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Effects of Cisplatin on Mitochondrial Function in Jurkat
Cells
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Public Health Research Institute, 225 Warren Street, Newark, New Jersey 07103-3506, and

Department of Pediatrics, Upstate Medical University, State University of New York,
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Received January 26, 2004

In this work, we measured the effects of pharmacological concentrations of cisplatin (cis-
diaminedichloroplatinum II) on mitochondrial function, cell viability, and DNA fragmentation
in Jurkat cells. The exposure of cells to 0-25 µM cisplatin for 3 h had no immediate effect on
cellular mitochondrial oxygen consumption, measured using a palladium-porphyrin oxygen
sensing phosphor. Similarly, the cell viability as measured by trypan blue staining was
unchanged immediately following exposure to the drug, and no small DNA fragments,
characteristic of drug-induced apoptosis, appeared. At 24 h after exposure to cisplatin, cellular
respiration and viability decreased relative to controls and the amount of small DNA fragments,
measured using quantitative agarose gel electrophoresis, was proportional to the concentration
of cisplatin present during the drug exposure period. The small DNA fragments showed the
banding pattern (with a spacing of ∼300 bp) characteristic of drug-induced cell death by
apoptosis. The changes in respiration and DNA fragmentation correlated linearly with the
amount of platinum bound to DNA, determined by atomic absorption spectroscopy immediately
following drug exposure. The oxygen consumption by beef heart mitochondria was not affected
0-24 h after exposure to 25 µM cisplatin or to solutions containing the monoaquated form of
the drug, suggesting that the drug does not attack the mitochondrial respiratory chain directly.
Cells exposed to the peptide benzyloxycarbonyl-val-ala-asp-fluoromethyl ketone, which blocks
apoptosis by the caspase pathway, showed a decrease in cisplatin-induced DNA fragmentation
but not in the impairment of cellular respiration. Thus, although apoptosis is caspase-
dependent, the impairment of cellular respiration is independent of the caspase system.
Collectively, these results suggest that alteration in mitochondrial function is a secondary effect
of cisplatin cytotoxicity in Jurkat cells.

Introduction
The mitochondria are important for cellular energy

metabolism and apoptosis (1, 2). These vital organelles
generate over 90% of the cellular ATP via oxidative
phosphorylation, using energy derived from oxidations
in the respiratory chain. This process is driven by the
consumption of molecular oxygen (1). Moreover, mito-
chondria are known effectors of two major apoptotic
pathways, which result in the release of cytochrome c into
the cytosol (2-4). The release of cytochrome c causes an
impairment of mitochondrial respiratory function. A
direct inhibition of the respiratory chain by other toxins
(including some drugs), on the other hand, rapidly
depletes cellular ATP, promoting nonapoptotic (necrotic)
cell death (5, 6). Thus, because of their critical role in
cell survival, mitochondria serve as targets for cellular
toxins and chemotherapeutic agents (7).

Cisplatin1 is widely used for the treatment of many
cancers. Clinically, the drug is administered intra-

venously at ∼20-120 mg/m2 over 30-60 min, producing
a maximum serum concentration of ∼5-25 µM, with a
half-life (t1/2) of ∼30 min (8). In the plasma, where the
chloride concentration is relatively high (∼100 mM),
cisplatin exists mainly in the dichloro neutral form,
cisplatin. However, if the chloride concentration is low,
as is the case in the cytoplasm where it is ∼4 mM, the
drug aquates producing the monoaquo and diaquo com-
plexes, cis-[Pt(NH3)2(H2O)Cl]+ and cis-[Pt(NH3)2(H2O)2]+2.
These compounds can react with DNA, GSH, metal-
lothionein, and other cellular components (9-11). It was
originally thought that cisplatin entered the cell by
passive diffusion (12). However, there is growing evidence
suggesting that a more sophisticated transport mecha-
nism (13, 14) plays a role. In the nucleus, cisplatin reacts
with nitrogen atoms on the bases of DNA, forming uni-
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tration in the incubation medium in micromolar; AAS, atomic absorp-
tion spectroscopy; Pd phosphor, palladium(II) complex of meso-tetra-
(4-sulfonatophenyl)tetrabenzoporphyrin; RT, room temperature; BSA,
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and bidentate adducts (15). Some of the Pt-DNA adducts
can be removed by the nucleotide excision repair (NER)
mechanism, but others cannot be removed (16) because
they are protected by the structure specific recognition
protein. Pt lesions that remain on DNA impair template
function and ultimately promote cell death through
apoptotic pathways (15, 17).

A major factor limiting the treatment with cisplatin is
acute, dose-dependent, and cumulative nephrotoxicity,
which seems to be associated with mitochondrial injury
(18, 19). In human proximal-derived renal tubule cells,
cisplatin-induced cell death has been shown to be de-
pendent on intact ATP-producing mitochondria (20).
However, in porcine proximal renal tubule cells, cisplatin
concentrations of 50-500 µM have been shown to im-
mediately inhibit (within 20 min) mitochondrial oxygen
consumption, suggesting that cisplatin concentrations
less than 50 µM promote cell death by apoptosis, while
higher concentrations produce necrosis in renal cells (21-
23).

Mitochondria are also thought to be a major target for
cisplatin in cancer cells (24-28). Cisplatin binding results
in a significant decrease in the mitochondrial function
of melanoma cells (28), and alterations in mitochondrial
function have been implicated in cancer cell resistance
to chemotherapeutic agents (29). Determining whether
mitochondria are primary or secondary targets of cispl-
atin chemotherapy is important for understanding the
drug’s mechanism of action. Previous reports indicated
that cisplatin may affect mitochondrial function by
directly attacking mitochondrial DNA (mtDNA) (27, 28).
The depletion of mtDNA was shown to enhance cisplatin-
induced apoptosis in U937 lymphoma cells (27). More-
over, in studies with human malignant melanoma cells,
cisplatin binding to mtDNA is 50 times greater than to
chromosomal DNA. We recently reported that cisplatin
(0-99 µM) had little to no immediate (within 1-3 h)
effect on mitochondrial function in various cancer cell
lines, tumor cells, and beef heart submitochondrial
particles as measured by oxygen consumption (30).
However, the long-term impact of cisplatin on mitochon-
drial function remains unclear and warrants further
investigation.

