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ABSTRACT 

The problem of electromagnetic scattering from and transmission through an 

arbitrarily shaped aperture is considered. The aperture is in a thick infinite perfectly 

conducting ground plane. The conducting walls of the cavity inside the ground plane are 

of arbitrary shape. The apertures at both ends of the cavity are also of arbitrary shape. 

The structure is illuminated by an incident plane electromagnetic wave. The Green’s 

function for this complicated problem is almost impossible to determine. Therefore the 

surface equivalence principle is used to reduce this complex problem into three simpler 

ones. Each such problem consists of equivalent surface currents radiating in unbounded 

media. Therefore the free space Green’s function is used for each problem. An equivalent 

surface magnetic current placed on the top aperture produces the scattered field in the 

region where the impressed sources are. The total field inside the cavity is produced by 

two surface equivalent magnetic currents on the apertures and an equivalent surface 

electric current residing on the walls of the cavity as well as on both apertures. The 

transmitted field on the opposite side of the impressed sources is computed by an 

equivalent surface magnetic current residing on the bottom aperture. Enforcing the 

boundary conditions on the tangential components of electric and magnetic fields on both 

apertures and on the tangential components of electric field on the cavity walls results in 

a set of three coupled integral equations for the equivalent surface currents. Whenever 

possible, image theory is used to simplify the equations. These equations are numerically 

solved using the method of moments. The surfaces are approximated by planar triangular 

patches. RWG functions are used for expansion functions. An approximate Galerkin 

method is used for testing. The method is applicable for the general case where all three 



 

 

 

 

regions have different material parameters. Results are computed for the case where all 

these parameters are the same. The method is applicable for arbitrary sized apertures and 

cavities. However due to limited computing resources, only problems in the resonance 

region, where dimensions are comparable to wavelength, are considered here.  

Computed results are given for the case of two square apertures connected by a 

square prism, two cross apertures connected by a square prism cavity, two circular 

apertures connected by a cylindrical cavity, and finally two circular apertures connected 

by a conical cavity. Our computed results are compared with results in the literature 

obtained by using other methods. Very good agreement is observed. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Purpose 

The coupling of electromagnetic energy through apertures is an important 

problem in electromagnetic engineering. Many applications, such as aperture antennas, 

electromagnetic compatibility and interference, electromagnetic pulse interaction with 

shielded devices, and coupled resonator filters deal with the determination of the fields 

coupled through apertures.  

Specifically, this dissertation investigates electromagnetic transmission through 

and scattering by an arbitrarily shaped aperture in a thick ground plane. The general 

problem considered is shown in Fig. 1.1. The ground plane is perfect electric conductor 

(PEC). It is infinite in 0z   plane and has a thickness of “ d ” in z  direction. In this 

ground plane, two arbitrarily shaped apertures are located on the top and bottom surfaces 

and arbitrarily shaped cavity walls connect these apertures. Inside this cavity, the medium 

is linear, homogeneous, and isotropic with ( ,b b  ) for dielectric permittivity and 

magnetic permeability. The region above the ground plane has ( ,a a  ) and the region 

below the plane has ( ,c c  ). A time harmonic plane wave (
inc inc,E H ) is incident on the 

top aperture coming from sources that are infinitely far away. The fields in each region 

have to be solved for. A method of moment approach is sought to solve for the fields in 

each region.  
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Fig. 1.1  Problem to be solved. (a) top view; (b) cross-section view taken at the cutline of (a). 
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The equivalence principle is applied to separate each region from the rest and 

equivalent sources are placed on the boundaries. Integro-differential equations are 

obtained. Image theory is used whenever it is possible, to simplify the problem. The 

equations are solved numerically with the moment method. The solution provides the 

equivalent sources, which then can be used to find the fields or other quantities sought 

throughout the problem space. 

1.2 The Motivation 

 In 1944, Bethe [1] offered solutions for coupling through a small circular 

aperture in a conducting plane wall of zero thickness, utilizing electric and magnetic 

dipole moments. His solution, the so-called aperture polarizability method, has been used 

extensively as a basis for future research on aperture coupled systems. However, Bethe’s 

solution is suitable for circular apertures only, not applicable to rectangular or more 

complicated geometrical figures. Bouwkamp [2] worked on small holes and pointed out 

errors in Bethe’s solution. Cohn [3], [4] improved Bethe’s work to include arbitrarily 

shaped apertures in walls of zero thickness. McDonald [5] combined the aperture 

polarizability method with a waveguide modes method to solve for the coupling through 

small apertures in plane walls of arbitrary thickness. Chen used waveguide modes to 

solve the problem of periodic circular apertures in thin plates [6], [7] and later in thick 

plates [8].  

A major breakthrough in dealing with aperture problems came in 1975 when 

Harrington and Mautz [9] expressed aperture characteristics as admittance matrices, 

which depend only on the region being considered, being independent of the other region. 

The aperture coupling is then expressible as the sum of the two independent aperture 
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admittance matrices. The numeric solution is carried out with the method of moments 

formulated by Harrington [10]. Many canonical problems can be solved by this approach. 

After Harrington popularized the method of moments for electromagnetic field problems, 

many researchers tackled aperture problems by applying moment methods to electric and 

magnetic field integral equations.  

Mautz and Harrington provided the solution for rectangular apertures in thin 

conducting planes [11], [12] and for rectangular waveguide to rectangular aperture 

coupling [13]. Butler and Umashankar investigated coupling to a wire through an 

aperture in a thin plate [14]. Butler, Rahmat-Samii, and Mittra [15] presented a work in 

1978 which summarizes different methods employed so far for solving various kinds of 

aperture problems. Their work mentions integro-differential equations, which are 

expanded as Rayleigh series; aperture polarizabilities for small apertures; general 

formulation using equivalence principle and the method of moments. At the end of their 

work, an extensive bibliography, comprising papers published on apertures till 1978, is 

provided. 

Auckland solved the problem of electromagnetic transmission through a slit in a 

thick conducting plane, when the cross-section of the slit is rectangular [16] and when it 

is arbitrarily shaped [17]. Although the cross-section is arbitrarily shaped and the 

conducting plane is thick, this problem is not a real 3-D problem. Since a slit is defined as 

having infinite length, slit in a thick conductor becomes a 2-D problem. A technical 

report by Harrington, Mautz, and Auckland [18] summarizes several problems that were 

solved using the method of moments. 
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 Another important milestone is the development of expansion functions for 

moment methods when triangular surface patch modeling is used, brought to fruition by 

the hard work of Rao [19] and Rao, Wilton, and Glisson [20]. Arbitrarily shaped objects 

are easier to be modeled by triangular patches and the triangular expansion functions 

have many properties suited aptly to solve the problem analyzed in this dissertation.  

Leviatan, Harrington, and Mautz [21] analyzed the transmission problem when 

the conducting plane is thick and the aperture is a circular cavity. Arvas solved for 

radiation and scattering from an arbitrary conducting body [22]. He specifically dealt 

with the problem in the Rayleigh region where the conducting body is much smaller than 

the wavelength. This problem separates into an electrostatic problem and a magnetostatic 

problem. Then Arvas showed that the problem of determining the electric polarizability 

of a small aperture is the dual of the problem of determining the magnetic poarizability of 

a conducting disc [23]. In this dissertation, the problem considered is in the resonant 

region, where the apertures and the cavities are comparable with the wavelength. 

Harrington investigated aperture coupling to a cavity when an arbitrarily shaped 

body existed [24]. Chih-Lin I solved the general problem of arbitrarily shaped apertures 

in thin plates [25]. An extension of this problem, where the aperture is covered with a 

mesh, is solved by Sarkar, et al. [26]. Hsi furthered the arbitrarily shaped aperture in thin 

plane problem by solving for the coupling between such an aperture and a conducting 

wire [27]. 

In 1991, Jian-Ming Jin and John L. Volakis presented a solution for 3-D 

arbitrarily shaped cavities and apertures in thick conducting planes by combining 

boundary integral methods with the finite element method (FEM) [28], [29]. Their paper 
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is the one which the results from this research are compared to so as to validate the 

moment method approach. FEM requires generating a volume mesh to find the fields. 

However, the formulation based on the method of moments in this dissertation only 

requires surface meshing to calculate the fields. That makes it inherently faster to obtain 

results in a computer. 

In 1994, Luebbers and Penney devised a method where they can use the finite 

difference time domain (FTTD) method to solve for the scattering from an arbitrarily 

shaped aperture in a thin ground plane [30]. In 1999, Park and Eom used Fourier 

transform and mode matching technique to obtain a fast converging series solution for 

scattering from rectangular apertures in a thick conducting screen [31]. In 2004, Park and 

Eom published a paper in which they use the aforementioned method to solve for the 

electromagnetic transmission through circular apertures in a thick conducting plane [32]. 

In other notable research related to the area of aperture coupling, modified basis 

functions developed by Andersson that incorporate the edge and the corner singularities 

[33] are used; and several papers from 1993 onward concentrate on accurate calculation 

of the singular integrals faced while using RWG triangular basis functions [34]–[41]. 

1.3 The Structure of the Dissertation 

After the introduction of the problem and the literature survey, the organization of 

this dissertation is as follows: 

 Chapter 2 restates the problem to be solved and then describes the solution 

method in detail. First, the equivalence principle is applied to simplify the problem and to 

separate the complex problem into three simple regions. The problem is reduced to 

finding the equivalent sources in each of these regions. Since the problem deals with an 
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infinite ground plane in two of these regions, image theory can be used and the unknown 

sources reduced solely to magnetic currents. The integro-differential equations to be 

solved numerically are obtained at the end of these steps. 

Then, the application of the method of moments as a numerical process is 

described. Discretization of the integro-differential equations is performed. The matrix 

equation that is going to be solved is obtained. 

An important step in the method of moments is to select proper expansion 

functions. Rao-Wilton-Glissson triangular expansion functions [20] are selected to 

expand unknown currents. Galerkin’s method is used for the testing procedure, where the 

expansion functions are also used as testing functions.  

Evaluation of the matrice elements requires surface integrations of the currents 

over triangular patches. The evaluation of the double integrals faced during this step is 

computationally very intensive and places a burden on computer resources. One way to 

reduce the burden is to use central point approach where the value of a function is 

assumed to be a constant over a patch. Then, any integral whose integrand is proportional 

to the function is simplified by replacing the function by its value at the centroid of the 

triangle. This approximation is used for the integrations with respect to the arguments of 

the testing functions. However, expansion functions are integrated using well-established 

numeric methods. Another difficulty faced when calculating the integrals is when the 

integrands are singular. The singularity extraction method is used where a singular 

integrand is expressed as a singular but integrable integrand plus a nonsingular integrand. 

