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Abstract 
The interaction of the nucleocapsid protein NCp7, from the pNL4-3 isolate of HIV-1, with Ψ-RNA-SL3, with the 
sequence 5’-GGACUAGCGGAGGCUAGUCC, was studied using non-denaturing gel electrophoresis. Two kinds 
of experiments were performed, using buffered solutions of radiolabeled RNA and unlabeled protein. In the 
‘dilution’ experiments, the total RNA concentration, RT, was varied for a series of solutions, but kept equal to the 
total protein concentration, PT. In the ‘titration’ experiments, solutions having RT constant but with varying PT were 
analyzed. The solutions were electrophoresed and the autoradiographic spot intensities, proportional to the amounts 
of the different species present, were measured. The intensities were fit to a number of equilibrium models, differing 
in species stoichiometries, by finding the best values of the binding constants. It was shown that NCp7 protein and 
SL3 RNA combine to form at least two complexes. When PT is below approximately 10 μM, a complex that 
contains two RNAs and one protein forms. Increasing PT to approximately 100 μM causes the 2:1 complex to 
oligomerize, forming a species having eight RNAs and four proteins. For the dilution experiments, run at 5 ̊C at an 
ionic strength of 31 mM, we found K1 for the 2:1 complex is ̴ 1011 M-2 and K2 for the 8:4 complex is ̴ 1016 M-3. The 
titration experiments returned K1 ̴ 107 M-2 (poorly determined) and K1 ̴ 1019 M-3. The analysis was complicated by 
the loss of RNA at higher protein concentrations, due to formation of an insoluble species containing both RNA and 
protein, which does not enter the gel. Correcting for this changes the calculated values of equilibrium constants, but 
not the molecularities determined by our analysis. The observation that a small complex can oligomerize to form a 
larger species is consistent with the fact that NCp7 organizes and condenses the genome in the virus particle. [end of 
page 149] 
 

1. Introduction 
The nucleocapsid protein, NCp7, has a number of important functions in the life cycle of HIV [1-4]. The protein 
facilitates the hybridization of tRNA to HIV RNA so that reverse transcription of the viral genome can take place 
[5]. It also promotes dimerization of HIV RNA [6-9] by converting an unstable intermediate formed between two 
genomic length RNAs into a stable duplex. When the virus is budding the correct RNA must be selected from a pool 
of competing cellular RNAs for insertion into the virus particle [10-13]. Selection appears to involve specific 
binding of the gag-polyprotein, and its attached nucleocapsid portion, to an RNA sequence, known as the Ψ element 
or packaging region of the genome. 

While certain of the interactions between NCp7 and HIV RNA appear to be structure and/or sequence 
specific, others are clearly non-specific. For example, there are approximately 2000 NCp7 molecules bound to two 
copies of genomic length viral RNA [8, 12]. This produces a very high binding density strongly suggesting that the 
interaction between the protein and RNA cannot be sequence specific. Lack of binding specificity is also 
demonstrated by the observations that NCp7 can interact with non-HIV RNA, DNA and even other proteins [14-19]. 

The binding of the nucleocapsid protein to HIV RNA has been studied using a variety of physical 
techniques. Mély et al. [20] studied the binding of a form of the nucleocapsid protein containing 72 amino acids to 
tRNALys. By analyzing the fluorescence quenching data from two tryptophan residues of the protein using Scatchard 
methods, they found that the nucleocapsid protein bound non-cooperatively to tRNALys with Kobs=3.2×106 M-1 and a 
binding site size at saturation of six nucleotides. Since similar binding parameters were found for another transfer 
RNA as well as for 5S RNA from E. coli, the authors concluded that binding is not sensitive to RNA structure and 
sequence. The extended form of the nucleocapsid protein and its RNA complexes form insoluble aggregates that can 



complicate a binding study [20]. Aggregates involving tRNALys [21] and poly A [22] and the protein have been 
characterized using electron microscopy. 

Sakaguchi et al. [7] used a gel shift assay (electrophoresis in non-denaturing polyacrylamide gels) to study 
the binding of NCp7 to a 44-nucleotide RNA located in the Ψ-element of the HIV strain, HXB2R. The RNA, which 
possessed two stem-loops, SL-2 and SL-3 [23] (and references therein), formed two complexes with the protein. 
Cross-linking experiments showed that both complexes contained one protein cross-linked to one RNA molecule. 
However, the authors suggested that the slower-moving species in the gel actually contains two RNAs but one of 
them is blocked from forming a covalent attachment to the protein in the photoinduced cross-linking reaction. Based 
on their observations the authors proposed that NCp7 binds to the first RNA via direct interaction of one of the zinc 
fingers of the protein with a stem-loop of RNA. The second complex forms by reaction of the second RNA with the 
free zinc finger of the 1:1 RNA-protein complex. 

Using the SELEX technique, Burglund et al. [24] used NCp7 to select an RNA that has a high binding 
affinity to the nucleocapsid protein. The selected RNA, SelPsi, possessed sequence/structural features similar to 
those of stem-loop 3 (SL3) of the Ψ element of HIV. Footprinting and filter binding studies showed that NCp7 binds 
to the loop region of SelPsi with K = 4.3×108 M-1 but the binding stoichiometry (assumed to be 1:1) was not 
established in the study. Using electrospray ionization mass spectrometry, Loo et al. [25] found that a 14-mer having 
the SL3 sequence in HIV-1 (LAI) binds to NCp7 to give a molecular ion corresponding to a 1:1 complex. As 
expected, removing the zinc ions from NCp7 blocked protein binding to RNA. 

