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Abstract 
This paper reports the state of development of PThomas, a network based document retrieval system implemented 

on a massively parallel fine-grained computer, the Connection Machine. The program is written in C*, an 

enhancement of the C programming language which exploits the parallelism of the Connection Machine. The 

system is based on Oddy’s original Thomas program, which was highly parallel in concept, and makes use of the 

Connection Machine’s single instruction multiple data (SIMD) processing capabilities. After an introduction to 

systems like Thomas, and their relationship to spreading activation and neural network models, the current state of 

PThomas is described, including details about the network representation and the parallel operations that are 

executed during a typical PThomas session. 

 

1. INTRODUCTION 

Information Retrieval teems with opportunities to exploit parallel computer architectures. No matter what model the 

system is based upon, data organization functions and retrieval algorithms require processes to be replicated on 

many thousands of information items. However, it is not at all obvious how parallelism in hardware can best be 

used. There is a great deal of experience in creating viable implementations on serial computers, and their 

performance with Boolean or best-match retrieval methods, applied to very large databases, may be hard to beat 

(Salton & Buckley, 1988a; Stone, 1987; Stanfill et al., 1989). Perhaps it is significant that these methods arose in the 

milieu of serial computing. Notable among the efforts to exploit highly parallel computers (array processors) are the 

work of Willett and his colleagues (Pogue & Willett, 1989; Carroll et al., 1988) and Stanfill and Kahle (1986) on 

best-match approaches using text signatures, and Rasmussen and Willett (1989) on clustering. However, in the work 

described here, we have begun to use a parallel computer for the retrieval of document citations, not simply to speed 

up a method, but to explore the conceptual kinship between an unconventional structural model for information 

retrieval and fine-grained parallelism. The system we shall describe is called PThomas (P for parallel and also for 

Phoenix). It is based on the Thomas program, described by Oddy (1975) and Ofori-Dwumfuo (1982a), and is 

implemented in C* on the Connection Machine (Thinking Machines, Inc.). The original pseudo-code for Thomas is 

highly parallel in that it is expressed in terms of large sets and graph structures, as wholes. Moreover, the approach 

to information retrieval pursued in the Thomas design indicates, in principle, a highly parallel implementation, 

because decisions about whether documents should be retrieved are not made in isolation, but on the basis of a 

holistic view of their positions in the densely connected structure of literature, terminology, and authors in a domain. 

In addition, the system’s view of the structure changes with every interaction with the user. Hence, a great deal of 

data has to be taken into account when making each individual retrieval decision. 

          

        The problem of precisely retrieving textual documents relevant to a user’s information need has proved 

remarkably resistant to solution, and there are few really general statements that one can make about what will work 

well. One such statement, based on a large number of diverse experiments, conducted by many different workers 

(for example, Salton, 1971; Robertson & Sparck Jones, 1976; Vernimb, 1977; Dillon & Desper, 1980; Salton, Fox, 

& Voorhees, 1985), is that relevance feedback is an effective way of improving retrieval performance. A relevance 

feedback device is a program that accepts from the user judgments of relevance concerning earlier output, and 

adjusts the query in an attempt to improve the relevance of subsequent output. With a system that can adapt its 

searching to the user’s judgments of its earlier output, the accuracy of the initial query is not so critical. This is why 

relevance feedback appears to be successful in experimental systems, regardless of the underlying retrieval model. 

We would go beyond this, and conjecture that adaptability in an information retrieval system is a factor that 

dominates most, if not all, other factors usually thought to contribute towards effectiveness from the users’ 

perspective. The reason for our renewed interest in Thomas is its high potential for adaptability. 

 



       The Thomas system is an extension of the relevance feedback notion. Simple relevance feedback is usually 

seen as a way to refine a query so that it optimally (though not perfectly) represents a presumably static information 

need. On the other hand, Thomas builds and continually adjusts an image of the user’s interest and, since the 

feedback loop is very tight, has the potential to follow a moving target. In Thomas, feedback is not an enhancement, 

it is the central and essential feature of the design. As a result, although the original system was restricted to a 

limited type of information (indexed, bibliographic records, even without abstracts), the following desirable features 

were nevertheless present to some degree: 

 

1. It is not necessary for a user to articulate an information need with precision. 

2. Emphasis is placed on recognition of useful or interesting features of information items, rather than specification 

of them. 

3. The user language can therefore be very simple. (At the same time, the users can take as much, or as little, 

initiative as they wish.) 

4. The system can continuously adjust its behavior in the light of the user’s reactions to its outputs. 

5. On the other hand, the system is not unduly disturbed by small errors of judgment on the part of the user. This is 

because (i) the user-image encompasses both the focus (or foci) of the search and a wider context, and (ii) the 

interpretation of the user’s messages is always tentative. 

6. The system design philosophy acknowledges that users are in problem-solving situations, and may change their 

minds about what is relevant, or may shift the focus of their searches. The system can take remedial action when it 

becomes clear that its user-image is seriously out of line with reality. 

