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2520 JERRY GOODISMAN 

phosphor) molecules may be located and that these 
sites differ in local vibrational properties and hence 
in thermal quenching coefficient. Although this view 
does not seem to conflict with any of the experimental 
evidence presented, the relationship between the 
thermal quenching of phosphorescence and the polymer 
environment does not appear to be understood on a 
theoretical level ; therefore comparisons with theory 
cannot be made. 

Conclusions 
Several conclusions can be drawn from these data 

without further analysis. The time dependence of 
decay rate in PBA in the rubbery phase is seen to have 
a plateau of uniform rate followed by a tail of varying 
rate extending to the limits of observability. The exist- 
ence of a plateau in k ( t )  implies that there are a large 
number of sites having the same rate constant, if the 
statistical interpretation of the previous section is 

valid. The “tail” coincides almost perfectly with 
that observed in PMMA at corresponding tempera- 
tures, implying that glass-like regions continue to 
exist in the rubbery phase. A comparison of residual 
intensity leads to the conclusion that perhaps 
part by volume of PBA maintains the glassy phase 
microstructure a t  20”. The temperature dependence 
of rate constants in PMMA clearly indicates that con- 
siderable variations in microstructure exist even at 
- 120°, but more work needs to be done to clarify the 
nature of the interaction which leads to nonradiative 
quenching of the triplet state in such an environment 
before specific deductions based on these observations 
can be made. 
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Mr. Kermit Mercer with the experimental work. 

Scaling in Isoelectronic Molecules 
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A modification of a scaling method introduced for atoms by Ellison enables one to use 
expectation values calculated for one molecule in calculations of the energy of a second 
molecule isoelectronic to the first. In  going from Hz to Hez2+, the results are only fair, but 
in going from LiF to BeO, the results are sufEciently good to allow prediction of equilibrium 
distance and several expectation values as well as energy. The dipole moment is a notable 
exception, which reveals one basic dissimilarity between the two molecules, the ionic 
character. LiF dissociates to ions, Be0 to neutral atoms, causing our method to break 
down a t  large internuclear distance. The inverse scaling transformation, from Be0 to 
LiF, is also accomplished, with similar results. 

In  an a priori molecular calculation, physical intui- such fundamental theorems as the virial and Hellman- 
tion may help in choosing the form for a trial wave Feynman theorems to elucidate relations between 
function for variation, but one is very rarely in the wave functions for various different systems.2 Ellison 
position of being able to use the wave function for one 

they are related physically. For atoms, one can use 
System for a calculation on another, however closely (1) Part of research supported by National Science Foundation. 

(2) For example, P.-0. ~ a w d i n ,  J .  MOL S p d r y . ,  3,46 (1969). 
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and Huff3 have taken advantage of a scaling procedure, 
closely related to that used in Fock's proof of the virial 
theorem,4 to calculate the energy of an atomic system 
from one isoelectronic to it. Tests of the method for 
various show impressive agreement. 

It is well known that, for molecules, when the u s d  
Borri-Oppenheimer separation is used and electronic 
wave functions are calculated with the nuclei fixed, 
the virial theorem does not hold in its simple 
Hirschfelder and Kincaid6 have given one way of 
modifying this theorem, and this suggests a correspond- 
ing modification af Ellison's procedure for use in mole- 
cules. We first sketch out the arguments of Hirsch- 
felder-Kincaid and Ellison, then formulate the new 
procedure and apply it to simple cases. 

We 
denote all the electronic coordinates by small r and all 
the nuclear coordinates, which enter as parameters in 
the usual treatment, by capital R. If we scale (ie., 
multiply) all coordinates by a parameter, s, we get the 
scaled wave function G1,(r;R) = ~~"'~$l(sr ,sR) .  The 
s ~ ~ / ~  is the correct normalizing factor where n is the 
number of electrons. We do not integrate over nuclear 
coordinates in computing norms and expectation values. 
It is straightforward to show by changing variables 
in the  integral^*^^^^^ that T,(R) = s2T1(sR) and 
V,(R) = sVl(sR), where the T's are expectation values 
of the kinetic energy and the V's expectation values 
of the potential energy. The R or SR in parentheses 
means this is computed with the internucleaT distance 
held fixed a t  R or sR, while the subscript 1 or s indicates 
the use of G1 or $ls for the calculation. We find the value 
of s, so, which minimizes E,(R) = T,(R) + V8(R). 
If is the exact wave function, so must equal 1. 
Then, at the equilibrium R, the simple virid theorem 
holds6; at some other R, Slater's modification6 will 
hold. 