In the present study, we quantitate the long-term
effects (after many hours) of clinically relevant concen-
trations of cisplatin on mitochondrial function in Jurkat
cells and isolated BHM. We also describe the relations
between drug exposure, cellular viability, and DNA
fragmentation. We show that cisplatin produces an
indirect, delayed, and dose-dependent impairment of
mitochondrial function, which is independent of the
caspase system. We also show that the amount of Pt
bound to DNA, measured immediately after incubation
with the drug, correlates linearly with the loss of mito-
chondrial function and the amount of DNA fragmenta-
tion, both observed 24 h after exposure to the drug. These
studies provide a quantitative basis for understanding
the interrelationships between DNA platination, mito-
chondrial function, DNA fragmentation, and cellular
viability in a well-characterized cancer cell line.

Materials and Methods

Chemicals. Cisplatin (1 mg/mL or ∼3.3 mM) was obtained
from American Pharmaceutical Partners (Los Angeles, CA); the
Pd(II) complex of Pd phosphor (sodium salt, MW ∼1300) was

purchased from Porphyrin Products, Inc. (Logan, UT); protein-
ase k, ribonuclease A (DNase-free from bovine pancreas; con-
tained ∼80 units/mg), rotenone, trifluorocarbonylcyanide phen-
ylhydraxone (FCCP), ADP, bromophenol blue, xylene cyanol FF,
and fatty acid free BSA were purchased from Sigma-Aldrich (St.
Louis, MO); nonyl phenyl-poly(ethylene glycol) (Nonidet NP-
40) was purchased from Fluka (Ronkonkoma, NY); agarose
(molecular biology grade) was purchased from Promega (Madi-
son, WI); Dulbecco’s PBS (without calcium or magnesium), FBS,
and RPMI-1640 medium with L-glutamine (pH 7.15) were
purchased from Mediatech (Herndon, VA); zVAD-fmk (MW 468,
2 mM solution) was purchased from Biovision (Mountain View,
CA); DNA Hyper-Ladder I (200-10 000 bp) was purchased from
Bioline USA Inc. (Randolph, MA); and Complete Protease
Inhibitor Cocktail Tablets were purchased from Roche Applied
Science (Indianapolis, IN).

Solutions. “Aged” cisplatin was prepared by diluting the
stock drug solution (3.3 mM in 154 mM NaCl) to 33 µM in
cisplatin with dH2O (final NaCl concentration, 1.54 mM),
followed by incubation at RT in the dark for at least 24 h prior
to use. Under these conditions, the drug aquates, losing chloride
and producing a mixture of cisplatin (13%), the monoaquo
species (73%), and the diaquo species (14%) (31). At a pH near
7, about 75% of the monoaquo species is in the monohydroxy
form (neutral) and 25% is in the monoaquo form (cation); the
diaquo form has a very small concentration, and the aquo-
hydroxy (monocation) and dihydroxy (neutral) species have
approximately equal concentrations. Because the rate constants
for formation of the monoaquo and diaquo species are ∼0.2 h-1,
the 24 h period represents about seven half-lives, so our aged
cisplatin represents an equilibrium mixture of the forms. Pd
phosphor was dissolved in dH2O (2.5 mg/mL or ∼2.0 mM) and
stored in the refrigerator for less than 2 weeks. Rotenone (1.0
mM) was freshly dissolved in absolute ethanol. Phosphate-
citrate buffer consisted of 200 mM Na2HPO4, with the pH
adjusted to 7.8 with 0.1 M citric acid. Proteinase k (20 mg/mL)
and ribonuclease A (10 mg/mL) solutions were made in dH2O
and stored at -20 °C. The NP-40 0.25% (v/v) solution was made
in dH2O and stored at RT. The gel loading buffer contained (v/
v) 0.25% bromophenol blue, 0.25% xylene cyanol FF, and 30%
glycerol in dH2O. The TBE buffer contained 40 mM Tris, boric
acid, and 2 mM EDTA (pH 8.3). The Tris-sucrose buffer
contained 10 mM Tris-Cl and 250 mM sucrose (ph 7.5). The
chloride-free Tris-sucrose buffer contained 10 mM Tris-NO3 and
250 mM sucrose (pH 7.5). The complete protease inhibitor
cocktail was prepared by dissolving two tablets in 0.5 mL of
dH2O and was stored at -70 °C. The cocktail was added at a
final concentration of 5 µL/mL buffer.

The Pd phosphor solution contained 2 µM Pd phosphor, 2%
(w/v) BSA, and 5 mM ADP in RPMI (containing ∼6 mM Na2-
HPO4 and 10 mM glucose); the final pH was ∼7.5. The solution
was freshly made in a 30 mL quartz tube and continuously
stirred for at least 90 min prior to use.

Cells. The human T-cell lymphoma cell line, Jurkat, was a
gift from Dr. Edward Barker. The cells were maintained in a
suspension culture under a fully humidified atmosphere con-
taining 5% CO2 at 37 °C. The medium was RPMI-1640 supple-
mented with 10% (v/v) FBS, 100 µg/mL streptomycin, 100 IU/
mL penicillin, and 2.0 mM L-glutamine. The number of cells in
the population (cell count) and the percentage of viable cells in
the population (viability) were determined immediately prior
to experimental measurements by light microscopy, using a
hemacytometer under standard trypan blue staining conditions
(32).

