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Application of scaling and kinetic equations to helium cluster size
distributions: Homogeneous nucleation of a nearly ideal gas

J. Chaikena� and J. Goodisman
Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100

Oleg Kornilov and J. Peter Toennies
Max-Planck-Institut für Dynamik und Selbst-Organisation, Bunsenstrasse 10, 37037 Göttingen, Germany

�Received 30 January 2006; accepted 7 June 2006; published online 18 August 2006�

A previously published model of homogeneous nucleation �Villarica et al., J. Chem. Phys. 98, 4610
�1993�� based on the Smoluchowski �Phys. Z. 17, 557 �1916�� equations is used to simulate the
experimentally measured size distributions of 4He clusters produced in free jet expansions. The
model includes only binary collisions and does not consider evaporative effects, so that binary
reactive collisions are rate limiting for formation of all cluster sizes despite the need for stabilization
of nascent clusters. The model represents these data very well, accounting in some cases for nearly
four orders of magnitude in variation in abundance over cluster sizes ranging up to nearly 100
atoms. The success of the model may be due to particularities of 4He clusters, i.e., their very low
coalescence exothermicity, and to the low temperature of 6.7 K at which the data were collected.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2218837�

INTRODUCTION

Coalescence growth is ubiquitous in nature1,2 and tech-
nology, being manifested in processes as disparate as homo-
geneous nucleation3 and electromigration-induced produc-
tion of hillocks4 and voids5 in metal patterns in integrated
circuits. For nearly a century and a half the log-normal size
distribution6 has been employed empirically to represent dis-
tribution functions obtained from many such sources, includ-
ing not only objects and particles produced by building-up
processes but also objects and particles produced by
breaking-down processes. In practice, however, it has been
found problematic to relate the properties of a specific log-
normal distribution to the microscopic conditions that pro-
duced it, so as to allow selection of reaction conditions to
create a specific distribution.7

In the past there have been two fundamentally different
approaches: the classical statistical thermodynamic theory,
which dates back to Gibbs,8 Volmer and Weber,9 and Becker
and Döring,10 and a kinetic theory that goes back to
Smoluchowski.11 The statistical thermodynamic theory is
best suited for dealing with slow nucleation processes such
as occurrence in cloud chambers, certain supersonic nozzles,
and shock tube flows.12 In these situations a steady state can
be assumed so that the system remains close to thermody-
namic equilibrium. On the other hand, for free jet expansions
dealt with here the characteristic flow time is much shorter
than the time needed to reach steady state conditions. Thus a
kinetic theory involving the solution of a set of reaction
equations is more appropriate. The successful implementa-
tion of such a theory, however, requires knowledge of many
different two- and three-body cross sections which today is
not available even for such an apparently simple system as

helium.12 The simple but elegant theory originally created by
Smoluchowski and extended by others13–17 assumes that the
cross sections obey scaling relations and that only two-body
interactions need to be considered.18 In exploring this model
two of the present authors discovered18 that the log-normal
distribution was closely related to the asymptotic solutions to
the Smoluchowski equations appropriate to large cluster
sizes. Since the early work we have continued to search for
systems that could provide a revealing glimpse into the ap-
plicability of this model and the physical picture of coales-
cence growth it entails. This paper reports the results of ap-
plying the model to recently obtained data19 of size
distributions of small 4He clusters in a free jet expansion.

Probably the main obstacle to applying the model is the
difficulty in obtaining experimental distributions unambigu-
ously produced by a coalescence growth process, uncontami-
nated with artifacts of either the cluster/object sizing or
cluster/object detection procedures. For example, in the
study of clusters produced in free jet or nozzle beam
expansions,20 the use of mass spectrometry requires discus-
sion of fragmentation accompanying ionization. If not prop-
erly accounted for, fragmentation can lead to the overcount-
ing of small cluster sizes and undercounting of larger sizes.
Alternatively, in the study of clusters produced by laser
chemistry of organometallics21 and trapped as condensed
phase�s�, it is unknown whether experimentally obtained dis-
tributions incorporate the effects of agglomeration during the
particle collection process as well as the effects of the coa-
lescence growth process. Granqvist et al.22 states that coales-
cence growth systems produce log-normal size distributions
skewed towards larger sizes. Such distributions are easily
distinguished from those of other systems, like those result-
ing from Ostwald ripening,22 whose properties are dominated
by evaporation of monomers from larger clusters. Such dis-
tributions are skewed towards smaller sizes. In all thesea�Electronic mail: jchaiken@syr.edu
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cases, peaked distributions, that is, distributions with a most
probable size, are commonly observed. In the helium droplet
distributions analyzed in this paper, as in all the neutral noble
gas clusters we have previously analyzed,18 there is no peak
or most probable size.

