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Constructing a fault-tolerant quantum computer is a daunting task. Given any design, it is
possible to determine the maximum error rate of each type of component that can be tolerated
while still permitting arbitrarily large-scale quantum computation. It is an underappreciated fact
that including an appropriately designed mechanism enabling long-range qubit coupling or transport
substantially increases the maximum tolerable error rates of all components. With this thought in
mind, we take the superconducting flux qubit coupling mechanism described in [1] and extend it to
allow approximately 500 MHz coupling of square flux qubits, 50 µm a side, at a distance of up to
several mm. This mechanism is then used as the basis of two scalable architectures for flux qubits
taking into account crosstalk and fault-tolerant considerations such as permitting a universal set of
logical gates, parallelism, measurement and initialization, and data mobility.

I. INTRODUCTION

The field of quantum computation is largely concerned
with the manipulation of two state quantum systems
called qubits. Unlike the bits in today’s computers which
can be either 0 or 1, qubits can be placed in arbitrary su-
perpositions α|0〉 + β|1〉, and entangled with each other.
For a complete review of the basic properties of qubits
and quantum information, see [2]. The attraction of
quantum computation lies in the existence of quantum
algorithms that are in some cases exponentially faster
than their best known classical equivalents. Most famous
are Shor’s factoring algorithm [3] and Grover’s search al-
gorithm [4]. There has also been extensive work on us-
ing a quantum computer to simulate quantum physics
[5, 6, 7, 8, 9], an ongoing exploration of adiabatic algo-
rithms [10, 11, 12], plus the discovery of quantum algo-
rithms for differential equations [13], finding eigenvalues
[14, 15], numerical integration [16] and various problems
in group theory [17, 18, 19] and knot theory [20, 21].

Quantum systems suffer from decoherence, meaning
their state rapidly becomes unknowable through un-
wanted interaction with the environment. Flux qubit
decoherence times of up to a few microseconds have been
demonstrated [22] versus single-qubit gate times of or-
der 10 ns and likely initial two-qubit gate times of order
a few tens of nanoseconds [1, 23, 24]. To perform long
quantum computations, quantum error correction will be
required [25, 26, 27]. It has been shown that provided the
totality of decoherence and control errors is below some
nonzero threshold, and given an arbitrarily long time and
an arbitrary large number of qubits, an arbitrarily long
and large quantum computation can be performed [28].
Despite being well known in certain circles, the broader
quantum computing community has not yet sufficiently
come to terms with the fact that long-range interactions

permit much higher levels of decoherence and control er-
ror to be tolerated. With unlimited range interactions
and extremely large numbers of qubits, the threshold er-
ror rate has been shown to be of order 10−2 [29]. With
fewer qubits but still unlimited range interactions, the
threshold is reduced to between 10−3 and 10−4 [30]. A 2D
lattice of qubits interacting with their nearest neighbors
only has been devised with approximate threshold 10−5

[31]. The full analysis of an infinite double line of qubits
with nearest neighbor interactions has been performed
yielding a lower bound to the threshold of 1.96 × 10−6

[32]. Work on an infinite single line of qubits with nearest
neighbor interactions is in progress, and the threshold is
expected to be of order 10−8 [33].

Despite the extremely low expected threshold of lin-
ear nearest neighbor (LNN) architectures, a great deal
of theoretical work has been devoted to the design of
such architectures using a variety of physical systems
[34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. This is reason-
able in the context of providing an experimental starting
point, but we believe the time has come to expect at least
a theoretical proposal for how long-range interactions or
long-distance qubit transport might be performed. With-
out this, it is extremely difficult to argue the long-term
viability of a given system. Furthermore, any proposed
method of interaction or transport must be able to be
performed in parallel on a number of pairs of qubits that
grows linearly with the size of the computer to permit the
simultaneous application of error correction to a constant
fraction of the logical qubits in the computer. By con-
trast, a quantum computer based around a single, global,
serial interaction or transport mechanism, such as a sin-
gle resonator shared by all qubits in the computer, cannot
simultaneously apply quantum error correction to mul-
tiple logical qubits. Such a quantum computer could at
best apply quantum error correction to each logical qubit

