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Abstract 

Biodiesel fuel, as renewable energy, has been used in conventional diesel engines in pure 

form or as biodiesel/diesel blends for many years. However, thermal stability of biodiesel and 

biodiesel/diesel blends has been minimally explored. Aimed to shorten this gap, thermal stability 

of biodiesel is investigated at high temperatures. 

In this study, batch thermal stressing experiments of biodiesel fuel were performed in 

stainless steel coils at specific temperature and residence time range from 250 to 425 °C and 3 to 

63 minutes, respectively.  

Evidence of different pathways of biodiesel fuel degradation is demonstrated 

chromatographically. It was found that biodiesel was stable at 275 °C for a residence time of 8 

minutes or below, but the cis-trans isomerization reaction was observed at 28 minutes. Along 

with isomerization, polymerization also took place at 300 °C at 63 minutes. Small molecular 

weight products were detected at 350 °C at 33 minutes resulting from pyrolysis reactions and at 

360 °C for 33 minutes or above, gaseous products were produced. The formed isomers and 

dimers were not stable, further decomposition of these compounds was observed at high 

temperatures. 

These three main reactions and the temperature ranges in which they occurred are: 

isomerization, 275-400 °C; polymerization (Diels-Alder reaction), 300-425 °C; pyrolysis 

reaction,  350 °C.  

The longer residence time and higher temperature resulted in greater decomposition. As the 

temperature increased to 425 °C, the colorless biodiesel became brownish. After 8 minutes, 



 
 

 
 

almost 84% of the original fatty acid methyl esters (FAMEs) disappeared, indicating significant 

fuel decomposition.  

A kinetic study was also carried out subsequently to gain better insight into the biodiesel 

thermal decomposition. A three-lump model was proposed to describe the decomposition 

mechanism. Based on this mechanism, a reversible first-order reaction kinetic model for the 

global biodiesel decomposition was shown to adequately describe the experimental data points of 

the concentrations or the decomposition percentage as a function of time. The forward and 

reverse rate constants were determined at each temperature for the model. The Arrhenius pre-

exponential factors A for k1 and k2 obtained were 1.50 × 10
9
 and 257 min

-1
, and the energies of 

activation Ea were 126.0 and 46.0 KJ/mol, respective. The high linearity of the Arrhenius plots 

(R
2 

> 98%) further validated the rationality of the assumed reversible first-order kinetics to 

represent the overall biodiesel decomposition.    

Moreover, a Van’t Hoff plot was established, the reaction enthalpy ΔH
o 

for biodiesel thermal 

decomposition is 80.0 KJ/mol, indicating the overall decomposition is an endothermic reaction. 
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Chapter I  

Introduction 

Biodiesel is a mixture of long-chain fatty acid mono-alkyl esters obtained by 

transesterification reaction of vegetable oil or animal fats and short chain alcohol (Jain & Sharma, 

2011). Biodiesel compositions vary among samples from different feed stocks. Saturated methyl 

palmite (C16:0), methyl stearate (C18:0) along with unsaturated methyl oleate (C18:1), methyl 

linoleate (C18:2) and methyl linolenate (C18:3) are common compounds present in biodiesel fuel 

(Imahara, Minami, Hari, & Saka, 2008).  

Biodiesel fuel, as a renewable energy source, is becoming increasingly popular nowadays, 

since it is an ideal substitute for fossil fuels in diesel engines without modification on account of 

the highly similar properties (Bunyakiat, Makmee, Sawangkeaw, & Ngamprasertsith, 2006). It 

can be used pure directly or blended with diesel in different proportions according to different 

requirements (Jain & Sharma, 2010; Ragonese, Tranchida, Sciarrone, & Mondello, 2009) . 

Usually the abbreviation BX is used to define the mixing proportion where X represents the 

biodiesel percentage (v/v). For instance, 80% biodiesel plus 20% petro-diesel is referred as B80 

while 20% biodiesel and 80% petro-diesel is labeled B20. The current work focuses on B100 

biodiesel which is petro-diesel free.   

Even though fossil fuel is the main contemporary worldwide consumed energy source, the 

limited storage amount of fossil fuel and long formation time reveal the inevitable short supply 

in the near future. In addition, there is no denying the fact that our world is facing another serious 

problem of environment deterioration as well as energy shortage. It was found that using 
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biodiesel to replace diesel fuel can reduce the greenhouse gas emission and other air pollutants 

drastically (Shay, 1993). Under such conditions, biodiesel stands out since it is reproducible, 

environmentally friendly, compatible with conventional diesel engines and easy to be 

manufactured from diverse feasible raw materials, such as animal fat (Marulanda, Anitescu, & 

Tavlarides, 2010b), vegetable oils (Demirbas, 2005; Ma & Hanna, 1999), algal oils (Chisti, 2007) 

and waste cooking oils (Kulkarni & Dalai, 2006). 

Alkali-catalyzed transesterfication (ester exchange) reaction is a conventional method to 

produce biodiesel fuel. However, this method has a number of disadvantages. Catalyst should be 

removed after use which means extra work. Additionally, to achieve ideal conversion to the 

esters, the raw materials have some limitations. Only those with content of free fatty acids lower 

than 0.5% (Freedman, Pryde, & Mounts, 1984)  and water lower than 0.06% can meet the 

requirement (Ma, Clements, &Hanna, 1998). The catalyst may be consumed and lose 

effectiveness to some extent which results in saponification reaction caused by free fatty acids. 

Water has a worse influence than that of the free fatty acids, because it might reduce the yield 

more significantly (Freedman et al., 1984).   

Taking into account these non-negligible drawbacks, the biodiesel production technologies 

turn to non-catalyst methods aimed to address such issues. The latest well known approach is 

catalyst-free supercritical transesterification between long-chain triglycerides in oils/fats and 

alcohol, which has made great progress. This technology is characterized by producing biodiesel 

without restrictions in the amount of the free fatty acids and water. It is stated that a certain 

amount of water can even advance the conversion (Kusdiana & Saka, 2004). In this advanced 

process, the reaction rate is substantially accelerated since animal fats/vegetable oil and methanol 

become a well mixed homogenous phase which means there is no need of interphase mass 
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transfer (Quesada-Medina & Olivares-Carrillo, 2011). 

About this novel method, while ethanol and some other alcohols have come into use for 

biodiesel research (Knothe, 2005), previous research focuses on methanol to produce methanol-

based biodiesel of fatty acid methyl esters (FAMEs) (Demirbas, 2007a; He, Wang, & Zhu, 2007) 

Apparently this supercritical transesterification process is in need of high temperatures, 

being above the alcohol critical point. The critical temperatures for the most commonly used 

methanol and ethanol are 239 °C and 241°C, respectively (Gude & Teja, 1995). Owing to this 

severe condition, the thermal stability of biodiesel is a major challenge. Excessive reaction 

temperature and exposure time might lead to fuel degradation and impaired fuel quality. The 

Saka group (Kusdiana & Saka, 2001; Saka & Kusdiana, 2001) first detected decomposition of 

unsaturated FAMEs at 350-500 °C. Similar observations were published later on which further 

confirmed the thermal instability of biodiesel at high temperatures (Imahara et al., 2008; 

Marulanda, Anitescu, & Tavlarides, 2010a; Vieitez et al., 2008). In order to achieve maximum 

output of high quality biodiesel, the effect of temperature and residence time on thermal stability 

of biodiesel should be investigated in greater depth.  

Another reason to place importance on thermal stability of biodiesel is an innovational, 

clean diesel combustion technology. This approach was recently proposed by our group at 

Syracuse University to simultaneously increase energy efficiency substantially and reduce 

harmful emissions by injecting and combusting fuels under the supercritical conditions (up to 

450 °C) (Anitescu, Tavlarides, & Geana, 2009). The traditional way is to inject biodiesel in the 

liquid state. Even though a clean and high efficient combustion can be achieved by making this 

change, this breakthrough brings about some obstacles at the same time. The high temperature is 
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more likely to cause unexpected fuel degradation when the engines operate under such severe 

thermal conditions. The problem of instability of biodiesel will lead to poor engine performance, 

low efficiency, engine failure, and engine malfunction (Batts & Fathoni, 1991). As a result, the 

engine will become less reliable and more vulnerable, maintenance costs will increase, and the 

lifetime of the engines can be shorted. To implement and improve this novel method, thermal 

stability restrictions of the supercritical fluid on engines need to be explored. 

Although there were some researches on the thermal stability of biodiesel recently, the work 

in this area is still inadequate. To guarantee the biodiesel fuel quality, this subject still requires a 

further understanding. With the knowledge of the reactivity of biodiesel under supercritical 

conditions, it is more desirable to find an optimization of the production and combustion process.  

By extension, there is a quantity of literature available on the models describing biodiesel 

formation kinetics, but few works have been published so far about the kinetics for thermal 

decomposition of biodiesel (Gunvachai, Hassan, Shama, & Hellgardt, 2007). This shortage 

makes the kinetic study very meaningful and valuable. A proper model is useful for inferring the 

behaviors of biodiesel at high temperatures.  

The importance of this work is to develop a deep understanding of the principal effects of 

some main factors on the thermal stability of biodiesel fuel, particularly the temperature and 

thermal stressing time. Another primary objective is to propose a model which can represent the 

kinetics of thermal decomposition of biodiesel fuel. With this model, the behaviors of biodiesel 

caused by exposure to high temperatures can be predicted. All in all, these tasks are worthwhile 

because there is a huge demand in the market currently for stable fuel to meet reliability 

requirements.  
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In this study, thermal stressing experiments of BD-100 biodiesel samples were executed in 

stainless steel batch reactors at 250-425 °C for residence times up to 63 minutes. A fluidized bath 

served as the heat source for thermal stressing the reactors. Collected samples were investigated 

using gas chromatography (GC) equipped with a flame ionization detector (FID) and a mass 

selective detector (MSD). A three-lump model is proposed to denote the thermal decomposition 

mechanism. And, lastly, a reversible first-order reaction model with validation was established 

for the overall decomposition kinetics.   
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Chapter II  

Literature review 

2.1 Introduction 

In this chapter, previous works intimately associated with this study are reviewed. Existing 

knowledge and key findings on thermal stability at high temperatures is summarized. In the 

meantime, some flaws and disagreements of precedent statements are also concluded in this part. 

A review relating to a kinetic model for the aviation turbine fuel is also outlined, and this model 

merits attention because it proposes logical assumptions and ideas and forms a basis which led to 

the model for biodiesel fuel in this study.   

2.2 Biodiesel production technology 

The biodiesel production technology has developed over scores of years. Works by 

Demirbas, Leung, Pinnarat et al. indicate that this technology can be classified into two prime 

categories: catalytic processes and non-catalytic supercritical processes (Anitescu & Bruno, 2012; 

Demirbas, 2005; Leung, Wu, & Leung, 2010; Pinnarat & Savage, 2008).   

In the traditional catalytic process, biodiesel is made from vegetable oil or animal fat 

through alkaline or acid catalysts. The supercritical method is a rising and promising technology. 

In this process, biodiesel is produced via exposure to supercritical alcohol of animal fat or oil, 

usually methanol in industry (Bunyakiat et al., 2006).  

At present, the non-catalytic supercritical process is usually preferred as it performs better 

and has much superiority over the catalytic process. First of all, the catalytic process demands 
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pretreatment of the feedstocks because of the presence of free fatty acids (FFAs) and water, or 

else it cannot produce in an efficient way (Glisic & Skala, 2009; Glisic & Skala, 2009; 

Marulanda, Anitescu, & Tavlarides, 2010b; Pinnarat & Savage, 2008). What is more, since 

alkaline or acid catalysts are used, extra work relating to the removal of the catalysts and the 

generated wastes such as saponified products is required for the purification of the final products 

(Quesada-Medina & Olivares-Carrillo, 2011; Saka & Kusdiana, 2001). These additional steps 

virtually increase the cost. By contrast, the profitable and environmentally friendly supercritical 

method not only dispenses with these redundant stages but also is able to approach the complete 

conversion (Kusdiana & Saka, 2004; Lee, Posarac, & Ellis, 2011; Lim, Lee, Lee, & Han, 2009; 

West, Posarac, & Ellis, 2008).  

However, supercritical transesterification method has its drawbacks. The most significant 

one is related to thermal instability of biodiesel at high temperature which is the focus of this 

thesis. This method will be much more competitive if this issue is addressed.  

2.3 Supercritical fuel combustion 

Recently, our group proposed an innovative, clean diesel combustion technology that would 

largely improve the performance of diesel fuel engine (Anitescu, 2008; Lin, 2011). Conventional 

diesel fuel combustion method is to inject liquid fuel in diesel engines, yet the engine efficiency 

is limited by poor fuel air mixing upon injection. In this proposed new technology, diesel fuel is 

mixed with and heated by recycled exhaust gas (EGR) up to supercritical fluid status. Fuel at 

supercritical state has many prominent physical and chemical properties, for example, it has very 

short ignition delay; it mixes rapidly with intake air and combusts quickly before the fuel hits the 

cylinder walls, which means less heat loss by heat conduction (Demirbas, 2007b). By utilizing 
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these features of supercritical state fuel, supercritical fuel combustion can boost the fuel 

efficiency and reduce the pollutants substantially. 

However the promising side of the supercritical fuel combustion, it has an evident drawback:  

the fuel must be compressed and heated before it is injected into combustion chamber. It is likely 

to decompose in the meantime due to its thermal instability at supercritical temperature. 

Therefore, the behavior of biodiesel near the critical region should be examined to improve the 

development of this technology.  

2.4 Thermal stability of biodiesel fuels 

2.4.1 Definition of thermal stability 

The term “thermal stability” is defined as the thermal-stressing resistant ability of a fuel for 

a short exposure time without appreciable deterioration (Batts & Fathoni, 1991). Color changes 

and formation of solid deposits and gas phase are some indicators of instability. It also includes 

physical and chemical properties change, fuel composition transformation, and combustion 

property variation, etc. A fuel with good thermal stability means having the great capability to 

remain unchanged by thermal treating. Color change is an apparent indicator of fuel degradation. 