Incubation with Cisplatin. The incubations were carried
out in RPMI medium plus 10% FBS at 37 °C. Cells in
logarithmic growth (∼107/condition) were exposed to cisplatin
(0-25 µM) for 3 h. At the end of the incubation periods, the
cells were collected by centrifugation and analyzed immediately
or maintained in culture (drug-free medium) and analyzed 24
or 48 h later.
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BHM Treatments. BHM were used to investigate the effects
of cisplatin and an aged solution of the drug on mitochondrial
function. The BHM were prepared as previously described (33,
34) and underwent multiple freeze-thaw cycles, making them
NADH permeable. As a consequence, 1 h of incubation at 37 °C
with 20 µM FCCP did not significantly increase the respiration
as compared to an untreated control, indicating that the
mitochondrial respiratory chain was not tightly coupled (data
not shown). For experiments with cisplatin, BHM (∼10 mg per
condition) were suspended in 2.0 mL of 10 mM Tris-Cl (pH, 7.5)
containing 250 mM sucrose. For experiments with aged cis-
platin, BHM were suspended in the buffer, 10 mM Tris-NO3

(pH, 7.5) containing 250 mM sucrose. The use of nitrate instead
of chloride ion in the buffer ensured that the distribution of
complexes in the aged solution would not greatly change during
the time course of the experiments (35). The mixtures were
incubated at 37 °C for 3 h with and without the drug. At the
end of the incubation period, the mitochondria were collected
by centrifugation (23000g at 4 °C for 30 min), washed, and
suspended (with three passages of the pestle through a glass-
Teflon homogenizer) in 10 mL of the same buffer. The suspen-
sions were incubated at 37 °C for 0, 2, 4, and 24 h. The samples
assayed 24 h after drug exposure were incubated in the presence
and absence of 5 µL of complete protease inhibitor cocktail per
mL of buffer. At the end of the incubation periods, the mito-
chondria were collected, washed in the same buffer, and
suspended in Pd phosphor solution as described above. Ap-
proximately 0.5-1.0 mg of each suspension was diluted to 0.7
mL with the Pd phosphor solution. Following the addition of
50 mM NADH, mitochondrial oxygen consumption was assayed
as described below. Each experiment included a measurement
in the presence of 50 µM rotenone (which inhibits complex I of
the respiratory chain) as a positive control.

Incubation with zVAD-fmk. The pan-caspase inhibitor,
zVAD-fmk, was used to investigate the role of caspases in
cisplatin-induced cytotoxicity (36). Cells (∼107 per condition)
were pretreated with 2 µM zVAD-fmk for 2 h at 37 °C. At the
end of the incubation period, 25 µM cisplatin was added and
the suspensions were incubated at 37 °C for 3 h. The cells were
then maintained in culture (in drug-free medium plus 10% FBS
with and without 2 µM zVAD-fmk) for ∼24 h. At the end of the
incubation period, the cells were collected and washed with PBS
(pH 7.4). The cellular mitochondrial oxygen consumption and
DNA fragmentation were assayed as described below.

Cellular Oxygen Consumption. Respiration was measured
at RT in sealed vials containing cells suspended in 0.7 mL of
the Pd phosphor solution. The substrate for the cells was
glucose, and for the BHM, the substrate was NADH. The
concentration of oxygen [O2] in the solution was measured as a
function of time using the phosphorescence probe Pd(II) meso-
tetra-(4-sulfonatophenyl)tetrabenzoporphyrin as described (30,
37). This method is based on oxygen quenching of the phospho-
rescence of the Pd phosphor (37).

The rate of cellular mitochondrial oxygen consumption (µM
O2 min-1) was calculated as the negative slope of the linear
portion ([O2] g 150 µM) of the [O2] vs the time curves. As
expected, the oxygen consumption rates were linear with the
number of viable cells up to 1.5 × 107 (R > 0.99). However, the
slope of the curve decreased by ∼12% at a cell count of 2.0 ×
107 (R > 0.97, overall, data not shown). The value of k was set
equal to the negative slope of each curve divided by the total
number of cells (× 106) in each sample. Each experiment
included a measurement in the presence of rotenone. The rate
of oxygen consumption for the Pd phosphor solution without
cells was (mean ( SD) 0.28 ( 0.05 µM O2 min-1, and for ∼107

cells incubated with rotenone (50 µM at 37 °C for 1 h), it was
0.36 ( 0.16 µM O2 min-1.

Extraction of DNA Fragments. The DNA fragments were
extracted as described (38) with some modifications. The cells
were washed with PBS and suspended in 1.0 mL of ice-cold PBS.
The cells (∼3 × 106/condition) were fixed in 8.0 mL of ice-cold
70% ethanol. The suspension was incubated at -20 °C for 24 h

and then centrifuged (1000g for 5 min at 4 °C). The supernatant
was discarded, and the ethanol was allowed to thoroughly
evaporate at RT. The pellet was suspended in 50 µL of
phosphate-citrate buffer and incubated at 20 °C for 90 min. The
suspension was centrifuged (as above), and the supernatant was
transferred to a fresh tube. The supernatant was recentrifuged
as above, and the supernatant was lyophilized in the Speed Vac
(model SC 110, equipped with refrigerated vapor trap, model
RVT 100; Farmingdale, NY). The lyophilized pellet was sus-
pended in 6 µL of NP-40 (0.25% solution), 6 µL of SDS (10%), 6
µL of ribonuclease A (10 mg/mL solution), and 2 µL of ribonu-
clease T1. After overnight incubation at 37 °C, 6 µL of proteinase
k (20 mg/mL solution) was added and the mixture was incubated
overnight. Twenty-four microliters of the gel-loading buffer was
added (final volume ∼50 µL).