The singular but integrable integrand is integrated analytically and the non-singular 

integrand is calculated using a Gaussian quadrature rule modified for a triangular domain. 
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At the end of Chapter 2, the calculation of the fields in each region is formulated 

using solved equivalent sources. 

Chapter 3 presents the computed results for several problem geometries. A 

MATLAB program is developed based on the formulation of Chapter 2. The program and 

the formulation are validated by two test cases; a square aperture in a thick conducting 

plane and a cross aperture in a thick conducting plane. After the validation, results for 

circular apertures with a cylindrical cavity inside the conductor and a conic cavity inside 

the conductor are given. The effect of conductor thickness is also shown in a separate 

section.  

An arbitrarily shaped aperture in a thin conducting plane is a special case of the 

problem treated in this research. The results for an aperture in a thick plane should 

converge to the results for an aperture in a thin plane when the thickness of the plane 

goes to zero. This is verified for a circular aperture by starting with a thick conducting 

plane and reducing the thickness in steps.  

Convergence of the computed results is also analyzed in Chapter 3. Results are 

provided for a sample problem when the number of triangles in a mesh is increased. Also 

the effect of refining triangles on the aperture edges is investigated.  

Chapter 4 presents the conclusions and gives a brief summary. 
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CHAPTER 2 

TRANSMISSION THROUGH AN ARBITRARILY SHAPED 

APERTURE IN A THICK GROUND PLANE 

This chapter presents a method of moments solution to the three-dimensional 

problem of electromagnetic transmission through an arbitrarily shaped aperture in a thick 

ground plane. The problem geometry is shown in Fig. 2.1. 

The ground plane is assumed to be a perfect electric conductor (PEC) of infinite 

size in x and y directions. It has a finite thickness of “ d ” along the z axis. An arbitrarily 

shaped aperture exists on each side of the thick ground plane. These apertures are 

connected with an arbitrarily shaped cavity. The regions above and below the ground 

plane as well as inside the cavity are linear, homogeneous, isotropic dielectric mediums. 

These regions are named regions a, b, and c from the top to the bottom. In general, each 

region has a different electric permittivity (ε) and magnetic permeability (μ) than the 

others. The top region, region a, also contains impressed sources ( ,  i i
J M ) far away. 

These sources excite a time harmonic plane wave which illuminates the ground plane on 

the top side. The electric and magnetic fields in each region are unknown and they are 

going to be calculated by applying the equivalence principle, image theory and the 

method of moments. 

The integro-differential expressions for the fields due to sources in an unbounded 

homogeneous medium are 
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 Fig. 2.1  Original problem. (a) cross-section view; (b) top view.  
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( )

( ) ( ) ( )j V


    
F r

E r A r r   (2.1) 

 
( )

( ) ( ) ( )j U


    
A r

H r F r r   (2.2) 

where the potentials are given by 

 ( ) ( ) ( , ) 
4

G ds



   A r J r r r  (2.3) 

 ( ) ( ) ( , ) 
4

G ds



   F r M r r r  (2.4) 

 
1

( ) ( ) ( , ) 
4

V j G ds


    r J r r r  (2.5) 

 
1

( ) ( ) ( , ) 
4

U j G ds


    r M r r r . (2.6) 

G is the free-space Green’s function and it is defined as 

 ( , )
jk

e
G

 

 


r r

r r
r r

. (2.7) 

r is the field point vector and r  is the source point vector. The source currents are taken 

as surface current densities as evidenced by the double integrals. An j te  time dependence 

is assumed and suppressed everywhere. 

2.1 Application of the Equivalence Principle and Image Theory 

The equivalence principle [42] is used to decouple the fields in the three regions 

of Fig. 2.1a by covering the apertures with PEC and placing equivalent magnetic currents 

over where we originally had the apertures [9].  

The equivalent problem for the top region is shown in Fig. 2.2. The impressed 

sources ( ,  i i
J M ) and the material ( ,a a  )

 
are kept the same as those in the original 
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problem. The top aperture surface of Fig. 2.1a is now covered by a patch of PEC in      

Fig. 2.2. Hence, the whole 0z   plane in Fig. 2.2 is a PEC. Below this plane, the fields 

are set to be null fields. The tangential electric field in region a of Fig. 2.1a is zero just 

above the 0z   plane except over the top aperture region. The electric field in the top 

 

Fig. 2.2  The equivalent problem for region a. 

aperture region is 
0 0

a a

z z  
E E  in Fig. 2.1a. By placing an equivalent magnetic surface 

current 

 1
0 0

a a

a
z z  

   M E n E z  (2.8) 

over this newly placed patch of PEC in Fig. 2.2, we guarantee that the tangential electric 

field just above this current in Fig. 2.2 is the same as the tangential electric field at the 

same points of Fig. 2.1. In (2.8), z  is the unit vector in the z-direction and 0z   

indicates the limit as z approaches zero from the above. Then the fields in Fig. 2.2, 

produced by the impressed sources ( ,  )i i
J M  and the equivalent magnetic surface current 

1M  (residing just above the PEC plane), are identical to ( ,a a
E H ) in Fig. 2.1. That is, 

 1( ) ( )a a i i a
E = E J ,M + E M  (2.9) 

  

 

 z= 0 

 

region a (ε
a
, μ

a
)    

 

zero field ( ) 
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 1( ) ( )a a i i a
H = H J ,M + H M . (2.10) 

The problem in Fig. 2.2 is a radiation problem of current sources over an infinite 

ground plane in a half-space filled with homogeneous dielectric medium. This type of 

problem is solved many times before [14], [15], [25] by using image theory.  

Fig. 2.3 shows the application of image theory to Fig. 2.2. The ground plane is 

removed by using image theory and the equivalent magnetic surface current is doubled. 

Impressed sources also have their images taken. All sources are now radiating in an 

unbounded homogeneous medium ( ,a a  ). The fields in region a of Fig. 2.3 are the same 

as the fields of region a in Fig. 2.1a. 

 
,img ,img

1( , ) ( , ) (2 )a a i i a i i a  E E J M E J M E M  (2.11) 

 
,img ,img

1( , ) ( , ) (2 )a a i i a i i a  H H J M H J M H M . (2.12) 

 

Fig. 2.3  Application of image theory to Fig. 2.2. 
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The equivalence for region b of Fig. 2.1a is set up as follows: The top and bottom 

apertures are covered with PEC patches. The material ( ,b b  ) is kept and the fields 

outside of region b are set to be zero. Equivalent magnetic surface currents are placed on 

the newly placed patches inside region b. The values of these currents are chosen to be 

on top aperture in region b: 1
0 0

( )b b

b
z z  

     M E n E z
 

(2.13) 

on bottom aperture in region b: 2
( ) ( )

b b

b
z d z d    

    M E n E z  (2.14) 

where bn is the unit vector normal to the conductor pointing into region b and 0z   

indicates the limit as z approaches zero from the below. This equivalent problem for the 

cavity region is shown in Fig. 2.4. 

 

Fig. 2.4  The equivalent problem for region b. 

The fields in region b of Fig. 2.4 are due to the equivalent currents radiating in a 

closed PEC cavity. Solving for these fields requires the knowledge of the arbitrarily 

shaped cavity’s Green’s function. However it is impossible to obtain a closed form of the 

Green’s function for such a cavity. In order to overcome this difficulty, another 

equivalent problem is considered for the cavity region as shown in Fig. 2.5. 
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Fig. 2.5  The equivalence for the cavity region. 

 

In this new equivalent problem, the conductor is removed and an electric current 

J , where  

 
in
c

b

b
S

 J n H , (2.15) 

is placed instead. 
in
c

b

S
H  is the magnetic field just inside the cavity in Fig. 2.4. The 

surface of the walls of the cavity is called cS . cS  consists of the top aperture surface at 

0z  , the bottom aperture surface at z d  , and the surface of the remaining cavity 

walls. The surface of the remaining cavity walls is called “the cavity surface”. The 

electric current J  in (2.15) is placed on cS . Original magnetic sources are kept. The 

whole space is filled with ( ,b b  ). Now the currents are radiating in an unbounded 

medium, so the cavity’s Green’s function is not required anymore. The fields in the 

region of interest can be written as: 
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 1 2( ) ( ) ( )b b b b    E E M E M E J  (2.16) 

 
1 2( ) ( ) ( )b b b b    H H M H M H J . (2.17) 

The boundary condition to be satisfied in this problem is vanishing tangential electric 

fields over the conductor: 

 tan 0b E over cavity surface (Sc). (2.18) 

Lastly, the equivalent problem for the bottom region is set up as in Fig. 2.6. This 

is very similar to the top region equivalent problem with the major difference being not 

having impressed sources in the bottom region problem. The bottom aperture of Fig. 2.1a 

is covered by a patch of PEC in Fig. 2.6 and an equivalent magnetic surface current 2M  

is placed just below this patch in region c. The material ( ,c c  ) is kept the same as in the 

original problem. The fields above the z d  plane are set to be zero. The value of the 

equivalent magnetic current is 

 2
( ) ( )

( )c c

c
z d z d    

    M E n E z . (2.19) 

 

Fig. 2.6  The equivalent problem for region c. 
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The fields in region c are only due to this equivalent current radiating in the presence of 

an infinite ground plane. That is, 

 2( )c c
E = E M  (2.20) 

 2( )c c
H = H M . (2.21) 

If image theory is used, the ground plane can be removed. In this case, the magnetic 

current is doubled and it radiates in an unbounded medium filled with ( ,c c  ) as shown 

in Fig. 2.7. The fields in region c can be written as 

 2(2 )c cE E M  (2.22) 

 2(2 )c cH H M . (2.23) 

 

Fig. 2.7  Application of image theory to Fig. 2.6. 

After extracting these three equivalent problems from the original problem in  

Fig. 2.1, the next step is to satisfy the boundary conditions. Thus, the continuity of the 

tangential electric and magnetic fields across the aperture regions and vanishing 

tangential electric field over the conductor have to be satisfied.  
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The first boundary condition, the continuity of the tangential electric field, is 

automatically satisfied by taking the signs of the magnetic currents residing on each side 

of an aperture to be opposite each other. This can be seen in (2.8) and (2.13) for 1M and 

in (2.14) and (2.19) for 2M . 

