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Publication costs assisted by Syracuse University 

We consider the polarizable electrochemical interface with spherical symmetry, and show that the common 
assumption of an invariant dielectric constant violates the mechanical equilibrium condition, unless its value 
is that of vacuum. The polarizable particles must be taken into account explicitly, which we do by deriving 
distribution functions for interacting charged and polarizable particles, neglecting short-range forces and 
short-range correlations, Calculating the change in surface tension when the distributions change so as to 
keep constant the temperature and the pressure inside and outside the interface, we obtain the Lippmann 
equation. 

Introduction 
The Lippmann equation, which relates the surface tension 

and surface charge density of the ideally polarizable interface 
to the potential drop across the interface, is of fundamental 
importance to our understanding1 of the electrochemical 
double layer. The proof by thermodynamics was given 100 
years ago2 but a general statistical mechanical proof, in terms 
of the molecular species which make up the interface, is not 
available. Since only such a proof can give the interpretation 
on the molecular level of such quantities as surface charge 
density, we have attempted, in several recent publication~,3?~ 
to construct such a proof. Starting from the balance of forces 
for interacting ions, the Lippmann equation was obtained3 
when only the changes in long-range (electrostatic) forces were 
considered. To take into consideration polarizable molecules, 
we assumed a Boltzmann distribution for their density. As 
shown in the next paragraph, the common assumption that 
these molecules may be taken into account by insertion of a 
dielectric constant into the force laws is in costradiction to 
the mechanical equilibrium condition. It is the Rurpose of the 
present paper to show how tbe Lippmann equation follows 
from the general statistical mechanical equilibrium conditions 
for interacting charged and polarizable species. 

The explicit consideration of the polarizable (solvent) 
species is necessary for a consistent proof of the Lippmann 
equation. Their behavior cannot be subsumed under a di- 
electric copstant e of fixed value. If the solvent mplecules are 
not allowed to readjust to changes in electrical conditions, 
mechanical equilibrium is violated, as we now show.5 The 
mechanical equilibrium condition in the presence of an electric 
field is6 

-= -  dP [(e - 1/2eo)E21 
dx dx 

where the system is supposed to be homogeneous in they and 
z directions, so that the electric field E is necessarily in the x 
direction. If the derivative of the pressure p involves only the 
derivative of the densities vi of charged species (ions) and 
these obey a Boltzmann distribution, (1) becomes 

Here, nio is the density of ionic species i for x = -, where the 
electrical potential L) is zero. These assumptions are the con- 

ventional ones, used in the Gouy-Chapman, Debye-Huckel, 
and other theories, and can be used to generate a proof of the 
Lippmann e q ~ a t i o n . ~ , ~  However, the left side of eq 2 may be 
written: 

using the Poisson equation appropriate to a region of dielectric 
constant e. Equation 2 now becomes 

tE dEldx = (2t - to)E dEldx 

This can hold only for e = €0 (no dielectric present). 
For e # to there is a contradiction between the assumptions 

and the mechanical equilibrium condition (l), although both 
should follow from thermal equilibrium. A proof of the 
Lippmann e q ~ a t i o n ~ , ~  from the density distributions of the 
Gouy-Chapman theory, which require t = constant, is un- 
satisfactory for this reason. A more coqsistent proof can be 
given5 using the assumptions of the theory, which are not 
themselves inconsistent for low enough ion densities. 

Basic Equations 
We turn now to a proof from general statistical mechanical 

relations. For simplicity, we consider only the solution side 
of the metal-solution interface, so that the metal side serves 
only as a source of fields which act on the particles of the so- 
lution. The potential drop across the metal surface is supposed 
to be unchanged when the surface charge density changes. (It 
is possible4 to treat the entire interface, including both metal 
and solution sides, but the present treatment conforms to the 
usual models discussed for the metal-solution interface.) For 
a spherical interface with surface tension p and surface of 
tension a t  radius r,, we showed3 

AprO2 = - LIS:’r2 dr  (APT + lheo AE2) (3) 

where “A” means “change in” and PT is the pressure in the 
tangential direction, except for the contribution of long-range 
forces, which have been separated out in the last term. The 
electric field E is in the radial direction, and vanishes at  r = 
re  (far outside the interfacial region). The metal surface is at 
r = r,. Included in p~ are forces due to short-rmgp interactions 
and correlations as well as the “kinetic” contribution. Only 
the latter will be considered here, so that 
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assuming thermal equilibrium where ni is the number density 
of species i. There are n chemical species, with no referring to 
the solvent, whose molecules are uncharged and polarizable; 
the other species have charged but nonpolarizable mole- 
cules. 

The balance of forces between the molecules is treated, as 
previously,3 using a formalism given by Mazure8 Under con- 
ditions of equilibrium and constant temperature 

( 5 )  

where f is the distribution function in phase space, Pk is the 
number density of particle k a t  point R, and fences indicate 
integration over phase space. Rk gives the position of the 
center of mass of k. The charged particles which make up 
particle k are labeled ki and have charges eki, while those 
making up particle 1 have charges eIj, so that 

V(PkkT) = (mk.fiks(Rk - R)f) 

( I#k)  
mk& = -(4ato)-’ & v k i  & E‘kieIjlRki - R1jI-l (6) 

I 1 J  

The position of particle ki is given by 

Rki = Rk + Q i  (7) 

with ni supposed to be small. This allows us to write, after 
carrying out the differentiation in (6) and expanding I Rki - 
R1j I -3  in a power series 

( l # k )  
-4atomk.fik = eki elj[R1 t q j  

i I j  

- (Rk+rki)][lRk-R1)-3+ & ‘ V R k / R k - R 1 1 - 3  

+ 17j*VRlIRk-R11-3 + r k i q j : V R k V R ] I R k -  Rll-3] (8 )  

Terms like r k i r k h  have been dropped; they correspond to 
moments higher than first order. 