B100 biodiesel is totally colorless, but it will darken or deepen gradually over the course of 

decomposition. Even though the color change is not directly relevant to fuel quality, the market 

always tends to lightly colored fuel products without doubt.   

2.4.2 A comprehensive summary of the work on thermal stability of biodiesel  

Up to now, work has been done by other researchers on thermal stability of biodiesel mainly 

via the synthesis of biodiesel with supercritical methanol. Generally, after close scrutiny of the 
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yields and products at different reaction temperatures and time, the behavior of biodiesel was 

analyzed and deduced.  

The members from Saka group were the pioneers in affirming the decomposition of 

unsaturated FAMEs at temperatures above 350 °C (Kusdiana & Saka, 2001; Saka & Kusdiana, 

2001). The following will concentrate on the representative papers chosen.  

2.4.3 A breakthrough in the thermal stability study on biodiesel  

Imahara et al. (Imahara et al., 2008) studied the thermal stability of biodiesel resources 

derived from a variety of plant oils via the supercritical methanol method over the temperature 

and pressure range from 270 °C/17 MPa to 380 °C/56 MPa. The result illustrated that all fatty 

acid methyl esters possessed stability at 270 °C/17 MPa, but at 350 °C/43 MPa, they partially 

degraded.  The authors claim that both methyl linoleate (C18:2) and methyl linolenate (C18:3) 

underwent a great decrease in concentration at 300 °C and above.  FT-IR analyses were 

performed and showed that this decomposition was caused by isomerization from cis-type to 

trans-type. As the peaks of naturally existing cis-type C=C bond decreased, the distinguishable 

peaks of trans-type C=C was observed and increased along with thermal-stressing expose time.  

The investigators also confirmed that the unsaturated fatty acid methyl esters (FAMEs) are 

rather more reactive and unstable than saturated ones. Especially, the poly-unsaturated ones were 

extremely vulnerable to the unwanted thermal breakdown. This characteristic completely 

coincides with oxidation stability. It is well known that poly-unsaturated biodiesel has much less 

ability to withdraw oxidation denaturation. Also, it was pointed out that the FAMEs with shorter 

chain length have higher thermal stability. In the paper, the researchers concluded that the 

thermal stability of the main biodiesel constituents is in the order: methyl palmitate (C16:0)> 
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methyl stearate (C18:0)>methyl oleate (C18:1)>methyl linoleate (C18:2)>methyl linolenate 

(C18:3). 

Based on the results of the experiments, the investigators bring out the statement that the 

reaction temperature should be controlled below 300 °C, preferred at 270 °C when it comes to 

this supercritical methanol technique.  

Imahara et al. (Imahara et al., 2008) made a breakthrough in the topic of thermal stability of 

biodiesel, but their conclusions still have some weaknesses and limitations. Isomerization is not 

the only reason that results in the low recovery of biodiesel. Shin et al. (Shin, Lim, Bae, & Oh, 

2011) put forward other supplementary degradation behaviors based on their findings. These 

observations will be discussed more concretely in the “Mechanism of thermal decomposition 

of biodiesel fuel” section. Moreover, there is a disagreement with the production temperature. 

Higher temperatures can also be considered if a reasonable short residence time is chosen, or 

adjustments can be made of other related parameters. All in all, temperature is not the only key 

factor.  

2.4.4 Analogous research related to thermal stability of biodiesel 

Similarly, Quesada and Olivares (Quesada-Medina & Olivares-Carrillo, 2011) implemented 

another set of experiments on this topic.  Gas chromatography was used to determine the 

decomposition products. An unexpected broad peak (peak 2 in Fig. 1) was observed 

chromatographically of reaction samples produced at higher temperature. The investigators 

suggested that it might be thermal decomposition compounds.  

Then they conducted another experiment to verify this assumption.  They studied diverse 

kinds of biodiesel compounds generated during the synthesis of refined soybean oil with  
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Fig. 1 GC chromatograms of the product of the reaction performed at different conditions.  

Chromatographic peaks. 1 = diglycerides; 2 = possible thermal decomposition products; 3 

= glycerin; 4 = 1, 2, 4-butanetriol (internal standard no. 1); 5 = monoglycerides, 6 = glyceryl 

tridecanoate (internal standard no.2); 7 = triglycerides (Quesada-Medina & Olivares-

Carrillo, 2011). Reused with Elsevier’s permission (attached in Appendix A). 
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supercritical methanol, especially methyl linoleate (C18:2), as shown in Fig. 2. The authors 

placed an emphasis on this ester in that linoleic acid (C18:2) is most abundant in the feedstock. 

Fig. 2 showed that the yield of methyl linoleate continues increasing at a practically constant rate 

when temperatures were lower than 300 °C. It displayed that this product was not thermally 

decomposed, even when the reaction times surpassed 90 minutes. This result neatly dovetailed 

with that from Imahara et al. As the same, peak 2 did not appear below 300 °C from the 

chromatograms in Fig. 1. Besides, productivities peaked at 300 °C and above, along with that, 

they started falling off in Fig. 2. This can well explain the detected peak 2 in Fig. 1, which 

should represent decomposition compounds. Combining these experiments focused on the 

behavior of these fatty acid methyl esters, the evidence well revealed that biodiesel started 

thermal decomposition at 300 °C and above. 

Moreover, Quesada and Olivares (Quesada-Medina & Olivares-Carrillo, 2011) pointed out 

that even though a certain degree of thermal decomposition exists in the supercritical methanol 

process, the highest yield of biodiesel was achieved at 325 °C, which can be seen in Fig. 2. This 

original viewpoint helps develop a better understanding of the relationship between highest yield 

and decomposition as well as finding an optimization of non-catalyst supercritical reaction.  

Although Imahara, Quesada et al.(Imahara et al., 2008; Quesada-Medina & Olivares-

Carrillo, 2011) confirmed the occurrence of thermal decomposition and isomerization at high 

temperatures, they did not explore further the mechanism and other possible reactions.  

2.5 Mechanism of thermal decomposition of biodiesel fuel 

Since thermal instability becomes a big issue in biodiesel production and combustion under 

supercritical conditions, some efforts are made to study the thermal decomposition mechanism of  
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Fig. 2 Yield of methyl linoleate (18:2) at different reaction conditions: , 250 °C/12 Mpa; 

Ο,275 °C/18 Mpa; , 300 °C/26 Mpa, □, 325/35 Mpa; , 350 °C /43 Mpa (Quesada-Medina 

& Olivares-Carrillo, 2011). Reused with Elsevier’s permission (attached in Appendix A). 
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biodiesel in the hope that methods can be found to block the pathway of biodiesel decomposition 

(Bridgwater, 2003; Imahara et al., 2008) . The primary proposed reactions during the thermal 

decomposition of biodiesel at high temperatures will be reviewed in brief in the following text. 

Generally speaking, two unsaturated fatty acid chains can be linked together through the 

thermal polymerization reaction at high temperature ( 250 °C). As shown in Eq. (1), the thermal 

polymerization reaction is usually preceded by Diels-Alder reaction (Jain & Sharma, 2011) in 

which conjugated diene reacts with single olefin to form a substituted cyclohexene product. 

The following is the well-known Diels-Alder reaction: 

 

(1) 

To form conjugated di-olefin structure, an isomerization reaction (as shown in Eq. (2)) is 

needed. When the temperature is high enough, the polyunsaturated di-olefin group from the fatty 

acid chain may commence to isomerize to more stable conjugated group. Isomerization is 

important in understanding the chemistry of thermal degradation of unsaturated chemicals 

because of the fact that most isomerization reactions happen only when temperature is higher 

than 250 °C which is also the temperature range of thermal polymerization of fatty oils. This fact 

implies that isomerization is one of the determinative reactions in the kinetics of thermal 

degradation of FAMEs. 

A possible isomerization reaction of methyl linoleate prior to the Diels-Alder reaction can be 
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written as:  

 

(2) 

In addition to polymerization and isomerization, thermal pyrolysis also plays an important 

role in thermal degradation of biodiesel. Hee-Yong Shin et al. (Shin et al., 2011), did a series of 

thermal decomposition experiments of FAMEs via the supercritical methanol synthesis at 

temperature in the range from 325 °C to 420 °C and kept the pressure at 23MPa.  

The author claims that a kind of pyrolysis pathway, as shown in Fig. 3, is analogous to the 

commonly recognized radical chain scission processes through the polymer pyrolysis. From Fig. 

3, we can see that the dominating chemical reactions in thermal degradation of unsaturated 

FAMEs are isomerization and hydrogenation of carbon-carbon double bond; and the analogous 

radical chain scission such as β-scission and H-abstraction are the main elementary reactions for 

saturated FAMEs. The main pyrolyzed products of methyl oleate are small molecular weight 

FAMEs, alkenes and alkanes.   

Besides, some other types of side reactions might also be involved. For instance, the 

dehydrogenation reaction was also cited for the loss of the material (He et al., 2007).  

In summary, the thermal decomposition of biodiesel is very complicated. Diverse kinds of 

reactions might happen. Hence, to grasp a global perception of the mechanism of biodiesel 

decomposition, it is best to pay attention on the primary reactions. 

2.6 Kinetic models of thermal decomposition of biodiesel fuel 
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Fig. 3 Different possible ways for the decomposition of methyl stearate (18:0) (A) and 

methyl oleate (18:1) (B) via the supercritical methanol synthesis (Shin et al., 2011). Reused 

with Elsevier’s permission (attached in Appendix A). 
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As mentioned in the previous text, in the real world, thermal decomposition of FAMEs is a 

complex chemical process that involves many reactions. Other than the three major types of 

reactions found in thermal degradation of FAMEs of isomerization, polymerization and thermal 

pyrolysis, there are a number of decomposition reactions such as hydrogenation, 

dehydrogenation, etc. Moreover, more than one product (disproportionation) may be produced 

through one reaction pathway. Also, the degradation rate of a single component can be altered by 

the occurrence of the other ones.  

Therefore, it is not easy to find a kinetic model to describe decomposition showing the 

complex reactions. But on the other hand, the whole thermal decomposition can sometimes be 

described by a global kinetic reaction model. For instance, Jason A. Widegren et. al. (Widegren 

& Bruno, 2008) investigated the thermal decomposition process of Aviation Turbine Fuel Jet A 

and it turned out that the thermal decomposition reactions at 375, 400, 425,and 450°C can be 

well described by a pseudo-first-order kinetic reaction model and the temperature dependent rate 

constant was given by Arrhenius expression. The constant pre-exponential factor A (    

         ) and activation energy    (           ) were determined experimentally. 

This method of modeling kinetics of thermal degradation of biodiesel fuel is also 

straightforward and useful. For example, it can be used to estimate the resident time of biodiesel 

fuel in a stainless steel container at high temperature. But the method also has some drawbacks, 

and one chief defect is that the computed rate constant is also known to have dependence on 

many other factors beside temperature. For instance, it is may depend on the material of 

container in the experiments. Strictly speaking the aforementioned values for   and    are valid 

only when the container is constructed from 300 series stainless steels in that Jet A fuel 

experiment. Also this modeling method does not distinguish one reaction from other reactions. 
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That means it changes with constituents of the fuel. However, there is no denying the fact that 

the advantages of this method far outweigh the disadvantages and it will play a significant role in 

modeling the decomposition of fuels.  

 In this thesis, the kinetics study of the global thermal decomposition of biodiesel fuel was 

done in a similar manner as that of the Jet A fuel. For example, use the simplified first order idea 

and assumption, and the method of obtaining Arrhenius parameters.   
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Chapter III  

Experiments 

3.1 Materials  

In the marketplace, pure biodiesel fuel is usually blended with petroleum diesel fuel in order 

to improve their combustion efficiency and to reduce visible emissions. When it comes to the 

thermal decomposition of the blend, it is hard to tell which is to blame since diesel fuel is also 

not stable at high temperatures. Hence our experimental studies focus on the pure (100%) 

biodiesel so that its properties would not be obscuring or interfering with petroleum diesel fuel. 

The biodiesel fuel (Nexsol BD-100, where BD refers to biodiesel and 100 means 100% purity) 

was supplied by Peter Cremer North America Company. This raw material is made from 

vegetable oils. However, the detailed information relating to the compositions and content 

present in this BD-100 biodiesel is not provided by this company.  

Two analytical standards for GC analysis, namely 1891-1AMP GLC-10 FAME mix (100 

mg) and 1899-1AMP GLC-100 FAME mix (100 mg) were purchased from Sigma-Aldrich, Inc.  

Table 1 and Table 2 show the composition of the analytes of these standards. Notice that GLC-

10 FAME mix and Nexsol BD-100 have the same constituents only that the weight percentages 

of components are different. Since the analytical standards have known concentration of analytes, 

GLC-10 is therefore an ideal collator for Nexsol BD-100 biodiesel.  

As to GLC-100 FAME MIX, one of its constituent, methyl stearate (C18:0), is also 

contained in Nexsol BD-100 biodiesel. In chromatogram output, peak of methyl stearate can be 

used as an anchor point to calibrate chromatogram curve. In addition, we expect that  
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Table 1: Analytes of 1891-1AMP GLC-10 FAME mix (100 mg) 

Chemicals Chemical formula 

abbreviation* 

Weight percentage (%) 

Methyl palmitate C16:0 20 

Methyl stearate  C18:0 20 

Methyl oleate C18:1 20 

Methyl linoleate C18:2 20 

Methyl linolenate C18:3 20 

*About the chemical formula abbreviation such as C16:0, the first number denotes that of 

carbons in the alkyl chain, while the second number shows the number of carbon double bonds. 
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Table 2: Analytes of 1899-1AMP GLC-100 FAME mix (100 mg) 

Chemicals Chemical formula 

abbreviation 

Weight percentage (%) 

Methyl stearate C18:0 20 

Methyl nonadecanoate C19:0 20 

Methyl arachidate C20:0 20 

Methyl heneicosanoate C21:0 20 

Methyl behenate C22:0 20 
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polymerization reactions occur during the thermal degradation process which means long carbon 

chains are formed by short chains linking together. Meanwhile GLC-100 has long chain 

constituents such as methyl behenate (C22:0). Thus we expect that some polymerization 

products can be identified from GLC-100. In fact, Methyl behenate like chemicals were indeed 

identified by this method. In results and analysis chapter, we will show the details. 