The second boundary condition to satisfy is the continuity of tangential magnetic 

fields across the apertures. In other words; 

 tan tan

a bH H across the top aperture   (2.24) 

 tan tan

b cH H across the bottom aperture. (2.25) 

tan tan tan,  and a b c
H H H

 
can be found from (2.12), (2.17) and (2.23) as  

 
,img ,img

tan tan tan tan 1( , ) ( , ) (2 )a a i i a i i a  H H J M H J M H M  (2.26) 

 tan tan 1 tan 2 tan( ) ( ) ( )b b b b    H H M H M H J  (2.27) 

 tan tan 2(2 )c cH H M . (2.28) 

The tangential magnetic field due to the impressed sources ( ,i i
J M ) and their images is 

twice the field of the impressed sources radiating in an unbounded medium. So (2.26) can 

be rewritten as 

 
inc

tan tan tan 12 (2 )a a H H H M . (2.29) 

Using (2.27)–(2.29) in (2.24) and (2.25), the continuity of magnetic fields across 

apertures can be written as 

 inc

tan tan 1 tan 1 tan 2 tan2 (2 ) ( ) ( ) ( )a b b b     H H M H M H M H J
 
across top aperture (2.30) 

 
tan 1 tan 2 tan tan 2( ) ( ) ( ) (2 )b b b c    H M H M H J H M

 
across bottom aperture (2.31) 
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Any tangential magnetic field due to any magnetic current is continuous across the 

magnetic current. However, any tangential magnetic field due to any electric current is 

discontinuous across the electric current so that tan ( )b
H J  in (2.30) is evaluated at 0z   

and tan ( )b
H J  in (2.31) is evaluated at ( )z d   .

 

The third boundary condition comes from the equivalent problem for region b in 

Fig. 2.5; tangential electric field is zero over a perfect electric conductor. Using (2.16) in 

(2.18), the last boundary equation is found as  

 tan 1 tan 2 tan( ) ( ) ( ) 0b b b    E M E M E J  on cS . (2.32) 

Any tangential electric field due to any electric current is continuous across the electric 

current. However, any tangential electric field due to any magnetic current is 

discontinuous across the magnetic current so that, in (2.32), tan 1( )b E M  and tan 2( )b E M  

are evaluated on cS  with 1M  placed at 0z   and 2M  placed at ( )z d   . 

Equivalently, 1M  and 2M  could be placed on cS , tan 1( )b E M  evaluated at 0z  , and 

tan 2( )b E M  evaluated at ( )z d   . 

Using linearity of the fields and arranging terms in equations (2.30)–(2.32), the 

final form of the integral equations is obtained: 

 inc

tan 1 tan 1 tan 2 tan tan2 ( ) ( ) ( ) ( ) 2a b b b    H M H M H M H J H  across top aperture (2.33) 

 
tan 1 tan 2 tan 2 tan( ) ( ) 2 ( ) ( ) 0b b c b    H M H M H M H J  across bottom aperture (2.34) 

 tan 1 tan 2 tan( ) ( ) ( ) 0b b b  E M E M E J  on Sc. (2.35) 

These three equations are going to be used to solve for the three unknowns, 

1 2,   and M M J
 
by the help of the method of moments. 
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2.2 Application of the Method of Moments 

The integral equations (2.33)–(2.35) are going to be solved numerically by using 

the method of moments (MoM) [10].  

First, the unknowns are approximated by linear combinations of linearly 

independent expansion functions as 

 1 1

1

aN

n n

n

v


M M  (2.36) 

 2 2

1

cN

n n

n

u


M M  (2.37) 

 
1

bN

n n

n

y


J J  (2.38) 

where ,  and yn n nv u are coefficients to be determined. Equations (2.36)–(2.38) are 

substituted for 1 2,   and M M J in (2.33)–(2.35): 

inc

tan 1 tan 1 tan 2 tan tan

1 1 1 1

2 ( ) ( ) ( ) ( ) 2
a a c bN N N N

a b b b

n n n n n n n n

n n n n

v v u y
   

       H M H M H M H J H  on top (2.39) 

tan 1 tan 2 tan 2 tan

1 1 1 1

( ) ( ) 2 ( ) ( ) 0
a c c bN N N N

b b c b

n n n n n n n n

n n n n

v u u y
   

       H M H M H M H J on bottom (2.40) 

 tan 1 tan 2 tan

1 1 1

( ) ( ) ( ) 0
a c bN N N

b b b

n n n n n n

n n n

v u y
  

    E M E M E J on Sc. (2.41) 

Next, sets of testing functions 1 2, , and m m mW W T  ( 1,2,..., , , ,a c bm N N N

respectively) are defined for the top aperture, the bottom aperture, and the cavity region 

respectively. Also the following symmetric products of two vector functions are defined: 

 
top

top

,  ds A B A B  on top aperture (2.42) 
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bot

bot

,  ds A B A B on bottom aperture (2.43) 

 ,  
c

c

S
S

ds A B A B  on Sc. (2.44) 

The last step is to take symmetric products of (2.39)–(2.41) with the testing 

functions. The following equations are obtained: 

1 tan 1 1 tan 1 1 tan 2
top top top

1 1 1

inc

1 tan 1 tan
top top

1

2 , ( ) , ( ) , ( )

    + , ( ) 2 ,  ,                           ( 1,2,..., )

a a c

b

N N N
a b b

n m n n m n n m n

n n n

N
b

n m n m a

n

v v u

y m N

  



  

 

  



W H M W H M W H M

W H J W H

 (2.45) 

2 tan 1 2 tan 2 2 tan 2
bot bot

1 1 1bot

2 tan
bot

1

, ( ) , ( ) 2 , ( )

    + , ( ) 0 ,                                                  ( 1,2,..., )

a c c

b

N N N
b b c

n m n n m n n m n

n n n

N
b

n m n c

n

v u u

y m N

  



  

 

  



W H M W H M W H M

W H J

(2.46) 

tan 1 tan 2 tan

1 1 1

, ( ) , ( ) , ( ) 0 ,

                                                                                                       ( 1,2,..., )

a c b

c c c

N N N
b b b

n m n n m n n m n
S S S

n n n

b

v u y

m N

  

  



  T E M T E M T E J

.

 (2.47) 

This set of equations can also be written in a matrix form: 

     

     

     

 

 

 

 

 

inc

1 tan
top11 12 13

21 22 23

31 32 33

2 ,

0

0

a a a c a b a a

c a c c c b c c

b a b c b b b b

m
mn mn mn nN N N N N N N N

mn mn mn nN N N N N N N N

mn mn mn nN N N N N N N N

Y Y D v

Y Y D u

C C Z y

  

  

  

  
       
     
      
     
        

 

W H

 (2.48) 

where the matrix elements are 

  11 1 tan 1 1 tan 1
top top

2 , ( ) , ( )
a a

a b

mn m n m n
N N

Y


   
  

W H M W H M  (2.49) 

  12 1 tan 2
top

, ( )
a c

b

mn m n
N N

Y


  
  

W H M  (2.50) 
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  13 1 tan
top

, ( )
a b

b

mn m n
N N

D


 
  

W H J  (2.51) 

  21 2 tan 1
bot

, ( )
c a

b

mn m n
N N

Y


  
 

W H M  (2.52) 

  22 2 tan 2 2 tan 2
bot bot

, ( ) 2 , ( )
c c

b c

mn m n m n
N N

Y


   
 

W H M W H M  (2.53) 

  23 2 tan
bot

, ( )
c b

b

mn m n
N N

D


 
 

W H J  (2.54) 

  31 tan 1, ( )
c

b a

b

mn m n
S

N N

C


 
  

T E M  (2.55) 

  32 tan 2, ( )
c

b c

b

mn m n
S

N N

C


 
  

T E M  (2.56) 

  33 tan, ( )
c

b b

b

mn m n
S

N N

Z


  
  

T E J . (2.57) 

The first matrix in (2.48) is called the moment matrix which is a square matrix with a size 

of ( ) by ( )a b c a b cN N N N N N    . The second matrix is the coefficients matrix 

which is a column vector of dimension ( )a b cN N N  . It contains the unknown 

coefficients that need to be solved. The matrix on the right side of (2.48) is the excitation 

matrix which is a column vector of dimension ( )a b cN N N  . 

 In (2.51) and (2.54), the unit normal vector, which is bn , points into region b and 

tan ( )b

nH J  is evaluated on the side of the electric current sheet nJ  facing region b. In 

(2.55) and (2.56), the unit normal vector points into the complement of region b, 

tan 1( )b

nE M  is evaluated on the side of the magnetic current sheet 1nM  facing the 

complement of region b, and tan 2( )b

nE M  is evaluated on the side of the magnetic current 

sheet 2nM  facing the complement of region b. 
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 The matrix elements in (2.49)–(2.57) are evaluated by first placing 1nM  at 0z  , 

2nM  at z d  , and J  on cS  and then evaluating tan ( )b

nH J  in (2.51) at 0z  , tan ( )b

nH J  

in (2.54) at ( )z d   , tan 1( )b

nE M  in (2.55) at 0 ,z   and tan 2( )b

nE M  in (2.56) at 

( )z d   . 

The moment matrix will be set up by selecting proper expansion and testing 

functions. 

2.3 Setting up the Moment Matrix  

The discretization of the integral equations (2.33)–(2.35) by the method of 

moments requires subdividing the surfaces that have unknown equivalent currents into 

smaller elements. That means the top aperture surface, the bottom aperture surface and 

“the cavity surface” of Fig. 2.1 have to be patched by simple elements and then suitable 

expansion functions have to be applied to these subdomains.  

Planar triangular patch modeling is well-developed for arbitrarily shaped surfaces 

[19]. Triangular patches have the advantage of conforming to any surface easily, they 

permit greater resolution to be used on boundaries, and the vertices of triangular patches 

can be set up independently which makes them easier to input on a computer. These 

patches can be generated manually per the rules defined in [19, pp. 137-147] or by the 

help of a program specifically written to generate high-quality meshes [43] [38]. Fig. 2.8 

shows a triangular patched model of the entire surface of the cavity in Fig. 2.4. 
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Fig. 2.8  The arbitrarily shaped cavity surface of Fig. 2.4 modeled by triangular patches. 