The Smoluchowski model attempts to exploit the appar-
ent scaling of clustering rate constants with cluster size, de-
duced from the size distribution, to express all rate constants
in terms of the dimerization rate constant. Despite being
touted in elementary chemistry and physics texts as a nearly
“ideal gas,” helium turns out to be an extremely complex
system when it comes to connecting cluster abundance data
to a kinetic model. The helium atom-helium atom cross sec-
tion has been thoroughly investigated for collision energies
including the energies of interest here, i.e., 4.2 K�T
�12 K.23–25 The helium dimer has only one extremely
weakly bound state at 1.3 mK and an average bond length of
about 50 Å.26 The trimer is predicted to have, in addition to
its ground state, a long range Efimov state,27 with a binding
energy of only about 2 mK,28 but so far its existence has not
been confirmed experimentally.29 Recent experiments reveal
that in collisions between the helium dimer and helium or
other atoms, it is possible for an atom to pass in between the
two atoms of the dimer and to some extent between atoms of
the trimer without necessarily causing dissociation of the
cluster.30 On the other hand, this no longer holds for larger
clusters, and the cross sections are expected to increase rela-
tively smoothly with size.

In this study we deduce effective rate constants which
we relate to effective cross sections. These effective param-
eters implicitly include angular and energetic averaging and
other effects. We shall use abundance data for larger clusters,
ninemers, and larger. The idea here is that a scaling-type
model is most appropriate for larger clusters. For example,
based on the previous observations on small clusters, it is
reasonable to expect that scaling more accurately represents
the properties of n-mers through n+5-mers when n is rela-
tively large than it represents the variation in the properties
of monomers through five-mers. Also, the observed variation
of the populations of larger clusters can be a statistically
unbiased basis for predicting what the populations of smaller
clusters would be in the absence of size-specific interactions.
Such interactions, leading to magic-number-sized clusters,
are expected to be most pronounced for the smallest cluster
sizes.

How helium clusters accommodate or dissipate the exo-
thermicity of cluster formation is also complicated. First we
note that the dimer binding energy, 1.3 mK, is very small
compared with the temperature in the early stages of the
expansion, so that a considerable amount of translational en-
ergy must be dissipated during the formation of a stable
dimer. The dissipation of energy by a small nascent cluster
must occur either by collision of the nascent cluster with
another body or, in the case of larger clusters, by evaporation
of one or more monomers. In other systems,31 the bound
state potential well is very deep compared to the translational
temperature of the monomers, making stabilization by

evaporation competitive with and perhaps even less impor-
tant than radiative cooling. This is certainly not the case for
helium clusters.

We shall first briefly explain how the new helium data32

were obtained. The theoretical model is described in the pre-
ceding paper of this journal so we shall introduce only suf-
ficient detail to allow a description of the application of the
model to these data. The analysis produces a value of the
effective dimerization cross section and an equation which
can be used to predict the distribution for varying source
pressure Po, nozzle temperature To, and nozzle diameter do.
We shall compare the cross section with other cross sections
in the literature. We shall also discuss the consequences of
the observed success of this model with regard to our con-
ceptual framework for understanding and predicting coales-
cence growth phenomena.

EXPERIMENT

The experimental apparatus is similar to one described in
detail elsewhere33 and so will only be briefly discussed here.
The clusters are formed in a free expansion of helium gas
through a 5 �m orifice with comparable length. The beam
formed during the expansion is skimmed after 1 cm of
propagation and subsequently collimated twice with 5 �m
slits at locations 13 and 83 cm further downstream. The ex-
tremely well collimated beam impinges on a 100 nm period
SiN transmission diffraction grating located 93 cm from the
orifice. After the expansion, all clusters, independent of
mass, have velocities within ±2% of the hydrodynamic flow
rate that defines the center-of-mass beam velocity. The clus-
ters’ de Broglie wavelengths are inversely proportional to
their masses so the angular dispersion by the grating depends
only on their masses. All mass-selected clusters are detected
as He2