Hexane (≥99%) was supplied by Fisher Scientific, Inc. This chemical was used to clean the 

reactors and also served as solvent for GC analysis of both biodiesel and analytical standards as 

well. Hexane is an ideal solvent for GC analysis since it ensures that no distracting peaks greater 

than 2 minutes are shown on final chromatogram. GC-FID makeup gas (Ultra high purity 

Nitrogen), carrier gas (Helium), flame gases Ultra zero Air, and hydrogen were purchased from 

Airgas, Inc.  

3.2 Experimental setup  

Roughly speaking, there were two components to consider in thermal decomposition 

experiment: (i) The thermal stressing experiments in which biodiesel fuel was heated in a 

thermal bath and decomposed products were collected. (ii) GC-FID experiments where post-

decomposition products were analyzed. In this subsection, setup of the thermal stressing 

experiments will be sketched. The batch thermal stressing experimental setup is divided into the 

following parts:  

The first part is the installation of the heating source. In our experiments, industry standard 

Fluidized Temperature Sand bath (Techne SBL-2) was used. Techne SBL-2 is an ideal fluidized 

sand bath for organic material heat treatment experiments. It is able to maintain high 

temperatures up to 600 °C with fluctuation of    °C. During the high temperature reaction 
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experiments, the biodiesel fuel was immersed in the sand bath that provides excellent heat 

transfer and temperature uniformity.  

The bath was connected to clean and dry air whose pressure was 3psi and maximum flow 

was 57L/min (2ft
3
/min) via a control valve and a porous plate that ensures a uniform flow of air 

across the section of the container. The low pressure air stream then fluidizes the “sand particles”, 

i.e. small aluminum oxide particles.  

Second, five stainless steel coils (Small parts, Inc., I.D. = 1.524 mm×200 mm, V=πD
2
/4 × L 

=0.365 ml) were made as batch thermal stressing reactors. Biodiesel was filled in coils manually 

and enclosed by hex head caps.  The K-type thermocouple (Omega) was set up to monitor the 

temperatures of the fluidized bath. The thermocouple is set up to be at the same horizontal 

position with stainless steel coils so that the temperature of environment is the same as the 

temperature of biodiesel within the coils. 

The sand bath was heated to required temperatures before samples were put in. Temperature 

control of the sand bath was achieved by manually adjusting two units, the heater switches and 

the energy regulation knob. The heater switches have only three options, namely low, medium 

and high. These options represent selections of either 1kW or 2kW or 3kW heat input.  The 

energy regulation knob is a vernier regulator that provides more precise control of energy input. 

For instance, to elevate sand bath temperature to 400 °C from room temperature, the heater 

switches were set to medium status, and the energy regulator knob was set to high value, say 8 or 

9. When temperature was elevated to approximately 400 °C, the energy regulator knot was then 

turned anti-clockwise to lower down energy input. Empirically we found that the energy 

regulator must be set between 2 and 3 to maintain 400 °C sand bath temperature. The 
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temperature should be controlled carefully so that the required temperature can be achieved 

quickly and safely. Settings for several commonly seen temperatures are listed in Table 3.  

3.3 Experimental conditions and procedure 

3.3.1 Selection of thermal stressing temperature range 

As mentioned in the chapter of literature review, thermal instability is one of the most 

critical problems in biodiesel production, especially when the high temperature non-catalytic 

transesterification in supercritical alcohol conditions has proved to be the most promising 

process for future biodiesel fabrication.  

Methanol, ethanol, propanol and butanol can be used in this supercritical alcohol method 

(Warabi, Kusdiana, & Saka, 2004). The values of their critical properties are listed in Table 4 

(Gude & Teja, 1995). Methanol and ethanol are the most commonly used alcohols in 

supercritical transesterification method and their cirtical temperatures are around 240°C. It 

means that Non-catalytic synthesis of biodiesel in supercritical methanol or ethanol should be 

carried out above 240 
o
C. The production of biodiesel in this method can cover a wide 

temperature range from 250 °C up to around 425 °C (Anitescu, Deshpande, & Tavlarides, 2008; 

Saka & Kusdiana, 2001).  

Considering the facts that thermal degradation during supercritical transesterification is a big 

problem of the decrease of yield. In order to learn more about it to address this issure, we regard 

temperatures that are lower than the critical points of the commonly used alcohols are 

unimportant, and thermal stressing experiments of biodiesel fuel in this research were selected at 

nine different temperatures from 250 °C to 425 °C (roughly 25 °C every data point).   
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Table 3 Settings of Techne SBL-2 for frequently used temperatures 

Bath temperature Heater Switches Settings Energy Reg. Knob Settings 

200°C (392°F) LOW 7 ~ 8 

300°C (572°F) LOW 9 ~ 10 

400°C (752°F) MEDIUM 2 ~ 3 

500°C (932°F) MEDIIUM 8 ~ 9 

600°C (1112°F) HIGH 4 ~ 5 
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Table 4 Values of critical properties of common used alcohols in supercritical 

transesterification method. 

Alcohol Critical Temperature Tc/°C Critical Pressure Pc/MPa 

Methanol 239 8.1 

Ethanol 241 6.1 

1-Propanol 264 5.2 

1-Butanol 290 4.4 
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3.3.2 Definition of thermal stressing time  

In this study, compared to temperature, exposure time was considered to be no less 

important for contributing to biodiesel degradation. The residence time (or thermal stressing time) 

was defined as the duration of coils being placed in the heated fluidized bath including the quick 

heating period. 

Due to the significance of determination thermal stressing time, it is of great importance to 

figure out the heat up time and cool down time as well.  

I. Heat up time determination 

During the thermal stressing period, the temperature of the fluidized sand bath was kept 

constant at setting point. When the coils filled with biodiesel were immersed into the constant 

temperature fluidized sand bath, the first stage was the heat up period from room temperature to 

the same setting point. After the initial warm up course, the samples and bath maintained at a 

uniform temperature within a very small variation.  

The temperature of biodiesel in the initial heat up period was elevated from room 

temperature to sand bath temperature and thusly was not constant. Therefore, the thermal 

decomposition reaction time was not precise to some extent. In order to determine the degree to 

which errors were introduced, we did a series of experiments to study the initial heat up behavior 

of biodiesel in the stainless steel reactors. 

Similar to set ups of thermal stressing experiments, the biodiesel samples were enclosed in 

stainless steel coils. Instead of being sealed off with hex head cap as was described previously, 

the coil was enclosed with a cap that had a thermometer penetrate through the cap. The 
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thermometer could measure the temperature inside the coil.  

The times were recorded for biodiesel warm up to different desired point. It was found that 

within the temperature range from 250 to 425 °C, the heating time was approximately 3 minutes. 

Fig. 4 demonstrated the heating time change over various temperatures.  

II. Cool down time determination 

After biodiesel samples were thermal stressed in the sand bath. They were quenched to room 

temperature (or a little lower) in water. Similarly to quick heat up phase, we expect that time 

taken for quenching is also linear dependent on the experimental temperatures. However, during 

our analysis, we regarded this process is negligible for some reasons: 

First the cool down of samples proceeded quickly, at least quicker than quick heat phase. In 

real operation, it has been recorded by thermocouple that the temperatures of biodiesel samples 

dropped from experimental temperatures (i.e. 250 ~ 425 °C) to below 50 °C in about 2 minutes. 

It should be pointed out that biodiesel cooled down to below 250 °C within ~ 30 seconds to 

quench the reactions.  

3.3.3 Thermal stressing experimental conditions 

Table 5 was the summing-up table of all the experimental conditions, each cross in the table 

represents an experiment that a certain amount of biodiesel sample was thermal stressed under a 

specific temperature T for a period of time   . It is noted that the heat up time is approximately 3 

minutes for the stainless steel coils to be heated from room temperature to reach the fluidized 

bath temperature which ranges from 250 °C to 425 °C depending on the experiment. The time 

shown on the sample bottles (Fig. 9) represents the time of the coil at the fluidized bath  
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Fig. 4 Heating time required for biodiesel to rise from room temperature to different 

setting points  
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Table 5 Conditions for thermal stressing experiments of biodiesel 

T,°C 250 275* 300 325* 350 360 375* 400 425* 

  , residence 

time, min 

         

3 × × × × × × × × × 

8 × × × × × × × × × 

13         × 

18 ×  × × × × × × × 

23         × 

28  ×      ×  

33 ×  × × × × × ×  

38  ×        

43      × ×   

63 × × × ×      

 

* Experiments were duplicated in these conditions 
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temperature. In addressing unavoidable experimental errors and uncertainty, experiments at 

275 °C, 325 °C, 375 °C and 425 °C were conducted twice to improve accuracy.  

3.3.4 Thermal stressing experimental procedure 

Based on all the discussions above, thermal stressing research was carried out with the aim 

to find out how biodiesel evolve with various residence times at different temperatures. In this 

experiment, when the temperature of the sand bath was elevated to a higher temperature and 

maintained stably (   °C), five coils were then placed into the bath simultaneously. Before 

removing them, each coil was heated for a specific period of time which also known as the 

residence time. The residence time was chosen from 3 to 63 minutes which included the quick 

heating time (around 3 minutes) of the biodiesel from room temperature to the experimental 

temperatures that range from 250 °C to 425
 
°C. After 3 minutes exposure to the vigorously 

thermostatic boiling sand, biodiesel within the coils would reach the same temperature as their 

environments. It must be noted that the air flow was manually adjusted after thermal stressing 

reactors were put in to avoid violent fluidization.  

The coils were taken out of the bath one after another and cooled in the water bath when the 

predetermined residence time of each was achieved. The thermal stressed samples were unloaded 

from the reactors and collected separately in vials for the GC analysis. Fig. 5 (A) is the overall 

schematic diagram of the Experimental setup, and coils are shown in Fig. 5 (B). Hexane was 

used to clean the reactors and removed in a GC oven (HP 5890). Then used air supply to blow 

away hexane and took at least 1 hour at 150 °C to dry the reactors completely in the oven for 

every run. The data were collected by a data acquisition system (Lab VIEW, National 

Instrument). 
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(A) 

 

 

 

(B) 

Fig. 5 An overall schematic diagram of the experimental setup (A) and stainless steel 

reactors (B) 
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3.4 Analytical methods 

Two types of gas chromatography were used to analyze post-thermal-stressing samples: gas 

chromatograph with flame ionization detector (GC-FID) and gas chromatography with 5975C 

mass Spectrometer Detector (GC-MSD) respectively. Both chromatographs have their own 

unique advantages:  GC-FID is commonly used analytic equipment in laboratories for 

determination of 70 fatty acids of bio-lipids due to the fact that flame ionization detector (FID) is 

sensitive to hydrocarbons. GC-MSD is beneficial for identification of FAMEs when standards 

are not available.   

3.4.1 GC-FID analysis 

A Hewlett-packard Model HP 5890 series II GC-FID was used for quantitative analysis of 

fresh and thermal stressed biodiesel. This GC-FID was equipped with a Restek Rtx-Biodiesel TG 

column with dimensions of 10 meter×0.32 mm ID×0.10 μm film thickness.  

In order to achieve good separation of peaks in chromatograms, the gas chromatographic 

conditions should be investigated and selected. In this study, different conditions were tried and 

the optimal gas chromatographic conditions were determined for biodiesel analysis as shown in 

Table 6, and Fig. 6 is an illustration of this two ramps oven temperature program. In this 

operation, oven temperature was held at 60 °C for 2 minutes and then elevated from 60 °C to 

150 °C at a rate of 6 °C/min for the first ramp. The oven temperature was held at 150 °C for 10 

minutes during which, those fatty acids with high volatility will be separated. The oven 

temperature was then elevated quickly from 150 °C to 350 °C at a rate of 10 °C/min for the 

second ramp, also known as ramp A. After that the oven temperature was held at 350 °C for 1 

minute before the oven temperature was cooled down to its initial value, i.e. 60 °C.  During the  
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Table 6 GC-FID Chromatographic conditions 

Detector temperature 350 °C 

Injector temperature 350 °C 

Injection volume 1 μL 

Equilibrium time 1 minute 

Initial temperature 60 °C 

Initial time 2 minutes 

Injector mode Splitless 

Oven temperature program 60 - 150 °C at 6 °C/min, hold 10 minutes 

 150 - 350 °C at 10 °C/min, hold 1 minute 
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Fig. 6 An illustration of selected two ramps oven temperature program in HP 5890 GC-FID. 
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stage of ramp A, low volatility fatty acids, which usually are long chain fatty acids, will be 

separated.  

Although some peaks lapped over each other in the chromatograms, the setting listed in 

Table 6 separated them to the most extent and well spaced other peaks. Since the column used is 

10 meter length instead of 30 meter, overlapped peaks exist inevitably. 

3.4.2 GC-MSD analysis 

Agilent Technologies 7890A Gas Chromatography with 5975C Mass Spectrometer Detector 

(GC-MSD) was also used to identify the fresh components and degradation compounds of 

biodiesel samples. It was equipped with an HP-5MS capillary column with dimensions of 30 m × 

0.25 mm I.D. × 0.25 μm film thickness. Compared to HP 5890 GC-FID, HP-5MS GC-MSD has 

a much longer and thinner column which allows GC-MSD to generate higher resolution 

chromatogram. However it also took a longer time to complete a run. In most cases GC-FID is 

sufficient for analysis. In actual operation, we used GC-MSD identify the decomposition 

products that cannot be determined by GC-FID.  

Settings of GC-MSD were mostly similar to aforementioned GC-FID settings. The same as 

GC-FID, two ramps temperature program was also used in GC-MSD. The detailed gas 

chromatographic conditions are shown in Table 7.  

