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Abstract

In this dissertation, the discrete sparse Fourier Hermite approximation of a function in a

specified Hilbert space of arbitrary dimension is defined, and theoretical error bounds of the

numerically computed approximation are proven. Computing the Fourier Hermite approx-

imation in high dimensions suffers from the well-known curse of dimensionality. In short,

as the ambient dimension increases, the complexity of the problem grows until it is impos-

sible to numerically compute a solution. To circumvent this difficulty, a sparse, hyperbolic

cross shaped set, that takes advantage of the natural decaying nature of the Fourier Hermite

coefficients, is used to serve as an index set for the approximation. The Fourier Hermite

coefficients must be numerically estimated since the Fourier Hermite coefficients are nearly

impossible to compute exactly, except in trivial cases. However, care must be taken to

compute them numerically, since the integrals involve oscillatory terms. To closely approxi-

mate the integrals that appear in the approximated Fourier Hermite coefficients, a multiscale

quadrature method is used. This quadrature method is implemented through an algorithm

that takes advantage of the natural properties of the Hermite polynomials for fast results.

The definitions of the sparse index set and of the quadrature method used will each

introduce many interdependent parameters. These parameters give a user many degrees



of freedom to tailor the numerical procedure to meet his or her desired speed and accuracy

goals. Default guidelines of how to choose these parameters for a general function f that will

significantly reduce the computational cost over any naive computational methods without

sacrificing accuracy are presented. Additionally, many numerical examples are included to

support the complexity and accuracy claims of the proposed algorithm.
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Chapter 1

Introduction

A common exercise encountered while studying mathematics is to decompose an certain

object in terms of a given basis. Some classical examples include decomposing functions in

terms of the bases formed by the piecewise linear hat functions, by wavelets, or by trigono-

metric polynomials. Such a decomposition is of interest to applied mathematicians, scientists

and engineers, but is also powerful for pure mathematicians. In this dissertation, the basis

consisting of the set of polynomials that are pairwise orthogonal in the Hilbert space L2
ω(Rd)

with the d-dimensional Gaussian weight function ω is used. Given the representation of a

function in terms of this Fourier Hermite basis, a sparse, discrete approximation is described,

and bounds for the approximation error and computational complexity are discussed. Addi-

tionally, in this dissertation it is shown that it is possible to achieve a good approximation

error estimate while maintaining a low computational cost. The primary approximation er-

ror result is given in Theorem 5.6, and the primary computational cost estimate is given in

Theorem 6.10.

1
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1.1 Motivation

The Hermite decomposition of a function is of particular interest and usefulness for several

reasons. Every decomposition system is limited by the properties of the basis set. The

collection of the Hermite polynomials enjoy two unique properties that make them a very

good representation system in a wide variety of settings. First, the orthogonality over the

entire plane Rd makes them an appropriate description basis for objects that do not have a

boundary, periodicity, or asymptotic decay at infinity. This makes them particularly power-

ful when used to numerically compute the solution of types of differential equations that may

be encountered in modeling large systems over an infinite time domain, including applica-

tions in environmental science, climate change, and astrophysics. The second mathematical

property that makes the Hermite polynomial decomposition desirable over other possible ba-

sis sets is that the Hermite polynomials are orthogonal with respect to the Gaussian weight

function. Systems involving the Gaussian weight are pervasive throughout the mathematical

sciences including statistics, analysis, and differential equations and are necessary to describe

phenomena throughout all disciplines in the natural sciences.

The Hermite polynomials are necessary for the solution of Schrödinger’s equation, which

is a non-linear second-order differential equation used in the model of a quantum simple

harmonic oscillator in quantum mechanics. The quantum simple harmonic oscillator is an

important model in physics [7]. A simple version of the model is taught in undergraduate

physics courses, yet it is still an area of active research [21], [23].

Additionally, the Hermite polynomials enjoy a form of rotational invariance. If a function

has a representation in terms of finitely many normalized Hermite polynomials, then any
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rotation of the function has a representation in terms of the same number of normalized

Hermite polynomials [17]. Because of this property, the Hermite polynomials have been

employed in many areas of image processing including medical imaging, optics and satellite

images [8], [17], [19], [20].

1.2 Problem Statement and Challenges

The problem motivating this work is to find a fast, accurate approximation to an arbitrary

given function in terms of the Hermite polynomials. Specifically, for any f ∈ L2
ω(Rd), where

ω(x) := e−x
2

is the Gaussian weight function, can a good approximation to the full Fourier-

Hermite representation

f(x) =
∑
n∈Nd

0

cnHn(x),

where Hn is a Hermite polynomial and cn is the corresponding transform coefficient, be found

quickly?