+ dimer ions produced during the 80 eV electron im-
pact ionization of the clusters in the mass spectrometer de-
tector located 255 cm from the orifice. Using the dimer sig-
nal guarantees unequivocal rejection of monomer
background as a source of artifacts. Based on theoretical
simulations for large clusters3 and experimental data for
small clusters, N�6, the He2+ ion yield is nearly indepen-
dent of cluster size. Considerable effort has been expended to
assure that this separation and detection scheme reveals the
true abundance of the various clusters.32 In addition, the dis-
tribution is corrected for the variation in grating throughput
due to the weak van der Waals attraction between the rare
gas atoms and clusters and the grating surface.34

MODEL

We analyze the process of cluster formation using
Smoluchowski’s equations for coalescence growth. We as-
sume that, at time t=0, i.e., the time origin, only monomers
exist, and that monomers can stick together on collision to
form dimers, monomers and dimers can stick together to
form trimers, etc.,
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He + He → He2,

He + He2 → He3,

etc.

Only binary collisions are considered, including collisions
between all clusters existing at any time. We further assume
that all coalescence events are irreversible. It should be
pointed out that, in the actual experiment, a few percent of
the total helium atoms in the orifice already exist as dimers
and trimers before expansion begins. One could take account
of this by defining the time origin as sufficiently upstream
that there are essentially only monomers present. On the
other hand we note that simulations in which some dimers or
trimers are present at t=0 eventually lead to the same distri-
bution functions in the limit of long time.

The kinetic equations are then the equations for second-
order reactions, with the rate of each reaction being propor-
tional to the product of the concentrations of the two reacting
species. Thus, the rate of formation of n-mers is the sum of
the rates of the reactions of j-mers and �n-j�-mers, where j
runs from 1 to n-1. The rate of destruction of n-mers is the
sum of the rates of reactions of n-mers with all species. Let-
ting nk be the concentration or number density of k-mers and
Kij the kernel or rate constant for reaction of i-mers with
j-mers, we have

dnk

dt
= �

i=1

k�

Ki,k−inink−i − �
i=1

�

Kkinkni − Kkknknk, �1�

where k�=k /2 if k is even and �k−1� /2 if k is odd. The last
term arises because the collision of two k-mers to form a
�2k�-mer leads to the loss of two k-mers. The values of the
second-order rate constants, i.e., kernels, reflect the mass
transfer rates and the reactive cross sections. It is assumed
that they scale such that K�i,�j =����Kij for i� j where �
and � are the scaling parameters. If i� j, the parameter �,
generally negative, describes the scaling of velocity or mass
transfer rate with particle size, whereas �, generally positive,
describes the scaling of cross section with particle size. If
i	 j, the parameters � and � exchange places. The scaling
and symmetry conditions on Kij imply that

Kij = K11i
�j� for i � j and Kij = K11i

�j� for i 	 j ,

�2�

where K11 is the dimer formation rate constant. Of course,
Kji=Kij. Thus the predicted distributions depend only on the
two scaling parameters � and � and the single rate constant
K11.

As we have shown directly in the preceding paper35 and
others13–17 have elegantly demonstrated, there is an
asymptotic solution to Eq. �1�, valid for large cluster sizes, in
the case of scaled kernels. The number density of k-mers nk

approaches Akae−bk for large k, where A and a depend on �
and �, and b also depends on � and � and also on the time.
The parameter A is a normalization constant, assuring that at
any time

N = �
j=1

�

jnj , �3�

where N is the initial number density of monomers. Our
demonstration18,35 involves substituting Akae−bk for nk in Eq.
�1� and making approximations valid for large k, i.e., k→�.

Akae−bk → nk.

It is shown that, for �1� to be satisfied by Akae−bk, the param-
eter a must equal −��+�� independent of time, and the pa-
rameter b must vary with time according to

b−�a+1� − b0
−�a+1�

a + 1
= NK11t� C��,��


�a + 2�� , �4�

where b0 is the apparent value of b at t=0 and

C��,�� � 	
0

1/2

y�+a�1 − y��+ady .