3.4.3 Sample preparation for GC analysis 

When it comes to the significant stages in GC-analysis, sample preparation is equally 

important as choosing a good chromatographic condition and Data analysis. Each stage carried 

out incorrectly will result in inaccurate or imprecise results. For instance, the concentrations of  
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Table 7 Selected gas chromatographic conditions for GC-MSD 

Injector temperature  285 °C 

Interface line temperature  320 °C 

Injection volume  1 μL 

Initial temperature  60 °C 

Initial time 3 minutes  

Split ratio 40:1 

Oven temperature program 60 - 315 °C at 20 °C/min, hold 1 minute 

 315 - 300 °C at 20 °C/min, hold 42.5 minutes 
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samples to be analyzed were careful planned. If the concentration of a sample was too low, many 

constituents of the sample would not be quantified because the signals captured by FID were too 

weak and the peaks in the chromatogram were too small to be integrated.  On the other hand if 

the concentration was too high, the peaks would overlap and be indistinguishable. Generally, 

samples preparation for GC analysis can be divided into the following branches:  

I. Prepare experimental samples 

In our experiments, the concentrations of samples were determined empirically and were 

closely related to concentrations of calibration analytical standards. For instance, six 

concentrations were used in constructing a calibration curve. In unit of volume fraction, they 

were 500, 750, 1000, 1250, 1500, and 2000 ppm respectively. And the concentrations of thermal 

stressed samples were consistently chosen as the median of the six values, i.e. 1000 ppm by 

volume.  

Concentrations of calibration standards were determined empirically so that corresponding 

output chromatogram showed distinctive peaks of all components of calibration standards. 

Figures of calibration chromatograms and calibration curves are shown in the later sections. 

To make a volume fraction of 1,000 ppm solution of analytical samples, they were prepared 

by diluting 1ul biodiesel fuel into 1ml hexane. 

Preparations of thermal stressed biodiesel samples for GC-MSE were very similar. Only that 

10 μl instead of 1μl of thermal stressed biodiesel samples were added into 1ml hexane. The 

biodiesel concentration is 10,000 ppm by volume. Notice that the sample concentration here is 

10 times higher than that used in GC-FID. This is because the GC-MSD took split-mode as inlet 

option. The detailed explanation has been stated in the previous text. 
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II. Prepare analytical standard samples 

In order to construct calibration curves of biodiesel components, two kinds of analytical 

standards of 100 mg (ca.0.118 ml) mixture were prepared. The mixture of 1899-1AMP standard 

was in powder state shipped in dry ice, the dissolved liquid phase had a large viscosity. For the 

sake of loss and inaccurate calibration curve, solvent should be added into the analytical standard 

bottle. Taking into account of this factor, the samples were designed to be prepared in the 

following procedures. 

a) Added 3.8 ml hexane into the reagent bottle (ca.5 ml) containing the analytical standards 

mixture. Since the density of solid 1899-1 AMP analytical standards is 850 g/l. The total 

volume of 100 mg 1891-1 AMP is Vsd = 100/850 = 0.1176 ml. The volume fraction of 

the calibration standard solution is then equal to Vsd / (3.8+Vsd) = 30,000 ppm.  

b) Shake the bottle to make sure the solid powders of 1899-1AMP standard or liquid 1891-

1AMP standards dissolve in hexane completely in room temperature. 

c) Took 16.67, 25, 33.33, 41.66, 50, 66.66 μL of this standard solution and diluted each 

into1ml of hexane respectively to make 500, 750, 1000, 1250, 1500, and 2000 ppm (by 

volume) solutions for GC analysis.   

d) In order to avoid the evaporation of volatile hexane, solutions were kept in the 

refrigerator whose temperature was below 0 °C. 

3.4.4 Definition of biodiesel fuel thermal decomposition percentage 

Palmitic acid methyl ester (C16:0) is present in fresh BD-100 biodiesel. This constituent has 

been proven to possess fairly higher stability compared to other FAMEs (Imahara et al., 2008). 

By the same token, in this study, it was found that very little of C16:0 was decomposed at 360 °C 
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and below. To make good use of this, C16:0 was treated as an ideal internal standard in the data 

analysis portion. Because the relative content of a constituent can be calculated from the 

chromatogram of GC-FID, the change in content of palmitic acid methyl ester in biodiesel can 

therefore be employed to estimate the progress of thermal decomposition of biodiesel.  

Thermal decomposition percentage of biodiesel can be calculated by 

      
                

         
     (3) 

where the subscript   stands for a type of fatty acid such as C16:0, C18:0, C18:1-3, C20:0 and 

C22:0 which are the original components present in fresh biodiesel.          is the FAME 

concentration of component   in fresh biodiesel fuel. The FAME concentration is derived from 

the calibration curve equation using the peak area manually integrated from GC/FID 

chromatogram.          is showed in Table 9 (Mass fractions of BD-100 biodiesel 

compositions*). In order to minimize experimental uncertainties due to sample preparation 

      was corrected by the factor of                       However, C16:0 is not stable at 375 °C 

and above, as shown in this study; this correction was made only for samples thermally stressed 

at 250 °C to 360 °C.  
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Chapter IV  

Results and discussion 

4.1 Calibration curves of FAMEs 

A Chromatography separates analytes of a mixture, a detector such as FID measures the 

abundance of analytes and generates chromatogram in which strength of signals from the 

detector is plotted along y-axis while retention time were plotted along x-axis.  

Good calibration curves were able to well delineate the linear relationship between the 

concentration of target analyte and instrument (computer) response.  Once the curves have been 

created, other samples can be analyzed. Unknown volume concentrations of analytes in samples 

can be determined by making use of these relevant curves created by a series of known analytes.  

In our experiments, calibration curves were conducted by comparing concentrations of 

FAMEs to peak areas from chromatograms. Each peak in a chromatogram represents one of 

analytes in the mixture, and the peak areas are the detector responses for the analytes. The peak 

areas were manually integrated by GC-FID supporting software. Fig. 7 shows the derived 

calibration curves for the analytes containing in experimental used biodiesel. Figure A-1 in 

Appendix A is the supplementary calibration curves for other FAME analytes.  

In these calibration curves, the straight lines are the linear regression of experimental data 

points.  They show the fact that the instrument response was a linear function of the 

concentration of each analyte. Linear calibration was characterized by its relatively constant 

slope, and a benefit of this was that it could simplify the calculations and data interpretation. The 

shape of these calibrations can be modeled by the following linear equation: 
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Fig. 7 GC-FID calibration curves for standard analytes of FAMEs (C16:0-

C22:0 and C18:1-3). 
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 Ai=aiCi+bi (4) 

where A is the GC peak area (instrument response), C represents the concentration of the analyte, 

a and b are constants gained after fitting the experimental point data, and subscript i acts on 

behalf of the substance of individual FAME or FAME mixtures. R
2
 is also showed to indicate the 

goodness-of-fit of linear regression. C18:1-3 represents that a mixture of C18:1, C18:2 and 

C18:3. The reason was that both columns of GC-FID and GC-MSD used in this research cannot 

isolate them. Table 8 collected a, b and R
2
 values for different FAME analyte. Table A- 1 and 

Table A- 2 in Appendix A recorded the GC-FID data for these analytical standards.       

4.2 Compositions of fresh biodiesel 

4.2.1 Identification of BD-100 biodiesel (Peter Cremer) compositions 

By making comparisons of the GC/FID chromatograms of analytical standards GLC-10 

FAME (1891-1AMP SUPELCO) mix, GLC-100 FAME (1899-1AMP SUPELCO) mix and fresh 

biodiesel, it was found that fresh biodiesel purchased from Peter Cremer not only contained 

methyl palmitate (C16:0-Me),  methyl stearate (C18:0-Me), large amounts of methyl oleate 

(C18:1-Me), methyl linoleate (C18:2-Me) and methyl linolenate (C18:3-Me), but also had very 

small quantities of methyl arachidate (C20:0-Me) and methyl behenate (C22:0-Me) as well. The 

chromatograms were revealed in Fig. 8.  

According to Table 1, calibration standard GLC-10 FAME mix has five analytes: C16:0, 

C18:0, C18:1, C18:2 and C18:3. However, the chromatogram of it showed only three peaks, as 

shown in Fig. 8 (C). Further, it was found that peak 2 had much larger integrated peak areas than 

that of peak 1 or peak 3. This indicates that peak 2 contains signals of more than one analyte. In 

addition, integrated area of peak 2 in the chromatogram of the mixture of GLC-10 and GLC-100 
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Table 8 Constants and coefficient of determination (R
2
) for FAMES calibration curves 

FAME a b R
2
 

C16:0 0.0152 -0.1414 0.9986 

C18:0 0.0148 -0.118 0.9966 

C18:1-3 0.0140 -0.4504 0.9985 

C20:0 0.0143 -0.0643 0.9876 

C22:0 0.0147 -0.1228 0.9897 
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Fig. 8 GC/FID chromatograms for fresh biodiesel (A), GLC-10 and GLC-100 

mixture (B), GLC-10 FAME mix (C), GLC-100 FAME mix (D). Labeled peaks are 

C16:0 (1), C18:1-3 (2), C18:0 (3), C19:4 (4), C20:0 (5), C21:0 (6), C22:0 (7). 
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had almost the same value as that in the chromatogram of GCL-10. This fact indicates that the 

peak 2 represents the concentration of C18:1, C18:2 and C18:3 combined.  

4.2.2 Mass fraction of BD-100 biodiesel fuel compositions 

By analysis of peaks areas of the compositions existing in BD-100 biodiesel fuels and 

combined with the constructed calibration curves, mass fractions were calculated and indicated 

in Table 9. They were determined using the equation: 

         

 

   

      (5) 

where Wi is the mass fraction (wt%) of the FAME  . The FAME concentrations adjusted in 

Table 9 will be treated as the initial FAME concentration values for the later biodiesel 

degradation calculations.  From Table 9, we can know that the mass fraction of unsaturated 

FAMEs (80.9%) far outweighs than that of saturated FAMEs (19.1%).  

4.3 Thermal stability of biodiesel fuel 

4.3.1 Visual observation of thermal decomposition of biodiesel fuel 

It is well known in the diesel industry that diesel fuel generally darkens in colors as it 

degrades. This phenomenon was also observed in our thermal stressing experiments. The un-

degraded biodiesel sample is colorless or in very light amber brown color while the post-

degradation samples showed darkened color at high temperatures.  

Thermal stressing experiments of BD-100 biodiesel were performed at 250 to 425 °C for a 

residence time from 3 to 63 minutes (Table 5). The Photos of collected samples are arranged in  
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Table 9 Mass fractions of BD-100 biodiesel compositions* 

FAME C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

Peak Area (×106) 

Average 1.603 11.849 0.847 0.073 0.151 14.524 

Std Dev 0.082 0.581 0.050 0.013 0.010 0.718 

Concentration (ppm 

by volume) 

Average 114.8 878.5 65.2 9.6 18.6 1086.8 

Std Dev 5.4 41.5 3.4 0.9 0.7 50.7 

Mass concentration 

(wt %) 

Average 10.6 80.8 6.0 0.9 1.7 100 

Std Dev 0.06 0.06 0.15 0.08 0.05 n/a 

* The average and standard deviation were obtained from five replicates (See Table 11 and 

Table 12). 

 

 

 

 



48 

 

 
 

Fig. 9 (a), Fig. 9 (b) and Fig. 9 (c).  

In the process of collecting heat treated biodiesel samples, there were two primary 

phenomena as below: 

a) Observed color changed responsible for thermal degradation of biodiesel fuel 

From the photographs, it is clear that there was no pronounced variation of color at 

temperatures up to 350 °C. The color retained colorless as fresh biodiesel at 250 °C and a little 

bit changed to light yellow when the temperature increased. Once the temperature reached 

360 °C for a residence time of 8 minutes and longer, obvious color change was observed from 

colorless to yellowish. At this temperature, what deserves special mention is that the color of 8 

minutes sample was more pigmented than 18 minutes one. One possible explanation is that the 

reactor touched the heating elements of the sand bath leading to a higher thermal stressing 

temperature.  

With a further increase in thermal stressing temperature, the color change of biodiesel was 

more significant. It became dark yellow at 400 °C after 3 minutes, and turned to brown at 425°C 

and 23 minutes. Color change is a good apparent indicator of fuel degradation. From these 

contrasting photographs in Fig. 9, whether samples decomposed or not can be distinguished.  

b) Visual detection of gas products          

According with color changes, gases were produced during the following thermal stressing 

conditions: 360 °C for 33 minutes or above, 375 °C for 8 minutes or above, 400 °C and 425 °C 

for all residence times. Gas products were detected visually by observing the small bubbles 

displayed in the biodiesel when fuel samples were taken out from the sealed reactor. It was found  
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(i).  Temperature: 250°C; Times: 3, 8, 18, 33 and 63 minutes (from left to right) 

 

(ii).  Temperature: 275°C; Times: 3, 8, 28, 38 and 63 minutes (from left to right) 

 

(iii).  Temperature: 300°C; Times: 3, 8, 18, 33 and 63 minutes (from left to right) 

Fig. 9 (a) Photographs of biodiesel samples collected after different heat treatment.      

Numbers below samples indicate the thermal stressing temperature and time. Note that the 

thermal stressing time also includes the 3 minute heat up time. The time value on the 

bottles does not include the heat up time.  
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(i).  Temperature: 325°C; Times: 3, 8, 18, 33 and 63 minutes (from left to right) 

 

(ii).  Temperature: 350°C; Times: 3, 8, 18 and 33 minutes (from left to right) 

 

(iii).  Temperature: 360°C; Times: 3, 8, 18, 33 and 43 minutes (from left to right) 

Fig. 9 (b) Photographs of biodiesel samples collected after different heat treatment.    

Numbers below samples indicate the thermal stressing temperature and time. Note that the 

thermal stressing time also includes the 3 minute heat up time. The time value on the 

bottles does not include the heat up time.  
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(i).  Temperature: 375°C; Times: 3, 8, 18, 33 and 43 minutes (from left to right) 

 

(ii).  Temperature: 400°C; Times: 3, 8, 18, 28 and 33 minutes (from left to right) 

 

(iii).  Temperature: 425°C; Times: 3, 8, 13, 18 and 23 minutes (from left to right) 

Fig. 9 (C) Photographs of biodiesel samples collected after different heat treatment.                                     