 

2. THOMAS 

The first implementation of Thomas was a small-scale prototype programmed in PL360 for an IBM 360/67, and is 

described in Oddy (1975, and 1977a,b). It had a straightforward, easily learned user interface, appropriate to the 

teletype-mode terminals available. Experiments were conducted with this prototype by simulating dialogues, and the 

system was “played with” by a few actual users, although their behavior was not observed in any formal way. Oddy 

(1977a) describes how the system appeared to the user. We will describe it as briefly as possible here. The 

experience is more like browsing than planned and formulated searching. The user begins by entering one or more 

words, phrases, or names, without relating them to each other as one must in a Boolean system. The system’s 

immediate response is a display containing a document citation, and a numbered list of authors and terms, which can 

be used by the user like a menu. (On occasion-rarely at the beginning of a dialogue, slightly more frequently towards 

the end-the system may respond with a display of associated terms.) The user is expected to react to the display, 

with a message in the following general form: 

 

[Yes 1 No][menu-item-number . . ] 

[NOT menu-item-number. . . ] [phrase. . . 1. 

 

An example of one interaction is given in Fig. 1. “Yes” or “No” refer to the citation itself: 

Does it look relevant or not. Menu-item-numbers that appear before the word NOT, identify descriptive elements of 

interest, and those after NOT are taken to be not of interest. 

 



 
New phrases of interest can be introduced by the user at any time, simply by appending them to a message. (The 

user’s initial message is, in fact, a special case of the general message form.) All parts of the user’s message are 

optional. In other words, the user is not obliged to react definitely to anything displayed by the system, which is in 

keeping with the view that information needs are hard to state. The system then responds with another citation and 

its descriptive elements; and so the dialogue proceeds. This completes the definition of the user language. 

 

      In situations where the user’s recent reactions have not been very encouraging, the system may point this out, 

and display again a citation from earlier in the dialogue (or perhaps display some terms) in an attempt to re-establish 

an older, more successful context, or find new avenues. 

 

      So much for the user’s perception of the system. The basis of the system’s responses to the user is a continuously 

adjusted image of the area of interest to the user, as revealed by the user’s messages. Feedback is immediate at each 

interaction, and the state of the image determines the next system output. The Thomas system follows a cognitive 

approach to communication, similar to that discussed by Hollnagel (1979), in that communication is mediated 

through the participants’ models of each other, and of the world. As in Hollnagel’s schema, this system models its 

user in terms of its own world model. This system structure can be expressed by the following high-level pseudo-

code: 

 
 

SET UP MODEL initializes the image of the present user. This is where prior knowledge of the individual’s 

interests could be introduced, though both the original and more recent versions of Thomas can only begin an 

interaction with a clean slate. STOPPING CONDITION is simply a way of agreeing with the user that a search can 

finish. It is now necessary to say something about the representation of the user-image. The user is imagined to 

occupy some part of the knowledge space of the system. Thus, the image is composed of a subset of the system’s 

knowledge about documents and some information, gathered during the dialogue (by INFLUENCE STATE OF 

MODEL), about the user’s relationship to the database. Thomas’ knowledge is derived from the data commonly 

available in bibliographic files, namely indexed citations (in Oddy, 1975, the indexing was the controlled, manually 

assigned, MeSH terms in a sample of the Medlars file). The form of the Thomas database is a network of 

documents, authors, and terms. The edges (or arcs) are typeless, and represent associations explicit in the index files 

and thesaurus. 

 



     The major component of the user-image is called the context graph, and is defined (dynamically) by a subset of 

nodes of the global network. The edges in the context graph are just those inherited from the global network when 

both ends points are included in the contextgraph. Other components of the image are: 

 

1. inhibited nodes: a set of nodes rejected by the user; 

2. explicit nodes: a set of nodes explicitly selected by the user; 

3. good documents: a set of document nodes that have drawn a positive response from 

the user; 

4. accepted documents: a set of document nodes that have been tacitly accepted (i.e., 

not rejected); 

5. reviewed nodes: a set of nodes (usually documents) that the user has been asked to 

evaluate for a second time; 

6. last-selected nodes: a set of nodes explicitly or implicitly selected by the user in the 

last iteration of the dialogue; 

7. performance: a number reflecting the recent history of user reactions. 

 

An interpreted user’s message has four parts: 

 reaction: to the document displayed, as a whole; 

 selections: a set of nodes selected from the display; 

 rejections: a set of nodes rejected from the display; 

 requests: new words, phrases, and names introduced. 

 

The sets selections and rejections are derived from the message using certain simple, sensible assumptions about 

implicit choices. For example, if the user types “Yes” without mentioning any of the numbered items, Thomas puts 

all items in selections. If the message is “Yes” followed by some item numbers, then those items are regarded as 

selected while no assumptions are made about any other items in the display. 

 

       INFLUENCE STATE OF MODEL uses the interpreted user’s message to update the various components of the 

user image. Nodes in the global network corresponding to the requests are found (the relationship is not assumed to 

be bi-unique), and adds these and also the selections to the context graph. Nodes added in this way are also removed 

from the inhibited set. Rejections are included in the inhibited set and excluded from the contextgraph. One way of 

extending the model is the introduction into the context graph of nodes connected to those that the user has chosen. 

In the case of nodes matching requests, this process is unrestricted, but in the case of selections, which represent 

relatively passive choices, only document nodes will be included. In no case will inhibited nodes be introduced in 

this way-hence these act as walls in the network. 

 

      A display contains a central node (usually a document node) followed by a list of nodes connected to the central 

one in the global network. Thus, nodes not currently in the contextgraph may be included. Their selection by the 

user is another way of extending the image, and conversely growth in certain directions will be inhibited if the user 

rejects nodes. Yet another heuristic for extending the context graph in a potentially useful way is to try to link up 

disconnected components, if such there be. Short paths are included from the global network if they can be found 

and are not blocked by inhibited nodes.  