Equation �4� shows that b decreases with time when a+1 is
positive. Furthermore, a plot of b−�a+1� vs t is linear, with the
slope proportional to K11N, and a plot of b−�a+1� vs N is also
linear, with the slope proportional to K11t. In principle, this
allows one to derive a value of K11 from the oligomer popu-
lations nk for large k.

In general, the scaling parameters � and � contain the
physical information describing the conditions of the coales-
cence growth process described by the kernels.13,14 Two
cases of interest are the ballistic model and the Brownian
model. In the ballistic model, the particles interact directly
without intervening collisions, i.e., each collision is a poten-
tial coalescence event. The kernels or rate constants Kjk are
products of the relative velocities of the particles and their
reactive cross sections. For particles at thermal equilibrium
in a gas phase, the relative velocity for a j-mer and a k-mer
may be calculated from the Maxwell distribution to be

v jk =
8kT�mj + mk�
�mjmk

, �5�

where mj is the mass of a j-mer, so v jk is proportional to

�i−1+ j−1�. The reactive cross sections are assumed propor-
tional to the classical geometrical cross sections, which are

� jk = ��Rj + Rk�2,

where Rj is the effective radius of a j-mer. For spherical
particles, the volume of a j-mer, 4�Rj

3 /3, is proportional to j
and Rj is proportional to j1/3. Thus Kij is proportional to

�i−1 + j−1�1/2�i1/3 + j1/3�2. �5a�

For i� j, this becomes proportional to i−1/2j2/3, so that
�=−1/2, �=2/3, and a=−1/6. Then �4� becomes

b−5/6 − b0
−5/6 = Nct�5C�−

1

2
,
2

3


6
�11

6
 � .

Numerical evaluation of C shows that the square bracket is
equal to 2.2192.
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In the Brownian model, reacting particles do not travel
in straight lines because they collide with other, nonreacting,
particles between reactive collisions. The rate of reaction of a
single cluster of size j with clusters of size k is proportional
to the radial diffusion current of k-mers to the single j-mer.
The radial diffusion current is proportional to Rj +Rk, to the
bulk concentration of k-mers, and to the mutual diffusion
coefficient Djk=Dj +Dk, with Dj the tracer diffusion coeffi-
cient for j-mers. If the nonreactive species, which cause the
motion of reactive species to be diffusive rather than ballis-
tic, are much smaller than the reactive species, Dj is in-
versely proportional to Rj. Then Kjk is proportional to
�Rj

−1+Rk
−1� �Rj +Rk�. Since Rj is proportional to j−1/3, the

scaling exponents � and � �see Eq. �2�� are −1/3 and +1/3
in this case.

In applying the scaling theory to cluster formation in a
helium-atom free jet expansion, the Brownian model is inap-
propriate because in the neat expansion all collisions are po-
tential coalescence events, i.e., there are no nonreactive par-
ticles. The ballistic model is problematic for small clusters
because it is unlikely that every collision leads irreversibly to
coalescence. For large k, on the other hand, it may be that all
collisions do result in coalescence but that sometimes mono-
mers or other clusters evaporate off nascent clusters. A more
serious problem is that clusters that are produced by
coalescence/evaporation should have a translational energy
distribution reflecting the energy transfer in the coalescence/
evaporation collisions. The translational energy distribution
for clusters that have not been involved in a coalescence
event will reflect the temperature of the gas reservoir; the
thermodynamic equations describing the expansion with
equilibrium established and no coalescence is well known.
However, establishing thermal equilibrium and the velocity
distribution described by Eq. �5� requires many nonreactive
collisions. Since most of the collisions in our model are re-
active, we need to know the velocity distribution established
by the reactive collisions.

As we have shown in detail in the preceding paper,35 for
a collision between a j-mer with velocity v j and a k-mer with
velocity vk, which results in formation of a �k+ j�-mer, it is
straightforward to calculate the velocity of the resulting par-
ticle, vk+j, using conservation of translational momentum.
Then, averaging over the direction of v j relative to vk, we
obtain a formula for the nascent speed vk+j in terms of vk and
v j. By repeated use of this formula, we calculate the nascent
distribution of velocities of clusters of all sizes in terms of
the velocities of monomers �see Table III in Ref. 35�. A linear
fit of the logarithm of calculated vk /v1 for k=1, . . . ,12
to ln�p�+� ln�k� gives ln p=−0.004 47±0.00463 �i.e., p=1
within standard error� and �=−0.5767±0.0013, with corre-
lation coefficient r2=0.9997. Thus vk /v1=k� and, judging by
r2, the scaling is very accurate. The kernel Kjk is assumed
proportional to the relative velocity and to the geometric
cross section, ��Ri+Rj�2=��i1/3+ j1/3�2, so the scaling pa-
rameters are �=−�0.5767� and �=2/3. Thus �+�=0.090,
which is smaller than the value of 0.167 found for the equi-
librium ballistic model. With a=−��+��=−0.090 we have