Agarose Gel Electrophoresis. Approximately 22 µL of the
above extract was loaded on 4 mm thick, 1.0% agarose gels and
electrophoresed at 25 V and 11 mA for ∼15 h in TBE buffer.
Each extract was loaded on two separated gels. The gels were
stained in 300 mL of 0.5 µg/mL ethidium bromide for 30 min in
the dark at RT. After destaining for 15 min in dH2O, the gels
were stored at 4 °C in 300 mL of TBE. The images were captured
using a Gel Doc digital camera system with Quantity One
software (Bio-Rad, Richmond, CA). The individual lanes were
scanned (Sigma Scan, version 2.0, SPSS Inc.) from the loading
well to the low molecular weight end of the streaks. The
measured intensity at each position was the average intensity
across a broad line (17 pixels wide). The background of each
lane was calculated as the minimum average intensity in each
lane. Net intensity vs position plots were exported to Peak-Fit
software (version 4.1, SPSS Inc.). The position-size (bp) calibra-
tion curve was derived from the plot of the Hyper-Ladder (200-
10 000 bp) lane and was used to determine the approximate size
and spacing of the low molecular weight DNA fragments.
Intensity vs size plots were fitted either to a sum of Gaussians
with width increasing with size or to a sum of Gaussians plus
a linear function of size.

Pt-DNA Adducts. Cellular (genomic) DNA was extracted
immediately following the 3 h incubation with cisplatin. The
Pt-DNA adducts were determined by AAS as previously de-
scribed (11).

Results

Cisplatin-Induced Impairments of Cellular Res-
piration. The time and dose-dependent effects of cis-
platin (0-25 µM at 37 °C for 3 h) on cellular mitochon-
drial oxygen consumption (measured 24 and/or 48 h after
drug exposure) are shown in Tables 1 and 2 and Figures
1 and 2. In the untreated cells, the value of k at 0 and 24
h after exposure to drug was unchanged, but at 48 h, it
was about half of its original value; the latter was

Table 1. Time-Dependent Effects of Cisplatin on
Mitochondrial Function as Measured by Oxygen

Consumptiona

postdrug
exposure

(h)

untreated cells
k

(µM O2 min-1/106 cells)

treated cells
k

(µM O2 min-1/106 cells)

0 0.46 ( 0.18 0.36 ( 0.15
24 0.42 ( 0.16 0.17 ( 0.06
48 0.20 ( 0.05 0.07 ( 0.04

a Cells (∼107 per condition) were incubated at 37 °C for 3 h
without (untreated cells) and with (treated cells) 25 µM cisplatin.
At the end of the incubation period, the cells were maintained in
drug-free medium for 0, 24, or 48 h at 37 °C. A small volume of
each cell suspension was then removed to determine the number
of cells and viability. The remaining cells were suspended in the
Pd phosphor solution and placed in the instrument. The values of
k were calculated as the negative slopes of the linear parts of the
curves normalized to 106 cells analyzed. The numbers are means
( SD of three experiments.
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attributed to a high cell population density (Figure 1A
and Table 1). In the treated cells, the value of k at 24 h
was ∼50% of the value at 0 h, and at 48 h, it was ∼20%
of the value at 0 h (Figure 1B and Table 1). This is less
than half of the value for untreated cells at the same
time. Because the respiration rate for the cells in the
absence of drug was essentially unchanged at 0 and 24

h (but decreased significantly at 48 h, Table 1), the
measurements to establish the concentration dependence
of cisplatin’s effect on mitochondrial function were done
24 h after exposure to the drug. The results of these
experiments are shown in Figure 2A and Table 2. The
rate of respiration decreased with increased [cisplatin]
in the range 0-25 µM (Figure 2B).

Effect of Cisplatin on Isolated BHM Oxygen
Consumption. The ability of BHM to respire in the
presence of NADH after treatment with cisplatin and
aged solutions of cisplatin was measured 0, 2, 4, and 24
h after exposure to 25 µM drug at 37 °C for 3 h. The value
of respiration rate, k, without cisplatin treatment from
0 to 4 h after the initial incubation was 307 ( 99 µM O2

min-1 mg-1 (mean ( SD, n ) 3), and with exposure to
cisplatin, the rate was 266 ( 90 µM O2 min-1 mg-1. Over
the same time period, the value of k for BHM in the Tris
buffer medium containing nitrate ion (mean ( SD, n )
3) was 295 ( 27 O2 µM min-1 mg-1 and the value of k for
BHM treated with aged solutions of cisplatin in the
nitrate buffer medium was 233 ( 50 µM O2 min-1 mg-1.
Incubation with 50 µM rotenone decreased BHM oxygen
consumption by ∼98% (mean ( SD, n ) 2) to 5.5 ( 1.0
µM O2 min-1 mg-1.

The value of k without cisplatin treatment and in the
Tris buffer containing nitrate ion decreased by a factor
of ∼ 40 to 8.5 ( 1.4 and 4.4 ( 0.75 µM O2 min-1 mg-1

(mean ( SD, n ) 6) 24 h after the initial incubation
period in the presence and absence of protease inhibitors,
respectively. The same decrease in respiration was

Table 2. Effects of Cisplatin on Mitochondrial
Dysfunction and DNA Fragmentationa

[cisplatin]
(µM)

k (µM O2 min-1/
106 cells)

integrated DNA
fragment intensity
(arbitrary units)

0 0.31 ( 0.05 5.4 ( 0.9
5 0.29 ( 0.05 8.3 ( 2.2

10 0.22 ( 0.10 17.3 ( 7.8
15 0.19 ( 0.08 19.8 ( 5.2
20 0.17 ( 0.05 20.4 ( 1.4
25 0.16 ( 0.05 29.4 ( 0.5

a Cells (∼107 per condition) were incubated at 37 °C for 3 h with
and without the indicated [cisplatin]. At the end of the incubation
period, the cells were maintained in drug-free medium for ∼24 h.
A small volume of each cell suspension was then removed to
determine the number of cells and viability. The remaining cells
were then suspended in the Pd phosphor solution and placed in
the instrument. The values of k were calculated from the negative
slopes linear to the parts of the curves (Figure 4A-C) divided by
the number of cells in each suspension. The numbers are means
( SD of three experiments.