Numbers below samples indicate the thermal stressing temperature and time. Note that the 

thermal stressing time also includes the 3 minute heat up time. The time value on the 

bottles does not include the heat up time.  
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that the amount of gas products increased with increasing temperature.  

Gas products not only directly resulted in the undesirable weight loss of the liquid biodiesel 

fuel, but also increased the difficulty of collecting samples from the coils, which explained less 

amounts of biodiesel collected under these particular conditions, as displayed in Fig. 9 (b) and 

Fig. 9 (c). 

From the visual observation of thermal treated biodiesel samples summed up in Table 10, it 

can be perceived overtly that higher temperature and longer residence resulted in greater 

degradation. The visual observation suggests that biodiesel is quite stable at temperatures up to 

350 °C. It also suggests that thermal stability generally reduced under these more severe 

situations. The respective influence of these two determinant factors in relation to the thermal 

stability quality of biodiesel will be discussed more in detailed as below. 

4.3.2 Gas-chromatographic observation of thermal behaviors of biodiesel   

For the goal of qualitative and quantitative analysis, collected biodiesel samples were analyzed 

chromatographically. The GC/FID chromatograms are presented in Fig. 10 to Fig. 18. Another 

GC/MS chromatogram is showed in Fig. 19. After analysis of these chromatograms, three major 

types of reactions, isomerization, polymerization and pyrolysis reaction respectively, were 

detected.  

I. Isomerization reactions of FAMEs 

As shown in Fig. 10, biodiesel remained stable by exposure to 250 °C even for 63 minutes. 

When temperature was elevated to 275 °C for 28 minutes, biodiesel began to lose stability. New 

peaks were observed at that point or longer, as demonstrated by red arrows in Fig. 11. With the  
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Table 10 Observations of thermal stressed biodiesel samples 

Run# Temperature,°C Residence 

time,min 

Color Gas product 

1 250 3 colorless No 

2 250 8 colorless No 

3 250 18 colorless No 

4 250 33 colorless No 

5 250 63 colorless No 

6 275 3 colorless No 

7 275 8 colorless No 

8 275 28 Light yellow No 

9 275 38 Light yellow No 

10 275 63 Light yellow No 

11 300 3 colorless No 

12 300 8 Light yellow No 

13 300 18 Light yellow No 

14 300 33 Light yellow No 
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15 300 63 Light yellow No 

16 325 3 colorless No 

17 325 8 Light yellow No 

18 325 18 Light yellow No 

19 325 33 Light yellow No 

20 325 63 Light yellow No 

21 350 3 Colorless No 

22 350 8 Light yellow No 

23 350 18 Light yellow No 

24 350 33 Light yellow No 

25 360 3 Colorless No 

26 360 8 Yellow No 

27 360 18 Yellow No 

28 360 33 Yellow Yes,little 

29 360 43 Yellow Yes, little 

30 375 3 Colorless No 

31 375 8 Yellow Yes, little 
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32 375 18 Yellow Yes, little 

33 375 33 Yellow Yes, large 

34 375 43 Yellow Yes, large 

35 400 3 Yellow Yes, little 

36 400 8 Dark yellow Yes, large 

37 400 18 Dark yellow Yes,large 

38 400 28 Dark yellow Yes,large 

39 400 33 Dark yellow Yes,large 

40 425 3 Yellow Yes,large 

41 425 8 Dark yellow Yes, large 

42 425 13 Dark yellow Yes, large 

43 425 18 Dark yellow Yes, large 

44 425 23 Brown Yes, large 

 

 

 



56 

 

 
 

 

Fig. 10 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 250 °C.  
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Fig. 11 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 275 °C. The 

red arrows indicate the formation of trans-type C18:2 isomers.   
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Fig. 12 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 300 °C. The 

red arrows indicate the formation of trans-type C18:2 isomers and dimers.   
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Fig. 13 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 325 °C. The 

red arrows indicate the formation of trans-type C18:2 isomers and dimers.   
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Fig. 14 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 350 °C. The 

red arrows indicate the formation of smaller molecular weight compounds, trans-type 

C18:2 isomers and dimers.   
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Fig. 15 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 360 °C. The 

red arrows indicate the formation of smaller molecular weight compounds, trans-type 

C18:2 isomers and dimers.   
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Fig. 16 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 375 °C. The 

red arrows indicate the formation of small molecular weight compounds, trans-type C18:2 

isomers and dimers.  
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Fig. 17 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 400 °C, 

indicating the dynamic behavior of biodiesel decomposition and the formation of smaller 

molecular weight FAMEs and hydrocarbons.  
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Fig. 18 GC/FID chromatograms of biodiesel fuel subjected to heat treatment at 425 °C, 

demonstrating the formation of significant amounts of smaller molecular weight FAMEs 

and hydrocarbons owing to pyrolysis of FAMEs.  

 



65 

 

 
 

 

F
ig

. 
1
9
 G

C
/M

S
 c

h
ro

m
a
to

g
ra

m
 o

f 
b

io
d

ie
se

l 
fu

el
 s

u
b

je
ct

ed
 t

o
 h

ea
t 

tr
ea

tm
en

t 
a
t 

4
2
5
 °

C
 f

o
r 

2
3
 m

in
, 
d

em
o
n

st
ra

ti
n

g
 t

h
e 

d
is

tr
ib

u
ti

o
n

 o
f 

d
ec

o
m

p
o
si

ti
o
n

 p
ro

d
u

ct
io

n
s.

 F
A

M
E

s 
C

1
6
:0

, 
C

1
8
:0

 a
n

d
 C

2
0
:0

 a
re

 p
r
es

en
t 

in
 t

h
e 

fr
es

h
 b

io
d

ie
se

l.
 



66 

 

 
 

help of GC-MS analysis, these emerging peaks were identified to be trans-type C18:2 isomers: 

either 9-cis, 11-trans C18:2 or 10-trans, 12-cis or both. They were formed via the cis-trans 

isomerization reaction, which meant that some portion of naturally existing cis-type C=C 

converted to trans-type C=C. Likewise, a previous publication declared that trans-isomerization 

of unsaturated FAMEs happens as low as 270 °C (Imahara et al., 2008). 

At 275 °C (Fig. 11) and 300 °C (Fig. 12), the aforementioned emerging isomerization peaks 

grew larger and larger as the residence time was increased. However, it was not the case at 

325 °C (Fig. 13) and 350 °C (Fig. 14), at which temperature those two peaks kept enlarging 

initially as residence time increased up to 18 minutes and then maintained almost constant during 

the period from 18 minutes to 63 minutes. This phenomenon well demonstrates that the 

isomerization reactions reached equilibrium after certain amount of time and further suggests 

that the isomerization reactions are reversible. 

Further, when the temperature increased to 360 °C (Fig. 15), 375 °C (Fig. 16), and 400 °C 

(Fig. 17), as the residence time increased, the two peaks areas reached maximum values first and 

then shrunk.  In addition, higher thermal stressing temperature requires shorter residence time to 

reach the maximum areas. The reason for the peaks areas shrinking was that, although trans-

isomers were stable than cis-isomers, they would also be consumed to form other compounds.  

At 425 °C, no peaks of C18:2 isomers were observed in chromatograms. That the generated 

isomers were significantly decomposed to form small molecular weight would explain this case.  

II. Polymerization reaction of FAMEs 

Accompanying with isomerization reactions, polymerization reactions took place.  
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Except for those two peaks, another peak with a bump shape first appeared at 300 °C for 63 

minutes (Fig. 12). At 325 °C (Fig. 13), this peak became much more distinctive as time went on 

from 8 minutes to 63 minutes. Moreover, along with the stretching of this peak, the main original 

peaks of C18:1-3 contracted. Furthermore, the GC/FID retention time of this peak was almost 

twice as long as that of the C18:1-3 which implied that this compound had twice as much 

molecular weight as that of C18:1-3. Though identification of this compound was restricted to 

the analytical instrument used in this study, the compound was believed to be dimers due to the 

well-known Diels-Alder reaction of C18:1 and C 18:2 (Jain & Sharma, 2011; Nicolaou, Snyder, 

Montagnon, & Vassilikogiannakis, 2002), as mentioned in Eq. (1) in part “2.5 Mechanism of 

thermal decomposition of biodiesel fuel”. In this reaction, a conjugated diene group of one 

fatty acid chain formed from the isomerization reaction and a mono-olefin of another fatty acid 

chain generates a cyclohexene ring. The products are named dimers in which R1, R2, R3 is and R4 

are functional groups.  

At 350 °C and 360 °C (Fig. 14 and Fig. 15), the polymerization composite peak continued 

to expand in the early stage and then remained nearly unchanged, this suggests that this Diels 

Alder reaction is also an equilibrium reaction.  

At the temperature of 375 °C or higher, shown in Fig. 16 to Fig. 18, the dimer peaks kept on 

enlarging firstly to a maximum value and shrinking afterward with the increasing of the 

residence time.  Also, it required a shorter time for the peak to grow to the maximum value at 

higher temperature. 

III. Pyrolysis reactions of FAMEs 

At sufficiently high temperatures, a series of pyrolysis (or thermal cracking) reactions were 
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observed. According to previous report, pyrolysis reactions were stated to start at around 370 °C 

and prominent pyrolysis proceeds at temperature above 400 °C (Luo et al., 2010). When thermal 

stressing temperature was raised to 350 °C for 33 minutes, a few small peaks appeared, one was 

indicated by the red arrow in Fig. 14. This phenomenon was relatively more evident at 375 °C 

(Fig. 15). According to their short retention time displayed in the GC/FID chromatograms, they 

were believed to be small molecular weight substances of these peaks. The reason for the 

occurrence of pyrolysis reactions was that FAMEs, dimers and polymers produced via the Diels-

Alder reaction were very reactive at high temperatures, they ultimately formed lower molecular 

weight FAMEs, hydrocarbons and gas products.  

In comparison to the small number of peaks showed at 350 °C and 375 °C, a large number 

of peaks emerged at 400 °C for 18 minutes, 425°C for 8 minutes and above, even though there 

was a limited number of peaks at 400 °C for 8 minutes, 425 °C for 3 minutes and above. It was 

important to note that, the flood of peaks of GC retention time less than 16 minutes came with 

the fading of isomer and dimer peaks and the withdrawal of the C18:1-3 peaks. This trend 

showed a significance of decomposition of biodiesel fuel due to the pyrolysis reactions.  

Fig. 19 is the GC-MS chromatogram of the biodiesel thermal stress at 425 °C for 23 minutes, 

revealing that the created pyrolysis products are mainly C5:0 to C18:0 FAMEs and C8 to C17 n-

alkanes. This result is similar to the discoveries about formed small-molecular-weight products 

reported previously (Marulanda, Anitescu, & Tavlarides, 2010a; Seames et al., 2010; Shin et al., 

2011).  

Besides finding the diverse pathways of biodiesel decomposition, it can also be inferred 

from the chromatograms that unsaturated FAMEs were much more unstable than saturated 



69 

 

 
 

FAMES. The unsaturated C18:1-3, as the main components of BD-100 biodiesel, their peak 

height began to reduce gradually as the residence time increased once thermal treated at 300°C, 

which was shown in Fig. 12. This is consistent with the start-to-decompose temperature reported 

before (He et al., 2007; Imahara et al., 2008; Quesada-Medina & Olivares-Carrillo, 2011). The 

trend became more critical when temperature was further increased. When the temperature was 

elevated to 400 °C and the residence time was raised to 18 minutes or above, it was conspicuous 

that the C18:1-3 almost decomposed completely. The same situation happened at 425 °C for 8 

minutes and above.  

However, after a careful examination of the saturated FAMEs peak areas, it was found that 

C16:0 only started decomposing at 375 °C and beyond, which is consistent with the conclusion 

proposed by Imahara et al. (Imahara et al., 2008) and results reported by Shin et al. (Shin et al., 

2011). C20:0 and C22:0 were also observed to decompose at 375 °C and above in this research. 

It is a much higher decomposition temperature compared to that of C18:1-3. Not only is the 

decomposition temperature differential apparent, but also the extent of decomposition differs 

significantly under the same thermal stressing conditions between saturated and unsaturated 

FAMEs. While the peaks of C18:1-3 nearly vanished, a small portion of the peak of saturated 

FAMEs decomposed at 400 °C and beyond.    

Relying on these, it should be emphasized that saturated FAMEs have better thermal 

stability than unsaturated ones.  

4.3.3 Effect of temperature on thermal stability of biodiesel 

On the basis of the above discussion, results showed that temperature strongly affects the 

thermal stability of biodiesel.  
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This research demonstrated that biodiesel remained stable up to 275 °C despite the 

formation of new peaks. The main FAMEs underwent a negligible change at this temperature 

and the trans-isomerization minimally occurred. This conclusion generally agrees with a former 

statement that all these FAMEs were stable at 270 °C or below (Imahara et al., 2008).  

Within the temperature range of 275 °C to 400 °C, the cis-trans isomerization reaction took 

place. In addition, the formed trans-type isomers were unstable at 360°C and higher. They would 

further decompose into small molecular weight products.  

Another major reaction that occurred in biodiesel degradation was Diels-Alder reaction 

which took place at a temperature range of 300 °C to 425 °C, concurrently, the dimers 

decomposed at 375 °C and even higher temperatures.  

It can also be concluded that biodiesel slightly decomposed at 300 °C which can be seen as 

the start-to-decompose temperature. Higher temperature leads to greater decomposition, 

especially for unsaturated FAMEs of C18:1-3. Biodiesel is totally unstable at 400 °C and above.  

Adequately high temperature also promotes the occurrence of pyrolysis reaction of biodiesel, 

not only FAMEs, but also formed dimers and polymers. This study proved that pyrolysis started 

at 350 °C or above. When the temperature reaches 400 °C or above, a significant pyrolysis 

reaction will progress. Additionally, this research indicated that bad smell gas products were 

produced after exposure to 360 °C or above. It was unambiguous that biodiesel is much more 

reactive and has less thermal stability at higher temperature when keeping all other conditions 

the same. 