After multiplying out the terms we introduce the total 
charges of the molecules 

and the molecular dipole moments 

P k  = ekirki, PI = eljqj 
I J 

Then we multiply (8) by 6(Rk - R)f and integrate over phase 
space. The leading term on the right side is 

- R k )  IRk - 
( l t l k )  

1 
= .f dR’pkl(R,R’)eke](R’ - R) I R - q3 (9) 

where Pkl is a two-particle distribution function. Ignoring 
short-range correlations, Pkl(R,R’) becomes Pk(R)PI(R’). 
Correlation terms are also being dropped from PT, but we have 
so far been unable to demonstrate explicit cancellation of all 
the correlation terms in the Lippmann equation. We ignore 
the short-range correlations for all terms when averaging (8) 
over phase space. Now grouping together the particles by 
species, we find for species h (note nh = zhh’pk) 

and P(R)  the polarization a t  R 

P(R)  = pk(R)nk(R) (12) 
k 

In (10) and (12), bh is the average electric dipole moment of 
a molecule of species h at  point R. Unlike the molecular charge 
eh, it depends on position in space. We will assume below, 
consistent with our neglect of short-range forces, that ph(  R) 
depends only on the electric field a t  R. 

Equation 10 may be simplified using the definition of the 
electric field, 

E = -(4ato)-’j dR’p(R’)(R’ - R)JR’ - RJ-3 

Then, combining with eq 5, we find, for the case of spherical 
symmetry 

KTdnkldr = eknk(r)E(r) t Pk(P)nk(r) dEldr 

- ( 4 s € 0 ) - ~ 1  dR’P(R’) - VRVR‘IR - El-’ (13) 

For a charged particle (pk = 0) this leads to 

d(ln nk)/dr = (ek/kT)(-d$/dr) 

or 

nk(r) = nk(re)e-ek(J.-+e) 

where $e = $(re) .  In our previous treatment3 we introduced 
an additional term in the exponential, corresponding to 
short-range (“chemical”) forces due to the metal, so that 

nk(r) = nk(re)e - (ek+-ek+e+ Wk(r))/kT (14) 

For the uncharged but polarizable solvent molecules 

d(ln n0)ldr = ( k T ) - l p o ( r )  dEldr 
or 

Introducing an additional force due to the metal and assuming 
that po  depends only on E, we have 

The distributions (14) and (15), except for the Wi short-range 
terms, have now been shown to follow directly from the con- 
dition of mechanical equilibrium (5) and the electrostatic force 
law. 

The electric field (13) leads to the Maxwell equation V - D 
= p. (Mazur8 has derived this fact from the definition of E i n  
terms of the component charges eki and eu.) To see this, we 
calculate V * E as follows: 
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V R  - E = -(4n~o)-~.fdR'p(R')V~ VR I R - R'1-l 
+ (4nto)-l.fdR'P(R') * VRVR 6 VRI R - R'1-l 
= co-'.fdR'p(R')G(R - R') - Co-l.fdR'P(R') - VRG(R - R') 

Carrying out the second integral by parts and rearranging, we 
find 

V'(t0E) + v .  P = p (16) 

Defining D as QE + P or as €E, we have the desired equation. 
In our model for the ionic solution, the polarization P(R) is 
just no(R)po(R). 

Lippmann Equation 
We now use (14), (15), and (16) to derive the Lippmann 

equation. Using (14) and (15) in (4), the change in the tan- 
gential pressure is 

Assuming WO and Wi are invariant to the change in electrical 
conditions, we have 

to be substituted into (3). This gives 

Aur,,* = - l i r e r z  dr(PAE - pA$ + pA$e + €OEM) (17) 

Using (16) and integrating by parts 

lire r 2  dr(coE + P) - dA* 
dr  

= [r2(t& + P)Ail,]:f - 
Now E and P vanish forr = re, while t& + P at r = ri is equal 
to the electric displacement D within the metal, which van- 
ishes, plus Q, the charge per unit area on the metal. Thus we 
have (note that dA$ldr = -AE) 

lire r2 drp Ail, = -ri2 QAil,i + Iire r 2  dr(q,E + P)AE 
On substituting this into (17), we find, after cancellation of 
terms 

Aura2 = -(Ail,e) lire r 2  drp - ri2QAil,i (18) 

The overall electroneutrality of the interface means that 
the total charge on the solution side must equal -Qri2. Fur- 
thermore, the change in U ,  the potential drop across the in- 
terface, is equal to A(il,i - Therefore (18) gives us the 
Lippmann equation 

Aura2 = -Qri2AU 

Since the thickness of the interface is small compared to the 
radius of the metal drop, r, is essentially equal to ri. 
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