0.268 29 62 0.501 

670 0.302 32 63 0.520 

 

Table 4: Model: Elaborated 

 Fragments: given 

 Clues: words from eric.smpl 

 Applied to: psyc.text 

 

 

 



clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.135 19 83 0.578 

120 0.342 45 89 0.720 

670 0.604 62 90 0.806 

 

Table 5: Model: Elaborated 

 Fragments: given 

 Clues: words from eric.smpl 

 Structure revision: fbfbfb 

 Applied to: eric.smpl 

 

 

 

 

clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.124 15 79 0.552 

120 0.283 35 84 0.660 

670 0.444 46 85 0.722 

 

Table 6: Model: Elaborated 

 Fragments: given 

 Clues: words from eric.smpl 

 Structure revision: fbfbfb 

 Applied to: eric.cmpl 

 

 

 

 

clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.091 13 74 0.493 

120 0.210 27 76 0.566 

670 0.337 37 75 0.589 

 

Table 7: Model: Elaborated 

 Fragments: given 

 Clues: words from eric.smpl 

 Structure revision: fbfbfb 

 Applied to: psyc.text 

 

 

 

 

 



clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.070 32 74 0.562 

50 0.123 20 77 0.525 

120 0.153 22 80 0.509 

204 0.163 22 79 0.506 

302 0.170 22 70 0.479 

500 0.213 23 68 0.489 

670 0.231 24 65 0.489 

 

Table 8: Model: Elaborated 

 Fragments: automatic 

 Clues: words from eric.smpl 

 Applied to: eric.smpl 

 

 

 

 

 

clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.070 32 74 0.562 

60 0.130 18 77 0.514 

120 0.165 24 81 0.508 

205 0.180 23 82 0.516 

300 0.194 24 82 0.519 

500 0.208 23 74 0.494 

700 0.231 25 68 0.497 

1000 0.254 26 66 0.503 

 

Table 9: Model: Elaborated 

 Fragments: automatic 

 Clues: words and stems from eric.smpl 

 Applied to: eric.smpl 

 

 

 



 

 

clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.070 31 76 0.567 

50 0.107 16 74 0.492 

120 0.125 20 76 0.468 

204 0.129 17 75 0.457 

302 0.125 14 62 0.415 

500 0.148 15 63 0.432 

670 0.149 16 59 0.401 

 

Table 10: Model: Elaborated 

 Fragments: automatic 

 Clues: words from eric.smpl 

 Applied to: eric.cmpl 

 

 

 

 

 

 

clues mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

0 0.062 32 63 0.486 

50 0.078 13 60 0.392 

120 0.104 16 59 0.364 

204 0.108 14 59 0.357 

302 0.102 12 47 0.324 

500 0.119 13 47 0.326 

670 0.111 12 44 0.300 

 

Table 11: Model: Elaborated 

 Fragments: automatic 

 Clues: words from eric.smpl 

 Applied to: psyc.text 

 

 

 



 

 

merge/ 

structure 

clues fragment 

ratio 

mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

msmpS 0 

120 

670 

1.45 

1.29 

0.88 

0.331 

0.359 

0.490 

33 

36 

50 

76 

86 

90 

0.553 

0.685 

0.778 

msS 0 

120 

670 

1.45 

1.45 

1.45 

0.331 

0.352 

0.423 

33 

35 

44 

76 

86 

88 

0.553 

0.667 

0.735 

S 0 

120 

670 

1.56 

1.56 

1.56 

0.330 

0.350 

0.408 

33 

35 

43 

75 

86 

88 

0.550 

0.663 

0.726 

msmp 0 

120 

670 

1.45 

1.29 

0.88 

0.070 

0.163 

0.362 

32 

23 

38 

75 

80 

78 

0.562 

0.512 

0.641 

ms 0 

120 

670 

1.45 

1.45 

1.45 

0.070 

0.160 

0.245 

32 

24 

25 

75 

80 

66 

0.562 

0.519 

0.505 

Notes: merge/structure  ms = merge small fragments 

                                       mp = probabilistic merge 

                                       S = structure revision strategy fbfbfb 

          fragment ratio = number of fragments determined automatically / number given 

 

Table 12: Use of Structural Information and Fragment Merging 
 Model: Elaborated 

 Fragments: automatic 

 Clues: words from eric.smpl 

 Applied to: eric.smpl 

 

 



 

 

merge/ 

structure 

clues fragment 

ratio 

mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

msmpS 0 

120 

670 

1.52 

1.31 

0.89 

0.316 

0.343 

0.394 

31 

34 

40 

74 

84 

84 

0.536 

0.659 

0.695 

msS 0 

120 

670 

1.52 

1.52 

1.52 

0.316 

0.336 

0.373 

31 

34 

39 

74 

84 

84 

0.536 

0.648 

0.675 

S 0 

120 

670 

1.63 

1.63 

1.63 

0.315 

0.335 

0.359 

31 

34 

38 

74 

84 

85 

0.531 

0.646 

0.673 

msmp 0 

120 

670 

1.52 

1.31 

0.89 

0.070 

0.135 

0.220 

31 

20 

23 

76 

75 

69 

0.563 

0.464 

0.503 

ms 0 

120 

670 

1.52 

1.52 

1.52 

0.070 

0.128 

0.158 

31 

21 

17 

76 

75 

60 

0.563 

0.471 

0.410 

Notes: merge/structure  ms = merge small fragments 

                                       mp = probabilistic merge 

                                       S = structure revision strategy fbfbfb 

          fragment ratio = number of fragments determined automatically / number given 

 