Clever et al. w11x used a filter binding assay to measure binding of GST fusion proteins of the full-length 
gag polyprotein and the nucleocapsid protein to a variety of RNA segments located in the Ψ-region of HIV-1. By 
assuming a 1:1 binding stoichiometry they found that an RNA segment containing SL3 binds protein with K ̴;5×106 
M-1.  

A detailed atomic structure of the nucleocapsid [end of page 150] protein bound to HIV RNA determined 
by NMR was recently published by De Guzman et al. [26]. The structure of a 55-amino acid form of NCp7 bound to 
SL3 (Fig. 1.) shows three of the four bases in the tetra-loop portion of the RNA bound to the zinc fingers of the 
protein. The stoichiometry of the complex was determined to be 1:1 by gel filtration chromatography and the 
binding constant, K ̴ 107 M-1, was estimated using non-denaturing gel electrophoresis. 

Recently, Mély et al. [27] studied the binding of the DNA analogue of SL3 to the 72-amino acid form of 
NCp7 using fluorescence. They found that one protein binds to one DNA molecule with a binding constant, K ̴ 107 
M-1. By studying a number of single stranded DNAs and DNA hairpins they found that NCp7 prefers to bind to the 
following sequences: XiTGXj > XiGXGXj  ̴ XiTXGXj > XiGXj  Xi Xj, where X corresponds to either A or C. 

In an effort to characterize the Ψ-element of HIV-1 as a possible new target for interdiction by small 
molecules we have been studying the monomer-dimer equilibrium of sequences from HIV RNA and their 
interaction with proteins and drugs, using footprinting and quantitative gel techniques. Previously, we reported 
monomer-dimer equilibrium constants for RNA sequences located in the dimer initiation site (DIS) of HIV-1 
(MAL), measured by non-denaturing gel electrophoresis [28]. We found that equilibrium constants for three RNAs, 
19, 27 and 41 bases in length, range from 108 to 105 M-1, with the longest sequence having the smallest value of K. 
The decrease in K by three orders of magnitude between the shortest and longest sequence was attributed to changes 
in entropy of rod-like molecules and increased conformational entropy associated with long RNA sequences. 

In this work we use non-denaturing polyacrylamide gel electrophoresis to study the equilibrium and 
kinetics of binding between SL3 and the 55-amino-acid residue protein, NCp7; this is the same system studied by 
DeGuzman et al. [26], Fig. 1. By changing the concentration of protein and RNA in a buffered solution and 
analyzing the species present using non-denaturing gel electrophoresis we show that NCp7 forms at least two 
complexes with SL3. At protein and RNA concentrations below approximately 10 μM, a complex forms that 
contains two RNAs and one protein. However, increasing the concentration to 
 



 
[end of page 151] 
approximately 100 μM, causes the 2:1 complex to oligomerize to form a species containing eight RNAs and four 
proteins. Our analysis makes no assumptions about the molecular weights of species in the gel but rather seeks to 
explain the autoradiographic spot intensities in terms of an equilibrium model involving free RNA and complexes. 
In this report we present the theory and results for the gel analysis and discuss our findings in light of other binding 
models and the earlier NMR study on the same system [26]. 
 

2. Materials and methods 
 

2.1. Materials 
The SL3 RNA 59-GGACUAGCGGAGG-CUAGUCC. used in this study was synthesized using T7 polymerase [28-
30]. To maximize RNA yield and prevent fraying of the stem the coding sequence was modified at the ends from the 
normal HIV-1 LAI isolate. The molar extinction coefficient at 260 nm used for SL3 is (1.60 ±0.03) ×105 M-1 cm-1 as 
measured (five determinations) by previously described methods [28]. 

The extinction coefficient (ε). of the hairpin form of SL3 was determined by complete hydrolysis of the 20-
mer [28]. This method, which is not subject to sequence/structural effects that affect other ways of determining ε 
[31], has been used to measure the extinction coefficients of RNA and DNA [32-34]. Since the extinction coefficient 
was used to measure concentration of SL3, a significant error in this quantity would seriously affect the model used 
and the constants found in the gel analysis. However, comparison of the value of ε for SL3 with those of other 
RNAs suggests that the value found is consistent with the sequence and structure of SL3 RNA. 

The NCp7 with the 55-amino acid residue sequence: M Q K G N F R N Q R K T V K C F N C G K E G H 
I A K N C R A P R K K G C W K C G K E G H Q M K D C T E R Q A N, from the pNL4-3 isolate of HIV, was 
supplied by Dr M. Summers, University of Maryland-Baltimore County. The concentration of the protein was 
determined optically using an extinction coefficient of 6050 M-1 cm-1 at 280 nm [35]. 
 