After dividing the whole structure into subdomains, suitable expansion functions 

such as the ones developed by Rao-Wilton-Glisson [20] are applied. RWG expansion 

functions are generated for each edge that is common to two triangles. That means if an 

edge is on the boundary, no expansion function is associated with that edge. A triangle 

pair with a common edge and geometrical parameters associated with that edge is shown 

in Fig. 2.9. 
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Fig. 2.9  Triangle pair and geometrical parameters associated with the n
th
 edge. 

The expansion function associated with the n
th

 edge is defined as 
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ρ r

f (r) ρ r  (2.58) 

 

nl  is the length of the edge, 
nA  is the area of 

nT  triangle, 
nA  is the area of 

nT  triangle, 

n


ρ  is the position vector of a point in 

nT  with respect to the free vertex of 
nT  and its 

direction is away from the vertex, and 
n


ρ  is the position vector of a point in 

nT  with 

respect to the free vertex of 
nT  and its direction is toward the vertex. The designation of 

0 

 
 

n
th

 edge 

ln 

 

𝑻𝒏
− triangle   

𝑻𝒏
+ triangle 
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nT  and 
nT  for the triangle pair means that the reference direction for current flow across 

the common edge is from 
nT   into 

nT  . r  is the global position vector of a point with 

respect to global 0. 

 RWG functions are uniquely suited to express surface currents because of the 

following properties [20]: 

1) The expansion function nf has no component normal to the boundary of the 

surface formed by the associated triangle pair, and hence no line charges exist 

along the boundary. 

2) The component of nf normal to the n
th

 edge is unity and continuous across the 

edge. This ensures continuity of current normal to the edge. This result, together 

with 1), implies that all edges of 
nT   and 

nT   are free of line charges. 

3) The surface divergence of nf , which is proportional to the surface charge density 

is 

 

,     in 

,     in 

  
    0   ,     otherwise ,

n

n

n

n

s n n

n

l
T

A

l
T

A














  





r

f (r) r  (2.59) 

where the surface divergence in nT   is  
1

n n

n n

d
f

d


 



 
 where 

n n   ρ  and 

n nf  f . The charge density is thus constant in each triangle and the total charge 

associated with the triangle pair 
nT   and 

nT   is zero. 
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4) The moment of nf  is given by  

  
2

n

cn

n n

T

l
ds



 f ρ  (2.60) 

where c

n


ρ  is a vector defined between the free vertex and the centroid of 

nT   with 

c

n


ρ  directed away from the vertex and c

n


ρ  directed toward the vertex as shown in 

Fig. 2.10. 

 

Fig. 2.10  Geometry of vectors to centroids of triangles associated with an edge. 

RWG expansion functions of (2.58) are used for 1 2,   and n n nM M J in (2.36)–(2.38) 

to approximate the unknown surface currents. Thus, 1 1n nM f , 2 2n nM f , and n nJ f  

where 1nf ,
 2nf ,

 
and

 nf
 
are RWG expansion functions. Since RWG expansion functions 

are generated only for non-boundary edges, each of the aN  expansion functions for 1M
 

 

 

0 

  

ln 

 

 

𝑻𝒏
− triangle 

𝑻𝒏
+ triangle 
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is confined to the top aperture and each of the cN  expansion functions for 2M
 
is 

confined to the bottom aperture. There aren’t any boundary edges for the closed cavity, 

so an expansion function is associated with every edge of the triangles in the patched 

model of the cavity. 

For testing procedure, the expansion functions are used as testing functions. This 

is so-called Galerkin’s method. Then 1 2,  , and m m mW W T
 
in (2.45)–(2.47) become 1mf , 

2 ,mf  and mf  respectively. The symmetric products are defined for the top aperture, the 

bottom aperture, and the closed cavity surface in (2.42)–(2.44). 

2.4 Evaluation of the Elements of the Matrices 

The elements of the matrices in (2.48)–(2.57) will be expressed in detail using the 

expansion and testing procedures of the previous section. 

The excitation matrix in (2.48) has the following aN  non-zero elements: 

 
inc inc inc

1 tan 1 tan 1
top top

top

2 , 2 , 2  m m m ds  W H f H f H . (2.61) 

The subscript “tan” is dropped for the integration in (2.61) because 1mf  doesn’t have any 

components normal to the surface. The surface integral in (2.61) can be approximated by 

taking the value of 
inc

H  on any triangle on the top aperture to be constant and equal to 

inc

1( )c

m


H r , where 

1

c

m


r  is the vector from 0 to the centroid of 

1mT  . This will eliminate 

calculating double surface integrals and the value of the integral in (2.61) can be found by 

using the property in (2.60) as 
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1 1

inc inc inc

1 1 1 1 1

top

2  2 ( )  ( )  

m m

c c

m m m m m

T T

ds ds ds
 

 
 
     
 
 

  f H H r f H r f  

 

inc inc1 1

1 1 1 12 ( ) ( )
2 2

c c c cm m

m m m m

l l    
    

 
H r ρ H r ρ  

  inc inc

1 1 1 1 1( ) ( )c c c c

m m m m ml       H r ρ H r ρ . (2.62) 

The excitation is a plane wave incident on the top aperture in region a and it is set as 

 
incinc inc inc( ) ( ) jH H e 

   k r
H r θ  , (2.63) 

where inc inc and θ   are spherical unit vectors associated with the incidence angles 

inc inc( ,  )   and inc
k  is the propagation vector given by 

 
inc inc inc inc inc inc inc(sin cos sin sin cos )a ak k          k r x y z , (2.64) 

where ak  is the wavenumber for region a and is calculated by 

 a a ak    . (2.65) 

The elements of the moment matrix in a brief form are given in (2.49)–(2.57). To 

evaluate these elements, again, the expansion and testing procedures from the previous 

section are used. The fields are discretized by substituting (2.36)–(2.38) for the unknown 

surface currents, and then the fields are tested using Galerkin’s method with the 

symmetric products defined in (2.42)–(2.44). All testing and expansion functions are 

taken to be RWG functions in (2.58). 

Each element of the moment matrix in (2.49)–(2.57) is either a symmetric product 

or a linear combination of symmetric products of the testing functions with the electric or 

magnetic fields due to one of the discretized surface current sources. So, these elements 

can be expressed easily if the general symmetric products are written. 
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First, the fields in (2.1)–(2.2) are separated into fields due to electric and magnetic 

sources: 

 ( ) j V  E J A   (2.66) 

 ( )


  
F

E M   (2.67) 

 ( )


 
A

H J   (2.68) 

 ( ) j U  H M F  . (2.69) 

Then, these fields in (2.66)–(2.69) are tested with mf  over S: 

     , ( ) ( ) ( ) m m m
S

S S

ds j V ds      f E J f E J f A   

       m m

S S

j ds V ds     f A f   (2.70) 

 , ( ) ( )  m m m
S

S S

ds ds


 
     

 
 

F
f E M f E M f   (2.71) 

 , ( ) ( )  m m m
S

S S

ds ds


 
     

 
 

A
f H J f H J f   (2.72) 

    , ( ) ( ) ( ) m m m
S

S S

ds j U ds      f H M f H M f F   

   m m

S S

j ds U ds     f F f  . (2.73) 

The last terms in (2.70) and (2.73) can be written as 

  ( ) m m

S S

V ds V ds    f f  , (2.74) 

  ( ) m m

S S

U ds U ds    f f   (2.75) 
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using the following vector identity for divergence operation [45]  

 ( ) ( ) ( )      A A A   , (2.76) 

where   is a scalar function, in conjunction with the Gauss theorem and considering that 

mf  doesn’t have a component perpendicular to the surface boundary.  

The surface integrals over S in (2.70)–(2.73) can be approximated by taking the 

values of the potentials on any triangle to be constant and equal to their values at the 

centroid of that triangle. The integrals are written as a sum of integrals over 
mT  and 

mT  , 

and (2.74)–(2.75) are used in (2.70) and (2.73): 

, ( ) ( )  ( )  

m m

c c

m m m m m
S

T T

j ds ds
 

 
 
     
 
 

 f E J A r f A r f  

  ( )  ( )  

m m

c c

m m m m

T T

V ds V ds
 

     r f r f   (2.77) 

 
( ) ( )

, ( )   

m m

c c

m m

m m m
S

T T

ds ds
  

  
       
 
 

 
F r F r

f E M f f   (2.78) 

 
( ) ( )

, ( )   

m m

c c

m m

m m m
S

T T

ds ds
  

 

      
A r A r

f H J f f   (2.79) 

, ( ) ( )  ( )  

m m

c c

m m m m m
S

T T

j ds ds
 

 
 
     
 
 

 f H M F r f F r f  

 ( )  ( )  

m m

c c

m m m m

T T

U ds U ds
 

     r f r f  . (2.80) 

The integrals over the triangles in (2.77)–(2.80) can be calculated now using the 

properties of RWG functions in (2.59) and (2.60): 

   , ( ) ( ) ( ) ( ) ( )
2

c c c c c cm

m m m m m m m m
S

l
j l V V            f E J A r ρ A r ρ r r  (2.81) 
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( ) ( )
, ( )

2

c c

c cm m m

m m m
S

l

 

 

 
 

       
 

F r F r
f E M ρ ρ   (2.82) 

( ) ( )
, ( )

2

c c

c cm m m

m m m
S

l

 

 

 
 

      
 

A r A r
f H J ρ ρ   (2.83) 

   , ( ) ( ) ( ) ( ) ( )
2

c c c c c cm

m m m m m m m m
S

l
j l U U            f H M F r ρ F r ρ r r . (2.84) 

The potentials in (2.81)–(2.84) are replaced with their expressions given in     

(2.3)–(2.6), and  and J M in these expressions are replaced with  and n nJ M . The 

integration is over S  where  and n nJ M  exist: 

, ( ) ( ) ( , ) ( ) ( , ) 
8

c c c cm

m n m n m m n m
S

S S

l
j G ds G ds






   
 

          
 

 f E J ρ J r r r ρ J r r r  

 

( ) ( , ) ( ) ( , ) 
4

c cm

n m n m

S S

l
j G ds G ds


 
 

           
 
 J r r r J r r r   (2.85) 

2

1
, ( ) ( ) ( ) ( , ) 

8

c

mc c cm

m n m n m m
S c

S m

jkl
G ds





  