Table 13: Use of Structural Information and Fragment Merging 
 Model: Elaborated 

 Fragments: automatic 

 Clues: words from eric.smpl 

 Applied to: eric.cmpl 

 

 



 

 

merge/ 

structure 

clues fragment 

ratio 

mean target 

probability 

% targets 

at rank 1 

% targets up 

to rank 10 

M 

msmpS 0 

120 

670 

1.26 

1.17 

0.80 

0.329 

0.335 

0.349 

33 

34 

35 

69 

77 

77 

0.498 

0.570 

0.603 

msS 0 

120 

670 

1.26 

1.26 

1.26 

0.329 

0.337 

0.339 

33 

34 

36 

69 

77 

73 

0.498 

0.568 

0.579 

S 0 

120 

670 

1.34 

1.34 

1.34 

0.323 

0.330 

0.329 

32 

33 

35 

67 

77 

72 

0.483 

0.557 

0.567 

msmp 0 

120 

670 

1.26 

1.17 

0.80 

0.063 

0.105 

0.165 

32 

16 

18 

64 

59 

55 

0.493 

0.366 

0.396 

ms 0 

120 

670 

1.26 

1.26 

1.26 

0.063 

0.108 

0.114 

32 

17 

12 

64 

60 

46 

0.493 

0.372 

0.310 

Notes: merge/structure  ms = merge small fragments 

                                       mp = probabilistic merge 

                                       S = structure revision strategy fbfbfb 

          fragment ratio = number of fragments determined automatically / number given 

 

Table 14: Use of Structural Information and Fragment Merging 
 Model: Elaborated 

 Fragments: automatic 

 Clues: words from eric.smpl 

 Applied to: psyc.text 

 



 RELATION TO OTHER RESEARCH [31] 

 

 new terms defined [2] 

 

background [1] institution [10] 

 

 administrators [9] 

 

 location of study [12] 

  independent var. [7] 

 * HYPOTHESIS [6] 

  dependent var. [8] 

* PURPOSE [3] research question [5] 

 

 RESEARCH TOPIC [4] 

  SAMPLE COLLECTION [13] 

 * SUBJECTS [14] 

  control population [18] 

 no. of experiments [16] 

 

 time frame [11] 

* METHODOLOGY [15]  CONDITIONS [17] 

 PROCEDURES [19] 

  materials [20] 

 DATA COLLECTION [21] 

 

 data analysis [23] 

 

 reliability [25] 

* RESULTS [24]  unique features [29] 

 DISCUSSION [27] 

  limitations [28] 

 significance of results [26] 

 

 IMPLICATIONS [33] 

* CONCLUSIONS [30] 

 practical applications [32] 

 

 future research needs [34] 

 

 * REFERENCES [37] 

appendices [36] 

 tables [35] 

 

 

(* - Prototypical component; UPPER-CASE lettering – Typical component; all – elaborated components) 

 

 

Figure 1: Structure of Empirical Abstracts 

 



ER15 

 

 
Empirical studies of Japanese work ethics have tended to focus 

on male workers while neglecting women.  In addition, work 

values in both Japan and the United States appear to be BACKGROUND 
changing.  More information is needed on the work values of 

American and Japanese female workers. 

 

 

 

A study was conducted to explore 

 

the work ethics of Japanese women RESEARCH TOPIC PURPOSE 

 
and to compare them to those of American women. 

 

 

 

Subjects were 261 Japanese and 347 American employed 

women SUBJECTS 

 

who were tourists in Hawaii. LOCATION 

 

 
Subjects completed the Work Ethics 

questionnaire, an instrument designed to 

reflect the traditional values of both DATA METHODOLOGY 

Japanese and American cultures. The COLLECTION 
questionnaire was translated into 

Japanese for Japanese subjects. 

 

 

T-tests used to test for DATA ANALYSIS 
significance of differences 

 

 

revealed that the Japanese and American women differed significantly 

on 27 of 37 work ethics.  In comparison with American women, Japanese 

women were more prone to value group participation; to work in  large 

rather than small companies; to value loyalty to employer and country; to 

desire more time for leisure and recreational activities; and to believe that 

suffering adds meaning to life and that money acquired easily is usually RESULTS 
spent unwisely.  American women were more prone to value individualism, 

independence, self-expression and personal growth; and to believe that 

individual freedom is more important than group solidarity, that hard work 

pays off in success, that many people dislike work and try to avoid it, and 

that most people have too much leisure. 
 