Let ILl(r;R) be a wave function for a molecule. 

Now the potential energy consists of three parts 

VdR)  = CdR) + LdR) + MdR) 
and similarly for VI, where the three parts are the 
expectation values of the electron-electron, electron- 
nucleus, and nucleus-nucleus Coulombic interactions. 
We want to use the scaled wave function for one mole- 
cule for calculation on another molecule isoelectronic 
with it and related to it by having all nuclear charges 
multiplied by a constant 2. Then C,(R) is unchanged, 
L,(R) is multiplied by 2, and M,(R) is multiplied by 
Z 2 .  The expectation value of the energy, using the 
scaled wave function for the first molecule and the 
Hamiltonian for the second, is 
B,(R) = s ~ T ~ ( s R )  + sCi(sR) + 

ZsLi(sR) + Z2sM1(8R) 

If we minimize E,(R) with respect to s, holding sR 
k e d  equal to a constant Ro, Hirschfelder and Kincaid6 
note that we will alwaya get an improvement on the 
energy, but, with sR fixed and s in general different 
from 1, we will be calculating the energy for the sys- 
tem at  R = Ro/so. This is also true if we minimize 
E8(R). One finds easily 

SO = [2Ti(~R)1-'[-Ci(sR) - Zh(sR) - Z2M1(~R)] 

and the new energy equals 

&(R) = - [4T8,(Ro) ]-'[C,,(Ro) + ZL,(Ro) + 
Z2M,,(Ro) Iz  = - T,,(R) 

The last relation expresses the faet that the virial 
theorem is being satisfied by the scaled function with 
the Hamiltonian for the second molecule. The case 
Z = 1 is of course the usual.case, where a molecular 
wave function is improved by scaling. 

We consider as our unscaled function that for Hz 
a t  its equilibrium internuclear distance, 1 .4ao. Ac- 
cording to the Koloa-Roothaan 40-term functions 
the tots1 energy in atomic units here is -1.174440, 
the total potential energy is -2.349279 (electron- 
electron potential energy = 0.58737, nucleus-nucleus 
potential energy = 0.714286, electron-nucleus poten- 
tial energy = -3.65094), and the electronic kinetic 
energy = 1.174839. We use this for the He22+ ion, 
for which good wave functions are also available.8 
By the above equations, we find so = 1.64165 so that 
R = RJs0 = 0.85280. The new energy is calculated 
as -3.16621 atomic units. Kolos and Roothaan* do not 
give the energy a t  this distance, but by fitting the first 
five points in their Table XI, CY = 1.75, to a parabola, 
we find that the correct answer is -3.433 atomic 
units. 

Note that the variational principle holds here; our 
answer must be too high. A serim of similax calcula- 
tions with H2 data for different internuclear distances 
would yield a series of results for He22+, but there is 
not sufficient data in ref. 8 to make this possible. The 
agreement is not very good; Ellison3b found, however, 
that agreement for atoms was better for smaller ratios 
of nuclear charges, which is reasonable. 

There is no reason to limit this kind of treatment to 

~~ 

(3) (a) F. 0. Ellison, J. C h .  Phus., 37, 1414 (1962); (b) F. 0. 
Ellison and N. T. Huff, {bid., 39,2051 (1903). 
(4) V. Fock, Z. Physilc, 63, 855 (1930). 
(5) J. c. Slafer, J. Chem. Phya., 1, 887 (1933). 
(6) J. 0. Hirsohfdder and J. F. Kincaid, Phys. Reu., 52, 658 (1937). 
(7) C. A. Codson and R. P. Bell, Trans. Faraday SOC., 41,141 (1945) ; 
A. C. Hurley, Proc. Roy. SOC. (London), 4226, 170 (1954). 
(8) W. Kolm and C. C. J. Roothaan, Rev. Mod. Fhys., 32, 219 
(1980). 
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Table 1 : Calculations for LiF + BeO” 