 

       Having manipulated the image, Thomas uses its new state to determine the next display. The strategy depends 

on recent performance, and certain gross characteristics of the context graph (Is it connected? Are there any 

document nodes that the user has not yet seen?). In most circumstances, a document node is chosen from the context 

graph using a so-called involvement measure, which is designed to indicate the node’s relative centrality to the 

image. It is the ratio of the number of edges incident with the node in the contextgraph to those incident with it in 

the global network. If performance is acceptable and the context graph is in one piece, the most central document 

will be chosen; otherwise a less central document may be displayed. As we have mentioned, all nodes linked to the 

document in the global network (i.e., authors and terms) are displayed with it. 

 

From the technical point of view, the processing involved in Thomas includes: 

 

1. Translation of words, phrases, and names typed by the user into node identifiers in the database-a fairly standard 

index search problem; 



2. Maintaining sets of node identifiers, ranging in size from quite small (e.g., good documents, selections) to very 

large and volatile (context graph). 

3. Finding all the nodes that are linked to any node in a given set, possibly under some constraint. 

4. Computing an involvement measure for every one of a possibly large subset of the nodes in the context graph. 

5. Determining the connected components in the context graph, and looking for short paths in the global network to 

join them. 

 

For typical sequential computers some of these are lengthy processes. In the interests of building to prototype (in the 

early 1970s) that responded quickly to its user, a design goal of limiting the growth of the context graph became 

more important than it should, and the trial database was smaller than desirable for convincing experiments. 

 

      The tests done by Oddy indicated that, when the Thomas system was used to retrieve the same number of 

relevant documents as a Medlars boolean system (i.e., was operating at the same recall level), its precision was not 

significantly different. However, the Thomas system was much easier to use (no explicit query formulation being 

necessary). According to a measure of effort based on the number of tokens of various types entered by the user, the 

effort expended by the Thomas user was estimated to be one third of that needed for the boolean system. 

 

3. THOMAS II 

Ofori-Dwumfuo (1982a,b, 1984) evaluated some modifications to Thomas. His version of the program, Thomas II, 

differed in a number of ways from Oddy’s. First, it had no user interface, but a dialogue simulation package, in 

which information about actual searches was used to automatically generate user responses so that experiments 

could be run in batch mode. Thomas II allows for weighted edges in the network database. This has a number of 

implications for processing, the major one being that the involvement measure used to select nodes for display is 

computed from the sums of weights on incident edges instead of by simply counting them. To generate weights, 

Ofori-Dwumfuo computed a new network from the original unweighted one. The weight of the edge between two 

nodes is inversely related to the degrees of the nodes and the length of the shortest path between them. The 

motivation for this choice of weighting scheme was that one could, by following a single weighted link, approximate 

the behavior of a less constrained spreading activation in the network to find nodes associated with some of those 

already in the context graph. In an experiment, using the same test collection as Oddy had, Ofori-Dwumfuo 

observed a reduction in the measure of user effort of about 20%) when the weighted network was employed. 

 

      Other topics that Ofori-Dwumfuo investigated were the use of pre-established clusters in the global network, and 

the deletion of edges between term nodes that had been derived from the manually constructed thesaurus (MeSH in 

this case). In the cluster experiment, he divided the test collection into a few large disjoint clusters, and restricted the 

user-image construction to those clusters that contained nodes explicitly mentioned by the user (passive selection 

was not sufficient). Neither of these treatments had a significant effect on system performance. The experiments are 

difficult to interpret, however, partly because the interaction between the weighting scheme and the clustering and 

thesaurus were not explored in depth, and partly because the test collection was so small. These are questions in 

which we are very interested. 

 

4. RELATED WORK-NETWORK REPRESENTATIONS IN IR 

In the years since Thomas was first implemented, interest in knowledge representations, including networks, has 

grown in the information retrieval research community. Before describing our recent work on the parallel computer, 

we will briefly try to relate Thomas to other network-oriented information retrieval research. All notions of 

association in information retrieval imply the existence of a network structure; however, we will restrict our 

attention to those systems in which processing is explicitly conceptualized in network terms. We will further limit 

ourselves to models in which networks are used to represent the whole database, as opposed to the internal structure 

of individual documents. 

 

       The idea that the network structure of a database, made visible and manipulable, will help a user explore it has 

been discussed for many years (Bush, 1945; Doyle, 1961) and implemented in several systems in various forms, for 

example: BROWSE (Palay & Fox, 1981), 13R (Croft & Thompson, 1987), Hypertext (see the collection of articles 

in JASIS, May 1989). In these systems, users are encouraged to imagine themselves in the network, at a particular 

node, and able to step from node to node along the links. Various display devices are usually provided to help the 

user appreciate the environment, and make choices. The network is not used in this way in Thomas, because a goal 

was to make more holistic use of the structure in modeling the user, and the user’s exposure to the network would 



have quickly brought about information overload. Thomas has much more in common with a class of network 

processing techniques called spreading activation. Examples of work of this type in the information retrieval area 

are the Online Associative Query System (OAQS) of Preece (1981), the GRANT system (Cohen & Kjeldsen, 1987; 

Croft, Lucia & Cohen, 1988), and Salton & Buckley (1988b). To begin the retrieval process, in these systems, nodes 

corresponding to features of the query (terms, for instance) are made active. Then other nodes directly linked to 

them in the network receive impulses and may become active, and so on. After a certain limited number of cycles, 

nodes representing documents are examined, and those with the higher levels of activation are retrieved for the user. 