2.2. Labeling RNA 
The SL3 RNA was labeled with 32 P by first removing the 5’ phosphate with calf intestinal phosphatase, CIP 
Boehringer Mannheim., in 60 μl of CIP buffer containing  ̴ 5 μM RNA and one unit of CIP [36]. The reaction was 
run for 1 h at 50 ̊C followed by removal of the enzyme by phenol extraction and purification of the sample by 
ethanol precipitation. RNA was end-labeled with 20 units of T4 polynucleotide kinase (Pro-mega) in kinase buffer, 
and 50 μCi of [γ- 32 P]ATP (Amersham). The labeling solution was incubated at 37 ̊C for 1 h and the reaction was 
stopped by ethanol precipitation. Labeled RNA was purified using denaturing PAGE in 1 × TBE running buffer (90 
mM Tris-borate, 2 mM EDTA, pH 8). RNA was visualized by autoradiography, the band containing the sample 
excised and RNA recovered by suspension of the gel segment in 1 ml of 1 × TBE buffer. A 5-μl sample of the RNA 
recovered by this method yielded ̴ 60 000 cpm upon scintillation counting. 
 



2.3. Protein binding studies 
Two different types of gel shift assays were done. One type referred to as a ‘dilution experiment’ was done by taking 
a concentrated sample of unlabeled RNA, 510 μM, in buffer (25 mM acetate, 0.1 mM ZnCl2 , 0.1 mM β-mer-
captoethanol, pH 6.5) and mixing with an equal molar amount of NCp7. Prior to adding the protein, RNA secondary 
structure was removed by heating to 100 ̊C for 10 min followed by rapid cooling to 0 ̊C. The equimolar solution was 
diluted with buffer to prepare samples spanning a wide range of concentration (0.6-510 μM). A 12 000 cpm-labeled 
RNA aliquot that had also been treated to remove secondary structure described above was added to each sample 
and the samples were equilibrated at 5 ̊C for at least 36 h. Immediately prior to electrophoresis, each sample was 
diluted by 0.25 by addition of a 50% [end of page 152] water/glycerol mixture at 5 ̊C, briefly vortexed, and loaded 
on a 20% non-denaturing gel at 5 ̊C. Electrophoresis was for  ̴ 16 h at 1000 V in 1×TBE buffer. After 
electrophoresis, the gel was dried and autoradiography carried out at – 20 ̊C using Kodak X-omat film. If the 
maximum optical density of images exceeded  ̴ 1.1 O.D., i.e. the optical density above which the response of the 
film is non-linear, a second autoradiogram with a shorter exposure time would be made. 

In the experiments referred to as ‘titration experiments’ a number of solutions having the same amount of 
labeled and unlabeled RNA (total RNA concentration of 90 μM) were prepared in buffer and subjected to 
heating/cooling to remove RNA secondary structure as described above. Protein was then added to give each sample 
a different concentration of protein (0-90 μM). Samples were equilibrated, usually at 5 ̊C for  ̴ 36 h, after which time 
they were diluted by addition of water/glycerol, briefly vortexed and subjected to electrophoresis. 
 

2.4. Quantitation of Gel Data 
The autoradiograms were digitized using a Hewlett Packard Scan Jet 5p scanner and Sigma Scan software, yielding 
an intensity profile for each lane of the scanned image. The intensity profiles were fitted to a sum of Gaussian peaks 
and a linear background using Peakfit software. In the few cases where the optical density of the image exceeded 
1.1, a peak was fitted using only data points below 1.1. Peak areas were assigned to the unbound RNA and the two 
complexes (the faster-running complex appeared as a streak). When bands overlapped, appropriate weighting factors 
were used to find band areas. The areas corresponding to unbound RNA and the complexes were divided by the total 
intensity in each lane to give the fractional amounts of each species. The fractional amounts were used in the 
calculations. 
 

3. Theory 
The electrophoretic field causes negatively charged species in a sample placed in the gel well to migrate out of the 
well and into the gel proper. In the gel, these species are separated according to their mobilities, and the locations 
and amounts of radiolabeled species are determined from an autoradiogram of the gel. 

When the species enter the gel from the loading well and are separated according to their mobilities, they 
are no longer in equilibrium since, in a region of the gel where one species is present, the concentrations of other 
species are close to zero. The absence of equilibrium may lead to decomposition or combination of species during 
migration in the gel. Only if the rate constants are small enough so that interconversion of species in the gel is 
negligible, will the separated species appear as spots in different locations on the gel, with spot intensities 
proportional to the amounts of these species which were present in the gel well. If interconversion is rapid, so that 
one detectable species converts rapidly into another of different mobility, the interconverting mixture appears as a 
streak. 

Cann [37-39] has shown that the sizes and shapes of spots and streaks in an electrophoretic gel may be 
understood by solving, numerically, the differential equations for motion of species in the gel (including mobility, 
diffusion, and reaction). From the concentrations of different species as a function of time and position, one can 
generate intensity plots (intensity as a function of position in a gel lane) which may be compared to the experiment. 
We and others [28,40,41] have carried out this program for DNA and RNA, obtaining spots and streaks which 
resemble those found experimentally. In particular, if species A reacts in the gel to form species B, the streak will 
extend from the position of A to the position of B, increasing in intensity from the position of A to that of B. If both 
A → B and B → A occur, the two streaks may combine to give a broad spot with maximum intensity between A and 
B. 

Observation of a narrow spot indicates a species which is not reacting in the gel, but a broad spot or streak 
does not necessarily indicate interconversion between species. If a species can exist in a number of different 
conformations with slightly different mobilities, it may give rise to a number [end of page 153] of close-together 
spots on the gel. These may appear to form one broad spot or streak, whether or not interconversion between 



conformations is taking place in the gel. It should be noted that rate constants for interconversion in the gel are often 
found to be several orders of magnitude smaller than those in bulk solution [28,41]. 