http://arXiv.org/abs/cond-mat/0702620v2
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in turn. As the number of logical qubits increases and the
amount of time between applications of error correction
to a given logical qubit increases, more errors accumu-
late and the probability of successful error correction de-
creases. Beyond a certain amount of time between error
correction applications, it is overwhelmingly likely that
every physical qubit comprising a given logical qubit will
have suffered an error, meaning no amount of quantum
error correction will successfully recover the original log-
ical state. Consequently, any quantum computer based
around a single, global, serial interaction or transport
mechanism is not scalable in the sense that it could never
perform an arbitrarily large quantum computation.

The purpose of this paper is to present a long-range
coupling mechanism for superconducting flux qubits that
can be used to couple many pairs of qubits together in
parallel in a manner suited to the construction of an arbi-
trarily large fault-tolerant quantum computer. In Section
II we review the coupling mechanism of [1, 23] and extend
it to allow long-range coupling. In Section III we firstly
describe a simple, yet scalable, flux qubit architecture
based on this interaction, but not taking full advantage
of it, then a more complicated architecture with a better
threshold error rate though much more difficult to build.
Finally, Section IV concludes with a summary of results
and a description of further work.

II. COUPLING FLUX QUBITS

Before discussing our coupling mechanism, a few words
elaborating exactly why long-range interactions are ad-
vantageous are in order. Essentially, the problem lies
in the need to perform transversal multiple logical qubit
gates, as shown in Fig. 1a. If long-range interactions are
available, two logical qubits each comprised of n physical
qubits can be transversely interacted in a single time step
using n gates. If we now try to do the same thing on a lin-
ear nearest neighbor architecture using swap gates prior
to the necessary gates to perform the transversal interac-
tion, we immediately run into a serious problem. A single
swap gate failure can lead to two errors in a single logical
qubit as shown in Fig. 1b. Under normal circumstances,
two or more errors in a single logical qubit are not cor-
rectable. A solution to this dilemma that avoids the need
to resort to a multiple error correcting code is shown in
Fig. 1c where a second line of placeholder qubits has been
added. Now swap gates never simultaneously touch two
qubits that are both part of logical qubits. Note that
the first three steps of Fig. 1c need to be repeated, time
reversed, to return the qubits to their original configura-
tion. We can now see that to interact two n-qubit logical
qubits transversely and fault-tolerantly using only near-
est neighbor interactions, using the scheme described, we
need 4n qubits, 2n2 +n gates and 2n+1 time steps with
2n2 locations where data qubits are left idle. For all
of this additional machinery to result in a circuit with
the same reliability as the nonlocal case, every individ-
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FIG. 1: a.) nonlocal transversal interaction, b.) naive linear
nearest neighbor transversal interaction showing the propaga-
tion of errors resulting from the failure of a single swap gate
leading to two errors in both logical qubits, c.) the first 4
time steps of a bilinear fault-tolerant transversal interaction
between two sets of three 3 physical qubits. The remaining 3
steps are the time reverse of the first 3 steps.

FIG. 2: Coupling scheme as proposed in [1], including circuit
symbols and orientations.

ual component must be significantly more reliable. This
is the origin of the lower thresholds quoted in the intro-
duction for ever more constrained architectures.