Figure 1. Time dependence of cisplatin-induced mitochondrial
dysfunction as measured by decreased cellular oxygen consump-
tion. The results of one of three experiments are shown. Cells
(∼107 per condition) were incubated at 37 °C for 3 h without
(A) and with (B) 25 µM cisplatin. The cells were then maintained
in drug-free medium for 0, 24, or 48 h at 37 °C. At the end of
the incubation periods, a small volume of each cell suspension
was removed to determine the number of cells and viability.
The remaining cells were washed with PBS, suspended in the
Pd phosphor solution, and placed in the instrument at hour 0
(circles), hour 24 (triangles), or hour 48 (squares). The average
values of k, calculated from the negative slopes of the linear
parts of the curves, are shown in Table 1.

Figure 2. Concentration dependence of cisplatin-induced mi-
tochondrial dysfunction as measured by decreased cellular
oxygen consumption. The results of one of three experiments
are shown (A). The cells were incubated at 37 °C for 3 h with
and without the indicated cisplatin concentration. After the
incubation period, the cells were maintained in drug-free
medium and placed in the instrument 24 h after exposure to
cisplatin. The negative slopes of the linear parts of the curves
are plotted as a function of [cisplatin] (B). The values of k are
shown in Table 2.

Cytotoxicity of Cisplatin Chem. Res. Toxicol., Vol. 17, No. 8, 2004 1105



observed 24 h after BHM were treated with cisplatin and
aged solutions of the drug. The value of k for BHM
treated with cisplatin and its aquated derivative was 7.5
( 1.9 and 4.35 ( 0.78 µM O2 min-1 mg-1 (mean ( SD, n
) 6), respectively. BHM remained sensitive to rotenone
over the extended incubation period. The value of k for
BHM incubated with 50 µM rotenone (37 °C for 1 h after
the extended incubation period) was 1.46 ( 0.14 µM O2

min-1 mg-1 (mean ( SD, n ) 6), which is ∼75% less than
the value of k for BHM analyzed 24 h after a 3 h
incubation in the presence and absence of cisplatin or
aged cisplatin. Although the extended incubation period
caused a significant decrease in BHM respiration, neither
cisplatin nor aged solutions of the drug had an effect on
BHM respiration when compared to a positive control.

Effect of Cisplatin on Cell Number and Viability.
The effects of cisplatin (25 µM at 37 °C for 3 h) on cell
number and viability were measured 0, 24, and 48 h after
drug exposure. The average viability for the untreated
cells at 0, 24, and 48 h was essentially the same as for
the treated cells at 0 h for all experiments: 91 ( 2.7%
(mean ( SD). The viability for treated cells decreased at
24 and 48 h to 55 ( 7 and 23 ( 4%, respectively. Over
the same time period, the number of untreated cells
increased by a factor of 2.5 ( 0.3 at 24 h and a factor of
3.6 ( 0.9 at 48 h. In 48 h, however, the number of cells
in the treated population increased by a factor of ∼2.7 (
0.5, as compared to the cell number at 0 h, indicating
that treatment with cisplatin slightly affected cell rep-
lication during this period. The total number of cells and
viability measured 24 h after exposure to 0-25 µM
cisplatin (3 h, 37° C) for all experiments is shown in
Figure 3A,B, respectively. Both the total number of cells
and the viability cells decreased exponentially with
increased [cisplatin].

The decrease in respiration (value of k), normalized to
the total number of cells, mirrors the decrease in vi-
ability. However, even if normalized to the number of
viable cells in the population, k values still decreased as
compared to the treated cells at hour 0. Note that during
the second 24 h period after exposure to the drug, the
cell population went through one or two replications, but
the total number of cells decreased by ∼30%, indicating
that some cells underwent a lethal mitosis (15). This is
consistent with an “evaluation period” during which the
cells are accessing the commitment to apoptosis.

Cisplatin-Induced DNA Fragmentation. The effect
of cisplatin (25 µM at 37 °C for 3 h) on inducing DNA
fragmentation was measured 0, 24, and 48 h after drug
exposure. The average integrated fragment intensities
for the untreated cells at 0, 24, and 48 h and for the
treated cells at 0 h were essentially the same: 8.2 ( 1.5
(mean ( SD, arbitrary units). The integrated fragment
intensity for treated cells increased at 24 h by a factor of
2.1, to 17.4 ( 6.2 (arbitrary units). However, the amount
of DNA fragments increased only slightly, if it all,
between 24 and 48 h (to 19.6 ( 5.8 arbitrary units).

The dose-dependent effect of cisplatin (0-25 µM at 37
°C for 3 h) on DNA fragmentation, measured 24 h after
drug exposure, is shown in Figure 4A-C. The set of
intensity vs position plots for the lanes in Figure 4A is
shown in Figure 4B. The integrated intensity under each
curve, representing the amount of fragmented DNA, was
calculated as described in the Materials and Methods.
The amount of fragmented DNA increased almost lin-
early (R > 0.96) as a function of [cisplatin] (Figure 4C).

The intensity vs position plot of the Hyper-Ladder was
used to convert the x-axis from position to length (bp).
Each plot of intensity vs size (length in bp), like those
shown in Figure 4B, was fitted to a sum of Gaussians to
locate the maxima. The widths of the Gaussians in-
creased with fragment size, as should be the case for
apoptotic cleavage. The average spacing between the
nucleosomal fragments was obtained by differencing the
first six peak positions (1-6, Figure 4B) in the plots for
the four highest cisplatin concentrations. The average
value of the differences was 305.9, with a population SD
of 32.4. Although the fit to a sum of variable width
Gaussians was good, it could be improved by adding a
linear function of size (which would be indicative of
necrosis). Thus, the presence of a background due to
necrosis cannot be ruled out.