In the present system, the negatively charged SL3 RNA migrates from the top of the gel to the bottom 
when the electrophoretic field is on. The positively charged free NCp7, also present in the solution loaded into the 
well, does not enter the gel. Whether the charge of a protein-RNA complex is positive or negative depends on the 
relative numbers of RNAs and proteins in the complex. However, since the anionic charge on SL3 is much larger in 
magnitude than the cationic charge on NCp7, a complex formed between the two will most likely be negative. This 
is confirmed by our ability to detect NCp7-SL3 complexes in the gel. Since the mobility of a species depends on its 
charge, the RNA-protein complexes will certainly move more slowly in the gel than unbound RNA. We expect 
larger complexes to have lower mobilities because of their size, but it is also possible that the combination of 
negatively-charged and positively-charged species leads to more compact structures with enhanced mobilities in the 
gel. 

It is possible for an NCp7-SL3 complex to dissociate to free protein and free RNA in the gel, leading to 
formation of a streak increasing in intensity from the position of the complex to the position of the free RNA. This is 
because more RNA is dissociated from complex earlier, and the RNA dissociated later lags further behind the free 
RNA entering the well. On the other hand, an NCp7-SL3 complex cannot form in the gel, because there is no free 
protein available – any protein formed by decomposition of a complex migrates in the direction opposite to that of 
RNA. Small complexes can combine into larger ones, according to nA→An, since there is an excess of A in one 
region of the gel; this would lead to a streak increasing in intensity going backward opposite to the direction of 
migration. from the position of A, since An has a lower mobility than A. The decomposition, An→nA, can also 
occur, leading to a streak increasing in intensity going forward (in the direction of migration) from the position of 
An. 

In our analysis, it is assumed that the intensity of a spot (or the integrated intensity of a streak) is 
proportional to the number of radiolabeled SL3 RNAs at the spot’s location. This means that, for a complex 
containing m RNAs, the ratio of the spot intensity to the number of such complexes present is m times the 
corresponding ratio for a complex containing a single RNA. Since a broad spot or streak is a feature formed from 
reaction in the gel, its intensity can be assigned to a species from which it originated and contributes to the species 
concentration in the well. 

The actual concentrations of radiolabeled species are never known, so we cannot calculate concentrations 
from spot intensities. Only fractional intensities, spot intensities divided by the sum of all spot intensities in each 
lane, are significant. Our procedure is to assume a model, corresponding to an assumed stoichiometry of the 
complexes involved, and calculate, from the model, fractional intensities for different bands appearing on the 
audoradiogram. These are then compared with the measured fractional intensities. For models which show promise, 
calculations are performed for various values of the equilibrium constants, to find the best fit. Goodness of fit is 
defined by the average squared deviation between calculated and measured fractional intensities. 

As shown in Figs. 2-4, our gels show the existence of more than one NCp7-SL3 complex, in addition to 
free SL3. Assuming two such complexes, with empirical formulas Pi Rj and Pm Rn, we have two equilibrium 
expressions: 

 
Here, brackets indicate concentrations, P represents free NCp7, R represents free SL3 RNA, and K1 and K2 

are the equilibrium constants. There are also two conservation relations, 

 
[end of page 154] 



 
in which PT and RT are the known total concentrations of NCp7 and SL3. Using the equilibrium expressions to 
substitute for [PiRj] and [PmRn], one obtains two equations for [P] and [R]. For given values of K1, K2 , PT and RT, 
these equations are solved by the Newton-Raphson method [42] in two dimensions. 

Thus, for each set of values of PT and RT one obtains [P] and [R] and, using the equilibrium constant 
relations, [PiRj] and [PmRn]. Then fractional intensities for free RNA and the two complexes are calculated according 
to: 

 
and 

 
One then has fractional intensities of all three radiolabeled species as a function of concentration. 
To study the binding of NCp7 to SL3 two types of experiments were carried out. In dilution experiments, 

different lanes of the gel correspond to different dilutions of a solution containing equal concentrations of NCp7 and 
SL3 RNA, so that each lane has different values of PT and RT but PT=RT in all lanes. In titration experiments, RT is 
the same for all lanes of the gel, and PT varies from 0 to approximately RT. Titration experiments were also 
attempted with PT fixed and [end of page 155] 



 
RT varying from lane to lane, but were unsuccessful. When PT was much greater than RT, the radioactivity remained 
either in the gel well or the reaction tube, suggesting that the protein 

 
bound the RNA into species which were not soluble, had no charge or were positively charged. 
 

4. Results and analysis 
 

4.1. Temperature of electrophoresis. Stability of species in the gel 
In order to determine the equilibration and gel running temperatures to be used in the study, a series of trial 
electrophoresis experiments was carried out. Two solutions, one containing 103 μM and one containing 91.3 μM 
NCp7, and both containing 125 μM SL3, were equilibrated at 5 ̊C for 9 days after which a ‘load and run’ experiment 
[41] was carried out. Aliquots of solution were loaded into a non-denaturing gel with a running temperature of ̴ 35 ̊C 
at various times after the current was turned on. In this way, the behavior of species as a function of time spent in the 
gel could be studied. Plots of band intensity for the slowest migrating complex vs. migration distance (time) clearly 
showed that the concentration of this complex decreases as electrophoresis takes place at  ̴ 35 ̊C. This shows that the 
complex decomposes in the gel as electrophoresis takes place. However, when electrophoresis was carried out in a 
gel with a running temperature of 5 ̊C, no decomposition took place. On the basis of these observations it was 
decided to carry out all electrophoresis separations at 5 ̊C to minimize decomposition of the complex in the gel. 
 