With the above motivation in mind, we proceed to
the discussion of coupling superconducting flux qubits.
Coherent oscillations of the state of a superconducting
flux qubit were first demonstrated at Delft in 2003 [45].
A number of other institutions are also developing flux
qubit technology, including Berkeley [23], NEC [46, 47],
NTT [48] and IPHT [49]. A flux qubit is essentially a su-
perconducting ring interrupted by typically three Joseph-
son junctions with clockwise and anticlockwise persistent
currents forming the basis of an effective two level quan-
tum system. For an up-to-date review of superconduct-
ing qubit theory in general, including flux qubits, see
[50].
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The coupling scheme as proposed in [1] is shown, some-
what simplified, in Fig. 2. The strength of the di-
rect inductive coupling between the qubits is given by
K0 = 2MqqI

2
q , whereas that mediated by the SQUID

takes the form

Ks = 2M2
qsI

2
q

(

∂J

∂Φs

)

Ib

. (1)

In the slowly varying and high resistance limit of the
junctions, we can write

Ib = I0 sin γ1 + I0 sin γ2, (2)

2J = I0 sin γ2 − I0 sin γ1 (3)

which can also be written as

Ib = 2I0 sin γ̄ cos∆γ, (4)

J = I0 sin ∆γ cos γ̄ (5)

where ∆γ = γ2−γ1

2
and γ̄ = γ1+γ2

2
. These equations are

constrained by

∆γ =
π

Φ0

(Φs − LdJ) (6)

where L is the inductance of the coupler and Φs is the
applied flux, nominally set to Φs = 0.45Φ0 to maximize
the response of J to variations in Φs. Taking the partial
derivative of Eqs. (4), (5), and (6) with respect to Φs we
obtain

∂Ib

∂Φs

= 0 = 2I0

∂

∂Φs

(cos∆γ sin γ̄) , (7)

∂J

∂Φs

= I0

[

−
∂γ̄

∂Φs

sin γ̄ sin ∆γ +
∂∆γ

∂Φs

cos γ̄ cos∆γ

]

,

(8)

∂∆γ

∂Φs

=
π

Φ0

(1 − L
∂J

∂Φs

). (9)

Using these equations, we can derive the expression

(

∂J

∂Φs

)

Ib

=
1

2Lj

1 − tan2 γ̄ tan2 ∆γ

1 + L
2Lj

(

1 − tan2 γ̄ tan2 ∆γ
) (10)

where Lj = Φ0/ (2πI0 cos∆γ cos γ̄) is the Josephson in-
ductance. This expression characterizes the tunable na-
ture of the coupling scheme.

We propose modifying the coupler as shown in Fig. 3.
All dimensions are typical of the Berkeley group [23].
This design results in decreased mutual inductance be-
tween the qubits, increased mutual inductance between
the qubits and the coupler, increased self inductance of
the coupler and significant capacitance structurally in-
corporated into the coupler. All of these effects will be
investigated, and the resultant impact on the coupling
strength.

FIG. 3: Extending coupling scheme, including circuit sym-
bols, orientations and dimensions. All wires are 0.75 µm wide
and 0.1 µm thick
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FIG. 4: The self-inductance of the coupler as a function of
the length of the coupler.

Before discussing coupling strengths, we need to deter-
mine the various inductances of the new system. Fig. 4
shows the self inductance of the coupler versus coupler
length D for coupler width d = 1.5 µm generated using
FastHenry assuming superconducting aluminum wires
with a penetration depth of 49 nm [51]. The inset shows
the short length behavior. For all lengths of interest,
the coupler self inductance is approximately given by
(356+0.863D/µm) pH. A small value of d is desirable to
minimize L at a given length and, as we shall see, maxi-
mize the coupling strength. However, this also introduces
a large capacitance, with consequences to be discussed at
the end of this section. The mutual inductance of each
qubit with the coupler was found to be 75 pH.

We are now in a position to calculate the coupler me-
diated coupling strength Ks for zero bias current, done
numerically for two different critical currents I0 = 0.48
and 0.16 µA and shown in Fig. 5. Note the existence of
optimum lengths, 700 and 2500 µm respectively, a conse-
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FIG. 5: The coupling strength at zero bias current (Φs =
0.45Φ0) without mutual qubit interaction versus the length
of the coupler for I0 = 0.48 µA (solid) and I0 = 0.16 µA
(dashed).
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FIG. 6: The strength of the direct qubit-qubit interaction due
to mutual inductive coupling as a function of the length of the
coupler, and thus qubit separation.

quence of the cosine terms in Lj . The coupling strength
due to the mutual inductance of the qubits is shown in
Fig. 6. Note that to neglect the direct coupling it is neces-
sary for the coupler to be greater than approximately 650
µm long, corresponding to a coupling strength approxi-
mately 3 orders of magnitude less than that mediated by
a short coupler. The consequences of this for architecture
design are discussed in Section III.