b−0.910 − b0
−0.910 = NK11t�0.910C�− 0.5765,

2

3



�1.910�
� . �6�

The numerical value of the integral C�−0.5765,0.6667� is
2.1968 and the square bracket in �6� equals 2.0711.

ANALYSIS OF DATA

We begin with a set of nk, measured populations of clus-
ters of sizes k, such as those shown by the experimental
points in Fig. 1. To extract values of the parameters, we seek
the best fit of all the nk to the asymptotic form, Akae−bk.
Because the values of nk vary over several orders of magni-
tude, we define “best fit” as minimization of the sum of the
relative squared deviations between measured and calculated
values, rather than the sum of the squared deviations, which
would be dominated by the first few points. Thus, we mini-
mize

S = �
k
�nk − Akae−bk

nk
2

. �7�

In fitting the experimental points the value of a=−��+�� is
fixed by the microscopic mass transport condition of the ex-
pansion �see above�, whereas A and b can be allowed to vary
as they depend on the macroscopic conditions. Then S is to
be minimized with respect to the two parameters A and b. We
first choose a=−1/6 �i.e., 0.167 of the ballistic model� and
find the best values of A and b, and then repeat the process
with a=−0.090 �coalescence model�. Only these two choices
are potentially appropriate for all the experimental conditions
used in this study.

Numerical results are shown in Table I, including the
number of data points for each pressure, the sum of the
squared relative deviations S, and the best-fit values of the
parameters A and b. The root-mean-square relative deviation

�S /n�, where n is the number of data points, is between
0.16 and 0.30. The fit is slightly worse �S slightly larger� for
a=−0.167 than for a=−0.090, but the difference is not im-
portant because most of the deviation is due to the effect of
magic numbers on the distribution. The fits for the latter
choice are shown in Fig. 1 because this choice of a is most
appropriate to the coalescence conditions. It properly in-
cludes the scaling of the clusters’ nascent velocity distribu-
tion in the ballistic limit, i.e., each collision results in coa-
lescence and the clusters do not equilibrate their velocities
between coalescence events. We find that S increases as the
source pressure decreases for both values of a. For lower
pressure, the distribution is dominated by smaller clusters
and the effects of magic numbers are more pronounced at
smaller sizes, increasing S. We do not estimate the uncertain-
ties for the parameters for reasons to be described below.

According to Eq. �4�, b−�a+1� should be linear in Nt,
where N is the initial monomer density, which is equal to
Po /kTo according to the ideal gas law. Since To and Po are
used to calculate the value of the initial number density of
monomers, To is the temperature of the gas in the source,
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6.7 K, and Po is the measured backing pressure. In doing
experiments, it is convenient to collect data for the case
where the temperature To is the same for all initial pressures.
For reasons to be discussed below we shall define a reaction
time � that is also the same for all initial pressures. It should
be clear, however, that what is required for the following
analysis to be reasonable is for the product Nt to be constant.
Thus b−�a+1� should be a linear function of the source pres-
sure Po. The plots of Fig. 2 show that this is indeed the case
�R2=0.974 for both models�. According to Eq. �4�, the slope
of a plot of b−�a+1� vs Po should be

� �b−�a+1�

�Po


t,T
=

�1 + a�K11�

kTo
� C��,��


�2 + a�� . �8�

The slopes are 31.45±2.97 and 39.78±3.76 bar−1 for
a=−0.167 and −0.090, respectively. Since the coefficient of
K11� /kTo on the right side of Eq. �8� is equal to 2.2192 or
2.0711 for a=−0.167 or a=−0.090, respectively, K11� /kTo

=14.17±1.34 or 19.21±1.82 bar−1, respectively. The two
values are not very different, but since we believe the na-
scent cluster velocity distribution is more appropriate, we use
the latter value.