Many challenges are encountered in attempting to achieve this task. First, the high-

dimensional nature of the problem suffers from the so-called ‘curse of dimensionality’ [4].

To reduce its effect, the number of terms in the sum over the infinite lattice Nd
0 must be

reduced while simultaneously ensuring that the truncated sum very nearly approximates the

full series. Second, the transform coefficients are defined via integrals over the entire plane

Rd, and involve highly oscillatory terms. An accurate and realistic quadrature approach

must be taken to ensure the numerically computed coefficients will not contribute enough

error to destroy the overall accuracy of the sum. Finally, how can the methods used be

designed to optimize the tradeoffs between accuracy and computational complexity?
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1.3 Previous Work

Discretization of problems using sparse grids has been a popular method to overcome the

curse of dimensionality [3], [5], [12], [13], [16], [18]. It has been shown to be effective in re-

ducing the computational complexity of problems while maintaining a decent approximation

order. Bungartz and Griebel [5] published an important review article discussing interpola-

tion methods on sparse grids. I employed a hyperbolic cross shaped sparse grid index set,

a strategy that has proven successful for other authors as well. Professor Yuesheng Xu and

Ying Jiang [12] used the hyperbolic cross shaped index set to compute the sparse Fourier ex-

pansion of a d dimensional function. They showed that approximating the Fourier expansion

of a function f in a Sobolev space with regularity s by considering only terms corresponding

with elements in the hyperbolic cross shaped index set yielded relative error on the order of

O(N−s), where N is the number of index points of the sparse grid in a single dimension. Jie

Shen and Li-Lian Wang [25] also have studied methods of approximating an expansion of

a function in terms of Hermite functions over the hyperbolic cross shaped index set. They

showed that for a function f in a Korobov-type space with smoothness parameter s, the

spectral approximation has relative error O(s(d−1)s
(
s
2

)ds/2
N−s/2).

Many scholars who have studied or used Fourier-Hermite approximations have used the

Gaussian quadrature to compute the transform coefficients [2], [9], [11], [17]. This seems

like a natural choice, since the Gaussian quadrature theory and orthogonal polynomials go

hand in hand. Indeed, in theoretical settings, the results have a simple elegance and admit

very good approximation error. In practical settings, however, this method has a number

of shortcomings. In order to guarantee a small error using Gaussian quadrature methods,
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it is necessary for the function f to be approximated to be in the space C2N(Rd) for a

large parameter N . This is a very strict requirement, since functions describing real world

phenomena are often not that smooth. Moreover, Gaussian quadrature methods require

knowledge about the data at prescribed nodes, namely the Hermite-Gaussian nodes which

are the zeros of the Hermite polynomial of degree N . These nodes are not uniformly spaced,

but in real world applications, data are almost always sampled at regular intervals. So using

a Gaussian quadrature method to approximate the coefficients is not a practical approach

for applied settings.

Many authors have used a Fourier-Hermite expansion for applications in image process-

ing. Therefore, very little work has been done in finding fast methods to approximate the

transform coefficients in higher dimensions. Instead, most research in this area has been

focused in only one or two spatial dimensions [2], [11], [17].

1.4 New Contributions

In this dissertation, I shall extend some known results to more general settings, and I shall

also prove new results that are improvements on existing methods.

Most authors consider the Fourier-Hermite approximations of functions in the standard

square integrable space L2(Rd) with small values d = 1, 2, 3. I performed the analysis in the

much larger space L2
ω(Rd), where ω is the Gaussian weight defined by ω(x) = e−||x||

2
2 and

for arbitrary positive integers d. Working in the larger space has some practical advantages.

Mainly, functions in the weighted space L2
ω must not necessarily possess an asymptotic decay

property. In fact, a function f ∈ L2
ω(Rd) may have the property f(x) → ∞ as ||x|| → ∞.
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This subtle change in the class of functions to be considered has a profound effect on the

applicability of the results. My results can be applied toward numerically solving differential

equations where the solutions do not have boundary conditions or asymptotic decay. Such

problems arise in astrophysics, quantum mechanics, models describing natural phenomena

such as population overcrowding or climate change, and pure mathematics. Additionally,

since I abandoned the Gaussian quadrature approach for approximating the coefficients, I

am able to impose a much more relaxed smoothness requirement on the functions to be

considered, thereby enlarging the space of candidate functions even more.