In a well-connected network, such as we find in information retrieval databases, activation can rapidly get out of 

hand, spreading over large portions of the database indiscriminately, so constraints are needed. Many methods have 

been employed: The number of activation cycles is usually severely limited: the strength of impulses leaving active 

nodes may decay with each cycle; that strength may be distributed between all outward links; and if links are of 

various types, there may be rules governing their selection in certain situations. Some of these techniques bear a 

resemblance to aspects of the psychological theory of spreading activation expounded by Collins & Loftus (1973, 

but the parameters of the models cited have usually been chosen in the light of experience with more conventional 

information retrieval research, and less frequently for psychological plausibility. In fact, Preece systematically 

demonstrates that many well-known information retrieval methods can be expressed in terms of a spreading 

activation model, by suitable choice of network parameters. At one fairly obvious level, spreading activation in 

Thomas is constrained by its procedures for building and maintaining the context graph which might be regarded as 

its set of active nodes. The growth of this graph is usually limited to one step from each selected node in each 

dialogue iteration. Also, regions within it can be pruned away (activation falls to zero). The strategy of trying to join 

disconnected components of the context graph by bringing in a path from the global network resembles a spreading 

activation process described by Quillian (1968) to find the conceptual connection between two words in semantic 

memory, but is applied to larger sub-structures.  

 

The distinction between spreading activation (SA) and neural network (NN) or connectionist models (Rumelhart & 

McClelland, 1986) is not clear; indeed, spreading activation is a central component of any neural network. Features 

that tend to distinguish them are: 

 

 Activation is allowed to continue for many more cycles in a neural network than in an SA model. 

Termination conditions can be complex, involving measurement of the stability of the network state, or 

some function of the overall activation level of the network. 

 Representations in NNs are often thought of as distributed (concepts correspond to whole patterns of 

activity in regions of the network), whereas they are usually local in SA models (a node stands for a 

concept or object). 

 Links in an NN model have numerical weights but no type, whereas SA models often assign category 

labels to the links (e.g., ISA, CAUSES). 

 Unlike SA models, NNs typically have learning procedures, which bring about changes in the numerical 

parameters of the links and/or nodes, to improve the network’s responses. 

 

Belew (1986; 1989) and Kwok (1989) have described applications of neural network methods to document retrieval. 

In both cases, representations are essentially local (nodes represent documents, terms, or authors), but learning 

procedures are discussed, whereby relevance judgments are used to adjust the association weights and hopefully 

improve performance for future queries. Adaptation to an individual user, on the fly, is not yet incorporated in these 

models, although Belew mentions that the relevance judgments collected for longer term learning can be used to 

reactivate the network for a second round of searching. In contrast Thomas elicits frequent feedback from the user 

and responds (i.e., its model changes) instantly, but so far it has no long-term learning capability. Connectionist 

learning methods are slow. A large number of parameters must be adjusted, and only by small amounts with each 

training event (for stability). They are inappropriate for fast learning within the space of a single search. The 

learning rate also has implications for choice of representational level; at present, it is probably necessary to endow 

the system with high-level knowledge, through a local representation, even though it has all the problems of 

conventional indexing. We should remark that we are not comfortable categorizing the representation scheme of 

these models (and of Thomas) simply as local. The senses of terms and other node labels are dependent in these 

kinds of distributed processing on the structure as a whole (and in Thomas as modified by the context graph). 

 

      There are some approximate equivalences between Thomas processing and NN processing. We have already 

mentioned the simple, limited spreading activation processes of Thomas, namely moving nodes in and out of the 



context graph. The way in which this system employs the user-image to determine its response is also related to 

spreading activation. If we regard a node’s involvement measure (ratio of connectivity within the context graph to 

global connectivity) as an activation level, a similar value could be obtained by allowing many cycles of spreading 

activation to occur, within the context graph. One can visualize all nodes within the context graph as being 

continually active, so that high connectivity within it would lead to high activation levels, and links to regions 

outside the context graph as functioning like drains on the activation levels of nodes. In addition, inhibited nodes 

have the effect of reversing the sign of the signals emanating from them (i.e., their outward links become inhibitory). 

Thomas will normally choose the most involved document node as its response to the user, just as a neural network 

program would choose the node with the highest activation level. However, when things are not going well, 

Thomas has strategies that deliberately ignore the obvious and choose nodes closer to the periphery of the context 

graph. We are not sure whether there are equivalent behaviors in NN systems. 

 

      We conclude that there are strong conceptual ties between Thomas and neural network models, but that there 

are also potentially fruitful areas of complementarity, which will be interesting to explore in more depth. 

 

 

5. PTHOMAS IMPLEMENTATION 

 

5.1. The Connection Machine 

The primary emphasis of our new research endeavour to date has been to successfully implement a working version 

of Thomas on a fine-grained, highly parallel computer, the Connection Machine. By design, the Connection 

Machine is a Single Instruction, Multiple Data (SIMD) computer. It contains 32 K simple processing elements, each 

of which is in reality a processor-memory pair. Each processor has 47996 bits of memory available to user 

programs. The processors are arranged in four modules of 8 K, and a task may attach 1, 2, or 4 of these modules. It 

is also possible to increase the apparent number of processors beyond 32 K by specifying the “virtual processor” 

option, whereby each physical processor simulates several processors serially. In this case there is, of course, a 

memory tradeoff. 

 

      The Connection Machine is attached to a host machine, and all instructions come from programs run on the host. 