Effect of Cisplatin on Cellular Respiration, DNA
Fragmentation, and Viability in the Presence of
zVAD-fmk. The effect of zVAD-fmk on cisplatin-induced
impairment of cellular respiration (measured 24 h after
drug exposure) is shown in Table 3. The presence of
zVAD-fmk alone in the incubation medium (2 µM at 37
°C for 29 h) had no significant effect on cellular respira-
tion, viability, or DNA fragmentation, when compared
to the untreated control. Incubation with cisplatin alone
(25 µM at 37 °C for 3 h) decreased the viability and the
value of k by factors of ∼1.5 and ∼2.8 respectively, and
increased the amount of DNA fragments by a factor of
∼4, when compared to the untreated control (Figure 5
and Table 3). For a shorter incubation with zVAD-fmk

Figure 3. Concentration dependence of cisplatin cytotoxicity
as measured by cell growth inhibition and loss of cell viability.
The cells were exposed to cisplatin at 0-25 µM for 3 h at 37 °C.
The number of cells and viability were measured 24 h after
exposure. (A) Cell growth inhibition results (error bars are the
SD of 2-3 measurements in each case) with best-fit exponential.
(B) Cell viability results (error bars are the SD of 2-3 measure-
ments in each case) with best-fit exponential.
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plus cisplatin (5 h total, pretreatment with 2 µM zVAD-
fmk for 2 h followed by an additional 3 h incubation in
the presence of 25 µM cisplatin; the cells were then
suspended in a zVAD-fmk-free medium for 24 h), the
cellular respiration decreased by a factor of ∼1.2, the
viability increased by a factor of ∼1.5, and the amount
of DNA fragments decreased by a factor of ∼1.2 as
compared to cells treated with cisplatin alone. Longer
incubations with zVAD-fmk plus cisplatin (29 h total, 2

µM zVAD-fmk for 2 h followed by additional 3 h in the
presence of 25 µM cisplatin; the cells were then sus-
pended in medium containing 2 µM zVAD-fmk for 24 h)
were also carried out. The result was that the viability
increased by a factor of ∼1.5, the value of k decreased by
a factor of ∼2.8, and the amount of DNA fragments
decreased by a factor of ∼2.7, as compared to cells treated
with cisplatin alone (Table 3 and Figure 5).

Pt-DNA Adducts. Pt-DNA adducts were measured at
the end of a 3 h incubation (at 37 °C) with 0-25 µM
cisplatin. The number of adducts was approximately
linear with [cisplatin] (R > 0.93, Figure 6A). During the
incubation period with cisplatin, Pt-DNA adducts are
continuously formed and removed (11). Inhibition of the
NER mechanism has been shown to increase adduct
levels ∼2-fold (39). Thus, the numbers of Pt-DNA adducts
measured were net values, representing the difference
between the number of adducts formed and the number
of adducts removed.

The amount of Pt-DNA adducts correlated with the
decrease in the value of k (R > 0.93, Figure 6B) and with
the increase in DNA fragment intensities (R > 0.88,
Figure 6C). In addition, the decrease in the value of k
correlated approximately linearly (R > 0.95) with the
increased DNA fragment intensities (Figure 6D). These
observations are consistent with Pt-DNA adducts pro-
ducing proportional apoptotic stimuli as is generally
believed (15, 17).

Figure 4. DNA fragmentation in the presence of cisplatin. The experimental conditions were as described in the legend to Table
2. Three independent experiments were done, and their results (mean ( SD) are shown in Table 2. A representative gel is shown in
panel A. Lane 2 (from left), signal of DNA from cells incubated with no addition; lane 3, 5 µM cisplatin; lane 4, 10 µM cisplatin; lane
5, 15 µM cisplatin; lane 6, 20 µM cisplatin; and lane 7, 25 µM cisplatin. Lane 1 is a DNA Hyper-Ladder I (200-10 000 bp). (B) The
set of intensity vs position plots for these lanes. The intensity vs position plot of the Hyper-Ladder was used to render a position vs
bp length calibration curve. The average spacing between peaks 1 and 6 of the four highest cisplatin concentrations in panel B was
305.9 bp, with a population standard deviation of 32.4. (C) The integrated intensities (area below the curves in panel B) as a function
of [cisplatin], with the best linear fit.

Table 3. Effects of the Pan-Caspase Inhibitor zVAD-fmk
on Cisplatin-Induced Loss of Cell Viability,

Mitochondrial Dysfunction, and DNA Fragmentationa

additions

cell
viability

(%)

k
(µM O2 min-1/

106 cells)

DNA fragment
intensity

(arbitrary units)

noneb 96 ( 1.5 0.31 ( 0.06 4.4 ( 1.5
cisplatinc 63 ( 7.0 0.11 ( 0.01 19.4 ( 4.3
zVAD-fmkd 95 ( 4.2 0.29 ( 0.13 4.5 ( 1.0
zVAD-fmk + cisplatine 91 ( 5.5 0.09 ( 0.02 16.7 ( 3.3
zVAD-fmk + cisplatinf 94 ( 2.0 0.04 ( 0.05 7.2 ( 0.4

a All samples were incubated for a total of 29 h. Cells (∼107 per
condition) were incubated for 2 h at 37 °C withoutb,c and withd-f

2 µM zVAD-fmk. Twenty-five micromolar cisplatin was then
added,c,e,f and the incubations were continued for 3 h. At the end
of the incubation period, the cells were maintained in cisplatin-
free medium withoutb,c,e and withd,f 2 µM zVAD-fmk for 24 h. The
number of cells, viability, k, and DNA fragment intensity were
determined as described in the Materials and Methods. The
numbers are means ( SD of three experiments.
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Discussion