  
        
 



r r

f E M ρ M r r r r r
r r

 

 
2

1
( ) ( ) ( , ) 

c

mc c c

m n m m
c

S m

jk
G ds



  



 
      




r r

ρ M r r r r r
r r

 

 
( ) ( )

2 2 2

c c

c cm n m n m

m m

l  

 
    

         
     

M r M r
ρ n ρ n  (2.86) 

2

1
, ( ) ( ) ( ) ( , ) 

8

c

mc c cm

m n m n m m
S c

S m

jkl
G ds





  



  
       
 



r r

f H J ρ J r r r r r
r r
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2

1
( ) ( ) ( , ) 

c

mc c c

m n m m
c

S m

jk
G ds



  



 
      




r r

ρ J r r r r r
r r

 

 
( ) ( )

2 2 2

c c

c cm n m n m

m m

l  

 
    

         
     

J r J r
ρ n ρ n  (2.87) 

, ( ) ( ) ( , ) ( ) ( , ) 
8

c c c cm

m n m n m m n m
S

S S

l
j G ds G ds






   
 

          
 

 f H M ρ M r r r ρ M r r r  

 ( ) ( , ) ( ) ( , ) 
4

c cm

n m n m

S S

l
j G ds G ds


 
 

           
 
 M r r r M r r r  , (2.88) 

where n  is the unit normal vector pointing from the source surface into the region where 

the fields are to be calculated. The derivation of (2.86) and (2.87) can be found in        

[46, pp. 155-159]. Briefly, the tangential components of ( )E M  and ( )H J  are discontinuous 

on the current surface, so the fields jump out while traversing the surface. The 

expressions for this can be written as 

1 ( )
( ) ( ) ( , ) 

4 2
G ds

 

 
           

 


F M r
E M M r r r n   

2

11 ( )
( ) ( ) ( , ) 

4 2

jk
G ds



  
         

  


r r M r
M r r r r r n

r r
 (2.89) 

1 ( )
( ) ( ) ( , ) 

4 2
G ds

 
        

A J r
H J J r r r n   

2

11 ( )
( ) ( ) ( , ) 

4 2

jk
G ds



 
       




r r J r
J r r r r r n

r r
 (2.90) 

for field evaluation on the side of S facing the region into which n  points. In the limit as 

the location where the field is evaluated approaches the source surface from one side of 

the source surface, each integral in (2.89)–(2.90) becomes a principal value integral in 
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which an infinitesimal source region which includes the field point is deleted. However, 

the source region that was deleted cannot be overlooked because, if it was not deleted, it 

would produce the field that jumps out. 

Finally, the general symmetric products are obtained by replacing  and n nJ M
 
in 

(2.85)–(2.88) with (2.58) since both are equal to nf , replacing ( )n
 J r  in (2.85) and 

( )n
 M r  in (2.88) with (2.59), and writing the integrals over S  as a summation of 

integrals over 
nT  and 

nT   triangles: 

1 1
, ( ) ( , ) ( , ) 

16
n n

c c cm n

m n m n m n m
S

n nT T

l l
j G ds G ds

A A




  

    

 

  
        

   
 f E J ρ ρ r r ρ r r  

 
1 1

( , ) ( , ) 

n n

c c c

m n m n m

n nT T

G ds G ds
A A 

    

 

 
      

  
 ρ ρ r r ρ r r  

 
1 1

( , ) ( , ) 
4

n n

c cm n

m m

n nT T

l l
j G ds G ds

A A  

 

 


    




 r r r r  

  

1 1
( , ) ( , ) 

n n

c c

m m

n nT T

G ds G ds
A A 

 

 


    




 r r r r  (2.91) 

2

11
, ( ) ( ) ( , ) 

16
n

c

mc c cm n

m n m n m m
S c

n T m

jkl l
G ds

A 



   




   
        
   


r r

f E M ρ ρ r r r r
r r

 

 
2

11
( ) ( , ) 

n

c

mc c

n m m
c

n T m

jk
G ds

A 



  




 
    




r r

ρ r r r r
r r

 

 
2

11
( ) ( , ) 

n

c

mc c c

m n m m
c

n T m

jk
G ds

A 



   




  
      
 



r r

ρ ρ r r r r
r r
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2

11
( ) ( , ) 

n

c

mc c

n m m
c

n T m

jk
G ds

A 



  




 
    
 


r r

ρ r r r r
r r

 

 
( ),   in 1

8      0,        not in 

c c

n m m ncm n

m c
n m n

Tl l

A T

   



  

  
      

  

ρ r r
ρ n

r
 

 
( ),   in 1

8      0,        not in 

c c

n m m ncm n

m c
n m n

Tl l

A T

   



  

  
      

  

ρ r r
ρ n

r
 (2.92) 

2

11
, ( ) ( ) ( , ) 

16
n

c

mc c cm n

m n m n m m
S c

n T m

jkl l
G ds

A 



   




   
       
   


r r

f H J ρ ρ r r r r
r r

 

 
2

11
( ) ( , ) 

n

c

mc c

n m m
c

n T m

jk
G ds

A 



  




 
    




r r

ρ r r r r
r r

 

 
2

11
( ) ( , ) 

n

c

mc c c

m n m m
c

n T m

jk
G ds

A 



   




  
      
 



r r

ρ ρ r r r r
r r

 

 
2

11
( ) ( , ) 

n

c

mc c

n m m
c

n T m

jk
G ds

A 



  




 
    
 


r r

ρ r r r r
r r

 

 
( ),   in 1

8      0,        not in 

c c

n m m ncm n

m c
n m n

Tl l

A T

   



  

  
      

  

ρ r r
ρ n

r
 

 
( ),   in 1

8      0,        not in 

c c

n m m ncm n

m c
n m n

Tl l

A T

   



  

  
      

  

ρ r r
ρ n

r
 (2.93) 

1 1
, ( ) ( , ) ( , ) 

16
n n

c c cm n

m n m n m n m
S

n nT T

l l
j G ds G ds

A A




  

    

 

  
        

   
 f H M ρ ρ r r ρ r r  
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1 1

( , ) ( , ) 

n n

c c c

m n m n m

n nT T

G ds G ds
A A 

    

 

 
      

  
 ρ ρ r r ρ r r  

 
1 1

( , ) ( , ) 
4

n n

c cm n

m m

n nT T

l l
j G ds G ds

A A  

 

 


    




 r r r r  

  

1 1
( , ) ( , ) 

n n

c c

m m

n nT T

G ds G ds
A A 

 

 


    




 r r r r , (2.94) 

where the last two terms in each of (2.92) and (2.93) are to be interpreted as themselves 

with the choice of the upper sign plus themselves with the choice of the lower sign. For 

m n , there is no jump-out term in (2.92) and (2.93). Given n  and ,m  there could be 

only one jump-out term in (2.92). If present, it is one of the four possibilities obtained by 

letting the choice of the upper or lower sign in ( , )c

m mT 
ρ  be independent of the choice of 

the upper or lower sign in ( , )c

n nT 
ρ  in 

 

   
1

sgn ,  ,  
8 12

c c c cm n m n

m n m n m n

n

l l l l
T T m n

A

     


         
 

ρ ρ n n ρ ρ  (2.95) 

sgn( )x in (2.95) is the sign function, which has a value of +1 for 0x   and –1 for 0.x   

The jump-out term in (2.95) was obtained by using the exact jump-out part of the electric 

field of the magnetic current nf  in 
nT   [47, p. 15]. The jump-out term in (2.93) would be 

the negative of the quantity in (2.95). 

The integrals in (2.92) and (2.93) are equal to 0 if the observation and source 

triangles are coplanar. 

Each integral appearing in (2.91)–(2.94) is one of these three types: 
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1

 

c
m

n

jk

mn n c
n mT

e
ds

A

 





r r

ρGI ρ
r r

 (2.96) 

 
1

 

c
m

n

jk

mn c
n mT

e
ds

A

 





r r

GI
r r

 (2.97) 

   3

1
( ) 1  

c
m

n

jk

c c

mn n m m
c

n T m

e
jk ds

A

 

      



r r

G
I ρ r r r r

r r
 , (2.98) 

where Green’s function in (2.91)–(2.94) is replaced with its expression using (2.7). 
ρGI

and G
I  are vector-valued integrals, whereas G

I  is a scalar-valued integral. These 

integrals will be calculated numerically using Gaussian quadrature rules developed for 

triangular domains [48]. However special care has to be taken evaluating the integrals in 

(2.96)–(2.98), since the integrands are singular. These integrals will be written in local 

coordinates, so-called area or barycentric coordinates, instead of global coordinates and 

then singularities are going to be extracted and calculated analytically using the scheme 

proposed by D. R. Wilton, et al. [49].  

The elements of the moment matrix in (2.49)–(2.57) can be expressed by 

replacing the symmetric products with their expanded forms using the expressions found 

for the general symmetric products in (2.91)–(2.94) and by using (2.95) for the jump-out 

terms. However to give a concise expression, the integrals in (2.91)–(2.94) will be 

abbreviated as ,  and ρG G GI I I , which are defined in (2.96)–(2.98): 

     1 1

11 1 1 1 1 1 1 1 1 1 1
8

c a a c a am n a

mn m m n m n m m n m n

l l
Y j






              
ρG ρG ρG ρG

ρ I I ρ I I  

  1 1

1 1 1 1 1 1 1 1
2

a a a am n

m n m n m n m n

a

l l
j
 

      
G G G G

I I I I  
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    1 1

1 1 1 1 1 1 1 1 1 1
16

c b b c b bm n b

m m n m n m m n m n

l l
j






           
 ρG ρG ρG ρGρ I I ρ I I  

  1 1

1 1 1 1 1 1 1 1
4

a a

b b b bm n

m n m n m n m n

b N N

l l
j
 

   




    


G G G GI I I I  (2.99) 

     1 2

12 1 1 2 1 2 1 1 2 1 2
16

c b b c b bm n b

mn m m n m n m m n m n

l l
Y j






              
ρG ρG ρG ρG

ρ I I ρ I I  

  1 2

1 2 1 2 1 2 1 2
4

a c

b b b bm n

m n m n m n m n

b N N

l l
j
 

   




    


G G G GI I I I  (2.100) 

     1

13 1 1 1 1 1 1
16

c b b c b bm n

mn m mn mn m mn mn

l l
D



              
G G G G

ρ I I ρ I I     

 
 1

1 1sgn ,  ,  
12

0,                                              otherwise.
a b

c cm n

m n m n

N N

l l
T T m n   




       