All in all, temperature places an extraordinary important role in affecting thermal stability of 

biodiesel fuel.   
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4.3.4 Effect of thermal stressing time on thermal stability of biodiesel 

Based on analyzing chromatograms Fig. 10 to Fig. 18, it can be noted that thermal stressing 

time has a great influence on thermal stability of biodiesel as well. Longer residence time results 

in larger extent of thermal decomposition.  

Isomerization reaction was observed from at 275 °C for 28 minutes or longer, which meant 

that shorter residence time at the same temperature can avoid this change. Likewise, Diels-Alder 

reaction happens at 300 °C for 63 minutes. The residence time control is also effective.  

Pyrolysis reaction commences to take place at 350 °C. Whereas, significant pyrolysis occurs 

at 400 °C for 18 minutes or above and 425 °C for 8 minutes or above. In the meantime, formed 

dimers almost disappear at these points. In order to prevent large decomposition, the residence 

time should be shortened below 18 minutes at 400 °C or 8 minutes at 425 °C.  

Another observation is that, gas products are generated at 360 °C for 33 minutes or above, at 

375 °C for 8 minutes or above, and at 400 °C and 425 °C for all residence times in this thermal 

stressing study. Reducing the residence is one of the practical and effective measures for 

decreasing gas generation.  

In sum, thermal stressing time on thermal stability of biodiesel is of great importance. Both 

thermal stressing time and temperature contribute to biodiesel fuel degradation. In fact, thermal 

stability of biodiesel is governed by a combination of factors, and temperature and residence 

time are powerful enough to cancel the influence of others.  

4.4 Quantitative analysis of the extent of thermal decomposition of biodiesel  

A quantitative analysis of the chromatograms for thermal stressed biodiesel samples was 
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carried out to study the extent of degradation. 

To assess the thermal decomposition extent, fresh BD-100 biodiesel samples serve as the 

point of reference. Five samples of fresh biodiesel were run in GC-FID to minimize the optional 

errors. Table 11 displays the peak areas of FAME compositions, which were manually 

integrated from the instrument.  The average data were chosen as the indicator of fresh biodiesel 

for later calculations. 

The subsequent Table 12 presents concentrations of fresh biodiesel samples deduced from 

their peak areas by the means of calibration curve equations. The calibration curve described the 

relationship of two variables, the instrument response (peak area) for each standard and the 

concentration of each analyte.  The average concentration were derived to represent that of fresh 

biodiesel and used for the later calculations. 

Likewise, Table A-5 in Appendix presents the peak areas of thermal stressed biodiesel 

samples and Table A-6 shows the inferred concentrations. It should be pointed out that the 

concentrations of samples thermal stressed at 360 °C or below were corrected by a factor of 

                    , where C16:0 was used as a “native” internal standard. Whereas the 

concentrations of samples heated above 360 °C were directly calculated from the calibration 

curve equations without any further adjustment since C16:0 decomposed at these severe 

conditions.  

Fig. 20 is the temporal profiles of the concentration of biodiesel at different thermal 

stressing temperatures. Fig. 21 plots biodiesel decomposition percentage as a function of the 

thermal stressing time over a temperature range of 250 °C to 425 °C. It can be noticed that 

biodiesel decomposition increases with the increasing thermal stressing time. In addition, it is  
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Table 11 GC-FID data for fresh biodiesel 

Peak Area (×10
6
) 

  

C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

Sample 1 

 

1.599 11.867 0.891 0.053 0.141 14.551 

Sample 2 

 

1.510 11.201 0.786 0.075 0.145 13.717 

Sample 3 

 

1.732 12.784 0.904 0.087 0.167 15.674 

Sample 4 

 

1.565 11.620 0.819 0.079 0.153 14.236 

Sample 5 

 

1.610 11.774 0.834 0.073 0.149 14.440 

Average 

 

1.603 11.849 0.847 0.073 0.151 14.524 

STDEV 

 

0.082 0.581 0.050 0.013 0.010 0.718 
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Table 12 Concentrations of fresh biodiesel samples 

Concentration (ppm by volume)
a
 

  

C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

Sample 1 

 

114.5 879.8 68.2 8.2 17.9 1088.6 

Sample 2 

 

108.6 832.2 61.1 9.7 18.2 1029.9 

Sample 3 

 

123.3 945.3 69.1 10.6 19.7 1167.9 

Sample 4 

 

112.3 862.2 63.3 10.0 18.8 1066.5 

Sample 5 

 

115.2 873.2 64.3 9.6 18.5 1080.8 

Average 

 

114.8 878.5 65.2 9.6 18.6 1086.8 

STDEV 

 

5.4 41.5 3.4 0.9 0.7 50.7 

a
 Calculated by the calibration curve equation i i i iA a C b  using parameters from Table 11. 
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Fig. 20 Plot of concentration of biodiesel sample as a function of thermal stressing time at 

different temperatures. 
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Fig. 21 Thermal decomposition percentage of biodiesel fuel variation as a function of time 

at different temperatures.  
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evident that the decomposition accelerates as the temperature rises.  

Biodiesel remains relatively stable at 300 °C or below with less 10% decomposition, 

especially at 275 °C or below with only less than 6% decomposition. Cis-trans Isomerizaiton 

reaction is responsible for the small-scale degradation.  

At 325 °C, the decomposition increases gradually up to 40% after thermal stressed for 63 

minutes, which mainly resulting from the increasing contribution of the polymerization reaction. 

As temperature rises from 350 °C to 425 °C, the porolysis reaction commences and speeds up the 

decomposition rapidly. The decomposition percent achieves about 80% within 10 minutes at 

400 °C to 425 °C. After 23 minutes of heat treatment at 425 °C, it increases up to 87%. The 

decomposition percentage data is organized in Table A- 6 in Appendix A.  

4.5 Discussion on the impact of thermal decomposition on biodiesel fuel 

properties and synthesis  

Thermal decomposition caused by excessive temperature may denature the fuel. Both large 

molecular weight compounds through Diels-Alder reaction and the decomposed products such as 

gases through pyrolysis reactions belong to denatured products of biodiesel (Marulanda, 

Anitescu, & Tavlarides, 2010a). The denaturalization of FAMEs has a direct impact on fuel 

quality. The isomerization reaction also alters the characteristic of biodiesel to some extent. After 

all, the presence of these products inevitably brings about some changes of biodiesel fuel 

properties.  

Studies so far have suggested that thermal decomposition influence the production and 

characteristics of biodiesel in primarily two aspects. Firstly, it is stated to cause the decrease of 

the biodiesel yield at high temperatures and long residence time. Therefore, the proposed optimal 
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temperature conditions for biodiesel synthesis through supercritical methanol/ethanol method is 

within 270 °C to 350 °C (He et al., 2007; Imahara et al., 2008; Kusdiana & Saka, 2001; Saka & 

Kusdiana, 2001; Shin et al., 2011). In spite of this, the Tavlarides group (Anitescu et al., 2008; 

Deshpande, Anitescu, Rice, & Tavlarides, 2010; Marulanda, Anitescu, & Tavlarides, 2010a; 

Marulanda, Anitescu, & Tavlarides, 2010b) have recently shown that a higher synthesis 

temperature (400 °C ) would actually favour biodiesel production in fact since the formed 

decomposition products can serve as fuel components. Secondly, thermal decomposition is 

assumed to have a positive effect on fuel qualities such as viscosity, cold flow properties and 

cetane numbers (Imahara et al., 2008; Marulanda, Anitescu, & Tavlarides, 2010a; Marulanda, 

Anitescu, & Tavlarides, 2010b). This field is still less understood and will be addressed in future 

work.  

4.6 Kinetic model for thermal decomposition of biodiesel 

The dynamic thermal decomposition of biodiesel fuel at a temperature within the range of 

250 °C to 425 °C was investigated. There has been no literature available on this aspect up to 

now, and the kinetics of thermal decomposition of biodiesel fuel is less understood. Therefore, 

this part of research is also aimed to shorten this gap.  

4.6.1 Biodiesel decomposition mechanism  

Based on previous studies (Seames et al., 2010; Shin et al., 2011), it is distinct that thermal 

decomposition of biodiesel fuel is an intricate process. A conventional pyrolysis study even 

demonstrated that biodiesel will undergo coking to produce coke products at extreme high 

temperatures around 500 °C (Mohan, Pittman, & Steele, 2006). However, in comparison, the 

thermal stressing temperatures included in the current research are relatively lower. Therefore, 
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coke products are not necessary to be considered here. Despite this, thermal decomposition of 

biodiesel via other pathways is still complex enough to pose great challenges for the kinetic 

study.  Each pathway may yield multiple disproportional products instead of one.  In order to 

better explore the kinetics of this part, it is better to simplify the mechanism for a general 

investigation.  

From the observations of this research, cis-trans isomerization reaction, Diels-Alder reaction 

and pyrolysis reaction are predominantly involved in the thermal decomposition of biodiesel 

under the conditions studied.  

As temperature rises, biodiesel will initially go through reversible isomerization and Diels-

Alder reaction to form isomers and dimers, respectively. When the temperature is increased 

further, produced isomers, dimers and remaining FAMEs will decompose to form lower 

molecular weight FAMEs, hydrocarbons and gaseous products.  

More specifically, isomerization occurs from 250 °C to 400 °C, converting natural cis-type 

unsaturated FAMEs to trans-type FAMEs; the Diels-Alder reaction occurs from 300 °C to 

425 °C, creating dimers and possibly polymers; and pyrolysis of unsaturated FAMEs, saturated 

FAMEs, and formed dimers commences approximately at 350 °C, 375 °C and 375 °C, 

respectively. Without a shred of doubt, thermal stressing time is also crucial to determine the 

degree of biodiesel decomposition.  

Taking into account the main reactions involved and the behaviors of biodiesel changes over 

time and temperature, a three-lump mechanism model of biodiesel thermal decomposition is 

proposed which is shown in Fig. 22. This kinetic mechanism consists of an initial reversible  
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Fig. 22 A mechanism of biodiesel thermal decomposition. reversible reaction;   

irreversible reaction; A: biodiesel; B: isomers, dimers, etc.; C: smaller FAMEs, 

hydrocarbons, gases, etc.; kAB, kBA, kAC and kBC are reaction rate constants.    
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isomerization and Diels-Alder reactions followed by a pyrolysis reaction, where A represents 

biodiesel, B denotes the products of isomers, dimers, etc, and C stands for summation of smaller 

FAMEs, hydrocarbons, gases. 

4.6.2 Proposed kinetic model 

Although the three-lump mechanism provides a straightforward way for modeling thermal 

decomposition, it will also bring great challenges. The complexity of the biodiesel product 

mixture and the limitations of current analytical method are the major problems. Owing to these 

restrictions, it is demanding to differentiate and quantify products B and C since they spread out 

in terms of a fairly large number of small overlapped low concentrated peaks, rather than a few 

detached large ones in the chromatograms.  

Consequently, this model calls for additional adjustment. Widegren and Bruno (Widegren & 

Bruno, 2008) suggested to use the first order kinetic model to describe  the thermal 

decomposition of aviation turbine fuel Jet A. Inspired by this case, the current model is further 

simplified to a reversible first order reaction model similarly (Eq. (6)). Reversible first-order 

reaction is also a simplest type to describe thermal decomposition in which a reactant (A) 

thermally converts to a product (P). All kinds of products generated are bracketed together. This 

assumption provides a practical base for a quantitatively kinetic study of the overall thermal 

stability of biodiesel. 

 
1

2

k

k
A p

 
(6) 

Here, P is all reaction products which take into account both B and C, and k1 and k2 are the rate 

constants for the forward and the reverse reactions.  
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The rate of reaction (6) is given by 

 1 2
A

A P

dC
k C k C

dt
    (7) 

By assuming
0P A AC C C  , Eq. (7) can be rewritten in the following form 

  
   

  
            

  

     
     (8) 

Integrating Eq. (8) gives  

  1 2
0 1 2 0

1 2 1 2

expA A A

k k
C C k k t C

k k k k
      

 (9) 

Then let ,A i TSC C and 0 ,A i freshC C  and the reaction rate constants k1, k2 for each 

reaction temperature can be obtained by fitting the experimental data.
 

4.6.3 Simulation results 

As stated previously, the kinetic analysis was conducted through the proposed model. The 

forward and revere rate constants, at each temperature were determined in association with the 

assembled data at differed reaction time. After k1, k2 are achieved, the equilibrium constant K= 

k1/ k2 is calculated. All of the results are presented in Table 13. After close scrutiny of the 

derived rate constants in Table 13, it is found that the rate constant for the forward reaction (k1) 

is faster than that for the reverse reaction (k2) at T ≥ 350 °C, which is another indication for the 

occurrence of pyrolysis reactions.  

In this current kinetic modeling, the experimental data shows a good fit into the simulation 

curves, as displayed in Fig. 23 and Fig. 24.   
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Table 13 Rate constants and equilibration constant for biodiesel thermal decomposition 

reactions 

 

 

 

 

 

T, °C k1 (min
-1

) k2 (min
-1

) K 

250 0.0005 0.0068 0.0728 

275 0.0016 0.0109 0.1424 

300 0.0032 0.0170 0.1901 

325 0.0133 0.0202 0.6585 

350 0.0397 0.0348 1.1389 

360 0.0658 0.0418 1.5737 

375 0.1067 0.0469 2.2737 

400 0.3220 0.0891 3.6144 

425 0.5079 0.0840 6.0464 
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Fig. 23 Modeling of biodiesel concentration as a function of time for various stressing 

temperatures using the reversible first-order kinetics fitted with experimental data.
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Fig. 24 Plot of predictions of biodiesel thermal decomposition as a function of time under 

different stressing conditions using the reversible first-order kinetic model fitted with 

experimental data.
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Again, as mentioned above, this kinetic model pays attention to the overall reaction which 

ignores the detailed intermediate reactions. The well fitted result ascertains that the reversible 

first-order reaction model is properly determined. It well represents the mechanism and kinetics 

of thermal decomposition of biodiesel fuel. This result also supports the argument that both 

isomerization and polymerization via the Diels-Alder reaction play a significant role in biodiesel 

decomposition in the temperature range studied.  