To estimate the reaction time � corresponding to the
method of producing and sampling the distribution we note
first that clusters are formed in the early stages of an expan-
sion, when the pressures are still high. Typically, it is
thought36 that several hundreds of two-body collisions occur
within a distance of about two nozzle diameters in the ex-
pansion and relatively few collisions occur further down-
stream. The number of three-body collisions is about two
orders of magnitude smaller. Thus we simply estimate � as
the nozzle diameter d�d=5��, divided by the average speed
of a He atom, vav �this is discussed more thoroughly below�.
We note in passing that the well-known equations relating
the scaling of the average velocity and temperature of free jet
expansions to source pressure are valid only in the limit of

FIG. 1. Data set analyzed �nk vs k for five different source pressures Po�, with best fits of nk to the function Ak−0.090e−bk, which corresponds to the nascent
cluster model. The diamonds are experimental values of nk, with error bars; the lines are best-fit values. See Table I for numerical values of parameters A
and b.

TABLE I. Details of fitting of experimental data to Akae−bk using protocol described in text.

Pressure
�bar�

Number
of points

Assuming a=−1/6 Assuming a=−0.090

A b
Sum of sq.
rel. devs. A b

Sum of sq.
rel. devs.

1.10 33 0.2925 0.1190 2.918 0.2451 0.1217 3.012
1.16 32 0.2877 0.0883 1.476 0.2399 0.0907 1.548
1.22 43 0.1869 0.0602 1.210 0.1544 0.0624 1.286
1.28 43 0.722 0.0505 1.153 0.1175 0.0527 1.238
1.33 43 0.1223 0.0472 1.279 0.1009 0.0494 1.367
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no condensation and thermal equilibrium having been
established,37 conditions that are not appropriate to the cur-
rent experiments.

With the above value for K11�=19.21 bar−1, the reactive
cross section for dimerization, �11, can be estimated. Writing
K11 as �11 multiplied by the average relative speed of collid-
ing atoms vrel,

K11�

kTo
=

d�11vrel

kTovav
= 19.21 bar−1. �9�

The ratio of vrel to vav is 
2 in an isotropic gas system,38 but
decreases rapidly during a free jet expansion, since vrel de-
creases rapidly with expansion and vav increases in the
course of the expansion. Inside the nozzle, before any expan-
sion occurs, we have vrel /vav= 
2, �11=3.5510−21 m2/ 
2
=2.5110−21 m2, which corresponds to a collision radius of
r=0.28 Å. For the fully expanded free jet, the ratio vrel /vav

was measured to be about 1 /120.3 With vrel /vav=1/120,
�11=4.2610−19 m2�=42.5 Å� and r=3.68 Å. This is an up-
per limit since the correct effective temperature is at this
point less than To.

DISCUSSION

We have shown �see Fig. 1� that the abundances of clus-
ters of sizes k formed in a He free jet expansion can be well
represented by Akae−bk where a=−0.090 and the parameters
A and b are chosen to give the best fit to the experimental
data. The functional form and the value of a come from the
asymptotic �large-k� solution to the Smoluchowski equations
for kernels which scale according to Eq. �2�; a is thus fixed
and cannot be treated as a fitting parameter. This solution
also predicts that b−�a+1� should be a linear function of the
original monomer density, and hence of the pressure, and this
is likewise borne out �see Fig. 2�. Furthermore, the theory
predicts �see Eq. �8�� that the slope should be proportional to
K11� /To, where K11 is the rate constant for dimerization col-
lisions between two monomers, � is the time of reaction, and
To is the source temperature.

The upper limit for the reactive cross section radius of
3.68 Å corresponds to a cross section of 42.5 Å2 and is of
the same order of magnitude as the van der Waals radius for
He, 2.556 Å, calculated using the molar volume of the
solid39 at 0 K. The average distance between the atoms in the
bulk liquid and solid is between 3.16 and 4.0 Å, depending
on the definition used.40 Interestingly, these values bracket
the radius corresponding to the measured cross section for
monomer-monomer collisions. The agreement is also inter-
esting since our analysis of the data is essentially an extrapo-
lation from the cross sections for coalescence reactions for
cluster sizes from 7-mers through 70-mers. However, the re-
sults are consistent with our expectation that the cross sec-
tion should be large for small clusters and, in view of Eq. �2�,
approach the van der Waals radius for clusters approaching
macroscopic droplets in size. This value for the cross section
radius is also very reasonable when compared to a realistic
scattering cross section23–25,37 as a function of collision en-
ergy. Generally, above 1 K the cross section oscillates be-
tween 100 and 20 Å2 which brackets our upper limit of
42.5 Å2.