In this work, we studied the effects of cisplatin on
Jurkat cells by measuring the rate of cellular respiration,
the amount of drug-induced DNA fragmentation, and the
amount of cell death using the viability assay. An
interesting finding in the study is that the rate of oxygen
consumption by the cells immediately following exposure
to the drug is normal, but it decreases at later times (24
and 48 h), indicating that cell death is occurring. By
contrast, pharmacological concentrations of alkylating
agents and anthracyclines produce immediate impair-
ment of mitochondrial function in Jurkat cells (30). The
decrease in respiration 24 h after exposure is proportional
to the concentration of cisplatin (0-25 µM) and is linearly
correlated with the increase in the amount of small DNA
fragments induced by cisplatin damage to genomic DNA
(Figure 6D). Moreover, both the changes in respiration
and the amount of small DNA fragments are proportional
to the amount of Pt bound to DNA, as measured im-
mediately after exposure to the drug (Figure 6B,C). If
DNA is isolated at later times after exposure to the drug,
repair is found to have removed most of the Pt from the
DNA, leaving concentrations of bound Pt, which are too
low to be reliably measured with AAS (11). As is evident
from Table 2, the increase in the amount of DNA
fragments with cisplatin concentration correlates with
the amount of cell death as measured by a staining
(viability) assay. These results are consistent with several

studies demonstrating the time- and dose-dependent
cytotoxicity of cisplatin and other Pt drugs in various
cancer cell lines and tumor cells (40-44).

While it is well-known that cisplatin can modify the
template activity of DNA, thereby initiating events that
ultimately lead to cell death, less is known about the
mechanism by which the drug blocks mitochondrial
function. In this study, we measure the effect of treat-
ment of BHM with cisplatin. Inside the cell, where the
chloride concentration is low, more aquated cisplatin
species are produced. These species are more reactive
chemically and, hence, more cytotoxic than the parent
drug (45, 46). The concentration of the diaquated forms
in the cell is likely to be small (31), but this form has
been shown to increase oxygen consumption (character-
istic of an uncoupling of oxidative phosphorylation) in
isolated rat kidney mitochondria (47). Neither fresh
cisplatin nor aged cisplatin (which is about three-fourths
monoaquated) affects the ability of BHM to consume
oxygen. Because aging increases the amount of the
monoaquo form, it seems that neither this species nor
the dichloro form directly attacks the mitochondrial
respiratory chain in Jurkat cells. While the drug is known
to platinate mtDNA (27, 28), the correlation observed
between the impairment of respiration and the DNA-Pt
adduct formation (Figure 6B) suggests that the signal to
terminate respiration involves a pathway that probably
has platination of genomic DNA as its initiating step.

To determine if there is a link between the cascade of
events that produce apoptosis and those that cause injury
to the mitochondria, we added the apoptotic inhibitor
zVAD-fmk to incubation media containing Jurkat cells
and cisplatin. This compound inhibits all caspases, thus
blocking the cell’s commitment to apoptosis (36, 48). Each
experiment with Jurkat cells and z-VAD-fmk was 29 h
in length, with viability, respiration, and DNA fragmen-
tation measured at the end. Exposure of the cells to 25
µΜ cisplatin from hour 2 to hour 5 of the experiment,
with no inhibitor present, resulted in a loss of cell
viability and cellular respiration and an increase in DNA
fragmentation, as compared to the control. This shows
that exposure to the drug causes a substantial population
of the cells to undergo apoptosis. However, if 2 µΜ VAD-
fmk is present for the duration of the experiment, with
drug present from hour 2 to hour 5, viability and DNA
fragment intensities are essentially the same as for the
control. Thus, 2 µΜ inhibitor blocks the normal function-
ing of the caspase system responsible for DNA fragmen-
tation and loss of viability. Interestingly, it does not block
the ability of the drug to decrease cellular respiration,
since, as shown in Table 3, respiration is greatly reduced
when drug is present, with or without inhibitor. Table 3
also shows that if 2 µΜ inhibitor is present for the first
5 h of the experiment and drug is present during the
period 2-5 h, apoptosis takes place, as evidenced by DNA
fragmentation. Respiration is decreased, but viability
remains high, 91 ( 5.5%, as is also the case for extended
exposure to the inhibitor (29 h). This shows that the cell
has an intact membrane (as determined by trypan blue
staining) even though the DNA inside is fragmented. This
observation is consistent with other reports showing that
DNA fragmentation precedes the loss of membrane
integrity (49, 50) for cells treated with anticancer drugs.

The small DNA fragments analyzed in the experiments
are the result of cleavage of genomic DNA by nucleases
as the cell dies. Because we observe the end of this

Figure 5. Effect of zVAD-fmk on cisplatin-induced DNA
fragmentation. The experimental conditions were as described
in the legend to Table 3. Lane 2 (from left) shows the DNA from
Jurkat cells incubated without cisplatin. Lane 3 shows the DNA
from cells incubated with 25 µM cisplatin. Lane 4 shows the
signal of the DNA from cells incubated with zVAD-fmk alone
for ∼24 h. Lane 5 shows the DNA from cells incubated with
zVAD-fmk for 2 h followed by 25 µM cisplatin for 3 h; the cells
were then maintained in the medium with no addition for ∼24
h. Lane 6 shows the DNA from cells incubated with zVAD-fmk
for 2 h followed by 25 µM cisplatin for 3 h; the cells were then
maintained in the medium plus zVAD-fmk for ∼24 h. Lane 1 is
a DNA Hyper-Ladder I (200-10 000 bp).
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cutting process, the peaks (bands) observed in the gel
should correspond to the spacing between the nucleo-
somes of fragmenting nuclear DNA. The estimated spac-
ing between the nucleosomes (bands) as determined by
Peak Fit analysis of the intensity vs position plots (Figure
4B) was 306 ( 32 bp, which is somewhat larger than that
reported for the “DNA ladder” (∼200 bp) obtained by
cleavage between nucleosomes in apoptosis (51). The
entire fragmentation pattern could be fitted to a series
of Gaussian bands, with widths increasing with molec-
ular weight, consistent with all of the fragments being
produced by cutting of structured genomic DNA, as in
apoptosis. Because the addition of a smooth background
improves the fit slightly, the presence of a background
of randomly cleaved DNA (due to necrosis) cannot be
entirely ruled out. In fact, it has been previously reported
that apoptosis and necrosis may take place simulta-
neously within the same population of cisplatin-treated
cells (17).