Every processor in the Connection Machine acts on a single stream of instructions that gets broadcast by 

microcontrollers. The data that each processor acts upon is usually stored in the memory attached to each processor. 

Processors may choose not to act on an instruction; this is governed by the setting of a “context bit.” This facilitates 

instructions being executed on a subset of all the processors being used. The processors of the Connection Machine 

can also communicate with each other through a highly interconnected hypercube. The hypercube allows arbitrary 

communication among processors. In other words, processing units may access data stored in the local memories of 

other processing units. 

 

      There are several languages available to program the Connection Machine. These include high level languages 

like *Lisp and C* as well as lower level instruction sets. PThomas is implemented in C*, a Thinking Machines 

Corp. enhancement of the C programming language that facilitates access to the Connection Machine’s processors 

as well as the sending of instructions to the processors. The current version of PThomas runs on a Connection 

Machine Model 2. Some clarification is appropriate here: The data stored in the processors of the Connection 

Machine are accessed/manipulated by instructions in a C* program. The program itself runs on the front-end. The 

front-end is an Ultrix machine (henceforth referred to by its node name, cmx; likewise, the Connection Machine that 

is used shall be referred to as CM2). The breakup of responsibilities between these two machines is elaborated on 

later in this section. The approach we have followed to create PThomas is to adapt the pseudocode of Thomas and 

Thomas II, especially the latter (Ofori-Dwumfuo, 1982a). In a sense, what we have done is parallelize parts of the 

original program, rather than starting from scratch. We recognize that this may have implications in terms of CM 

programming efficiency, but have yet to address the issue. Given below is a description of PThomas as it now 

stands. 

 

 

 

 

 

 



5.2. Breakdown of responsibilities between cmx and CM2 

 

From a functional standpoint, PThomas performs the same “dialogue loop” that its predecessors did (see the section 

on Thomas). This loop is useful because the delineation of responsibilities between the front-end and the 

Connection Machine can be defined in terms of this loop. Henceforth, all references to these steps will be in terms of 

the names of the higher level procedures in PThomas (given in boldface, such as: respond_to_user( )) 

Simply put, most of the CM processing occurs in the INFLUENCE STATE OF MODEL stage of the loop. At a 

slightly lower level, the responsibilities may be broken up as: 

 

 cmx: managing the text database, loading the database into CM2, interfacing with the user, searching for 

node identifiers corresponding to the user’s response, and retrieving text for display. 

 CM2: graph processing of the network part of the database/representation. 

 

Figure 2 illustrates the overall architecture of PThomas. We dwell in more detail on the layout of the processors in 

the CM later. In the front end per se, DBASE holds information about the database. At present this is loaded from a 

file called db2. Each element of DBASE is a structure that contains the nodeid, an integer called adt which specifies 

whether the node is either a document/title, author, or term node, and a string element called name which holds the 

actual node name (“Keller,” “hashing,” etc. -these are from the examples given below). The array MSGLIST is 

used to store individual tokens of the user’s response. This information is processed and passed on to the arrays: 

SEL, RN, REQ, and REJREQ. These hold the selections, rejections, requests, and “negative” requests (explained 

in the section on user interface below), if any, that are found in MSGLIST. The information in these arrays is 

passed on to the network in the CM2 during the respond_to_user() phase of the loop. The remaining array of 

import is LASTDISP which holds the nodes to be displayed to the user in the respond_to_user() phase of the loop. 

 



 
 

5.3. The database 

The database used to implement and test the working of PThomas has been borrowed from Oddy (1975, 1977b). 

This “toy” database consists of 15 references from the Communications of the ACM, Vol. 16, 1973. The database is 

a network of 86 document (n = 15), author (n = 17), and term (n = 55) nodes with 325 edges among these nodes. 

While this database is too small to be useful in full scale testing of the system (timing, testing with real users, and 

the like) its advantages were: (a) it was small enough to be able to check the network status in its entirety during the 

development phase (this was particularly so when it came to testing the parallel operations on data in the CM); and 

(b) since the same database had been used by Oddy (1977b) and Ofori-Dwumfuo (1982a), it served as a means of 

evaluating the “correctness” of PThomas’ working. 

 

5.4. The user interface 

The user interface comes into play during the get_user_message() and respond-touser() stage of the dialogue loop. 

Currently, PThomas has exactly the same form of interface as Thomas, though we do intend to improve this in the 

near future. Like its predecessor, PThomas prompts the user for input; the user in turn is shown some output and 

asked to evaluate it in some sense. The interface is a separate issue from the parallelism and has not received our 

attention yet. 

 

 



5.5. The network in the Connection Machine and parallel operations 

It was mentioned before that PThomas was implemented in C*, an enhancement of the C programming language. 

The reader is referred to the Thinking Machines’ C* User’s Guide and Release Notes (1988) for details about the 

language. Given the size of the test database, PThomas requires the attachment of only one module of the CM2. 

This is a 64 x 128 (8192) grid of processors. 

 

      C* allows the programmer to define a set of related data items in each of a set of processor memories. This can 

be seen as an extension of the struct construct in C or a record in Pascal to the processors in the Connection 

Machine. Such a grouping is called a domain, which really specifies the layout of the memory of a single processor. 

