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Enabling Green Networking with a Power Down
Approach

Brendan Mumey, Jian Tang and Saiichi Hashimoto

Abstract—The most straightforward way to reduce net-
work power consumption is to turn off idle links and nodes
(switches/routers), which we call the power down approach. In
a wired network, especially in a backbone network, many links
are actually “bundles” of multiple physical cables and line cards
that can be shut down independently. In this paper, we study
the following routing problem for green networking in wired
networks: Given a set of end-to-end communication sessions,
determine how to route data traffic through the network such
that total power consumption is minimized by turning off unused
cables in bundled links and nodes, subject to the constraint that
the traffic demand of each session is satisfied. We present an
integer linear programming to provide optimal solutions. We
also present two fast and effective heuristic algorithms to solve
the problem in polynomial time. It has been shown by simulation
results based on the Abilene network and the NSF network that
the proposed heuristic algorithms consistently provide close-to-
optimal solutions.

Index Terms—Green networking, power efficiency, routing,
power down.

I. INTRODUCTION

The Internet has become a major source of power consump-
tion due to fast growth of network users and new applications
(such as P2P and video streaming) that bring a large volume
of traffic. It has been shown by recent studies that the Internet
contributes up to 10% of the worldwide power consump-
tion [3], and have estimated that the energy usage of the US
network infrastructure at between 5 and 24 TWh/year, or $0.5-
2.4B/year [9]. This has raised public concerns about electricity
cost and green house gas emissions, which are known to have a
negative impact on global climate. Therefore, how to make the
Internet green (power efficient) has become a very important
problem and has attracted extensive research attention from
both industry and academia recently.

The most straightforward way to reduce network power
consumption is to turn off idle links and nodes, which we
call the power down approach. In a wired network, especially
in a backbone network, many links are actually bundles of
multiple physical cables and line cards that can be shut
down independently. Turning off whole links might lead to
poor network connectivity and unsatisfied traffic demands [5].
Therefore, we consider a new power down approach that only
shuts down unused cables in bundled links.

In this paper, we exploit the power down approach for
power savings from a networking perspective by studying
the following routing problem in wired networks: Given a
set of end-to-end communication sessions, determine how to
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route data traffic through the network such that total power
consumption is minimized by turning off unused cables in
bundled links and nodes, subject to the constraint that the
traffic demand of each session is satisfied. Note that most
related works on the power down approach [3], [5], [6]
considered special cases of the problem studied in this paper,
which will be discussed in greater details in Section II. Our
major contributions are summarized as follows:

1) We study a general case of the Routing with Power down
Problem (RPP) and present a Mixed Integer Linear Program-
ming (MILP) formulation to provide optimal solutions, which
can serve as the benchmark for performance evaluation.

2) We present two fast and effective heuristic algorithms to
solve the problem in polynomial time.

3) We present simulation results based on the Abilene
network and the NSF network to show that the proposed
algorithms consistently provide close-to-optimal solutions.

II. RELATED WORK

From a networking perspective, there are two main ap-
proaches for power savings: turning off network elements
(power down) and adapting link date rates to their offered
traffic loads (rate adaption). In a pioneering work [7], Gupta
and Singh discussed the benefits brought by a power down
approach and its impact on network protocols. In a closely
related work [3], the authors considered the problem of
switching off network nodes and links while still ensuring full
connectivity and maximum link utilization for backbone net-
works. Several heuristic algorithms were presented to solve the
problem. Heller et al. studied a similar problem for data center
networks with tree-like topologies in [6]. They presented a
network-wide power manager and several heuristic algorithms
to dynamically turn on/off network elements to satisfy varying
traffic loads. In [5], the authors considered the problem of
minimizing total power consumption by shutting off cables
in bundled links. They proposed an ILP formulation and
several heuristics to solve it and justified their effectiveness via
simulations. In [9], Nedevschi et al. showed that even simple
schemes using power down and/or rate adaptation approaches
can offer substantial power savings without noticeable increase
in packet loss and with a small increase in latency. In a recent
paper [8], the authors conducted an extensive case study of
several simple power saving algorithms by simulating a real
Web 2.0 workload in a real data center network topology.
Their results indicated that 16% power savings can be obtained
merely by appropriately adjusting active network elements’
data rates. In another recent work [1], Andrews et al. studied a
routing problem with the objective of provisioning guaranteed
bandwidth for end-to-end traffic demands while minimizing
power consumption using rate adaption. They showed that