 

Figure 2: A Structured Abstract 



ER15 

[1+ Empirical studies of Japanese work ethics have tended to focus 

on male workers while neglecting women.  In addition, work values 

in both Japan and the United States appear to be changing.  More 

information is needed on the work values of American and Japanese 

female workers. 1] 

[3+ A study was conducted to explore 

[4+ the work ethics of Japanese women 4]  

and to compare them to those of American women. 3] 

[14+Subjects were 261 Japanese and 347 American employed women 

[12+who were tourists in Hawaii. 12] 14] 

[21+ Subjects completed the Work Ethics questionnaire, an 

instrument designed to reflect the traditional values of both 

Japanese and American cultures. The questionnaire was translated 

into Japanese for Japanese subjects. 21] 

[24+ [23+ T-tests used to test for significance of differences 23] 

revealed that the Japanese and American women differed 

significantly on 27 of 37 work ethics.  In comparison with 

American women, Japanese women were more prone to value group 

participation; to work in large rather than small companies; to 

value loyalty to employer and country; to desire more time for 

leisure and recreational activities; and to believe that suffering 

adds meaning to life and that money acquired easily is usually 

spent unwisely.  American women were more prone to value 

individualism, independence, self-expression and personal growth; 

and to believe that individual freedom is more important than 

group solidarity, that hard work pays off in success, that many 

people dislike work and try to avoid it, and that most people have 

too much leisure. 24] 

 

 

 

Figure 3.  An Abstract, marked up with component brackets 



 
 [24+ [23+ T-tests used to test for significance 

FRAGMENT: of differences 23] revealed that the Japanese 

 and American women differed significantly on 

 27 of 37 work ethics. 
 

TARGETS: 23, 24 

 

CLUES: differ, differed, differences, reveal, revealed, signif, significantly, t, that 

 

1 24 0.993895 

 2 

PROBABILITIES: . 

17 23 0.85 × 10
-6

 

 . 

 37 

 mean for targets: 0.49699
 

 

RANK SCORES for targets: 
 0.5 

 + 

 

 

 1 2 3 4 5 6 7 8 9 10 

 

 

 NORMALIZE 

 ACCUMULATE 
 

 

 

 1 

 

 

 A 
 

 0 

 1 2 3 4 5 6 7 8 9 10 

 rank 

 Evaluation measure, M = area A / 10 
 

 

Figure 4:  Component Ranking Evaluation Procedure



Figure 5: Component identification from lexical clues 
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Model: Elaborated 

Fragments: given 

Table 1 Clues: words from eric.smpl 

 Applied to: eric.smpl 

Table 2 Clues: words and stems from eric.smpl 

 Applied to: eric.smpl 

Table 3 Clues: words from eric.smpl 

 Applied to: eric.cmpl 

Table 4 Clues: words from eric.smpl 

 Applied to: psyc.text 
 



Figure 6: Component identification from lexical clues and structural information 
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Model: Elaborated 

Fragments: given 

Structure revision: fbfbfb 

Clues: words from eric.smpl 

Table 5 (cf 1) Applied to: eric.smpl 

Table 6 (cf 3) Applied to: eric.cmpl 

Table 7 (cf 4) Applied to: psyc.text 

(Tables 1, 3 & 4: no structure revision) 
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Figure 7:  Component identification with automatic fragmentation, from lexical clues 
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Model: Elaborated 

Fragments: automatic 

Table 8 Clues: words from eric.smpl 

 Applied to: eric.smpl 

Table 9 Clues: words and stems from 

eric.smpl 

 Applied to: eric.smpl 

Table 10 Clues: words from eric.smpl 

 Applied to: eric.cmpl 

Table 11 Clues: words from eric.smpl 

 Applied to: psyc.text 
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Figure 8:  Component identification with automatic fragmentation and merging, from lexical clues and structural 

information 

 Clues: words from eric.smpl     Applied to: eric.smpl 

msmpS 

msS 

S 

msmp 

ms 

8 

Model: Elaborated 

Fragments: automatic 

Clues: words from eric.smpl 

Applied to: eric.smpl 

Table 12: Merging fragments: ms = small 

 mp = probabilistic 

 Structure revision: S = fbfbfb 

 (Table 8: no merging, no structure revision) 
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Figure 9:  Component identification with automatic fragmentation and merging, from lexical clues and structural 

information 

 Clues: words from eric.smpl        Applied to: eric.cmpl 

msmpS 
msS 

S 

msmp 

ms 

10 

Model: Elaborated 

Fragments: automatic 

Clues: words from eric.smpl 

Applied to: eric.cmpl 

Table 13: Merging fragments: ms = small 

 mp = probabilistic 

 Structure revision: S = fbfbfb 

 (Table 10: no merging, no structure revision) 
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Figure 10:  Component identification with automatic fragmentation and merging, from lexical clues and structural 

information 

 Clues: words from eric.smpl        Applied to: psyc.text 

msmpS 

msS 

S 

msmp 

ms 

11 Model: Elaborated 

Fragments: automatic 

Clues: words from eric.smpl 

Applied to: psyc.text 

Table 14: Merging fragments: ms = small 

 mp = probabilistic 

 Structure revision: S = fbfbfb 

 (Table 11: no merging, no structure revision) 
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