It is possible to have more than one domain in a program-a case in point is PThomas, as we shall see below. This 

means that different CM processors will have different memory layouts. It also means that different processes will 

get carried out in different processors, because parallel C* code is always local to a specific domain. Flexibility in 

parallelism is possible on the CM by broadcasting an instruction and executing it only on selected processors. These 

processors execute this instruction on the contents of their individual memories. Interdomain communication is 

possible and is expressed by means of pointers in C*. 

 

5.5.1. PThomas' CM processor layout. The current version of PThomas employs two domains, or sets of processors 

in the CM2. The first one is for the nodes of the network and the second for the edges. The entire collection of node 

processors is called NODES, and the set of CM2 processors comprising the edges of the network is called EDGES.* 

In C*, the specification for the nodes of the network is as follows (see also Fig. 3): 

 

 

 
 

*This is unlike the layout specified in Oddy and Balakrishnan (1988). There we had specified one domain with a 

scheme for discriminating nodes in the network from edges. The change is mainly due to the removal of certain 

limitations in C* as well as the migration of PThomas from a Connection Machine, Model 1, to a Model 2. 

 



 
 

 
 

      In plain English, every node (processor) of the network has an identifying number (id) and a set of switches (the 

line beginning “int cg . . . “) used to represent the different sets of nodes that a Thomas-like program uses. The 

variables invf and cif hold the connectivity of each node in the entire network and the context graph, respectively. 

invf is calculated once (during set_up_model()), whereas cif is calculated in every iteration of the dialogue loop, 

ratio is the ratio of cif to invf. This is used in determining the node with the highest, lowest, or closest-to-average 

“involvement” during the phase when PThomas has to decide which node to pick for display. camp and wav 

together are used to determine the connected components of the context graph and in determining paths between the 



components. The variable curse1 requires separate mention. In order to maintain the original modularization of 

Thomas, subsets of nodes needed to be retained in jumping from one routine (usually involving parallel operations 

on nodes) to another. This variable acts as a switch that is set when control is transferred from one procedure to the 

next assigned is used in a similar fashion when determining connected components. 

 

      The layout of the EDGES processors is less cluttered. Each processor contains two pointers to the nodes at 

either end of the edge, the from and the to pointers. Associated with each link is a weight (wt) which for the time 

being has been set to one, as in the original Thomas. The variable type, is unused at present, but is intended to hold 

information about the type of edge the processor represents (term-term, document-author, etc.). 

  

     Figure 3 depicts the scenario graphically. Also shown are the edges for the term “proof” in the network (id = 72). 

It is connected to two other nodes-document node 3 and the term “mathematics’‘-in the network (id = 2 and id = 

70). Thus, for this node, there are two from pointers in EDGES that point to it. In exactly this way, there are many 

situations where there are more than one from pointer pointing to a single node processor. While this may seem 

problematic in general parallel operations with regard to collisions (i.e., many values sent to one storage location), 

this is not the case with PThomas, because operations done in the edge domain are either matters of selection (i.e., 

no collisions) or of setting a Boolean value in nodes to which the edges point. The latter employs the parallel OR 

operator (I=), which ensures that the recipient variable ORs all the values it receives in what is called an “as if 

serial” fashion. 

 

        A note here will be helpful regarding purallel reduction operators on the CM. A. C* expression of the form: 

 

processor_addr          parallel-var op= parallel_value 

 

means that the values on the right-hand side will be sent to processors addressed by the left hand side, and 

combined, using op, with the existing value of parallel_var. When multiple values are directed to the same 

processor, they are combined, as if they had arrived serially, one at a time. However, on the CM, the implementation 

of such reduction operations is not that naive. They are therefore performed more efficiently than in linear time, by 

making use of tree-structured and hypercube communication routes between processors. 

 

5.5.2. Parallel operations in PThomas. Having specified the layout of the CM2 processors for PThomas, it seems 

appropriate to give a flavor of the sorts of processing that goes on. Some of these are parallel, and some are not. We 

shall here consider some parallel operations, providing some background, if need be, and follow that with an 

illustration of these rather specific processes in the context of a dialogue cycle. 

 

5.5.2.1. Computing the involvement measures. During the set_up_model() phase, one of the processes is to calculate 

the connectivity of all nodes in the global network, which is stored in the parallel variable invf. The connectivity of 

a node is simply its out-degree (i.e., the number of edges emanating from it). A pseudo-code expression of the 

algorithm used is as follows (assuming all the invf values are zero): 

 

for each edge (in parallel)  

add 1 to invf in its source (from) node 

 

The C* code is: 

 

[domain edge] . (from      invf + = (poly) 1; ) ; 

 

Every edge processor broadcasts a 1 (the notation for the parallel constant 1 is (poly) 1) to the invf variable that the 

from pointer is pointing to, which it collects (the +=) in an “as if serial” fashion. This example also highlights inter-

domain (as also inter-processor) communication, since what is affected is the invf variable in all the nodes. 

 

      The calculation of the connectivity of nodes within the context graph (stored in the parallel variable cif) is in like 

vein. However, the restriction is that the nodes at the ends of the edges in the network have to be in the context 

graph. The pseudo-code is as follows (assuming all cifs are zero): 

 

 



for each edge (in parallel) 

if both its source node and its destination node are in the context graph 

then add 1 to cif in its source node 

 

The following C* code achieves this: 

 

 

 
 

max gets the maximum ()?=) of the ratios in the set of processors selected by the if clause. Since there may be more 

than one node with the maximum value of ratio, x is assigned the nodeid of an arbitrary node whose ratio equals 

max (,=means “take any”). 