4.2. Equilibrium/aggregation 



To determine if the system reached equilibrium prior to electrophoresis, selected samples were allowed to stand at 
5 ̊C for 2-9 days followed by electrophoresis in a 5 ̊C gel. The band patterns were identical (data not shown), 
indicating that samples reached equilibrium at 5 ̊C in less than two days. This raises the possibility that the system 
reaches equilibrium in the loading well of the gel during the time (10-15 min) that it takes for the species to enter the 
gel proper. If this occurs, the sample is diluted in the well, changing its [end of page 156] concentration by a factor 
d=Vi/Vw where Vi and Vw are the volumes of the sample and well respectively [28]. This disturbs the equilibrium. 
Then all initial concentrations must be divided by d before calculating binding constants from the spot intensities 
[28]. 

Samples of identical composition were equilibrated at two different temperatures, 5 ̊C and 35 ̊C, before 
being loaded into a 5 ̊C gel for electrophoresis. The resulting band patterns were not the same  data not shown., 
reflecting the fact that the equilibrium distribution of species at 5 ̊C is different from that at 35 ̊C. Thus, the 
equilibration time for the system appears greater than the residence time in the well, making a dilution correction 
unnecessary. Also, loading different volumes of the same NCp7/SL3 solution, equilibrated at 5 ̊C, into a gel at 5 ̊C 
gave the same relative band intensities and patterns, again indicating that dilution in the well is not important. 
Therefore, no correction for dilution in the well was used in calculating the binding constants reported below. It 
should be noted that our calculations show that, while the magnitude of K changes if dilution is considered, the 
molecularities of the species involved does not. 

Previous work by Mély et al. w20x and Al-Ghusein et al. [21] with a 72-amino acid variant of NCp7 
indicated that the protein and its RNA complexes form insoluble aggregates. The 55-residue nucleocapsid protein 
used in these studies is missing the cationic ‘tail’ from the carboxylic acid terminus of the longer variant. How this 
structural change relates to the nucleation properties of the protein is difficult to predict but Summers and co-
workers [26,43,44], who have extensively characterized the 55-residue variant using high resolution NMR, have not 
reported that the protein itself aggregates or associates in solution. In our analysis we have assumed that interactions 
between free protein molecules in solution do not take place. However, evidence that the NCp7-SL3 complexes may 
aggregate to produce insoluble materials may lie in the fact that, for our experiments, the total intensity in a lane of a 
gel usually decreased as the concentration of NCp7/SL3 increased (data not shown). This indicates that some of the 
sample may be in a form which does not allow it to enter the gel. However, although the change in total intensity 
can be large, we found that the fractional spot intensities are unaffected; all of the experiments support the proposed 
model and return comparable values of K. 
 

4.3. Results of experiments 
An autoradiogram for a dilution experiment is shown in Fig. 2. Scans of selected lanes are shown in Fig. 3. In all the 
dilution experiments, the gels show similar band patterns. Lanes for low concentrations of SL3 and NCp7 show a 
single band with the same mobility as the band in the lane for SL3 only, so this band must be unbound RNA. The 
high-concentration lanes show a narrow band with a considerably lower mobility than the unbound RNA band, 
which is assigned as a stable protein-RNA complex. (Sometimes the band for unbound RNA is also present, but 
with low intensity.) At intermediate concentrations, one sees a third feature, a broad band or streak between the 
unbound RNA and the slow moving complex, which is assigned as an intermediate between the stable complex and 
unbound RNA. The average electrophoretic mobility position. of the streak decreases as the concentration of 
NCp7/SL3 increases, Fig. 3. Fig. 4 gives the fractional intensities of the free RNA, the streak and the slow moving 
complex as a function of protein/RNA concentration. 

Various models of SL3 binding to NCp7 were used to calculate fractional intensities for comparison with 
experiment. At first, the streak was ignored, or considered to represent the dissociation of the complex in the gel, 
and only the slowest band and the band due to unbound RNA were considered. It was impossible to fit the fractional 
intensities as a function of concentration by assuming that the slow moving SL3:NCp7 complex was 1:1, 2:1, or 1:2. 
Reflection shows that the streak cannot be due to the decomposition of the slowest moving complex in the gel 
because, if it were, it would still be present at the highest concentrations, when only the slowest moving complex is 
present. Furthermore, the fact that the intensity of the streak decreases as the intensity of [end of page 157] the 
slowest moving species increases (Fig. 4) shows that both features represent complexes of SL3 and NCp7, and that 
the complex appearing at highest concentration has a larger molecularity. 

Subsequent models included two different complexes involving SL3 and NCp7. The streak was assigned as 
a complex, PiRj, and the slowest migrating species as PmRn, where m+n>i+j. Although it seems reasonable for the 
larger complex to be a multiple or aggregate of the smaller, models for which this was not the case were also 
considered. For example, the simplest models assume SL3:NCp7=1:1 for the streak and 2:1 or 1:2 for the large 
complex. It is impossible, however, to fit the fractional intensities with these models. If the streak is assumed to be 



1:1 complex and the slowest moving band 2:1, the calculated intensity of the former does not decrease as 
concentration increases. If the slow band is assumed to be 1:2 (one RNA and two proteins), one cannot explain why 
the amount of free RNA is reduced almost to zero at high concentrations. If the streak is assumed to be 1:2 and the 
slow band is due to a larger complex, one cannot come close to fitting the fractional intensities. It is necessary to 
model the streak as a 2:1 complex. 