Our choice of � in Eq. �9� may be justified further as
follows. For many systems, it is known that the entire coa-
lescence process occurs within a distance on the order of
nozzle diameters from the orifice. Still, the choice of one
nozzle diameter for � in Eq. �9� is arbitrary. For any experi-
mental apparatus and expansion conditions, � will vary with
the gas used. However, the solution of Eq. �1� is the same
and Eq. �4� is valid in any units of time we choose. The
choice of time units will affect the numerical value for the
best fit normalization factor A. Calculating the time � in units
of a nozzle diameter transit time, i.e., taking �=d /vav as in
Eq. �9�, reflects the scaling12,36 of expansion properties with
the independent parameters Po To, and do. These macro-
scopic parameters, with the nature of the expanding material,
define the molecular/atomic beam source.

Equation �9�, which connects these parameters to the
microscopic processes that produce the cluster size distribu-
tion, allows us to provide rigorous and intuitively pleasing
connections with other known properties of such expansions.
For example, the total number of collisions36 in an expansion
scales with Podo /To. Our choice of � will allow comparison

FIG. 2. Plots of b�+�−1 vs source pressure Po with best-fit straight lines.
Upper plot, �+�=1/6; lower plot, �+�=0.090. The slopes of lines are 31
and 40 bar−1 for upper and lower fits, respectively. R2=0.974 for both fits.
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of distributions produced by different materials in different
apparatuses and their interpretation in terms of the interpar-
ticle potentials of effective monomer-monomer coalescence
cross sections. It should be noted, however, that these effec-
tive cross sections may or may not have a direct counterpart
in what is measured in molecular beam experiments. For
now we note that the limiting choices of relative velocity
ratio bracket a reasonable order of magnitude estimate of the
monomer-monomer reactive cross section and that presently,
the scaling is not a route to a rigorous cross section measure-
ment. It is for this reason that we did not estimate uncertain-
ties of the parameters.

Much has been neglected in our model. Notably, there is
no explicit accounting for multibody, e.g., termolecular,
collisions.12,36 Collisional stabilization of a coalescing par-
ticle which has sufficient energy to dissociate is necessary
for coalescence growth of gas phase systems since radiation
is generally much too slow to effectively stabilize such com-
plexes. The good fit of the data to our distribution function
may imply that the kernels we have employed include stabi-
lizing three-body collisions implicitly. In addition, the
Smoluchowski-based model does not consider evaporation
explicitly, but the agreement with the observed distributions
suggests that it incorporates evaporation in some way. Pos-
sibly, applying this model to other coalescence growth sys-
tems, as mentioned below, will more explicitly reveal the
effects of neglecting evaporation.

In any case, collisional stabilization must be important at
the earliest stage of coalescence growth because, although it
is possible to produce small clusters and dimers in addition
to monomers by evaporation from larger clusters, it is not
possible to produce clusters larger than dimers without at
some earlier point producing dimers. For this system, every
collision is either a mass transport-impeding collision, a re-
active collision, or a stabilization collision. For collisions
between dimers and larger clusters, it is possible for a colli-
sion to be both reactive, i.e., capable of producing a third
cluster larger than the collision partners, and stabilizing. So
while such stabilization collisions are important for the spe-
cific case of helium at larger cluster sizes, they are essential
for the initial production of dimers. In going forward we will
need to clearly define the idea of stabilization with respect to
a certain set of products. A nascent cluster may have an
infinite lifetime, i.e., it has been stabilized, with respect to
fragmenting, i.e., evaporating, to form one set of products,
and have a finite indeed short lifetime with respect to form-
ing a different set of products.