 

      5.5.2.3. Determining the connected components in the context graph. This process is invoked when PThomas 

attempts to unify the context graph in the influence-state of_ model ( ) part of the dialogue loop. The function is 

connected_comps ( ) and it returns the number of connected components in the context graph. Again, partly due to 

the fact that PThomas was developed with the same modularities as Thomas, the process is too intricate to be 

specified in actual code. The procedure is this: 

  

      Let all the nodes in the context graph be unassigned. Select an arbitrary node in the context graph. Make this 

assigned and assign it to component 1. Then (in parallel) find nodes in the context graph that are linked to those in 

component 1, but are as yet unassigned. Assign these to component 1 and mark them assigned. Repeat these steps 

until no further nodes qualify. If there are still unassigned nodes, increment the component number and repeat the 

whole process. 

 

      5.5.2.4. Joining up components of a fragmented context graph. If PThomas determines that the context graph is 

fragmented (i.e., it finds that numcomps is greater than one), it attempts to join the fragments by including nodes 

that meet certain requirements. These are that they are not inhibited nodes and not terms with high numbers of 

postings. 

 

(With the test database there is one token of this type: the term “information storage and retrieval.“) The program 

goes through all the components of the context graph in a (serially) pairwise fashion for such nodes meeting these 

criteria that “connect” the two components. The detection and addition and addition to the context graph of such 

nodes is parallel, however. To make the distinction between what is parallel and what is not, consider the following 

pseudocode (simplified drastically from PThomas code): 

 



for i=l to numcomps- 1 (serially) 

for j =i+ 1 to numcomps (serially) 

in parallel: (find all nodes meeting criteria; 

add them to context graph; 

 

Components of the context graph are examined in a sequential fashion. However, each examination could yield (in 

parallel) several candidate nodes, all of which will be added to the context graph. 

 

      5.5.3. Parallelism and the user image-An illustration. Here we shall describe the process of adjustment in one 

iteration of a typical PThomas session, highlighting where the parallel operations discussed in the paper come into 

play. Table 1 shows PThomas’ user image at a particular point of a user session. This snapshot of the user image is 

taken immediately after the program has made the necessary adjustments to the user image based solely on the last 

user input. Given this state of the user image, PThomas now has to: 

 

 
 

       In the first step, PThomas examines the context graph (the nodes and associated edges) to determine the 

connectedness. The function connected_comps ( ) (see 5.5.2.3) returns a value of 3, which is held in the global 

variable numcomps. Figure 4a shows some of the values of the parallel variables at the end of this step. For each of 

the components, the node with the wav value of 0 is the one that was arbitrarily chosen. Nodes one hop away are 

gathered/assigned in parallel. In assigning the nodes of the context graph for Component 2, for example, the nodes 

key-to-address transformation and hashing analysis are assigned in parallel. The fact that these nodes have the 

same wav values in that component is indicative of such a parallel assignment. 

 

 

 



      Having discovered that the context graph is fragmented, PThomas goes into the function 

discard_useless_components( ). A discardable component is defined to be a component whose set cardinality is 

less than or equal to a parameter small (currently set at 2) and none of whose nodes have been explicitly requested 

or selected by the user. Determining the cardinality is a parallel reduction operation + =, similar to the one used to 

computing involvement measures (section 5.5.2.1). Also, for the particular component being evaluated, looking up 

which nodes have been explicitly requested and those explicitly selected is a parallel operation. 

 

      
 

    
 

 
 

Fig. 4. The transformation of the context graph. Looking at the initial context graph, PThomas determines that it is fragmented and finds that 

component 3 can be discarded. Try-join ( ) seeks candidate nodes to join the two remaining components. The node it finds is “scatter storage” 

which is brought into the context graph. PThomas also brings into the context graph document nodes linked to this term (reference 10). Given a 

now fully connected context graph and a performance greater than low, PThomas picks an “unseen” reference with the highest involvement 
factor. This is reference 12. 

 

 
 

 

 
 

 

 



      In this case, while both Component 1 and Component 2 are “small,” only Component 2 is a candidate for 

discarding. The node reallocation prevents Component 1 from meeting the criteria because it has been selected by 

the user (in an earlier part of the dialogue). Removing components from the context graph also involves 

renumbering the components that remain. This too is a parallel operation. All nodes belonging to a component with 

a camp value higher than the camp value of the component just discarded decrement their camp variable by one, in 

parallel. 

 

      Having discarded Component 3, PThomas performs a try_join( ). This procedure looks for nodes that can 

connect any two components of the context graph. In this case, the node scatter storage is one such node (hashing 

would be too, but for the fact that since the user rejected it previously, it is an inhibited node). If try-join finds 

nodes that join the components, it brings these nodes into the context graph and all document nodes associated with 

them as well. In this case, document 10 is brought into the context graph (Fig. 4b). Once this is done, PThomas 

again determines the connectedness of the context graph. At this stage, connected_comps() returns the value 1. It 

may also be noted in Fig. 4b that the camp and wau values for the individual nodes of the new context graph are 

different from those in Fig. 4a. 

 

It is now time for PThomas to decide what to show to the user. The manner in which this is done is inherited from 

the original algorithm: 

 

IF the context graph is non-empty 

IF (numcomps==l) AND there are unseen documents 

display the most involved of these 

ENDIF 

ENDIF 

 

      Only that portion of the algorithm relevant to this example has been specified here. Another factor important in 

this decision process is the value of performance which reflects how well the interaction has been going thus far. In 

this case, the value is above (a parameter) low. 