The DNA fragmentation pattern observed in all gel
lanes (Figures 4 and 5) decreased in cells treated with
zVAD-fmk (Table 3 and Figure 5). While the observed

DNA fragmentation pattern could be due to a combina-
tion of apoptosis on a background of random cutting from
necrosis, the fact that the caspase inhibitor blocks most
of the DNA cleavage strongly suggests that the observed
pattern is mainly due to cisplatin-induced apoptosis and
suggests that the contribution of necrosis to the observed
DNA fragmentation pattern is minimal. However, as with
the analysis of the DNA fragmentation pattern in cells
treated with cisplatin alone, the presence of a small
amount of cisplatin-induced necrosis could not be com-
pletely ruled out.

The data from the present investigation are used, in
part, to generate a hypothetical model for cisplatin
cytotoxicity in Jurkat cells (Figure 7). We measured
cisplatin-induced platination of genomic DNA, mitochon-
drial dysfunction, and DNA fragmentation. Platination
of DNA correlates with a loss of mitochondrial function
(Figure 6B) and fragmentation of DNA (Figure 6C). In
addition, DNA fragmentation correlates with decreased
cellular respiration (Figure 6D and Figure 7). It is
conceivable that adduct formation with RNA and proteins
may contribute to the observed cisplatin-induced cyto-

Figure 6. Correlations among DNA platination levels, mitochondrial dysfunction, and apoptotic DNA fragmentation. Cells (∼107

cells per condition) were incubated at 37 °C for 3 h with 0-25 µM cisplatin. At the end of the incubation period, the DNA was
immediately extracted and the Pt-DNA adducts were determined on the AAS. (A) The amount of adducts vs [cisplatin] with the best
linear fit. (B) The values of k, measured 24 h postcisplatin exposure, as a function of Pt-DNA adducts with a linear fit. (C) The
intensities of DNA fragmentation, measured after 24 h postcisplatin exposure, as a function of Pt-DNA adducts with a linear fit. (D)
The relationship between the values of k and the intensities of DNA fragmentation with a linear fit.

Cytotoxicity of Cisplatin Chem. Res. Toxicol., Vol. 17, No. 8, 2004 1109



toxicity (17). However, our results are in accord with
previous studies in cisplatin sensitive and resistant cells
showing that cytotoxicity is proportional to DNA plati-
nation (40-42).

Incubations with BHM demonstrate that cisplatin’s
action on mitochondrial respiratory function is indirect.
The presence of zVAD-fmk did not prevent drug-induced
reduction in respiration but did prevent drug-induced
DNA fragmentation. Platination of genomic DNA is
probably the initiating step for the signal to terminate
respiration, and the decrease in cellular respiration likely
occurs prior to caspase activation (Table 3). The loss of
mitochondrial respiratory function has been shown to
follow the release of cytochrome c into the cytosol during
apoptosis, which has been shown to be caspase-indepen-
dent in Jurkat cells (6, 52). Thus, the mitochondrial
dysfunction that we observe 24 h after cisplatin exposure
is likely preceded by cytochrome c release. Our model is
consistent with the observations that under pharmaco-
logical conditions, cisplatin-induced cell death accompa-
nying mitochondrial dysfunction occurs after Pt-DNA
adduct formation (3, 15, 17, 43, 51, 53).

While the mechanisms by which the execution phase
of cisplatin-induced apoptosis occurs are well-known (15,
17), the pathway(s) leading from Pt-DNA adducts to
apoptotic induction (schematic in Figure 7) has not been
fully defined (54). Several mechanisms have been pro-
posed including activation of the c-jun N-terminal kinase/
stress-activated pathway, JNK/SAPK (52). Other studies
have suggested that the proapoptotic protein Bak medi-
ates the release of cytochrome c during cisplatin-induced
apoptosis in Jurkat cells (55). By contrast, overexpression
of the Bcl-2 protein has been associated with a ∼3-fold
increase in cellular GSH and resistance to cisplatin (56,
57). However, the number of Pt-DNA adducts was not
affected by the increased GSH concentration suggesting
that GSH may contribute to resistance by blocking the
cells commitment to apoptosis (56).

In summary, we quantitatively studied the long-term
impact of cisplatin on cellular respiration and how it
relates to cisplatin-induced cell death in Jurkat cells, a
well-characterized cancer cell line. We showed that while
platination of DNA is immediate, effects of the drug on
respiration, DNA fragmentation, and viability are de-
layed. Because cisplatin and aged solutions of the drug
have no effect on the respiration of BHM, the drug-
induced, caspase-independent decrease in respiration
observed in Jurkat cells is likely not due to direct attack

of the drug on the mitochondrial respiratory chain. While
the precise mechanism(s) initiated by the drug and
responsible for terminating respiration remains un-
known, it is likely preceded by cisplatin-induced release
of cytochrome c (6, 7, 24). However, cisplatin-induced
inhibition of key metabolic genes responsible for main-
taining oxidative phosphorylation cannot be ruled out
(58). The results obtained should provide the basis for
more quantitative work with other cells, including sensi-
tive and drug resistant tumors. The results of these
studies should help in constructing a comprehensive
model for cisplatin cytotoxicity that will shed light on the
molecular mechanisms responsible for cisplatin-induced
impairments of mitochondrial function. In turn, the
model will aid in the design of novel therapeutic strate-
gies for enhancing cisplatin efficacy, by inhibiting mito-
chondrial respiration (59).
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