With a 2:1 complex for the streak, we assumed that the slowest moving band is a 4:2 complex. This model 
shows the experimentally observed decrease in the 2:1 complex intensity at high concentrations, but the calculated 
intensity of the 4:2 complex does not increase fast enough with concentration to match the experimental data. 
Assuming that this complex is 8:4, i.e. formed from four of the smaller complexes, corrects the error. Although 16:8 
works as well as 8:4, the choice of 8:4 is more reasonable. After trying other models with different molecularities for 
both complexes, we concluded that the small complex (streak) must involve two RNAs plus one protein, and that the 
large complex (slowest migrating band) probably contains eight RNAs and four proteins. 

No equilibrium model can explain the persistence of the free-RNA spot at high concentrations. Our 
explanation for this is that some of the RNA is incapable of binding to protein. The amount of ‘non-binding’ RNA 
can be estimated from the free-RNA spot intensity at the highest concentrations (it eventually levels off with 
concentration), and the data can be corrected by subtracting the non-binding RNA from the free-RNA spot intensity 
at each concentration. On fitting the corrected data to models, the conclusions about the molecularities of the 
complexes are unchanged, and in the values of the equilibrium constants change little. There is a small improvement 
in the goodness of fit of calculated fractional intensities to experimental values. 

The proposed model raises several questions: (1) Why does the small complex appear as a streak and not a 
narrow band? (2) Why are complexes intermediate between 2:1 and 8:4 not seen? (3) Why does the position of 
maximum intensity in the streak move, as concentration increases, in the direction away from the free-RNA band 
toward the band for the large complex? All can be answered by postulating that the streak is formed from bands 
representing two or more species that have different mobilities and different molecularities, such as the 2:1 and 4:2 
complexes. The relative intensities of the species would vary with concentration. Alternatively, the streak may 
represent an interconverting mixture of these complexes, in which case simulations show [41] that the individual 
bands would be replaced by a single broad band with maximum intensity at a position dependent on the relative 
amounts of the species. In view of the breadth of the streak, the latter possibility is favored. 

A three-complex model was considered, involving, in addition to K1 and K2, the equilibrium constant K3, 
corresponding to formation of a complex PrRs, 

 
The fractional intensity of the streak was calculated as 

 
Since this model includes an extra complex, it [end of page 158] necessarily improves the fit of calculated 

fractional intensities to experiment from three additional parameters, r, s, and K3, but the improvement is not 
significant. Also, one can change K3 substantially without significantly changing the goodness of fit, provided that 
K1 is also changed. 

Therefore, two-complex models are used to interpret all of the dilution-gel data, with the understanding that 
the value of K1 is an effective value. With the complex PiRj corresponding to the broad peak and the complex PmRn 
to the narrow, slowest-running, peak, it is found that i=1, j=2, m=4, n=8 works best. Calculated fractional intensities 
derived from this model are shown in Fig. 4. 

The total intensity in a given lane was plotted vs. RNA concentration for this first dilution experiment (of 
seven carried out). The trend line had a slope of zero within the calculated precision, indicating that the same 
amount of RNA entered the gel from all samples in the dilution experiment. However, only two of the seven dilution 
experiments gave plots of total intensity vs. concentration that showed no trend, the other five experiments showing 
significant decreases in total intensity (up to 90%) with increasing concentration. This indicated loss of RNA. Since 
it occurred only when both RNA and protein were present, the material being lost was an insoluble protein-RNA 
complex. It remained either in the reaction tube confirmed by scintillation counting. or in the loading well, and did 
not enter the gel proper. Since the relative spot intensities for all dilution experiments behaved in the same way, the 
solution above the insoluble complex contained the equilibrium distribution of species. 

However, the loss of RNA and protein led to a decrease in the total RNA (RT) and total protein (PT) 
concentrations in solution from their initial values, which were used to calculate free RNA and free protein in the 



equilibrium expressions. Therefore, it was necessary to decrease these quantities by the amounts of protein and RNA 
lost to the material that did not enter the gel. This was done by fitting the plot of total intensity vs. concentration to 
an exponential and generating a correction factor bk=Ik/IT , where Ik is the total intensity for lane k calculated from 
the exponential and IT is the calculated intensity for RT=0.1 μM (estimated concentration of RNA for the lane with 
no unlabeled RNA and no protein). The corrected total RNA concentration for lane k, RT’, is given by RT’=bkRT and 
the corrected total protein concentration for lane k, PT’, is given by PT’=1/2(bk+1)PT. The latter correction assumes 
that the complex responsible for the loss of RNA contains RNA and protein in the ratio 2:1, the ratio found for the 
small complexes. Other ratios were tested for use in this correction, such as 1:1, which was found to remove too 
much of the RNA for the analysis of 
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the gels to work. It should be emphasized that, although the correction improves agreement between values of K 
from different experiments, it is unimportant for establishing the species molecularities: without the correction all 
experiments returned the same molecularities. The values of K for the various dilution experiments using this 
correction are found in Table 1. 