  

n ρ ρ
 (2.101) 

     2 1

21 2 2 1 2 1 2 2 1 2 1
16

c b b c b bm n b

mn m m n m n m m n m n

l l
Y j






              
ρG ρG ρG ρG

ρ I I ρ I I  

  2 1

2 1 2 1 2 1 2 1
4

c a

b b b bm n

m n m n m n m n

b N N

l l
j
 

   




    


G G G GI I I I  (2.102) 

     2 2

22 2 2 2 2 2 2 2 2 2 2
16

c b b c b bm n b

mn m m n m n m m n m n

l l
Y j






              
ρG ρG ρG ρG

ρ I I ρ I I  

  2 2

2 2 2 2 2 2 2 2
4

b b b bm n

m n m n m n m n

b

l l
j
 

      
G G G G

I I I I  

    2 2

2 2 2 2 2 2 2 2 2 2
8

c c c c c cm n c

m m n m n m m n m n

l l
j






           
 ρG ρG ρG ρGρ I I ρ I I  

  2 2

2 2 2 2 2 2 2 2
2

c c

c c c cm n

m n m n m n m n

c N N

l l
j
 

   




    


G G G GI I I I  (2.103) 
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     2

23 2 2 2 2 2 2
16

c b b c b bm n

mn m mn mn m mn mn

l l
D



              
G G G G

ρ I I ρ I I   
 

 
 2

2 2sgn ,  ,  
12

0,                                              otherwise.
c b

c cm n

m n m n

N N

l l
T T m n   




       

  

n ρ ρ
 (2.104) 

     1

31 1 1 1 1
16

c b b c b bm n

mn m m n m n m m n m n

l l
C



               
G G G G

ρ I I ρ I I     

 
 1

1 1sgn ,  ,  
12

0,                                              otherwise.
b a

c cm n

m n m n

N N

l l
T T m n   




       

  

n ρ ρ
 (2.105) 

     2

32 2 2 2 2
16

c b b c b bm n

mn m m n m n m m n m n

l l
C



               
G G G G

ρ I I ρ I I     

 
 2

2 2sgn ,  ,  
12

0,                                              otherwise.
b c

c cm n

m n m n

N N

l l
T T m n   




       

  

n ρ ρ
 (2.106) 

     33
16

c b b c b bm n b

mn m mn mn m mn mn

l l
Z j






              
ρG ρG ρG ρG

ρ I I ρ I I  

  
4

b b

b b b bm n

mn mn mn mn

b N N

l l
j
 

   




    


G G G GI I I I . (2.107) 

The subscripts “tan” are suppressed in (2.99)–(2.107) because only the tangential 

components of the integrals contribute to the symmetric products. The superscripts “a”, 

“b”, and “c” of ,  , and ρG G GI I I  
mean that the integrals are calculated using the 

wavenumbers , , and a b ck k k  respectively. The first “±” superscripts of ,  , and ρG G GI I I  

indicate that the integrals are evaluated at the centroids of 
mT   triangles, and the second 

“±” superscripts indicate that the integrands are integrated over 
nT   triangles. The 
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subscripts “1m” and “1n” of ,  , and ρG G GI I I  stand for “top aperture mT ” and “top 

aperture 
nT ”, the subscripts “2m” and “2n” stand for “bottom aperture 

mT ” and “bottom 

aperture 
nT ”, and the sole subscripts “m” and “n” stand for “closed cavity surface 

mT ” 

and “closed cavity surface 
nT ”. 

2.5 Calculated Quantities 

After setting up the matrices in (2.48) per the previous section, the matrix 

equation is solved. The solution gives the unknown coefficients matrix. Then the currents 

1 2,   and M M J
 
are calculated according to (2.36)–(2.38). Once the currents are known, 

fields anywhere can be calculated using the following equations:  

In region a (using (2.11) and (2.12));  

 inc inc,img

1 1 1

1

1
( )

4

aN
a a a

n n n n

n

v l


 



    G G
E r E E I I   (2.108) 

   inc inc,img

1 1 1 1 1

1

1 1
( )

2 2

aN
a a a a aa

n n n n n n

n a

j v l
 

  

   



 
      

 
 ρG ρG G G

H r H H I I I I  (2.109) 

In region b (using (2.16) and (2.17)); 

   1 1 1 2 2 2

1 1

1 1
( )

8 8

a cN N
b b b b b
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n n

v l u l
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  G G
I I   (2.111) 

In region c (using (2.22) and (2.23)); 

 2 2 2

1

1
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   G G
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 ρG ρG G G

H r I I I I , (2.113) 

where the integrals appearing in the expressions are defined similar to (2.96)–(2.98), such 

as 

 
1

 

n
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n n

n T

e
ds

A
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ρGI ρ
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 (2.114) 
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   3

1
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n
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n n

n T

e
jk ds
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r r

GI ρ r r r r
r r

 . (2.116) 
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CHAPTER 3 

NUMERICAL RESULTS 

In this chapter, solutions for several geometries will be presented. The solutions 

are obtained using the formulation developed in Chapter 2. This formulation is 

implemented in a computer program using MATLAB [50] and then verified by 

comparing the results to previously published results. After the verification, a novel case 

is solved and the results are presented. 

In all cases, only the cavity region of the problem is going to be shown. The 

cavity region includes the top and the bottom apertures, and the cavity walls connecting 

the apertures. This cavity is situated in an infinite ground plane which has a thickness

“  ”.d  However, this infinite ground plane is not going to be shown in the figures of the 

problem geometries. 

All structures are illuminated with plane waves (2.63) radiated by the sources at 

infinity and these waves are impinging on the top aperture in region a. The wavelength λ 

is taken to be 1 meter.  

3.1 Results for Square Apertures 

The first problem that is going to be analyzed is a thick conductor with square 

apertures on the top and the bottom. This problem is previously solved using Finite 

Element Method by J. M. Jin and J. L. Volakis [29]. The results in this research will be 

compared with their results. 

The problem geometry and the meshing of the structure are shown in Fig. 3.1. 

The sides of the apertures are 0.4l w    and the conductor thickness is 0.25d  . 
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The triangular meshing is done in such a way that the triangles are more refined on the 

edges and on x and y axes on apertures. The currents rapidly change on the edges so 

keeping the triangles smaller closer to the edges helps to reduce the error. The currents 

are plotted along x and y axes; having finer triangles along the axes results in smoother 

plots. 

 

Fig. 3.1  Triangular meshing of the problem with square apertures (0.4λ-by-0.4λ) on top and 

bottom; conductor thickness 0.25d  , 0a b c      , 0a b c      , 
inc jkzeE x . 

The problem in Fig. 3.1 is excited with a plane wave on normal incidence with 

polarization given as inc jkzeE x . All regions are filled with 0 0( , )  . The electric fields 

on the apertures computed in [29] are given in Fig. 3.2 and Fig. 3.4 The electric fields 

calculated using the MoM formulation in this research are given in Fig. 3.3 and Fig. 3.5. 
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Fig. 3.2  Electric field along x-axis at the upper (solid line) and lower (dashed line) apertures [29]. 

 

 

Fig. 3.3  Electric field at the upper (solid line) and lower (dashed line) apertures. 
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Fig. 3.4  Electric field along y-axis at the upper (solid line) and lower (dashed line) apertures [29]. 

 

 

Fig. 3.5  Electric field at the upper (solid line) and lower (dashed line) apertures 
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Next, the backscattering cross section (RCS) and the transmission coefficient T of 

the structure are compared. The backscattering cross section is defined as [29] 

 

2

2

2
inc

( )
( , ) lim 4

s

r
r   




H r

H
, (3.1) 

where ( )s
H r is the far zone scattered field, which is the actual field in the backward 

direction minus the field that would exist if the entire 0z   plane was perfectly 

conducting. The transmission coefficient is defined as 

 

 
. .trans

2
inc inc

inc
1

Re  

cos

c c c

bot aper

a

ds
P

T
P A 


 

  
 
 

 

 E H n

H
, (3.2) 

where incP  is the time average incident power that would be intercepted by the top 

aperture if all space was free space, transP  is the time average power transmitted to region 

c through the bottom aperture, a  is the impedance of region a, and 1A  is the area of the 

top aperture. 

 RCS and transmission coefficient plots of the problem in Fig. 3.1 computed by 

[29] are given in Fig. 3.6 and Fig. 3.8. Comparable results of this research are given in 

Fig. 3.7 and Fig. 3.9. As seen from Fig. 3.2–Fig. 3.9, the results are very close to each 

other for square apertures on top and bottom in a thick conductor. 
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Fig. 3.6  Backscatter RCS of the structure in Fig. 3.1 as a function of incidence angle in the 

0  plane; 
incinc inc inc( ) ( cos sin ) je     k r

E r θ   [29]. 

 

Fig. 3.7  Backscatter RCS of the structure in Fig. 3.1. 
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Fig. 3.8  Transmission coefficient plots of the structure in Fig. 3.1 as a function of incidence 

angle in the 0   plane; 
incinc inc inc( ) ( cos sin ) je     k r

E r θ   [29]. 

 

Fig. 3.9  Transmission coefficient plots of the structure in Fig. 3.1. 
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3.2 Results for a Cross Aperture 

A cross aperture on top and bottom is analyzed next. The cavity walls inside the 

conductor form a square prism and the top and bottom walls are cross-shaped apertures. 

The geometry is shown in Fig. 3.10 and the meshing is shown in Fig. 3.11. 

 

Fig. 3.10  Cross shaped aperture with 0.5A B   , 0.125w  , conductor thickness 

0.25d  , 0a b c      , 0a b c      . 

 

Fig. 3.11  Meshing of the problem in Fig. 3.10. 
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RCS and transmission coefficient plots are given as Fig. 3.12 and Fig. 3.14 by 

[29]. The results of this research are given in Fig. 3.13 and Fig. 3.15. 

 

Fig. 3.12  Backscatter RCS of the structure in Fig. 3.11 as a function of incidence angle in the 

0  plane; 
incinc inc inc( ) ( cos sin ) je     k r

E r θ   [29]. 

 

Fig. 3.13  Backscatter RCS of Fig. 3.11 
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Fig. 3.14  Transmission coefficient plots of the structure in Fig. 3.11 as a function of incidence 

angle in the 0   plane; 
incinc inc inc( ) ( cos sin ) je     k r

E r θ   [29]. 