The coupling strength can be reduced to zero by suf-
ficiently increasing the bias current. It is desirable to
ensure that the necessary increase is as small as possible,
as the presence of a bias current, particularly one close to
the critical current, is a significant source of decoherence
[1, 46, 52]. Fig. 7 shows the coupling strength versus bias
current for a selection of four coupler lengths. This figure
uses the critical current I0 = 0.48 µA from [1]. Clearly,
particularly for long lengths, the bias current required to

0.2 0.4 0.6 0.8 1
Ib �Ic

-0.25

0

0.25

0.5

0.75

1

1.25

Ks �h HGhzL

FIG. 7: The coupling strength as a function of the bias current
with Φs = 0.45Φ0 and Ic = Ic(Φs), using Josephson Junction
critical currents of I0 = 0.48 µA. D = 500 µm (dotted),
D = 1000 µm (dashed), D = 2000 µm (dash-dotted), and
D = 4000 µm (solid).
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FIG. 8: The coupling strength as a function of the bias current
with Φs = 0.45Φ0 and Ic = Ic(Φs), using Josephson Junction
critical currents of I0 = 0.16 µA. D = 500 µm (dotted),
D = 1000 µm (dashed), D = 2000 µm (dash-dotted), and
D = 4000 µm (solid).

achieve zero coupling strength is too close to the critical
current. This problem can be circumvented by reducing
the critical current of the junctions to I0 = 0.16 µA re-
sulting in Fig. 8. Reducing the critical current reduces
the zero bias coupling strength lowering the ratio Ib/Ic

required to achieve zero coupling strength.
In principle, Fig. 8 is promising, both in terms of cou-

pling strength and coupling length. However, the effect
of the capacitance of the coupler must be determined. As
a starting point, consider a single flux qubit initially pre-
pared in a clockwise current state. Left alone, this qubit
will oscillate between clockwise and anticlockwise current
states at its tunneling frequency, which is typically of or-
der a few GHz in current devices. As seen by the coupler,
by virtue of their mutual inductance, such a qubit plays
the role of an alternating current source. Considering
the coupler in isolation now, we wish to check that an
alternating current source at one end of the coupler with
amplitude A generates an alternating current of ampli-
tude as close to A as possible at the other end. Using
a lumped circuit model and discretizing the capacitive



5

a.)

b.)

FIG. 9: a) Simple scalable bilinear flux qubit architecture
including flux lines for each coupler and qubit. As drawn,
the architecture requires three layers of metal corresponding
to the three couplers around each qubit. b) Topologically
identical array used as the basis of Fig. 11.

section of the coupler, deviation from perfect transmis-
sion of order 1% was found. This is low enough to give
us confidence that the fundamental concept of the ex-
tended coupler is sound, but high enough that achieving
high fidelity gates will require a closer examination of the
physics of the system [53]. We have also begun simula-
tions of the complete system including silicon substrate
using the commercial package HFSS. The results of these
simulations and capacitive and radiative effects in general
will be discussed in detail in a separate publication.

III. ARCHITECTURES

In quantum computing literature, the word “scalable”
is, regrettably, frequently used rather loosely, and some-
times inaccurately. Ideally, as a minimum, it should only
be claimed that an architecture is scalable if in princi-
ple an arbitrarily large number of qubits can be imple-
mented, the number of quantum gates and measurements
that can be executed simultaneously grows linearly with
the number of qubits, and the physics of any one quan-
tum gate or measurement does not depend on the total
number of qubits. A simple example of such an architec-
ture making use of the coupler described in this paper
is shown, not drawn to scale, in Fig. 9a. This archi-
tecture requires three couplers around each qubit, well
within current layering technology. Note that one qubit
of each pair is more weakly coupled following [23]. This
enables readout of both qubits simultaneously using one
coupler via the resonant readout scheme of [54]. Given
the large potential length of each coupler, crosstalk can
be neglected, and with only a small number of control
lines leading to external circuitry per pair of qubits, given
a sufficiently large fridge, many qubits can be accom-
modated. The details of how many qubits and how to
include the necessary control lines and classical control
machinery shall be left for a future publication. Two lines
of qubits have been incorporated in the design to permit