1.60 109.52710 59.46506 -34.37385 -257.7301 16.87500 0.892291 1.79314 -87.2036 
2 .10  107.92227 56.59302 -30.44886 -253.7509 12.85714 0.900295 2.33257 -87.4744 
2 .35  107.47837 55.49567 -28.99485 -252.3926 11.48936 0,902024 2.60525 -87.4495 
2 .60  107.19787 54.60136 -27.79869 -251.3504 10.38461 0.902903 2.87960 -87.3914 
2 .85  107.02626 53.87033 -26.80035 -250.5460 9.47368 0.903254 3.15526 -87.3193 

a Expectation values in columns 1-5 obtained from calculation VII1.A of McLean, ref. 9. All energies in atomic units. See text 
for abbreviations. 

cases where the isoelectronic molecules are related by 
symmetric scaling of the nuclear charges. Let us 
increase the charge on nucleus A by a factor ZA and 
the charge on nucleus B by ZB (generally, one of these 
will be >1 and the other <l). Minimizing the energy 
with respect to the scaling parameter s while holding 
sR = Ro k e d  yields 

so = [2Tl(sR)]-l[-Cl(sR) - ZALIA(sR) - 
Z B L ~ ( S R )  - ZAZBM~(SR) ] 

where we write hA for the expectation value of the in- 
teraction of the electrons with nucleus A, and LIB for 
that for nucleus B. The energy obtained is equal to 

In  attempting to apply this to molecules, one finds 
that the literature offers a paucity of published calcula- 
tions with sufficient data for our procedure. We re- 
quire the expectation values of total energy, kinetic 
energy, and electron-nucleus interaction for each 
nucleus. McLeang has performed a series of LCAO- 
SCF calculations on the LiF molecule and tabulated 
many important expectation values. We employ these 
for calculations on the isoelectronic Be0 molecule. 
Furthermore, YoshiminelO has performed limited basis 
SCF calculations for BeO, and we can use his results 
in several ways, to be indicated below. Here, ZA 
(referring to Li 4 Be) is and ZB (referring to 
F --+ 0) is 8/9. The expectation values used come from 
McLean’s calculation VI11 . A and appear, with the 
results, in Table I. We have used only values of sR 
( = R L ~ F )  such that R( = RIM) falls near the equilibrium 
value. 

From data in Herzberg,’l we estimate the true total 
energy of Be0 a t  the equilibrium distance as -89.784 
a.u. Our energy a t  the minimum, -87.478, is off by 
2.5%. We have fitted the five calculated energies to a 
parabola in the internuclear distance.12 The result is 
an equilibrium distance of 2.55 f 0 . 0 1 ~ ~ 0  and a force 
constant of 0.88 i. 0.20 a.u./uo2 or 13.7 X lo5 dynes/ 

- so2 2’1 (sR) . 

cm.2, to be compared with the experimentalll 2 . 5 1 4 7 ~ ~  
and 7.5089 X lo5 dynes/cm.2. 

Now we refer to the calculations of Yoshiminel0 on 
BeO, similar in scope to McLean’s for LiF. This 
enables us, first, to decide whether the errors in the 
quantities calculated above are to be considered large 
and, second, to compare a wider variety of scaled ex- 
pectation values (whose calculation we discuss below) , 
for some of which experimental data are not available, 
with their values as predicted by an a priori  calculation 
on BeO. Finally, the expectation values furnished by 
Yoshimine allow us to accomplish the scaling trans- 
formation from Be0 to LiF. 

With reference to the first point, we note that Yo- 
shimine’s calculated equilibrium internuclear distance 
for Be0 is 2.4378~0, i .e . ,  3% too low, whereas ours is 
about 1.0501, too high. His calculated force constant 
(proportional to the square of the frequency) is high 
by a factor of 1.2, ours by a factor of 1.8. 

The calculation of expectation values with the scaled 
function is straightforward. Let f(re) be a function 
homogeneous of degree i in the electronic coordinates, 
i . e . ,  f(sc) = s’f(<). The electron-electron potential 
energy, for instance, is homogeneous of degree -1; 
the kinetic energy operator for the electrons may be 