 

      The involvement ratios of these as yet unseen documents of the context graph are calculated in parallel, as 

described in 5.5.2.1. These are: 0.142, 0.400, and 0.200 for document nodes 10, 12, and 14, respectively. Document 

node 9 has an involvement ratio of 0.571, but is not a candidate because it has already been shown to the user. 

Finding the document node with the maximum involvement ratio is a simple application of the )?= parallel 

maximum operator (Section 5.5.2.2). 

 

      Now that PThomas has determined a document node to display, it finds all its associated nodes, composes a 

display, and shows it to the user. The user is then asked to respond to this display and the cycle repeats itself. 

 

5.6. Evaluation of PThomas 

It was mentioned above that one of the primary reasons for choosing a database of such small size was to be able to 

check the network status in its entirety during the development phase. Feldman points out the differences between 

programming a connectionist network and traditional computer programming (Feldman el al., 1988, p. 176): 

 

To follow the progress of sequential computation, one usually needs to look at only a few critical 

variables and the instruction counter to verify that the program is indeed doing as one expects. 

This is in contrast to connectionist networks where the sequence of events and their results usually 

cannot be specified or predicted. 

 

The same may well be said of network databases such as PThomas. As it turned out, there is no simple way to 

detect that the program is doing what it ought to be doing. For example, a minor bug that does not bring into the 

context graph two or three nodes may not be reflected in the references displayed in response to the current user 

image in test situations. Detecting such flaws in highly parallel code is sometimes very difficult and tedious. 

 

      The primary goal we had in mind was to get a working version of Thomas on the Connection Machine. Given 

the problems with testing associative/highly parallel networks, our criterion for testing the “correct” working of 

PThomas’ graph processing was: given a state of the user image, the program should not only respond to the user in 



the same manner that Thomas did, but that it should also generate a sequence of equivalent data structures in the 

CM processor memories. Rigorous testing, made possible in large part by the choice of database, has proven that 

this indeed is the case. The outcome is that the higher level processing in PThomas (as for example in 5.5.3) shows 

exact similarity to that of Thomas. 

 

6. CONCLUDING REMARKS 

We have given some account of our resumption of work on the approach to information retrieval embodied in 

Thomas. In this endeavor, our purposes are two-fold: We wish to investigate the promise offered by new, highly 

parallel computer architectures as tools for speeding the development of such approaches to information retrieval; 

and we should like to gain greater understanding of methods of introducing adaptability into information retrieval 

systems. This paper is but a first step towards each goal. 

 

      In pursuit of the first goal, we have completed a prototype version of the system, using the Connection Machine, 

and have gained some knowledge of the critical problems that need to be resolved if full-scale application is to be 

achieved. We have identified two substantial problems: 

 

      1. Connection Machine size limitations. Our machine has 32 K processors, but a (quite small) database 

representing 10,000 document abstracts could generate a network with a combined total of about one million nodes 

and edges. Now, the Connection Machine can be configured with many more virtual processors than actual ones, by 

dividing the processor memories. (There is a time penalty, because each actual processor will simulate several 

virtual processors serially.) With some fairly obvious storage economies (changing the representation of logical 

variables to bit fields), we could fit O (100) nodes or edges into each processor. One might also expect that future 

models of such machines will be much larger. However, we forsee practical problems with very large bibliographic 

databases for sometime to come, and feel obliged to tackle the network partitioning problem. That is, we need to 

find a way of dividing the network into sections that can be loaded into the Connection Machine, in the expectation 

that PThomas’ processing can continue satisfactorily for an appreciable length of time before needing to swap 

partitions. Ofori-Dwumfuo (1982a) performed a clustering experiment which indicated, for a small test collection, 

that the network can be partitioned and processing restricted to only those partitions containing nodes explicitly 

named by the user, without serious degradation of performance. Further work needs to be done with this type of 

technique. 

 

      2. Mapping networks onto the Connection Machine. CM architecture permits communication between any pair 

of processors, and to some extent this can be done in parallel. However, the CM does not have a direct wire between 

every pair of processors, and messages are therefore routed through a hypercube. With our chosen network 

representation, and any others of which we are aware, some messages concurrently traversing an arbitrarily 

connected network will intersect at junctions in the hypercube, and will therefore be queued and processed serially. 

Until we have experience with larger, more realistic databases, we will not know whether this will be a serious 

impediment. (We do not believe that Belew’s (1989) comment about the inappropriateness of the CM’s SIMD 

architecture to the MIMD nature of connectionist models applies to PThomas.) 

 

      We have moved towards our second goal by taking a fresh look at some of the properties of Thomas, and by 

comparing it with other related ideas. The design of Thomas was an ad hoc response to a consideration of the 

problem of expressing information needs to a retrieval system. We have found that it is in many ways consonant 

with other network models, but is also quite distinctive in its behavior. In general, feedback is used frequently, and 

adaptation takes place at the level of the individual dialogue. We can identify three major levels at which adaptation 

can take place in an information retrieval system: (a) within the dialogue, when the system learns what will get a 

positive response from the user in his or her present situation; (b) at the user level, where the system learns how an 

individual’s vocabulary, and viewpoint correlate with document representations; and (c) at the group, or societal 

level, where such factors as conventional terminology, trends in research interests, and schools of thought are of 

importance. It seems to us that different learning, or adaptation devices are needed at these different levels, and we 

hope to learn more about this issue by continuing the development of Thomas-like systems. 
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