if the link power consumption curve is superadditive, there
is no bounded approximation in general for integral routing.
However, for common power cost curves such as polynomi-
als, they proposed a constant factor approximation algorithm
based on randomized rounding. In [10], the authors presented
Energy-Aware Traffic engineering (EATe), a technique that
takes power consumption into account while achieving the
same data rates as energy-oblivious approaches.

We summarize the differences between this work and related
works as follows: 1) Compared to related works on the power
down approach [3], [5], [6], this paper address a more general
case since a whole link is assumed to be turned either on or
off completely in [3], [6] and a node is assumed to be on all
the time in [5]. 2) The optimization problem studied in this
work is mathematically different from those problems studied
in the related works on the rate adaption approach [1], [8].
3) In this work, we present a mathematical formulation and
efficient algorithms to provide optimal and close-to-optimal
solutions respectively for an optimization problem, instead of
performing a measurement study to justify the benefits of the
power down approach as [7], [9], [10].

III. PROBLEM FORMULATION

We consider a wired computer network, where each link is
used for communications in both directions. Following previ-
ous studies [5], [8], we adopt a simple power consumption
model: each link l is a bundled link containing Nl ≤ N
cables that can be turned on or off selectively. The power
consumption of a cable in a bundled link l is assumed to be
a constant Pl. In order for a link to be operational, both of
its endpoint nodes (switches/routers) and corresponding line
cards must be turned on. The power usage of an on-node v is a
fixed constant Pv that includes power consumed for operating
its chassis and line cards. A node will be shut down if all of
its adjacent cables are turned off. The effective capacity of an
operational link l is cl = xl

Nl
Cl, where xl is the number of

cables turned on and Cl is the capacity of the bundled link
l that is the summation of the capacities of all of its cables.
We are interested in finding a routing solution for a given set
of end-to-end communication sessions. A routing solution is
feasible if according to it, the traffic load of each link does not
exceed its effective capacity, the flow conservation constraint
is satisfied and the traffic demand of each communication
session is met. All the unused cables and nodes (i.e., carry no
traffic) will be switched off to save power. The corresponding
optimization problem is defined as follows.

Definition 1 (RPP): Given K end-to-end communication
sessions (each with a source node sk, a destination node tk
and a traffic demand dk), the Routing with Power down
Problem (RPP) seeks a feasible routing solution for all
the communication sessions such that total network power
consumption is minimized.

A. MILP Formulation

We formulate the RPP as an MILP problem to provide
optimal solutions. In order to present the MILP formulation,
we construct a directed graph G(V, E) to model the network

where each vertex v ∈ V corresponds to a node (router) and
each pair of edges (e, ē) sharing the same ending vertices (i.e.,
e = (u, v) and ē = (v, u)) correspond to a (physical) link l
which is used for communications in both directions. We use
L to denote the set of such edge pairs (links) in G. Let Ev

be the set of links (edge pairs) that are adjacent to node v, let
Ein

v be the set of incoming edges into v and Eout
v be the set

of outgoing edges from v.
We define the following decision variables for the MILP

formulation.

1) fk
e ≥ 0: The amount of traffic on edge e for communi-

cation session k.
2) xl ∈ {0, 1, . . . , Nl}: The number of bundle cables turned

on in link l.
3) yv ∈ {0, 1}: yv = 1 if node v is turned on; yv = 0,

otherwise.