(9) A. D. McLean, J. Chem. Phys., 39, 2653 (1963). 
(10) M. Yoshimine, ibid., 40, 2970 (1964). 
(11) G. Hereberg, “Spectra of Diatomic Molecules,” D. Van Nos- 
trand Co., Inc., New York, N. y., 1950, pp. 468, 509. 
(12) Strictly speaking, these are not the points we should be fitting 
to get the equilibrium distance and force constant. What we 
really would like to have is a contour map, giving calculated energy 
as a function of both scaling parameter 8 and Be0 internuclear 
distance R. We should then obtain the best scaling parameter 
and minimum energy for each internudear distance and fit these 
points to a parabola. The path through the minima would not, in 
general, be parallel to either the 8 or the R axis. What we are doing 
now is finding the best scaling parameter and minimum energy on 
the hyperbolae 8R - 1.60, 1.85, 2.10, etc., and fitting these minima 
to a parabola. We could, in principle, interpolate on each hyperbola 
to get energies at any value of R, then use these to find the best energy 
and scaling parameter for each R. This interpolation turns out to be 
far from reliable and seems to lead to only small changes in the equi- 
librium distance and force constant for LiF -+ BeO. 
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Table I1 : Expectation Values for LiF -+ Be0 

. R B ~ o  = 

R L ~ ~  = eR(ao) E in a.u. E by direct @')Be by (r2)Be (3z2 - +)Be 
by scaling sR(aa) 80  by scaling calcn." scaling, ao' calcn. 

1 .60  1.79314 
1.80 
2.150 

21.400 
2;. 476 
2.550 

2.800 

3.050 

3.800 

2 .10  2;. 33257 

2 .35  2.60525 

2 .60  2.87960 

2 .85  3.15526 

-87.204 
-89.153 
-89,404 

-87.474 
-89.444 
-89.444 
-89.440 

-87.449 
-89.412 

-87.391 
-89.373 

-87.319 
-89.300 

49,3824 61.9975 
48.3478 
61.1407 

71.2409 104.4469 
71.4815 
74.8265 
78.1726 

84.3566 130.445 
90.0982 

98.9682 159.618 
102.8409 

115.6269 191.976 
145.1189 

SCF-LCAO calculations by M. Yoshimine, J. Chern. Phys., 40, 2970 (1964). 

(32' - ' ' )?e 
by c a l m  

55.4156 
79,4192 

99.2673 
105.7250 
112.1944 

135.2481 

159.5814 

238.7916 

Dipole 
moment 
in a.u., 

by scaling 

2.9337 

4.1735 

4.6928 

5.2015 

5.7099 

Dipole 
moment 
in a.u. 

by calcn.' 

2.1593 
2.5121 

2.7467 
2.8114 
2.8697 

3.0072 

2.9401 

1.7578 

considered as homogeneous with i = -2. Note that 
the complete potential energy function is not homoge- 
neous in the electronic coordinates alone. Denoting 
by (f)sR the expectation value of f a t  an internuclear 
distance R, calculated with the scaled wave function, 
and (f)lsR the expectation value calculated with the 
unscaled function a t  internuclear distance sR,  we have 

( f y  = (f)l"R/si 

This is shown by a simple change of variables in the 
integral, as in the proofs of the virial theorem itself.1,6 

In  Table 11: we have used this to calculate ( T B , ' ) ~ ~  

and (32Be' - rgeP)sR from (rLi2)lsR and (3z~i '  - 
rLi2)1SR. The values of R and s from Table I have 
been employed. For ( P ) B ~ ,  we get good agreement 
with Yoshimine's to a few per cent. 
The average or expectation value of the square of a 
distance of an electron from a nucleus is a measure of 
the size of a molecule. It is the size which a scaling 
factor can adjust, so that we probably should expect 
good results here. On the other hand, the expecta- 
tion value of ( ~ x B , '  - r g e 2 )  = 2(2~e' - Z B ~ ' ) ,  which 
is essentially the electronic contribution to the molecu- 
lar quadrupole moment, is a measure of the shape of the 
electron distribution. The agreement here is not 
nearly as good, but still satisfactory. We should 
expect the agreement in both cases to get progressively 
worse a t  large R. For example, with SR = R L ~ F  = 
4.85, we calculate an optimum value of s = 0.90126. 
The predicted values of (?Be2)sR and (3X~e' - T B e 2 ) s R  

are then 3 0 2 . 1 7 3 ~ ~ ~  and 5 6 5 . 9 5 5 ~ ~ ~ .  R = 4.85/0.90126 
= 5 . 3 8 1 3 4 ~ ~ .  Interpolating in Yoshimine's results, 
we estimate the correct values to be, respectively, 

250uO2 and 450uO2. The per cent errors are about 
the same in both, since, for large internuclear distance, 
( z 2 )  ---t (r'). 

