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DIFULE MOMENTS IN THOMAS-FERMI-DIRAC AND TMOMAS-FERIMI TREORIES 

It is shown that the electronic contributiori to the dipok moment, calculated from 8 solution to the Thomas- 
Fermi-Dirac or Thomas-Fermi equations, should be equal and opposite to the nuclear contribution. Thus, the 
Thomas-Fermi-Dirac and Thomas-Fermi theories predict vanishing: dipole moments for at1 mokculrrr systems. 

Recently, we have been performing calcdations of 
molecular electronic charge distributions according to 
the Thomas- Fermi-Dirac theory. Our method [I] 

permits treatment of anjjt cylindrically symmetric 
molecule; only for homopolar diatomic systems [I& 3) 

have accurate solutions to the TFD equation been 
presented so far. For the heteropolar diatomic moIe- 
cules we treated, we found an electric dipole moment 
(nuclear minus electronic contributions) of zero, 
within the estimated accuracy of our calculations. In 
the present article, it is shown that the moment should 
be exactly zero for the TFD density of a neutral 
system. 

Brinkman and Peperxak [41, after fmding zero 
moments from Thomas-Femli calculations on H,O, 
presented a proof that the Thomas-Fermi (TF) densi- 
ty always gives zero moments. The proof has been 
criticized [S] , since it assumes that the potential goes 
as r-4 when r, the distance from the nuclei, is large. 
This assumption permits one to state that a certain in- 
tegraf over a sphere of radius r approaches zero as r 
approaches infinity. However, assuming that the po- 
tential goes as rW4 is equivalent to assuming the non- 
existence of a dipoie moment. The Thomas-Fermi- 
Dirac (TFD) electron density is finite in extent, so 
that integrals over infinitely Iarge surfaces will not oc- 
cur in our proof. Having proved the theorem for TFD, 
we will show how it may be extended to cover TF. 

in our proof, we will require some results given by 
Sheldon [25. Some of his proofs will also be repeated 
in a notation more convenient for our use. In the TED 

theory, the ciectran density p is chosen to minimize 

with the normalization constraint 

N=Jdr/J. (2) 

Here, VN is the potential due to the nuclei, ok = 

$j’(~Zi2)2’3&Z~, KG = g(3/;l)“3e2, and N is the num- 
ber of electrons. Let nucleus A, with charge Z,, be 
located at rA, with 

cz, =N, 
hf 

for a neutral system. By making W - tiV stationary, 
with h a Lagrange multiplier, one finds 

+kp2’3 - +JpJ + p* = h , (4 

where 

Sheidon [ZI shows one must consider the possibility 
of a discontinuous soiution, i.e., p = 0 outside a 
boundary surface C. 

The boundary is dhos,on to m&e the ener= a 
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minimum, by considering another. solution, differing molecule is zero. According to (4), QI is constant on 
slightly from fhe first, and being bounded by a sur- the boundary, i.e., the boundary is kequipotential, 
face c. Its properties are distlkguished by primes. so that WI is normal to the boundary, and the nor- 

Letting subscripts C and u refer to the voIumes within mal component of V@ is of the same sign at all points 
C and between C and c respectively, Sheldon noted on the boundary. Since the surface integral of VcP*ds 

that vanishes, the normal component of VQ, is zero on 

IV’ - IV = W& - W + rut = h(N-&) + iv; (6) 
the boundary, and 

because of the stationary principle obeyed by the v@l = 0 on the boundary of the molecule . (12) 

first solution within C. Since u is small, Outside the boundary, p vanishes. Since there are no 
lines of force extending out of the molecule, one can 
integrate a1 to infinity, starting at the boundary, to 

” show cPl(-) = al(boundary). Then, using (lo), 

~N:(KATpz’3-K=P”3f~,), (7) Qpl = 0 on the boundary of the mo!ecule . iW 
where Ni = N - A& Now, using (4) and (7) in (6), Inserting (8) and (13) in (4), we have 

W’ - ~~=~~(-~~lip2’“+~KiI~“3). X = ---&K~/K~ . (14) 

This will be negative if l11’3 is greater than ~K~/K~. The electronic contribution to the dipole moment in 

Therefore, the boundary surface is defined by the x direction is 

PC = (+Ka/Kk)3 . (8) 
The TFD equations, thkn are 

= -( 1/4ne)J [V*(xck, ) - 2dQI /ti] dr , (15) 

V2G1 =o, P < ~K~IKX’ 3 (9b) 
where ‘P, is given in terms of p by eq. (4). The 
boundary conditions are, for a neutral system, 

where rhI is the distance to nucleus M. Eqs. (9) are ac- 

tually satisfied everywhere that the nuclear charge 
density vanishes. 