MILP: RPP

min
∑

l∈L

Plxl +
∑

v∈V

Pvyv (1)

subject to
∑

e∈Eout
sk

fk
e −

∑

e∈Ein
sk

fk
e = dk, k ∈ {1, 2, · · · , K}; (2)

∑

e∈Eout
v

fk
e −

∑

e∈Ein
v

fk
e = 0, ∀v ∈ V \ {sk, tk},

k ∈ {1, 2, · · · , K}; (3)
K

∑

k=1

(fk
e + fk

ē ) ≤
xl

Nl
Cl, ∀l = (e, ē) ∈ E; (4)

∑

l∈Ev

xl ≤ Myv, ∀v ∈ V ; (5)

In this formulation, the objective (1) is to minimize total
power consumption of the network. Constraint (2) makes sure
that the traffic demand dk of each communication session k is
satisfied. Constraint (3) ensures that the conservation of flow
holds. Constraint (4) ensures that the total amount of traffic
carried by a link (including traffic in both directions) does
not exceed its effective capacity. Constraint (5) ensures that
endpoint nodes of active links are turned on (the constant M
is set to the maximum number of cables connected to a node),
i.e., a node is shut down only if none of its adjacent cables
are turned on.

IV. PROPOSED ROUTING ALGORITHMS

Even though solving the MILP can provide optimal solu-
tions for the RPP, it may take exponentially long time [2],
especially for large problem instances. In this section, we
present two polynomial-time heuristic algorithms for the RPP,
which can be used in an on-line manner.

A. Shortest Path Based Algorithm

The first algorithm is based on simple shortest path routing.
Since both nodes and links have associated power consumption
costs (weights), we cannot directly apply a standard shortest
path algorithm, such as Dijkstra’s algorithm, which deals with



edge weights only. To overcome this, we make a simple graph
transformation. Each vertex v ∈ V is replaced by two new
vertices vin and vout. We also modify the edges in the graph
so that any incoming edge into v of the form (u, v) is replaced
with (u, vin) and any outgoing edge of the form (v, u) is
replaced with (vout, u). These new edges have the same power
costs and capacities as the ones they replace. We also add a
new edge (vin, vout) to E, with weight

w(vin, vout) =

{

Pv if v is currently off;

0 otherwise.
(6)

Let the resulting auxiliary graph be G′ = (V ′, E′), after the
above transformations have been done. It is easy to see that
a path in G′ corresponds to a path in G. The power costs
incurred in the path on G′ are just edge weights and are equal
to the costs incurred in the corresponding path in G which
includes both node and edge power costs.

In the beginning, all cables and nodes are assumed to be off.
The basic idea of the proposed algorithm is to find a shortest
path for communication sessions one by one, turn on nodes
and cables accordingly and update edge weights in G′ every
time according to existing traffic and the statuses of the nodes
and links. Suppose that we are trying to find a routing solution
for a communication session from s to t with demand d. We
define the weight for each edge e = (u, v) in G′ as follows:
Let fe be the existing traffic on edge e. For a link l = (e, ē),
let fl = fe + fē, be total existing traffic on l, and let xl be
the number of cables in l that are currently turned on. Clearly,
xl ≥ &Nlfl

Cl
', in order to support the existing traffic. Let

ae =
xl

Nl
Cl − fl (7)

be the available “free” capacity on link e. We define the weight
of e as

w(e) =

{

0 if ae > 0;

Pl if ae = 0 and xl < Nl.
(8)

If fl = Cl, then there is no remaining capacity on link
l = (e, ē), and we will mark both e and ē as unavailable
for additional flow routing and remove them from G′. The
algorithm finds a shortest path p from s to t in G′ using
the above edge weight functions and then augments the flow
of every edge along p. The amount a of flow to augment is
determined as follows: initially, a is set to the (remaining)
demand between s and t left to provision. All edges on path
p are examined: if w(e) = 0, then a is set to the minimum
of a and ae; otherwise, an additional cable must be turned on
in the corresponding link l and so a is set to the minimum of
a and Cl

Nl
. After the augmentation, the available capacity and

weight of each edge on path p are updated according to (6),
(7) and (8). This process is repeated until all traffic demands
are met (or no augmenting path can be found). The complete
algorithm is given in Algorithm 1.