The dipole moment consists of an electronic part and 
a nuclear part. The latter can be separated out and 
calculated exactly, while the former's operator is 
homogeneous of degree 1. It is, in fact, .Z,xj, where 
x j  is the distance of electron j along the internuclear 
axis from some origin. For an electrically neutral 
molecule, the origin may be chosen arbitrarily, as long 
as it is used consistently for both the electronic and 
nuclear parts. Taking it on the Li nucleus, we have 
( z L ~ )  = p - ~ R L .  I~ in atomic units, where p represents 
the total dipole moment. Scaling to obtain the ex- 
pectation value for BeO, we have ( z B ~ )  = ( z ) ~ i / s ,  
to which we must add ~ R B , o  to get the predicted di- 
pole moment for Be0 at an internuclear distance of 
R B ~ o .  The next t o  the last column in Table I1 was 
obtained in this manner. One can, in fact, show that, 
for our case, the same answer is obtained for any origin, 
provided that this origin is defined relative to  the inter- 
nuclear distance and not to some space-fixed system 
of coordinates. Note that we change the internuclear 
distance in scaling from LiF to BeO. Thus, take the 
distance from nucleus 1 to the origin as j times the in- 
ternuclear distance (1 = Li, Be and 2 = F, 0). We 
find 

with q1 and q2 the charges on 1 and 2. This gives the 
dipole moment for the scaled molecule with charges 
ql' and q2' as 
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The term depending on f vanishes as long as ql + q 2  = 
pl’ + qZ‘, Le.,  no change in the total nuclear charge 
between the two isoelectronic molecules. Only for 
neutral molecules, however, is the dipole moment 
expected to be independent of origin in the first place. 

The agreement for the dipole moment (last two 
columns of Table 11) is poor and gets worse at larger 
R. This comes from the fact that P L ~ F  --t eR as R --t 
a, while ybe , )  + 0 as R --t 03. In  chemical terms, LiF 
dissociates into ions and Be0 into neutral atoms. The 
molecules are thus completely different at large R. 
We see this reflected also in the increasing errors in 
( T ~ ) B ~  and (32  - T ~ ) B ~  as R gets large. The dipole 
moment, which has often been used as the measure of 
ionic character, is more sensitive to the qualitative dif- 
ferences in bonding between LiF and Be0 than either 
of the above eo that errors set in earlier. 

Finally, we turn to the problem of rescaling Yo- 

shimine’s Be0 wave function for LiF. Here, ZA = 
y/ql  Zg = 9 / 8 .  Table 111, whose construction is 
similar to that of Table I, shows the results of these 
calculations. Fitting the points here to a parabola in 
R, we find the minimum (equilibrium internuclear 
distance) at R = 2.387 f O.lao, and a force constant 
of 0.8194 a.u./uO2.l2 The energy at the minimum is 
-104.4927. To this we must compare the experi- 
mental results-Rmin = 2.955~0,  IC, = 0.2069 a.u./uo2, 
E(R = Rmin) = -107.435 a.u.-as well as the cal- 
culated results of McLean-R,in = 2.8877uo, E(R = 

a.u./ao2. 
In  Table IV, the scaling parameters deterniinsd in 

Table I11 are used for the calculation of expectation 
values. These are compared to McLean’s results. 
Agreement for (T2)Li is good, agreement for (3z2 - T ~ ) L ~  

is a bit less good, and agreement for the dipole moment 
is poor. As one might have anticipated, the pattern 
isinverse to that for LiF + Be0 (Table 11). In  this 
case, the dipole is consistently too low. Here, all the 
expectation values are too small and get worse at  larger 
R, as the difference in the ionic character of the bonds 

Rmin) = -100.977 a.u., (d2E/dR2).=,,i, E 0.194 

Table 111: Calculations for Be0 + LiF“ 

g ( a o )  - 
sR(ao) Ti(sR) Ci(sR) L~*(SR)  L ~ ~ ( s R )  Mi(sR) so SD ESQ 

2.150 90.06195 49.1080 -48.7540 -194.7040 14.8837 1.076711 1.99682 -104.4094 
2.400 89.5418 47.7527 -47.0152 -193.0560 13.3333 1.080203 2.22180 -104.4809 
2.476 89.4268 47.3844 -46.5520 - 192.6264 12.9241 1.080938 2.29060 - 104.4887 
2.55 89.3307 47.0420 -46.1272 -192.2352 12.5490 1.081542 2.35774 -104.4931 
2.80 89.1056 45.9732 -44.8616 -191.0576 11.4286 1.082816 2.58585 -104.4755 
3 .05  89.0246 44.9570 -43.8372 -190.0088 10.4918 1.083006 2.81624 -104.4171 

“ Expectation values in columns 1-5 obtained from calculation c of Yoshimhe, ref. 10. Energies in atomic units. See text for 
abbreviations. 