If eq. (9a) is used in cq. (2), with the volume of in- 

tegration the volume of the molecule, excluding small 
spheres centered at the nuclei, Green’s theorem may 
be used to give a surface integral: 

N= -(1/477ej JVQ,*dS. (11) 
S 

The contribution of the sphere centered on nucleus M 
is Z,, _ This means, because of the neu traiity condition 
(2), that the surface integral over the boundary of the 

472. 

where we integrate over the region where ,o is non- 
zero, except for small volumes around the nuclei. If 
these vo!umes are taken as srnail cylinders of radius R 
with axes in the x direction, da1 /dx may be integrated 
immediately over X, withy and z fEed, to give @t at 
the limits of the integration, which may be the 

boundary of the molecule, or a face of a small cylinder. 
In the former case, a1 = 0: the contributions of the 
faces give zero as R + 0. Converting the remainder of 

(15) to a surface integral, we have 

(16) 
S 

The contribution of the outer boundary surface 
vanishes because of (12) and (13 j. The contribution of 
the cylinder about nucleus M may be calculated exact- 
ly as follows. 

Let the cylinder have radius R and extend from x 
= {I (rl < xbI) to x = 52 (cl > xhi). Then the surface 
integral of V(x+,)*dS is 
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7 -1/z 
- [Xl - X&f I K, - XhJ K5-, -Q-l 13 

after some algebra. Note that 

10-I -“& l’* = I& -XhiI = Xhl - {I 

and [(fZ-x,,)2 ] “* = c2 - xhf. Letting R approach 0, 
and cl, and c2 approach xhi from the left and the 
right, the first two terms in the above integral vanish, 
and one obtains 

27iz [(25,-x ) + (?.$ -x 
hf _ hl 1 hi )] + 4iT.z x hi M e - 

Now the total dipole moment is 

-eC jxpdr=o. 
hI 

ZhI Xhl + e (17) 

Therefore, the net dipole moment for the Thomas- 

Fermi-Dirac electron density vanishes. To extend this 
result to the Thomas-Fermi electron density, we have 

only to note the well-known fact that the TFD model 
goes over to the TF model when electronic exchange 
energy is neglected. This corresponds to neglecting 
the third term in (l), or to putting K~ = 0. The surface 
C is at infmity, and pc = 0 [eq. @)I. Now di the re- 
sults above are independent of the value of Kg. There- 

fore, the result (17) hoids for the TF model as well. 
It- also holds for modifications like that of Comb& 
[6, section 1 I], which include some of thk effect of 
correlation, but involve a change in the value of K,. 

It is interesting to note that the chemical potential 
[6, pp_ 38, 581 of the Thomas-Fermi atom is zero 
for all neutral atoms. In the TFD theory,*, chemical 
potential is 

which also has the same value (-&i/gk) for all 
neutral systems. Thus, there is no tendency for charge 
transfer from one atom to another: all atoms have the 
same electronegativity. This helps to explain the ab- 
sence of dipole moments. 

In our calculations, as in calculations performed by 
other methods, the errors in the electron density are 
likely to be largest on the periphery. The density at 
the periphery has a great effect on the expectation 
value of x, because of the weighting by the operator. 
Thus, large errors are likely to occur in calculations of 
dipole moments. The deviation of the electronic con- 
tribution to the dipole moment from the nuclear con- 
tribution should be interpreted as a measure of the 

numerical error in the calculaticn, since we have shown 
that the exact TFD or TF density must give a net 
dipole moment of zero. 
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