We note that after each path p augmentation of size a >
0 is performed, either the remaining demand r between the
current (sk, tk) pair is satisfied (r = a), or there is an edge
e ∈ p which has just become saturated (ae = 0) after the

Algorithm 1 RPP-ShortestPath

Input: U = {(sk, tk, dk)}

Step 1 Construct the auxiliary graph G′ = (V ′, E′).
Step 2 Calculate w(e) for e ∈ E′ using (6) and (8);
Step 3 forall (sk, tk, dk) ∈ U

r := dk; // the remaining demand
while (r > 0)

Compute a shortest path p ∈ G′ from s to t;
if (! p ∈ G′) return FAILURE; endif
a := r;
forall e ∈ p

if (w(e) = 0)
a := min(a, ae);

else
a := min(a, Ce

Ne
);

endif
endforall
forall e ∈ p

Augment the flow of e by a;
if ((fe + fē) = C(e,ē))

Remove e and ē from G′;
else

Update w(e);
endif

endforall
r := r − a;

endwhile
endforall

Step 4 return SUCCESS;

augmentation. The number of times this can occur for an edge
is Ne ≤ N , so the total number path augmentations done
(over all of the sessions) is at most K + N |E′|. Each shortest
path computation can be done with Dijkstra’s algorithm in
O(|E′| + |V ′| log |V ′|) time, so the time complexity of this
algorithm is O((K + N |E′|)(|E′| + |V ′| log |V ′|)).

B. Tree-Based Algorithm

The second algorithm uses a tree structure to route all
the communication sessions. The reason for using a tree for
routing is that links in the tree will be used frequently and so
the fixed power costs of setting up each link can be amortized
over more communication sessions. For ease of computation,
we choose to use a Minimum Spanning Tree (MST) for routing.
We consider the network undirected here since every link is
used for communications in both directions. Without abuse of
notation, we use an undirected graph G(V, L) to model the
given network. Note that there is a unique path p from sk to
tk on any MST T .

In the beginning, all cables and nodes are assumed to be
off. The basic idea of our algorithm is to first weight each
link (u, v) ∈ L according to how much available capacity it
has and also whether its endpoint nodes are turned on and
whether it is either a source or destination of at least one of
the communication sessions. Then we find an MST T and
use T to route as many of the input communication sessions



as possible. If not all of the sessions can be routed with T
(this happens when a link in a routing path on T has no
remaining capacity), then we simply update link weights based
on the traffic successfully routed through T and find another
MST T ′ to route remaining sessions. This process is repeated
until either all traffic demands are satisfied, or a new MST
cannot be found. Again, let fl be the existing traffic on link
l. Let off(v) ∈ {0, 1} indicate whether the node v is currently
turned off and let st(v) ∈ {0, 1} indicate whether v is the
source or destination node of any communications session.
When computing the MST, we use the following link weight
function for each link l = (u, v) ∈ L (remember we treat
G(V, L) as an undirected graph now),

w(u, v) =
fl

Cl
+

off(u) − st(u) + off(v) − st(v)

2
. (9)

The first two terms in (9) add weight to the undirected link
l = (u, v) according to how much existing traffic is already
present in either direction on (u, v). Links with more traffic
have a higher weight and will be less likely to be selected
in the MST. The remaining terms in (9) modify the weight of
l = (u, v) according to whether u or v are currently off (and so
must be turned on for the link (u, v) to be used) and whether
u or v are endpoint nodes in at least one of the communication
sessions. This last contribution to the link weight is a heuristic
to influence the MST T to go through source/destination nodes
and by doing so, hopefully the length of the routing path on
T can be reduced. We will also assume that those links l
that become saturated (fl = Cl) are marked unavailable and
removed from the graph. The complete algorithm is given in
Algorithm 2.