Table IV: Expectation Values for Be0 + LiF 

RBBO RLiF E ,  a.u. . -(+)~i, ao- ~ ( 3 2 ~  - ao2--, -Dipole moment, a.u.- 
sR(ao) s.R/so(ao) Scaling Scaling Calcn.a Scaling Scaling Calcn.a 

1.60  

2 .10  
2.150 

2.400 2.22180 
2.476 2.29060 

2.550 2.35774 
2.800 2.58585 

3.05 2.81624 

2.350 

2.60 

2 .85  

- 106.2368 
-104.4094 52.7390 

- 104.4809 61.2608 
- 104.4887 64.0404 

- 104.4931 66.8294 
- 104.4755 76.8434 

-104.4171 87.6807 

- 106.8273 

- 106.9240 

- 106.9652 

- 106.9768 

39.3174 

57.7430 
68.5058 

85.0737 
90.4849 

95.9145 
115.3511 

136.0569 

68.6366 

80.6820 

93.9270 

49.3614 1.0177 
0.3363 

84.6575 1.6574 
0.3210 
0.3103 

0.2956 
0.1914 

0.1015 

106.1365 1.8830 

130.1258 2.0964 

156.6269 2.3075 

., Calculation is that of A. D. McLean, J .  Chem. Phys., 39, 2653 (1963). 

The Journal of Physical Chemistry 



SCALING IN ISOELECTRONIC MOLECULES 2525 

in LiF and Be0 gains in importance. The Be0 wave 
function, scaled for LiF, must lead to a dipole moment 
approaching 0 as R gets very large. This is of course 
totally unsuited to a description of t,he ionic LiF mole- 
cule. 

In fact, Be0 and LiF would certainly be considered 
by a chemist as almost totally dissimilar molecules. 
This makes it all the more surprising that our scaling 
allowed us to do so well on the various molecular con- 
stants. It is tempting to think that this sort of cal- 
culation suffers from disadvantages opposite to those 
of simple variational calculations; that is, it allows 
one to do well on the inner shells but describes the 
valence, or chemical, electrons less adequately. 

We must remember that the wave functions we used 
for LiF and Be0 are not exact-errors in the energies 
run about 0.50Jo-and that we require several expecta- 
tion values which are more sensitive than the energy 
to errors in the wave In this connection, 
the self-consistent field wave function (to which 
McLean’s and Yoshimine’s wave functions are approxi- 
mations) is most suitable for a starting point in the 
present, calculations. Brillouin’s theorem14 guarantees 

that one-electron operators, as well as the total energy, 
have second-order errors when the wave function is in 
error in first order. The kinetic energy and the 
electron-nucleus potential energies are one-electron, 
while the elec,tron-electron repulsion is a difference 
between the tota.1 energy and one-electron operators. 

It is unfortunate that, there are not more published 
calculations giving expectation values other than 
total energy to allow more calculations like those 
above. An interesting case would be CO + Nz, as 
the two are often considered to be very similar.’j 
If we consider the scaling process to change the “size” 
of the wave function but not its “shape,” we do not 
anticipate very good results when the nuclear charges 
are changed too radically. 

(13) For instance, P.-0. Lowdin, Ann. Rev. Phys. Chem., 11, 107 
(1960); C. Eckart, Phys. Rev., 36,878 (1930). Note, as an example 
of this, Table XVI of ref. 8. 

C. Mgller and M. S. Plesset, Phys. Rev., 46, 618 (1937); J. Goodis- 
man and W. Klemperer, J .  Chem. Phys., 38, 711 (1963); G. G. Hall, 
Phil. Mag., 6 ,  249 (1961). 
(16) For example, Y .  K. Syrkin and M. E. Dyatkina, “Structure of 
Molecules and the Chemical Bond,” Dover Publications, New York, 
N. Y., 1964, pp. 136-138. 

(14) L. Bdlouin, ActuaZitbs 6%. Id., 71, 159, 160 (1933-1934); 
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