We now consider the titration gels. Fig. 5 shows an autoradiogram of such a gel. In Fig. 6, fractional 
intensities of the three observed spots are plotted as a function of protein concentration (RNA concentration is 
fixed). At low protein concentrations, only the spot for free RNA appears, as expected. For protein concentrations 
approaching the RNA concentration, one sees only a narrow spot, at the position of the large complex. The broad 
spot between the two other spots appears with very low intensity, and on some titration gels it is not observed at all. 

Attempts were made to fit the data from a titration gel to a one-complex model, ignoring whatever intensity 
appeared between the two spots. The assumption that the complex was 1:1 led to fractional intensities that were far 
from matching those experimentally observed. Assuming a model of two RNAs to one protein led to much better 
agreement, as did the 4:2 and 8:4 models. In fact, there was not much difference in the fits obtained from these three 
models. 

The two-complex model can also fit the titration gel data, and with the same molecularities as used for the 
dilution gel data. Models with other molecularities were tried, but, as for the dilution gels, they could not fit the data 
at all. The best-fit values of the binding constants K1 and K2 for the titration experiments using the two-complex 
model are given in Table 2. They are substantially different from those determined by fitting the dilution gels. In 
particular, K1 must be much smaller for the titration gels than for the dilution gels in order to predict the very low 
intensities of the small complex which are observed. Because these intensities are so small, a precise value for K1 
cannot be determined, and this causes the value of K2 to be less precise as well. 
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Of the three titration experiments, one showed no decrease in total intensity in a lane with protein 

concentration. For the others, an exponential fit of total intensity vs. PT was used to correct for loss of RNA and 
protein. As for the dilution gels, RT for lane k was multiplied by bk = Ik/IT where Ik is the total intensity calculated for 
the concentration of lane k and IT is the total intensity calculated for the no-protein lane. The corrected total protein 
concentration was PT’=1/2 (bk+1)PT. 
 

5. Discussion 
We have shown how analysis of electrophoretic gels can be used to obtain information about the binding of 

the SL3 segment of HIV RNA to the nucleocapsid protein NCp7. Radiolabeled RNA is allowed to come to 
equilibrium with NCp7 in solution and samples are electrophoresed in a non-denaturing polyacrylamide gel to 
separate species of different mobilities. Two kinds of experiments were performed: in dilution gels, different lanes 
correspond to solutions with different protein and RNA concentrations, but with PT=RT; in titration gels, RT is the 
same in all lanes but PT varies from lane to lane, with PT≤ RT. 

Optical density plots derived from measurements of an autoradiogram of the gel show a number of features, 
corresponding to different RNA-containing species. The intensities of these features are proportional to the relative 



amounts of these species in the gel. If reaction kinetics in the gel are slow, these reflect the amounts of the species in 
the solution loaded into the gel wells. Assuming a model (chemical formula) for the species in solution, one 
calculates spot intensities and tries to fit them to those observed by varying the values of equilibrium constants. 
Since most models do not permit a good fit, only a few models are acceptable. 

In all gels, one observes two well-defined bands, one of which can be unambiguously assigned to unbound 
RNA and the other to a RNA-protein 
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complex. In dilution gels, and in some titration gels, one finds a broad band between these two. Due to the way its 
intensity changes with protein and RNA concentration, it must represent one or more RNA-protein complexes of 
smaller molecularity than that responsible for the slowest-moving band. That fact that the intermediate band is broad 
suggests that it involves several such complexes, possibly interconverting in the gel. 

Models involving three or four complexes of different molecularities were considered. Of course, the 
additional parameters involved allow these models to give better fits to experimental data, but the improvement is 
not enough to be significant. Thus, we considered two-complex models, with the understanding that K1 and K2 
represent effective or average values, as do the molecularities of the complexes involved. We assumed that the 
faster-moving complex, represented by the broad streak, involved fewer protein and RNA molecules than the 
slower-moving one. 

The simplest choice for the former is 1:1, but no model incorporating this assumption could fit intensities 
from any of our gels. It was necessary to assume two RNAs plus one protein to get a good fit. Although many 
choices were tried for the slower complex, the best fits were found assuming it was some multiple of the faster 
complex, with the best of these being eight RNAs plus four proteins. This fit all the dilution and titration gels, 
although the values found for the equilibrium constants K1 and K2 were different for gels of different types. This 
may be related to the fact that the low intensities found for the broad band on titration gels made it impossible to 
determine K1 with any accuracy, and this in turn made the determination of K2 difficult. Values of the equilibrium 
constants as determined from various gels are given in Tables 1 and 2. 

A problem is that species too large to enter the gel may form in concentrated solutions. This is probably the 
reason that total intensity in a lane decreases with increasing concentration of protein or RNA in some dilution gels. 
It may also explain why it was not possible to run RNA titration gels, with protein concentration fixed and that of 
RNA varied; lanes with PT greater than RT showed little or no intensity, indicating loss of most of the RNA. 

When total intensity decreased with RNA and protein concentration, we corrected the values of RT and PT , 
assuming RNA and protein were lost in a 2:1 ratio. It should be emphasized that we obtain the same molecularities 
for the complexes whether or not a correction for loss of RNA is made. The values of the constants K1 and K2 are, of 
course, changed when the correction is made. The large difference between the values of these constants determined 
from dilution and titration gels may come from the assumption that the amount of lost protein was half the amount 
of lost RNA. Assuming instead that significantly more protein is lost would affect the calculations for the titration 
gels much more than for the dilution gels. 