 

 

Fig. 3.15  Transmission coefficient plots of the structure in Fig. 3.11. 
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The results of the FEM method in [29] are very similar to the results of the 

moment method used in this research. These results validate the accuracy of the method 

proposed in this thesis. 

3.3 Results for Circular Apertures 

A cylindrical cavity with small circular apertures whose centers are on the z -axis 

is analyzed. The geometry is shown in Fig. 3.16. The radii of the small apertures are 

0.05r  . The radius of the cylindrical cavity is 0.5R  . The thickness of the 

conductor is 0.6d  . The flanges covering the cylindrical cavity and forming small 

circular apertures on top and bottom have a thickness of 0.01λ. All regions are filled with 

0 0( , )  . The incident field is inc jkzeE y . The meshing of the problem is shown in Fig. 

3.17. The magnetic currents on the top and bottom apertures along x and y axes are in 

Fig. 3.18 and Fig. 3.19. 

 

Fig. 3.16  A cylindrical cavity with small circular apertures in a thick ground plane [21]. 
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Fig. 3.17  Meshing of the structure in Fig. 3.16, 
inc jkzeE y . 
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Fig. 3.18  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig. 3.16. 

 

Fig. 3.19  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig. 3.16. 
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3.4 Effect of Conductor Thickness 

Square apertures with varying conductor thicknesses are analyzed to understand 

the effect of thickness on transmission of the plane wave through the cavity. The problem 

geometries and corresponding magnetic current plots for the top and bottom apertures are 

given in Fig. 3.20 through Fig. 3.31.  

 

Fig. 3.20  Triangular meshing of the problem with square apertures (0.4λ-by-0.4λ) on top and 

bottom; conductor thickness 0.062 ,d 
0 ,a b c      0a b c      , 

inc .jkzeE y  
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Fig. 3.21  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig. 3.20. 

 

Fig. 3.22  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig. 3.20. 
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Fig. 3.23  Triangular meshing of the problem with square apertures (0.4λ-by-0.4λ) on top and 

bottom; conductor thickness 0.125 ,d 
0a b c      , 0a b c      ,

inc .jkzeE y  
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Fig. 3.24  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig. 3.23. 

 

Fig. 3.25  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig. 3.23. 
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Fig. 3.26  Triangular meshing of the problem with square apertures (0.4λ-by-0.4λ) on top and 

bottom; conductor thickness 0.5d  , 0a b c      , 0a b c      , 
inc .jkzeE y  
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Fig. 3.27  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig. 3.26. 

 

Fig. 3.28  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig. 3.26. 
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Fig. 3.29  Triangular meshing of the problem with square apertures (0.4λ-by-0.4λ) on top and 

bottom; conductor thickness 0.75d  , 0a b c      , 0a b c      ,
inc .jkzeE y  
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Fig. 3.30  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig. 3.29. 

 

Fig. 3.31  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig. 3.29. 
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As seen from the magnetic current plots, increasing the conductor thickness 

reduces the magnetic current on the bottom aperture and therefore reduces the tangential 

electric field on the bottom aperture. Reduction of the tangential electric field on bottom 

aperture is generally accompanied by reduction of the transmission coefficient. 

3.5 Results for Circular Apertures with a Conic Cavity 

To prove the versatility of the method, a conic cavity in a thick conductor 

( 0.5 )d  with circular apertures on top and bottom with radii of 0.25R   and 

0.125r   respectively is analyzed. The problem geometry is shown in Fig 3.32. 

The top and bottom magnetic currents along x and y axes are given in Fig. 3.33 

and Fig. 3.34. RCS and transmission coefficients plots are shown in Fig. 3.35 and Fig. 3.36. 

 

Fig. 3.32  Circular apertures with a conic cavity, 
inc .jkzeE y   
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Fig. 3.33  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig 3.32.

 

Fig. 3.34  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig 3.32.  
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Fig. 3.35  Backscatter RCS of the structure in Fig 3.32 as a function of incidence angle in the 

0   plane; solid line: 
inc

E  is phi polarized; dashed line: 
inc

E  is theta polarized. 

 

Fig. 3.36  Transmission coefficient plots of the structure in Fig 3.32 as a function of incidence 

angle in the 0   plane; solid line: 
inc

E  is phi polarized; dashed line: 
inc

E  is theta polarized. 

0 10 20 30 40 50 60 70 80 90
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

 (degrees)


/ 

2
 (

d
B

)



66 

 

 

 

3.6 Apertures in Ground Planes of Zero Thickness 

The formulation developed in this dissertation is specifically for thick ground 

planes. However a zero thickness ground plane is the special case when the conductor 

thickness d goes to zero. The results from this dissertation should converge to the 

published results for apertures in thin ground planes. To check the validity of this claim, a 

circular aperture with a cylindrical cavity is analyzed. The results are compared to Chih 

Lin I [25]. The radius of the top and bottom circular apertures is 0.25R  . The incident 

field is inc .jkzeE y The conductor thickness is initially taken as 0.25d   and then 

reduced to 0.1  and later to 0.01 . The magnetic currents, RCS, and the transmission 

coefficient plots are provided for each of the three conductor thicknesses. 

The triangulation of the circular aperture in a thin ground plane by [25] is given in 

Fig. 3.37. The transmission coefficient computed by [25] is given in Fig. 3.38. When 

computing the transmission coefficient, the incidence angle   is varied from 0 degrees to 

90 degrees. The incident electric field can be either theta polarized or phi polarized. Fig. 

3.38 provides the results for both cases. Fig. 3.39 shows the problem geometry of a 

circular aperture with cylindrical cavity in 0.25d   thick conducting plane. This 

problem is solved using the formulation developed in this dissertation. The corresponding 

plots are provided in Fig. 3.40–Fig. 3.43. Then, the conductor thickness is reduced to 

0.1d  . The problem geometry is in Fig. 3.44. The computed results are in               

Fig. 3.45–Fig. 3.48. Finally, a very thin ( 0.01d  ) conducting plane is taken as shown 

in Fig. 3.49. The corresponding results are presented in Fig. 3.50–Fig. 3.53. The results of 

this final case are compared with Chih Lin I [25]. 
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Fig. 3.37  Triangulation of the circular aperture ( 0.25R  ) in thin conducting plane, given by 

Chih Lin I [25]. 

 

Fig. 3.38  Transmission coefficient for the circular aperture in Fig. 3.37 given by Chih Lin I [25]. 

x: computed result by [25] for phi polarization; +: computed result by [25] for theta 

polarization; o, : corresponding data from another reference. 
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Fig. 3.39  Circular aperture with cylindrical cavity, 0.25R  , 0.25d  , 
inc jkzeE y . 
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Fig. 3.40  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig. 3.39.  

 
Fig. 3.41  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig. 3.39. 
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Fig. 3.42  Backscatter RCS of the structure in Fig. 3.39 as a function of incidence angle in the 

0  plane; solid line: 
inc

E  is phi polarized; dashed line: 
inc

E  is theta polarized. 

 
Fig. 3.43  Transmission coefficient plots of the structure in Fig. 3.39 as a function of incidence 

angle in the 0   plane; solid line: 
inc

E  is phi polarized; dashed line: 
inc

E  is theta polarized. 
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Fig. 3.44  Circular aperture with cylindrical cavity, 0.25R  , 0.1d  , 
inc jkzeE y . 
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Fig. 3.45  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig. 3.44. 

 
Fig. 3.46  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig. 3.44. 
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Fig. 3.47  Backscatter RCS of the structure in Fig. 3.44 as a function of incidence angle in the 

0  plane; solid line: 
inc

E  is phi polarized; dashed line: 
inc

E  is theta polarized. 

 
Fig. 3.48  Transmission coefficient plots of the structure in Fig. 3.44 as a function of incidence 

angle in the 0   plane; solid line: 
inc

E  is phi polarized; dashed line: 
inc

E  is theta polarized. 
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Fig. 3.49  Circular aperture with cylindrical cavity, 0.25R  , 0.01d  , 
inc jkzeE y . 
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Fig. 3.50  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the x-axis for the problem in Fig. 3.49. 

 
Fig. 3.51  Magnetic current on top aperture (solid line) and on bottom aperture (dashed line) 

along the y-axis for the problem in Fig. 3.49. 
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Fig. 3.52  Backscatter RCS of the structure in Fig. 3.49 as a function of incidence angle in the 

0  plane; solid line: 
inc

E  is phi polarized; dashed line: 
inc

E  is theta polarized. 

 
Fig. 3.53  Transmission coefficient plots of the structure in Fig. 3.49 as a function of incidence 

angle in the 0   plane; solid line: 
inc

E  is phi polarized; dashed line: 
inc

E  is theta polarized. 
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When Fig. 3.38 and Fig. 3.53 are compared, very good agreement is observed. If 

the thickness of the conducting plane is increased, the transmission coefficient becomes 

smaller as seen in Fig. 3.48 and Fig. 3.43. The thicker the conductor, the harder it is for 

the wave to penetrate through the aperture. Having the transmission coefficient larger 

than one in Fig. 3.48 and Fig. 3.53 may be unintuitive at first. The explanation for this is 

that, because it is calculated with the perforated ground plane present, the actual power 

passing through the top aperture could, because the incident power on the top aperture is 

calculated in the absence of the perforated ground plane, be more than the incident power 

on the top aperture. Therefore the transmitted power could be more than the incident 

power on the top aperture; hence the transmission coefficient could be larger than one. 

The backscattering RCS in Fig. 3.42, Fig. 3.47, and Fig. 3.52 doesn’t change 

much. This is expected because backscatter RCS depends on the magnetic current on the 

top aperture. 

3.7 Effect of Meshing on Convergence 

The results presented so far are obtained when the structure being analyzed is 

meshed with the refined triangular meshing scheme. The refined meshing generates 

triangles in such a way that the triangles closer to the boundaries of the apertures become 

smaller than the triangles further from the edges. As a result of this scheme, edge 

behavior of the current is more correctly captured. The current changes rapidly closer to 

the edges of the apertures and having smaller triangles closer to the edges helps to 

observe that change. 