simpler error correction resulting in a threshold two-qubit
gate error rate for arbitrarily large fault-tolerant quan-
tum computation of 1.96×10−6 as described in [32]. Note
that to use this architecture in practice this implies the
need for two-qubit gates operating with an error rate
of 10−7 or less, far below what is achievable in most
solid-state systems given the current ratios of decoher-
ence times to gate times.

Of course, the architecture of Fig. 9a does not take
full advantage of the potential length of the coupler. As
discussed earlier, to ensure relatively low crosstalk, from
Fig. 4, qubits need to be spaced approximately 650 µm
apart. This still gives us enough space to firstly stretch
the architecture of Fig. 9a into a single line as shown
in Fig. 9b, then duplicate this line 7 times to permit an
additional layer of the 7-qubit Steane code to be used.
Referring to Fig. 11, these duplicated qubits correspond
to the bottom seven qubits in each group of 21. The
middle row of qubits in each group of 21 correspond to
ancilla qubits used during error correction according to
the scheme described in [27], with slight modifications to
reduce the range of the necessary interactions as shown
in Fig. 10. The top row of qubits in each group of 21
correspond to ancilla qubits only used during the imple-
mentation of the fault-tolerant T gate, or π/8 gate, as
it is also known, which is required to ensure the com-
puter can perform a universal set of fault-tolerant gates.
A complete description of the circuitry of this gate can
be found in [32]. Note that, even with all the additional
control lines, the architecture requires just one wire per
approximately 40 µm per side.

The network of qubits and couplers shown in Fig. 11
enables the most efficient known nonlocal error correc-
tion scheme and fault-tolerant gates to be implemented
at the lowest level. All higher levels make use of the
circuitry devised for the bilinear architecture. When
the threshold two-qubit error rate of this more compli-
cated architecture was calculated, using the mathemati-
cal tools described in [32], the disappointingly low result
of 6.25× 10−6 was obtained — just over a factor of three
better than the bilinear array. In short, the dominant
nearest neighbor behavior of the large-scale architecture
is not overcome by a single layer of nonlocal error correc-
tion and gates.

IV. CONCLUSION

We have described in detail a nonlocal method of cou-
pling pairs of flux qubits and shown that it is suited to
the construction of complex, scalable quantum computer
architectures as shown in Fig. 11. By virtue of the fact
that flux qubits do not require large quantities of classi-
cal control circuitry on chip, there are no obvious litho-
graphic or heat dissipation barriers to the construction
of such an architecture. The primary concern, as with all
superconducting quantum technology, is decoherence. In
the near future we wish to look at other superconduct-
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FIG. 10: To reduce the need for long range interactions, the
circuit a.) taken from [27], which encodes and decodes a logi-
cal zero, was modified as shown in b.) by swapping two pairs
of qubits.

ing qubits and coupling schemes with the aim of remov-
ing all known sources of decoherence from the design.
For example, in [46] a method of coupling flux qubits
tunably is described that does not resort to a nonzero
SQUID bias current. Furthermore, the need for large
qubit separations to minimize crosstalk could in princi-
ple be alleviated by enclosing each qubit in a micrometer
scale Meissner cage. Devising a more practical method
of achieving higher qubit densities would greatly increase
the utility of the proposed coupling scheme. Finally, with
or without higher qubit densities, additional architecture
design work is required to try to raise the threshold fur-
ther, possibly by attempting to incorporate two layers of
nonlocal error correction into the design.
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