The interaction of NCp7 with SL3 was previously studied using NMR [26]. The system was analyzed as a 
1:1 complex between protein and RNA, although the stoichiometry of the complex was not directly determined from 
the NMR data. Rather, stoichiometry was found by separating the species in the NMR sample using gel filtration 
chromatography and assigning molecular weights by comparing mobilities of species in the sample with those of 
standards having known molecular weights. 

The temperatures used in this study and those employed in the NMR investigation were not the same. Our 
experiments were mostly carried out at 5 ̊C, a temperature lower than that used in the NMR work. We found that the 



8:4 complex (SL3:NCp7) exists at concentrations approaching those used in the NMR work but that it slowly 
decomposes in the gel if the running temperature is 37 ̊C. Its stability in bulk solution should be much lower than in 
the gel, so it may be that the NMR study analyzed lower molecular weight species (giving narrow NMR lines) 
which were in exchange with the 8:4 complex. It should also be noted that the buffer conditions for the NMR and 
the gel shift experiments are different. The equilibration buffer for the gel shift experiments lacks the 25 mM NaCl 
used in the NMR experiments, which means the ionic strength is lower. Also, the [end of page 162] NMR sample is 
equilibrated and observed in the same buffer, but the gel sample is able to mix with 1× TBE in the gel well after 
equilibration. In addition to changing the ionic strength, the TBE buffer may influence the equilibrium [45]. 

We inferred the formation of insoluble species at the higher concentrations of most of our gel studies. 
Different preparations of RNA were used in different studies, but the presence of insoluble material did not correlate 
with the source or age of SL3. The situation may be similar to supersaturation of a solution in that the formation of a 
solid may be thermodynamically favored but the kinetics for formation are influenced by environmental factors that 
are difficult to control. Since the authors of the NMR work [26] did not report observing insoluble material, it may 
be that precipitation was favored by the lower temperature of our gel studies. 

The results of our study also contrast with those recently published by Mély and coworkers [27] who used 
fluorescence to study the binding of the 72-amino-acid variant of NCp7. These investigators reported 
stoichiometries, binding constants and specificities of interactions of the DNA analogue of SL3, other DNA 
hairpins, and various single-stranded oligomers. They measured the fluorescence intensity of two tryptophan 
residues of the protein as nucleic acid was added to the system. Analysis of the fluorescence data using Scatchard 
methods showed that SL3 DNA reacts with NCp7 to form a 1:1 complex with a binding constant of  ̴ 107 M-1. That 
fact that a different system DNA and the 72-amino acid variant of NCp7. and different experimental conditions 
20 ̊C. were used may explain the discrepancies between our work and this one w27x. 

Another recent fluorescence study by Urbaneja et al. [46] leads to conclusions contradicting both Mély et 
al. [27] and us. This study shows a 1:2 RNA/protein stoichiometry with a dissociation constant Kd of 10 nM in 
sodium phosphate at pH 7.0. They also suggest that Trp-37 is part of the binding site because of the  ̴ 90% 
tryptophan fluorescence quenching when nucleic acid was bound. The binding is suggested to be in the loop of the 
SL3 hairpin since DNA hairpin oligonucleotides without loop bases bound with 1:1 stoichiometry and Kd=50 nM. 

The structure of SL3 indicates that it can undergo a hairpin-duplex interconversion similarly to RNA 
sequences earlier studied by us [28]. Since the loop region of SL3 is not self-complementary, the bases in the loop, 
5’-GGAG, would be expected to form a bulge in the duplex. Lack of base pairing in this region would destabilize 
the duplex compared to other RNAs with a selfcomplementary loop region in the monomer. Native gel 
electrophoresis shows that the monomerdimer equilibrium constant for SL3 under conditions used for the protein 
binding work is  ̴ 103 M-1 data not shown., five orders of magnitude smaller than the value of K obtained for a 
similar-length hairpin with a self-complementary loop [28]. Only a small amount of RNA dimer is present under the 
conditions used in the present studies, but complexation of duplex RNA to protein could drive the dimerization 
process, producing a complex having bound duplex RNA. This complex could subsequently oligomerize to form 
higher molecular weight species such as the 8:4 complex. Alternatively, two hairpin monomers (the major RNA 
form in solution) could react with one protein molecule stepwise to produce the 2:1 complex. Since we found no 
evidence for the 1:1 complex, the binding must be highly cooperative, i.e. the binding constant for a second SL3 
molecule to NCp7 when a first is bound is much larger than for the first. Clearly, characterizing the bound RNA and 
determining the binding mechanism will require additional study. 

It is difficult to extrapolate our findings to the state of packaged RNA in the virion of the HIV virus [1]. 
However, the oligomerization of the 2:1 complex suggests that individual RNA-protein particles contain 
functionalities that allow self-association. For long RNA strands bound to many NCp7 molecules, this kind of 
particle-particle interaction could be one of the mechanisms used to compact and organize RNA in the virion of the 
virus. We are examining the binding of NCp7 to longer Ψ-RNA segments to determine whether the packaging 
region of HIV, as it likely to exist in the virus, can be used as a target for drug action. [end of page 163] 
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