Another parameter of the meshing is the number of triangles. Due to limited 

computer resources, the number of triangles cannot be infinite. When running MATLAB 
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on a desktop computer with Intel Core2 2.4 GHz CPU and 4 GB memory, the limit on the 

number of triangles in a meshing is around 2000. Using that many triangles causes the 

moment matrix size to be around 5000 x 5000. The question then is how the number of 

triangles affects the convergence of numerical results to the solution. 

In this section, the square aperture problem of Section 3.1 is going to be             

re-analyzed. The sizes of the top and bottom apertures are 0.4l w    and the 

conductor thickness is 0.25d  . The top aperture is illuminated by a plane wave 

inc jkzeE y . The magnetic currents on the top and bottom apertures, RCS, and 

transmission coefficient plots will be presented when the problem geometry is meshed 

with 500, 1000, and 2000 triangles. Also results will be shown for each case when the 

refinement process is applied to the triangles closer to the edges. 

Fig. 3.54–Fig. 3.56 show the meshing of the geometry with 500, 1000, and 2000 

triangles respectively. The corresponding results are provided in Fig. 3.57–Fig. 3.64. In 

these figures, the results are plotted for each number of triangles so that the comparison is 

easier between varying levels of meshing. Fig. 3.65 and Fig. 3.66 show the meshing with 

500 and 2000 triangles respectively with refinement applied to the edge triangles. The 

results are provided in Fig. 3.67–Fig. 3.74 for meshes with 500 and 2000 triangles with 

and without the refinement applied. 
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Fig. 3.54  The problem of square apertures (0.4λ-by-0.4λ) with 0.25d  is meshed with 500 

triangles, 0a b c      , 0a b c      , 
inc jkzeE y . 
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Fig. 3.55  The problem of square apertures (0.4λ-by-0.4λ) with 0.25d  is meshed with 1000 

triangles, 0a b c      , 0a b c      , 
inc jkzeE y . 
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Fig. 3.56  The problem of square apertures (0.4λ-by-0.4λ) with 0.25d  is meshed with 2000 

triangles, 0a b c      , 0a b c      , 
inc jkzeE y . 
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Fig. 3.57  Magnetic current on the top aperture along the x-axis when the meshing is done using 

500, 1000, and 2000 triangles. 

 
Fig. 3.58  Magnetic current on the bottom aperture along the x-axis when the meshing is done 

using 500, 1000, and 2000 triangles. 
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Fig. 3.59  Magnetic current on the top aperture along the y-axis when the meshing is done using 

500, 1000, and 2000 triangles. 

 
Fig. 3.60  Magnetic current on the bottom aperture along the y-axis when the meshing is done 

using 500, 1000, and 2000 triangles. 
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Fig. 3.61  Backscatter RCS in the 0   

plane when 
inc

E  is theta polarized. The meshing is 

done using 500, 1000 and 2000 triangles. 

 
Fig. 3.62  Backscatter RCS in the 0   

plane when 
inc

E  is phi polarized. The meshing is done 

using 500, 1000 and 2000 triangles. 
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Fig. 3.63  Transmission coefficient plots in the 0   plane when 

inc
E  is theta polarized. The 

meshing is done using 500, 1000 and 2000 triangles. 

 
Fig. 3.64  Transmission coefficient plots in the 0   plane when 

inc
E  is phi polarized. The 

meshing is done using 500, 1000 and 2000 triangles. 

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

 (degrees)

T
 c

o
s
 

 

 

  500 triangles

1000 triangles

2000 triangles

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

 (degrees)

T
 c

o
s
 

 

 

  500 triangles

1000 triangles

2000 triangles



86 

 

 

 

 

 

Fig. 3.65  The problem of square apertures (0.4λ-by-0.4λ) with 0.25d  is meshed with 500 

refined triangles, 0a b c      , 0a b c      , 
inc jkzeE y . 
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Fig. 3.66  The problem of square apertures (0.4λ-by-0.4λ) with 0.25d  is meshed with 2000 

refined triangles, 0a b c      , 0a b c      , 
inc jkzeE y . 
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Fig. 3.67  Magnetic current on the top aperture along the x-axis when the meshing is done using 

500 and 2000 triangles. Triangle refinement is applied. 

 
Fig. 3.68  Magnetic current on the bottom aperture along the x-axis when the meshing is done 

using 500 and 2000 triangles. Triangle refinement is applied. 
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Fig. 3.69  Magnetic current on the top aperture along the y-axis when the meshing is done using 

500 and 2000 triangles. Triangle refinement is applied. 

 
Fig. 3.70  Magnetic current on the bottom aperture along the y-axis when the meshing is done 

using 500 and 2000 triangles. Triangle refinement is applied. 
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Fig. 3.71  Backscatter RCS in the 0   

plane when 
inc

E  is theta polarized. The meshing is 

done using 500 and 2000 triangles. Triangle refinement is applied. 

 

Fig. 3.72  Backscatter RCS in the 0   
plane when 

inc
E  is phi polarized. The meshing is done 

using 500 and 2000 triangles. Triangle refinement is applied. 
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Fig. 3.73  Transmission coefficient plots in the 0   plane when 

inc
E  is theta polarized. The 

meshing is done using 500 and 2000 triangles. Triangle refinement is applied. 

 

Fig. 3.74  Transmission coefficient plots in the 0   plane when 
inc

E  is phi polarized. The 

meshing is done using 500 and 2000 triangles. Triangle refinement is applied. 
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After checking the provided results, it is seen that the density of the meshing 

mostly affects the magnetic currents. Backscattering RCS and the transmission 

coefficient plots don’t change much with varying number of triangles. That is because 

these parameters involve integrations over the sources and the integral of a quantity is 

generally smoother than the quantity. When the number of triangles in a mesh is 

increased, edge behavior is more accurately observed. Close to the center of the aperture, 

the currents don’t vary much so good results can be obtained even with 500 triangles. It is 

found out that 500 triangles in this specific problem amounts to 15 triangles per 

wavelength. When the current on the edges is considered, having a mesh with 1000 

triangles provides a noticeable improvement in accuracy. However, having 2000 triangles 

in a mesh doesn’t add much improvement over having 1000 triangles. 1000 triangles in 

this problem means 22 triangles per wavelength and 2000 triangles means 32 triangles 

per wavelength. It is concluded that having 20 triangles per wavelength is enough to 

obtain good results; increasing the density of triangles doesn’t justify the additional 

computer resources used. 

The doubling of the number of triangles in a mesh increases the computer time 

and memory resource requirement about four-fold. Table 3.1 shows the required time and 

memory to solve the square aperture problem of Section 3.1 while using 500, 1000, and 

2000 triangles. As seen in Table 3.1, ninety percent of the time is spent filling up the 

moment matrix. If 1000 triangles are used for the meshing, results can be obtained under 

one minute.  

Another observation is made about the benefit of the refinement process. When 

500 triangles are generated in the mesh with the refinement applied, the computed results 
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are very similar to the results of 1000 triangle mesh without the refinement. So almost 

same results can be achieved with a quarter of computer resources if refinement is used 

on the edges and the number of triangles is halved. 

 
500 triangles 1000 triangles 2000 triangles 

1)  Total time required for the 

 complete program (seconds) 

17.87 55.92 242.69 

 Filling the moment matrix 

(seconds) 

15.19 50.58 219.83 

 Solving for the coefficients 

matrix (seconds) 

0.62 3.33 20.76 

2)  Memory required for the 

 moment matrix 

19 MB 76 MB 304 MB 

Table 3.1  Required time and memory for solving the square aperture problem of  Section 

3.1 while using a mesh of 500, 1000, and 2000 triangles. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

A simple moment solution is given to numerically analyze the problem of 

electromagnetic scattering from and transmission through an arbitrarily shaped aperture 

in a thick perfectly conducting ground plane. The structure is illuminated by an incident 

plane electromagnetic wave. The surface equivalence principle is used to reduce this 

complex problem into three simpler ones. Each such problem consists of equivalent 

surface currents radiating in unbounded media. Therefore the free space Green’s function 

is used for each problem. An equivalent surface magnetic current placed on the top 

aperture produces the scattered field in the region where the impressed sources are. The 

total field inside the cavity is produced by two surface equivalent magnetic currents on 

the apertures and an equivalent surface electric current residing on the walls of the cavity 

as well as on both apertures. The transmitted field on the opposite side of the impressed 

sources is computed by an equivalent surface magnetic current residing on the bottom 

aperture. Coupling between these three regions is established by satisfying boundary 

conditions. Tangential electric field is forced to be zero on the side walls of the cavity 

connecting the two semi-infinite regions, and continuity of the tangential components of 

both electric and magnetic fields was enforced on the apertures at both ends of the cavity. 

Image theory is used to simplify the equations. 

The integral equations for the equivalent surface currents were numerically solved 

using the method of moments. The surfaces are approximated by planar triangular 
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patches. RWG functions are used for expansion functions. An approximate Galerkin 

method is used for testing.  

Computed results included the surface current densities, the scattering cross 

sections, and the transmission coefficients. Results were computed for two square 

apertures connected by a square prism, two cross apertures connected by a square prism 

cavity, two circular apertures connected by a cylindrical cavity, and finally two circular 

apertures connected by a conical cavity. The computed results were validated by 

comparing them with available results in the literature. Very good agreement is observed. 

Results were further validated by investigating the effect of meshing on the convergence 

of the results. 

The above computed results cannot be predicted by a simple theory. However, we 

can say that, in general the fields on the shadow side of the aperture are much smaller 

than those on the lit side even when the thickness of the ground plane is small. 

The method is applicable to the general case where all three regions have different 

material parameters. Results are computed for the case where all these parameters are the 

same. Use of different materials is left as a future work. It will cause an increase in the 

electrical sizes of apertures and/or cavity. This in turn will require more computing 

resources. 

The method is applicable to arbitrarily sized apertures and cavities. However due 

to limited computing resources, only problems in the resonance region, where dimensions 

are comparable to wavelength, are considered here. Larger structures can be considered 

in the future. 
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An advantage of the method of moments formulation compared to the finite 

element method is; only surface meshing is required for the method of moments. 

However, FEM requires a volume meshing of the problem space. Therefore the 

formulation introduced in this dissertation can give results very fast in a computer 

compared to FEM, especially for larger problems. Computed results for problems in the 

resonance region can be obtained under one minute. 

A comprehensive analysis of sub-wavelength transmission requires a relatively 

thick ground plane. This in turn needs more computing resources, and hence can be a 

future work. 
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