Collisions provide stabilization of nascent clusters by in-
ducing a transition from the nascent state of a cluster to
nearby bound or metastable states. However, helium has the
lowest exothermicity of any coalescence growth system and
the dimer has only one known bound state, with about
1.3 mK binding energy.26 To form a stable dimer, an encoun-
ter between two monomers from a 6.7 K distribution must
dispose of several Kelvin of excess kinetic energy. This pro-
cess must involve a collision with a third body. This provides
a very unique opportunity to connect a detailed dynamical
calculation to measurements since dimers must be formed
and their formation is probably rate determining for the over-

all coalescence process.12 Furthermore a great deal of sup-
porting information is available for guidance and consistency
checking. The novelty of this particular dynamical system, in
contrast to much larger sized clusters taken as a group,
makes it standout in a scaling treatment of cluster size data
because the interactions and potential surfaces defining it are
not shared by larger clusters and thus lead to inhomogeneous
kernels.

Inhomogeneous kernels, i.e., kernels that do not obey the
homogeneity condition given by Eq. �2�, were likewise not
included in our treatment of these data. Magic numbers, as
we have shown elsewhere,18,41 are associated with kernels
that are not homogeneous. The effect of such kernels on the
distributions is more pronounced for small clusters. In fact,
Bruhl et al.32 have shown the existence of magic numbers in
He based on the present data. Visual comparison of the dis-
tributions in Fig. 1 with the distribution Akae−bk confirms
this. Thus, in Fig. 1 there is a negative deviation from the
fitted Akae−bk for cluster sizes just larger than certain magic
numbers. We have shown18,41 that this is to be expected
when kernels for reactions producing the magic-number
cluster are larger, and/or kernels for destruction by coales-
cence are smaller, than what scaling would predict. This may
occur when a specific cluster size satisfies all valence con-
straints of the monomers without strained bonds, e.g.,
fullerene versus cyclopropane-like structures for carbon clus-
ters. Fullerenes are resistant to attack by other species and
cyclopropane is more reactive. In the present case, the mono-
mers and all clusters are spherically symmetric and essen-
tially zero valent. Bruhl et al.32 suggest that the magic num-
bers for He occur at sizes for which the cluster can just
support an addition excitation level, i.e., an additional ex-
cited state to be included in calculating the partition function.

The value of a=−��+�� is important in this model and it
is fixed by the choice of monomer and coalescence condi-
tions. This leaves only two parameters, A and b, to be chosen
by seeking the best fit to experiment. Conservation of linear
momentum in a coalescence growth system will produce a
nascent velocity distribution for which velocity decreases
more rapidly with cluster size than for thermal equilibrium.
For the former case, we calculate �preceding paper� �+�
=0.090, whereas thermal equilibrium gives �+�=0.167. We
have used the former value here; when there are many non-
reactive collisions, so that thermal equilibrium is maintained
while coalescence growth occurs, we should choose the lat-
ter.

For a diffusive regime of coalescence growth in an inert
buffer gas, e.g., metal atoms entrained in a rare gas expan-
sion or metal clusters produced by laser atoms from organo-
metallic precursors, a=�+�=0. Here, stabilization of na-
scent metal clusters is simpler since emission42 from excited
electronic states of dimers and possibly higher order oligo-
mers has been observed and assigned. Because there are so
many loosely bound electrons, bound state potential wells
are deep and electronic state lifetimes are usually shorter
than 10 ns. Thus metals will have radiative pathways avail-
able to dissipate exothermicity. For metals in inert buffer
gases, one has a diffusive regime with respect to mass trans-
port, but a coalescence-determined velocity distribution due
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to the extreme mismatch between the inert gas mass �helium
being most often used� and that of the metal. For this reason
stabilization of nascent clusters by radiative cooling is more
common.

Peaked distributions are often observed for these sys-
tems and, as mentioned earlier, there are many distributions
in the literature18,20 that have a most probable size. In the
context of our model a peaked distribution corresponds to
�+��0. Since conservation of linear momentum, angular
momentum, or energy always gives �+�	0, we conclude
that a process neglected in our model must be responsible for
making �+� negative. We hope that application of this
model to systems with different coalescence exothermicity,
mass transport and energy transport will suggest the modifi-
cations that will make this model more complete.

CONCLUSIONS

The scaled Smoluchowski model, with two nonadjust-
able scaling parameters appropriate to a coalescence growth
system and two parameters chosen to give best fit, accurately
describes the cluster size distributions produced in free jet
expansions of helium. The variation of the distribution with
source pressure is also accurately represented and an ex-
trapolation to small clusters leads to a reasonable value for
an effective helium-helium cross section. The theory predicts
a nonpeaked distribution in agreement with experiment.
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