4.6.4 Determination of Arrhenius parameters 

Referring to the well-known Arrhenius equation, reaction rate constants are expressed as a 

function of temperature, as shown below:                                                                                                        

  exp /ak A E RT 
 

(10) 

where A is the pre-exponential factor, Ea is the activation energy, and R is the universal gas 

constant. The value of R is 8.314 J/(mol·k). Here, for the reversible first-order reaction kinetics, 

the units of the reaction rate constant k and pre-exponential A are min
-1 

identically. 

About the equilibrium constant, it can be expressed as a function of temperature as well by 

the van't Hoff equation, as shown below: 

 
 
ln

1

od K H

d T R


   (11) 

where ΔH
o
 is the standard reaction enthalpy. The values for      and       were calculated from 

Table 13 and listed in Table A- 5 in Appendix A. By plotting     ,      and     versus 1/T 

(Fig. 25, Fig. 26 and Fig. 27), values of A, Ea and ΔH
o
 can be determined. A for k1 and k2 are  
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Fig. 25 Arrhenius plot for the first-order forward decomposition of biodiesel. The 

Arrhenius parameters determined from the fit to the data are A = 1.50 × 10
9
 min

-1 
and Ea = 

126.0 KJ/mol.  
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Fig. 26 Arrhenius plot for the first-order reverse decomposition of biodiesel. The Arrhenius 

parameters determined from the fit to the data are A = 257 min
-1 

and Ea = 46.0 KJ/mol.  
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Fig. 27 Van’t Hoff plot for the reversible first order decomposition of biodiesel. The 

determination of the reaction enthalpy ΔH
o
 for biodiesel thermal decomposition is 80.0 

KJ/mol, indicating an overall endothermic reaction.  
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1.50 × 10
9
 and 257 min

-1
, respectively, and Ea for the forward and reverse reactions are 126.0 

and 46.0 KJ/mol, respective. The reaction enthalpy ΔH
o
 for biodiesel thermal decomposition is 

80.0 KJ/mol, indicating an overall endothermic reaction. In turn, the high linearity of the 

Arrhenius plots (R
2
>98%) powerfully validates the rationality of the hypothesis of reversible 

first-order kinetics. 
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Chapter V  

Conclusions   

In this study, thermal stressing of biodiesel in batch reactors was carried out at reaction 

temperatures ranging from 250 °C to 425 °C for 3 to 63 minutes. Degree to which thermal 

decomposition occurred was analyzed qualitatively and quantitatively. A reversible first-order 

reaction model was proposed thereafter to describe the kinetics of biodiesel thermal 

decomposition processes. The following text summarizes the main conclusions we draw from 

this study:  

1. Appropriate calibration curves of the constituents of biodiesel were constructed by utilizing 

two analytical standards GLC-10 FAME mix and GLC-100 FAME mix. Since the R-squared 

(R
2
) is a good criterion to measure the calibration curve quality, the values in these created 

calibration curves close to 1 strongly demonstrated that the perfect fit of the linear regression 

lines to the data. The calibration curves serve as a good index and guideline of converting the 

manual integrated peaks areas of FAMEs to their concentrations. 

2. With the help of GC-FID and GC-MS as analytical tools, this study gained insight into the 

decomposition pathways and advanced some new finds. It can be concluded that 

decomposition of FAMEs takes place at 275 °C or above and largely depends on the thermal 

stressing temperature and time of stress; and the decomposition involves cis-trans 

isomerization (275-400 °C), polymerization (Diels-Alder reaction) (300-425 °C) and 

pyrolysis (≥350 °C) reactions. Specially, isomerization converts unsaturated FAMEs from 

naturally occuring cis to trans carbon double bonds; polymerization forms the dimers and/or 

polymers via the well known Diels-Alder reaction; and pyrolysis (also known as thermal 
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cracking or thermal decomposition) develops the lower molecular weight FAMEs 

hydrocarbons and gas products. What deserves special mention is that the formed isomers 

and dimers are not stable at high temperature; they will decompose to smaller molecular 

weight products under severe conditions. 

3. A three-lump model is proposed to describe the decomposition mechanism. For convenience 

and feasibility, the kinetic model based on this proposed mechanism is simplified to a 

reversible general first order reaction model. Owing to the good fitted data, the 

concentrations and thermal decomposition percentage of biodiesel can be well predicted by 

this kinetic model. That is, the decomposition kinetic can be well modeled by this simplified 

reaction. 

4. During the fitting process, the forward and reverse reaction rate constants were derived in for 

each temperature. The Arrhenius plots were drawn afterwards with these kinetic data, the 

Arrhenius parameters pre-exponential factor A and activation energy Ea for thermal 

decomposition of biodiesel are determined. A for k1 and k2 are 1.50 × 10
9
 and 257 min

-1
, 

respectively, and Ea for the forward and reverse reactions are 126.0 and 46.0 KJ/mol, 

respectively. The validity of these kinetics is further validated by the high linearity of the 

Arrhenius plots. 

5. The proposed kinetic model not only plays as an important role in describing and predicting 

the global behavior of biodiesel when exposed to high temperatures, but also offers some 

valuable information. From the established Van’t Hoff plot, the reaction enthalpy ΔH
o
 for 

biodiesel thermal decomposition is 80.0 KJ/mol, indicating an overall endothermic reaction.  
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Chapter VI 

Future work 

As mentioned above in section 4.5, this research has not explored the effects of thermal 

decomposition on fuel qualities such as viscosity, cold flow properties, and cetane number. Now 

some researchers recommended that supercritical transesterification should be performed below 

the start-to-decompose temperature which is 300 °C (Imahara et al., 2008), while others claim 

that a certain extent of decomposition is beneficial to the promotion of the fuel qualities 

(Marulanda, Anitescu, & Tavlarides, 2010a). Without strong support, it is hasty to draw a 

conclusion.  

For better understanding and effort to discover more information concerning biodiesel fuel, 

future work is recommended. The challenges present in the future work offer chances for 

developments and breakthroughs that will advance the biodiesel fuel science and technology. 

These efforts are meaningful since it will allow biodiesel to be produced and consumed in a more 

efficient and environmentally friendly way.  
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Appendix A Supplementary information 

Additional information is provided in this section to enrich the subject studied in more detail. 

First, Fig.A- 1 shows more calibration curves for the analytes except for these present in the 

fresh biodiesel constructed. Although there was no C19:0, C21:0 contained in the BD-100 

biodiesel samples, they were included in the analytical standards GLC-10 and GLC-100 FAME 

mix. Therefore, the calibration curves for C19:0, C21:0 and analytical standards GLC-10 and 

GLC-100 FAME mix were created.  

Fig.A- 2 is the chromatograms for the fresh biodiesel, analytical standard GLC-10 FAME 

mix and the mix of fresh biodiesel and GLC-100 FAME mix. By comparing these 

chromatograms, the constituents existing in the fresh biodiesel can be identified without the help 

of GC-MS. 

Fig.A- 3 to Fig.A- 28 show the original chromatograms for the thermal stressed samples at 

different temperatures and residence time.  

Table A- 1 and Table A- 2 record the GC-FID data for analytical standard GLC-10 FAME 

mix and GLC-100 mix separately. The calibration curves for the analytes were established based 

on these data.  

Table A- 3 is the GC-FID data for thermal stressed biodiesel samples, and Table A- 4 is the 

corresponding concentrations. It should be pointed out that the concentrations for the samples 

stressed at 360 °C or below were corrected by a factor of                     , where C16:0 was 

used as a “native” internal standard. Since methyl palmitate decomposed at 375 °C or above, it 

could not serve as an internal standard at these conditions.  
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Table A- 5 and the following table are designate for the kinetic study. Table A- 5 assembles 

the data of Ink1, Ink2 and InK for each temperature. These data are used for the Arrhenius plots 

and Van’t Hoff plot where the Arrhenius parameters A, activation energy and the overall 

reaction enthalpy were solved.  

Table A- 6 displayed the modeling data and the experimental data of biodiesel concentration 

and decomposition percentage at different temperature and residence time. This table vividly 

demonstrated the good fitness of the proposed kinetic model and the data, which also validated 

that the thermal decomposition can be well modeled by this reversible first-order reaction 

kinetics.  
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Fig.A- 1 GC-FID calibration curves for supplementary FAME analytes and mixtures 

(C19:0, C21:0 and analytical standard mixtures) 
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Fig.A- 2 Chromatograms of fresh biodiesel (A), fresh biodiesel and GLC-10 FAME mix (B), 

fresh biodiesel and GLC-100 FAME mix (C). Peaks shown in the chromatograms are C 

16:0 (1), C 18:1-3 (2), C 18:0 (3), C 19:4 (4), C20:0 (5), C 21:0 (6), C 22:0 (7).  
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Fig.A- 3 Chromatograms of biodiesel samples thermal stressed at 250 °C for 3 and 8 

minutes. 



99 

 

 
 

 

 

Fig.A- 4 Chromatograms of biodiesel samples thermal stressed at 250 °C for 18 and 33 

minutes. 
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Fig.A- 5 Chromatogram of biodiesel sample thermal stressed at 250 °C for 63 minutes. 
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 Fig.A- 6 Chromatograms of biodiesel samples thermal stressed at 275 °C for 3 and 8 

minutes. 



102 

 

 
 

 

 

Fig.A- 7 Chromatograms of biodiesel samples thermal stressed at 275 °C for 28 and 38 

minutes. 
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Fig.A- 8 Chromatogram of biodiesel samples thermal stressed at 275 °C for 63 minutes. 
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Fig.A- 9 Chromatograms of biodiesel samples thermal stressed at 300 °C for 3 and 8 

minutes. 
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Fig.A- 10 Chromatograms of biodiesel samples thermal stressed at 300 °C for 18 and 33 

minutes. 
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Fig.A- 11 Chromatogram of biodiesel sample thermal stressed at 300 °C for 63 minutes. 
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Fig.A- 12 Chromatograms of biodiesel samples thermal stressed at 325 °C for 3 and 8 

minutes. 
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Fig.A- 13 Chromatograms of biodiesel samples thermal stressed at 325 °C for 18 and 33 

minutes. 
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Fig.A- 14 Chromatogram of biodiesel sample thermal stressed at 325 °C for 63 minutes. 
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Fig.A- 15 Chromatograms of biodiesel samples thermal stressed at 350 °C for 3 and 8 

minutes. 
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Fig.A- 16 Chromatograms of biodiesel samples thermal stressed at 350 °C for 18 and 33 

minutes. 
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Fig.A- 17 Chromatograms of biodiesel samples thermal stressed at 360 °C for 3 and 8 

minutes. 
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Fig.A- 18 Chromatograms of biodiesel samples thermal stressed at 360 °C for 18 and 33 

minutes. 
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Fig.A- 19 Chromatogram of biodiesel sample thermal stressed at 360 °C for 43 minutes. 
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Fig.A- 20 Chromatograms of biodiesel samples thermal stressed at 375 °C for 3 and 8 

minutes. 



116 

 

 
 

 

 

Fig.A- 21 Chromatograms of biodiesel samples thermal stressed at 375 °C for 18 and 33 

minutes. 
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Fig.A- 22 Chromatogram of biodiesel sample thermal stressed at 375 °C for 43 minutes. 
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Fig.A- 23 Chromatograms of biodiesel samples thermal stressed at 400 °C for 3 and 8 

minutes. 
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Fig.A- 24 Chromatograms of biodiesel samples thermal stressed at 400 °C for 18 and 28 

minutes. 
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Fig.A- 25 Chromatogram of biodiesel sample thermal stressed at 400 °C for 33 minutes. 
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Fig.A- 26 Chromatograms of biodiesel samples thermal stressed at 425 °C for 3 and 8 

minutes. 
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Fig.A- 27 Chromatograms of biodiesel samples thermal stressed at 425 °C for 13 and 18 

minutes. 
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Fig.A- 28 Chromatogram of biodiesel samples thermal stressed at 425 °C for 23 minutes. 
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Table A- 1 GC-FID data for analytical standard GLC-10 FAME mix 

FAME Con. (ppm by vol.) GC Peak Area (×10
6
) 

   GLC-10 FAME Mix (wt. %) 

Total Individual Combined (20%) (20%) (60%) 

 

C16:0, 

C18:0 

C18:1-3 C16:0 C18:0 C18:1-3 

500 100 300 1.477 1.476 4.044 

750 150 450 2.049 2.045 5.638 

1000 200 600 2.877 2.898 7.903 

1250 250 750 3.644 3.658 10.018 

1500 300 900 4.413 4.440 12.154 

2000 400 1200 5.972 5.996 16.515 
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Table A- 2 GC-FID data for analytical standard GLC-100 FAME mix 

FAME Con. 

(ppm by vol.) 