Algorithm 2 RPP-Tree

Input: U = {(sk, tk, dk)}

Step 1 while U (= ∅
Calculate w(u, v) for all (u, v) ∈ L
according to (9);
Find a MST T ;
if G is disconnected return FAILURE endif
forall (sk, tk, dk) ∈ U

Let a be the available capacity on the path p
from sk to tk on T ;
Augment the flow of each link on p by
min(a, dk);
Remove links l ∈ p with fl = Cl from L;
U := U − (sk, tk, dk);
if (a < dk)

U := U + (sk, tk, dk − a);
endif

endforall
endwhile

Step 2 return SUCCESS

We note that in each iteration of the outer while loop of the
algorithm, either the current (sk, tk, dk) pair is successfully
routed (its traffic demand is met), or there is a link l ∈ L
which has just become saturated (fl = Cl). Thus, a simple

bound on the number of iterations is K+|L|. The running time
of each iteration is dominated by the time required to find the
current MST T , which can be done within O(|L|+|V | log |V |)
time using Prim’s algorithm. So the time complexity of this
algorithm is O((K + |L|)(|L| + |V | log |V |)).

V. SIMULATION RESULTS

In this section, we present simulation results to show the
performance of the proposed algorithms. The software ILOG
CPLEX 10.1 [4] was used to solve all the MILP problems.

Similar as in [1], the simulation runs were performed on
two well-known network topologies: the Abilene research
network with 10 nodes and 13 links, and the NSF network
with 14 nodes and 20 links, which are shown in Fig. 1. Every
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Fig. 1. The network topologies

communication session had randomly selected source and des-
tination nodes, and a randomly generated traffic demand. The
link capacity values, and link and node power consumption
values are given in Table I, which were set according to the
measurement results presented in [8].

TABLE I
SIMULATION SETTINGS

Parameter Value
Link capacity (Cl) 3Gbps

The number of cables in each link (Nl) 3
Cable power usage (Pl) 1.8W
Node power usage (Pv) 93W

We tested the performance of the proposed algorithms in
both regular traffic and heavy traffic cases. Specifically, we
performed simulation runs based on two scenarios for each
network: In scenario 1, each communication session had a ran-
domly generated traffic demand that was uniformly distributed
in [0, 100] Mbps. In scenario 2, we increased traffic demands
by setting the traffic demand range to [0, 200] Mbps. In each
simulation run, K communication sessions were created; K
was increased from 5 sessions to 25 sessions with a step
size of 5. The optimal solution was obtained by solving the
MILP problem given in section III-A. The simulation results



are presented in Fig. 2–3. Note that CPLEX was not able to
find the optimal solutions to the MILP problems on the NSF
network in the heavy traffic case due to very long running
time. So in Fig. 3(b), we only present simulation results
corresponding to the two heuristic algorithms.

We make the following observations from the simulation
results.

1) From the figures, we observe that both the shortest path
based algorithm and the tree based algorithms consistently
produce close-to-optimal solutions in both regular and heavy
traffic cases. Specifically, the average difference between
the power usage values given by the shortest path based
algorithm and the optimal ones is only 4.4%. For the tree
based algorithm, the average difference is 0.7%. An interesting
observation is that the tree based algorithm performs slightly
better the shortest path algorithm.

2) As expected, the power usage values given by both
algorithms increase monotonically with the number of commu-
nication sessions in both scenarios since more communication
sessions lead to heavier traffic loads therefore higher power
usages. However, we notice that the power usage usually levels
off after certain points. This is because in the beginning, with
more traffic introduced into the network, more nodes and
cables usually need to be turned on to support them, leading
to significant increase on power usage; however, after certain
points, most of newly introduced traffic can be supported
by using available capacities on nodes and cables that have
already been turned on, which will not cause significant power
usage increase.
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Fig. 2. Scenario 1 (regular traffic): Power Usage VS. K
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Fig. 3. Scenario 2 (heavy traffic): Power Usage VS. K

VI. CONCLUSIONS

In this paper, we examined how to leverage the power down
approach for green networking by studying a novel routing
problem, namely, the RPP. We presented an MILP formulation
for the RPP to provide optimal solutions. Then we presented
a shortest-path based algorithm and a tree based routing
algorithm to solve it in polynomial time. Our simulation results
showed both algorithms consistently provide close-to-optimal
solutions and the tree based algorithm slightly outperforms the
shortest path based algorithm on the Abilene network and the
NSF network.
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