GC Peak Area (×10
6
) 

GLC-100 FAME Mix (wt. %) 

Total Individual (20%) (20%) (20%) (20%) (20%) 

  C18:0 C19:0 C20:0 C21:0 C22:0 

500 100 1.428 1.401 1.434 1.416 1.425 

750 150 2.096 2.061 2.116 2.093 2.117 

1000 200 2.878 2.843 2.926 2.896 2.898 

1250 250 3.313 3.265 3.310 3.345 3.354 

1500 300 4.022 3.967 4.019 4.073 4.086 

2000 400 5.850 5.761 5.866 5.930 5.950 
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Table A- 3 GC-FID data for thermally-stressed biodiesel samples 

Temperature Residence GC Peak Area (×10
6
) 

(℃) Time(min) C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

250 3 1.471 10.575 0.785 0.071 0.145 13.047 

 8 1.656 11.836 0.852 0.077 0.167 14.588 

 18 1.305 9.451 0.699 0.065 0.124 11.644 

 38 1.411 10.232 0.763 0.072 0.137 12.615 

 63 1.263 9.140 0.678 0.065 0.124 11.270 

275 3 1.632 11.510 0.857 0.095 0.167 14.261 

 8 1.588 11.059 0.830 0.094 0.161 13.732 

 28 1.621 11.360 0.871 0.092 0.165 14.109 

 38 1.623 11.159 0.842 0.093 0.165 13.882 

 63 1.703 11.700 0.841 0.091 0.171 14.506 

275R
a 

3 1.382 9.893 0.735 0.072 0.134 12.216 

 8 1.472 10.443 0.792 0.076 0.143 12.926 

 28 1.488 10.382 0.930 0.078 0.145 13.023 

 38 1.499 10.288 0.837 0.076 0.148 12.848 

 63 1.500 10.240 0.775 0.078 0.150 12.743 

300 3 1.568 11.086 0.830 0.087 0.158 13.729 

 8 1.627 11.306 0.720 0.094 0.152 13.899 

 18 1.545 10.505 0.731 0.084 0.153 13.018 

 33 1.617 10.714 0.752 0.090 0.156 13.329 

 63 1.760 11.448 0.906 0.097 0.177 14.388 

325 3 1.601 10.957 0.858 0.084 0.159 13.659 

 8 1.659 10.824 0.897 0.089 0.166 13.635 

 18 1.590 9.426 0.859 0.082 0.161 12.118 

 33 1.506 7.466 0.803 0.081 0.155 10.011 

 63 1.570 6.003 0.803 0.082 0.164 8.622 
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Table A- 3 (continued) GC-FID data for thermally-stressed biodiesel samples 

Temperature Residence GC Peak Area (×10
6
) 

(℃) Time(min) C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

325R 3 1.461 9.952 0.776 0.076 0.145 12.410 

 8 1.525 9.740 0.849 0.078 0.146 12.338 

 18 1.499 8.393 0.793 0.080 0.150 10.915 

 63 1.465 5.364 0.750 0.075 0.159 7.813 

350 3 1.484 9.253 0.835 0.075 0.143 11.790 

 8 1.765 8.805 1.011 0.088 0.156 11.825 

 18 1.486 5.084 0.770 0.075 0.150 7.565 

 33 1.361 3.949 0.691 0.061 0.140 6.202 

360 3 1.538 8.842 0.790 0.082 0.161 11.413 

 8 1.546 5.893 0.703 0.086 0.169 8.397 

 18 1.606 4.869 0.694 0.089 0.175 7.433 

 33 1.592 2.945 0.750 0.087 0.166 5.540 

 43 1.551 2.231 0.530 0.085 0.164 4.561 

        

375 3 1.507 8.171 0.804 0.074 0.152 10.708 

 8 1.437 3.758 0.657 0.072 0.141 6.065 

 18 1.406 2.246 0.583 0.069 0.134 4.438 

 33 1.454 1.730 0.639 0.073 0.133 4.029 

 43 1.374 1.067 0.606 0.069 0.12 3.236 

375R 3 1.457 8.714 0.737 0.075 0.147 11.130 

 8 1.423 4.803 0.722 0.074 0.151 7.173 

 18 1.334 2.949 0.710 0.071 0.146 5.210 

 33 1.450 2.318 0.766 0.077 0.142 4.753 

 43 1.275 1.386 0.702 0.067 0.144 3.574 
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Table A- 3 (continued) GC-FID data for thermally-stressed biodiesel samples 

Temperature Residence GC Peak Area (×10
6
) 

(℃) Time(min) C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

400 3 1.543 3.480 0.850 0.076 0.160 6.109 

 8 0.837 1.001 0.517 0.043 0.083 2.481 

 18 1.059 0.642 0.682 0.054 0.100 2.537 

 28 1.311 0.533 0.542 0.065 0.112 2.563 

 33 1.119 0.780 0.713 0.058 0.100 2.770 

425 3 1.490 1.712 0.687 0.078 0.142 4.109 

 8 1.060 0.389 0.385 0.053 0.091 1.978 

 13 0.938 0.239 0.325 0.044 0.071 1.617 

 18 0.895 0.203 0.313 0.041 0.066 1.518 

 23 0.767 0.134 0.231 0.035 0.054 1.221 

425R 3 1.224 1.095 0.755 0.064 0.134 3.272 

 8 0.927 0.098 0.549 0.054 0.079 1.707 

 13 0.733 0.026 0.408 0.044 0.058 1.269 

 18 0.680 0.013 0.381 0.039 0.053 1.166 

 23 0.618 0.011 0.346 0.035 0.048 1.058 

a
 R-replicates. 
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Table A- 4 Concentrations of thermal stressed biodiesel samples 

Temperature Residence Concentration (ppm by volume)
*
 

(℃) Time(min) C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

250 3 114.8 852.1 66.0 10.2 19.7 1062.8 

 8 114.8 851.8 63.6 9.6 19.1 1058.9 

 18 114.8 853.1 66.6 10.9 20.3 1065.6 

 38 114.8 857.5 66.9 10.7 19.9 1069.7 

 63 114.8 851.0 66.8 11.2 20.9 1064.6 

275 3 114.8 840.4 64.8 11.0 19.4 1050.4 

 8 114.8 829.3 64.6 11.2 19.5 1039.4 

 28 114.8 835.1 66.1 10.8 19.4 1046.2 

 38 114.8 819.9 64.1 10.9 19.4 1029.1 

 63 114.8 820.9 61.3 10.3 18.9 1026.2 

275R
a 

3 114.8 846.1 66.0 10.9 20.0 1057.8 

 8 114.8 841.4 66.5 10.6 19.6 1052.8 

 28 114.8 828.4 75.8 10.7 19.5 1049.2 

 38 114.8 815.8 68.6 10.4 19.6 1029.2 

 63 114.8 811.6 64.1 10.6 19.7 1020.8 

300 3 114.8 841.0 65.4 10.8 19.5 1051.4 

 8 114.8 828.4 55.9 10.9 18.4 1028.4 

 18 114.8 809.5 59.3 10.7 19.4 1013.8 

 33 114.8 791.2 58.3 10.7 18.8 993.8 

 63 114.8 779.8 63.5 10.3 18.7 987.1 

325 3 114.8 815.8 66.0 10.4 19.2 1026.2 

 8 114.8 780.4 66.5 10.4 19.0 991.0 

 18 114.8 710.8 66.5 10.3 19.5 921.9 

 33 114.8 598.8 65.9 10.8 20.0 810.3 

 63 114.8 469.9 63.4 10.4 19.9 678.4 
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Table A- 4 (continued) Concentrations of thermal stressed biodiesel samples 

Temperature Residence Concentration (ppm by volume)
*
 

(℃) Time(min) C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

325R 3 114.8 809.0 65.8 10.7 19.8 1020.0 

 8 114.8 762.0 68.4 10.4 19.1 974.8 

 18 114.8 671.8 65.5 10.7 19.7 882.5 

 63 114.8 451.0 63.7 10.6 20.8 660.9 

350 3 114.8 743.9 69.1 10.5 19.4 957.7 

 8 114.8 605.0 69.8 9.7 17.4 816.7 

 18 114.8 423.8 64.3 10.4 19.9 633.2 

 33 114.8 364.9 63.5 10.2 20.8 574.1 

360 3 114.8 689.5 63.7 10.6 20.1 898.7 

 8 114.8 468.5 57.4 10.9 20.5 672.0 

 18 114.8 379.3 54.8 10.7 20.2 579.8 

 33 114.8 244.1 59.0 10.6 19.8 448.3 

 43 114.8 197.4 45.1 10.8 20.1 388.2 

        

375 3 108.4 615.8 62.3 9.7 18.7 814.9 

 8 103.8 300.6 52.4 9.5 17.9 484.3 

 18 101.8 192.6 47.4 9.3 17.5 368.6 

 33 105.0 155.7 51.1 9.6 17.4 338.9 

 43 99.7 108.4 48.9 9.3 16.5 282.8 

375R 3 105.2 654.6 57.8 9.7 18.4 845.6 

 8 102.9 375.2 56.8 9.7 18.6 563.2 

 18 97.1 242.8 55.9 9.5 18.3 423.6 

 33 104.7 197.7 59.7 9.9 18.0 390.1 

 43 93.2 131.2 55.4 9.2 18.1 307.1 
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Table A- 4 (continued) Concentrations of thermal stressed biodiesel samples 

Temperature Residence Concentration (ppm by volume)
*
 

(℃) Time(min) C16:0 C18:1-3 C18:0 C20:0 C22:0 Total 

400 3 110.8 280.7 65.4 9.8 19.2 486.0 

 8 64.4 103.7 42.9 7.5 14.0 232.4 

 18 79.0 78.0 54.1 8.3 15.1 234.5 

 28 95.6 70.2 44.6 9.0 16.0 235.4 

 33 82.9 87.9 56.1 8.6 15.1 250.7 

425 3 107.3 154.5 54.4 10.0 18.0 344.1 

 8 79.0 60.0 34.0 8.2 14.5 195.7 

 13 71.0 49.2 29.9 7.6 13.2 170.9 

 18 68.2 46.7 29.1 7.4 12.8 164.2 

 23 59.8 41.7 23.6 6.9 12.0 144.1 

425R 3 89.8 110.4 59.0 9.0 17.5 285.6 

 8 70.3 39.2 45.1 8.3 13.7 176.5 

 13 57.5 34.0 35.5 7.6 12.3 147.0 

 18 54.0 33.1 33.7 7.2 12.0 140.0 

 23 50 33.0 31.4 6.9 11.6 132.8 

*
 Calculated by the calibration curve equation i i i iA a C b  using parameters from Table 12. 

Concentrations of biodiesel samples thermal stressed at 360 °C or below were corrected by a 

factor of                     , where C16:0 was used as a “native” internal standard. 

a
 R-replicate 
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Table A- 5 Data of Ink1, Ink2, and InK for each temperature 

T, 
o
C Ink1  Ink2  InK 

250 -7.6170 -4.9975 -2.6196 

275 -6.4644 -4.5152 -1.9491 

300 -5.7353 -4.0751 -1.6602 

325 -4.3218 -3.9040 -0.4178 

350 -3.2268 -3.3568 0.1301 

360 -2.7205 -3.1739 0.4534 

375 -2.2381 -3.0595 0.8214 

400 -1.1333 -2.4182 1.2849 

425 -0.6774 -2.4770 1.7996 
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Table A- 6 Comparison of modeling data and experimental data of biodiesel concentration 

and thermal decomposition percentage 

Temperature Residence Concentration (ppm) 
Decomposition percentage 

(%) 

(℃) Time(min) Exp. Molding STDEV Exp. Modeling STDEV 

250 3 1062.8 1085.2 15.8 2.20 0.15 1.45 

 8 1058.9 1082.6 16.8 2.56 0.38 1.54 

 18 1065.6 1077.8 8.6 1.95 0.83 0.79 

 38 1069.7 1069.0 0.5 1.57 1.63 0.04 

 63 1064.6 1059.8 3.4 2.04 2.49 0.32 

275 3 1054.1 1081.8 19.6 3.01 0.46 1.80 

 8 1046.1 1073.9 19.7 3.74 1.19 1.80 

 28 1047.7 1046.8 0.6 3.59 3.68 0.06 

 38 1029.1 1035.6 4.6 5.30 4.71 0.42 

 63 1023.5 1013.0 7.4 5.82 6.79 0.69 

300 3 1051.4 1076.6 17.8 3.25 0.94 1.63 

 8 1028.4 1060.9 23.0 5.37 2.39 2.11 

 18 1013.8 1033.8 14.1 6.71 4.87 1.30 

 33 993.8 1002.3 6.0 8.55 7.78 0.54 

 63 987.1 961.8 17.9 9.17 11.51 1.65 

325 3 1023.1 1045.6 15.9 5.86 3.79 1.46 

 8 982.9 985.5 1.8 9.56 9.32 0.17 

 18 902.2 891.7 7.4 16.98 17.95 0.69 

 33 810.3 798.4 8.4 25.44 26.53 0.77 

 63 669.7 707.8 26.9 38.38 34.87 2.48 

350 3 957.7 970.9 9.3 11.88 10.67 0.86 

 8 816.7 826.9 7.2 24.85 23.91 0.66 

 18 633.2 659.4 18.5 41.73 39.33 1.70 

 33 574.1 557.6 11.7 47.17 48.70 1.08 
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Table A- 6 (continued) Comparison of modeling data and experimental data of biodiesel 

concentration and thermal decomposition percentage 

Temperature Residence Concentration (ppm) 
Decomposition percentage 

(%) 

(℃) Time(min) Exp. Molding STDEV Exp. Modeling STDEV 

360 3 898.7 903.4 3.3 17.30 16.88 0.30 

 8 672.0 703.1 22.0 38.17 35.31 2.02 

 18 579.8 517.9 43.8 46.65 52.34 4.02 

 33 448.3 441.3 4.9 58.75 59.39 0.45 

 43 388.2 428.8 28.7 64.28 60.55 2.64 

        

375 3 830.3 808.1 15.7 23.60 25.64 1.44 

 8 523.8 552.9 20.6 51.81 49.12 1.90 

 18 396.1 379.5 11.7 63.56 65.08 1.07 

 33 364.5 336.7 19.7 66.46 69.02 1.81 

 43 295.0 333.0 26.9 72.86 69.36 2.47 

400 3 486.0 483.6 1.7 55.28 55.50 0.16 

 8 232.4 267.3 24.7 78.61 75.41 2.26 

 18 234.5 236.0 1.1 78.42 78.28 0.10 

 28 235.4 235.5 0.1 78.34 78.33 0.01 

 33 250.7 235.5 10.7 76.94 78.33 0.98 

425 3 314.9 312.1 2.0 71.02 71.28 0.18 

 8 186.1 162.4 16.8 82.87 85.06 1.55 

 13 159.0 154.6 3.1 85.37 85.77 0.28 

 18 152.1 154.2 1.5 86.00 85.81 0.13 

 23 138.4 154.2 11.2 87.26 85.81 1.03 
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