As mentioned above, much of the interest in Hermite polynomial decompositions has come

from the image processing community. Therefore much of the research has been limited to

few spatial dimensions. However, these low dimension problems that are processed only on

defined limited domains do not take advantage of all of the nice properties of the Hermite

expansions. The Hermite polynomials are unique in that they are ω-orthogonal over all

of Rd, but image processing uses only locally orthogonal properties. However, the global

orthogonality may be very useful in approximating functions or solutions to PDEs that do

not have any boundary conditions in a very large dimensional settings. Therefore, I shall

prove theoretical approximation errors and develop computational algorithms with relatively

low computational complexity using an arbitrarily large dimension d.

As discussed earlier, I believe the Gaussian quadrature method is often not a good ap-

proach for computing the transform coefficients in high dimensions for practical settings.

Therefore I used a truncated multiscale piecewise polynomial interpolation method to ap-

proximate the coefficients. Although using heirarchical approaches is not a novel idea, this

is a new approach for this particular problem. Since I am employing this method on func-
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tions over unbounded domains, it is necessary to introduce many interdependent parameters

whose values must be chosen carefully to balance each other, the computational cost of eval-

uating all of the coefficients, and the overall accuracy achieved by the approximation. As

new contributions to the field, I shall develop the framework for finding these parameters,

prove the approximation and complexity orders using these values, and develop algorithms

to find the coefficient values quickly.



Chapter 2

Sparse Fourier Hermite Expansions

I shall begin by listing some basic definitions, properties, and some fundamental results

involving the Hermite polynomials. Then I shall define the decomposition of a function in

terms of the Hermite polynomial basis. This decomposition, given in Definition 2.9, and

finding ways to approximate it quickly and accurate is the focus of this dissertation.

2.1 Preliminaries

In the following, a vector will be denoted by boldface type or a bar over the variable. For

the sake of readability, if it is clear from the context that the variable is multidimensional,

standard typeface will be used.

For a vector x = (x1, x2, . . . , xd) ∈ Rd, the square of the standard `2 norm is defined

as ||x||22 :=
∑
x2
j and the standard `1 norm as |x| :=

∑
|xj|. The d-dimensional Gaussian

weight is defined via

ω(x) := e−||x||
2
2 = e−(x21+x22+···+x2d).

8
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The weighted L2 space over Rd is defined by

L2
ω(Rd) :=

{
Lebesgue measurable f : Rd → R with ||f ||ω <∞

}
,

where ||f ||ω is the Gaussian weighted norm induced by the inner product

〈f, g〉ω :=

∫
Rd

f(x)g(x)ω(x) dx.

The error function is defined as

erf(x) :=
2√
π

∫ x

0

e−t
2

dt, (2.1)

and the complimentary error function as

erfc(x) :=
2√
π

∫ ∞
x

e−t
2

dt, (2.2)

for any x ∈ R. Notice lim
x→∞

erf(x) = 1.

The following notations will be needed. The d-dimension factorial is given by

n! := (n1!)(n2!) · · · (nd!), and the d-dimension Kronecker delta is defined via

δn,m :=


1 if nj = mj for all j = 1, 2, . . . , d

0 otherwise

.

For two d-dimensional vectors x and y, the notation xy means
d∏
j=1

x
yj
j , and for a scalar x and
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vector y, the notation xy means x|y|. The following notation for higher order derivatives in

d dimensions will also be needed in subsequent sections:

∂n

∂xn
=

∂n1

∂xn1
1

· · · ∂
nd

∂xnd
d

.

The set of the nonnegative integers will be denoted by N0.

Definition 2.1. Let n ∈ N0. The nth univariate Hermite polynomial Hn : R → R is given

by

Hn(x) := (−1)nex
2 dn

dxn

(
e−x

2
)
.

The first few Hermite polynomials are

H0(x) = 1, H1(x) = 2x,

H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12, H5(x) = 32x5 − 160x3 + 120x.

−2 0 2

0

20

(a) H0 (- -), H1 (..) and H2 (–)

−2 0 2

−400

−200

0

200

400

(b) H3 (- -), H4 (..) and H5 (–)

Figure 2.1: A few Hermite polynomials
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The Hermite polynomials form an orthogonal set in L2
ω(R). It is well-known [27] that

〈Hn, Hm〉ω :=

∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = n!2n
√
πδn,m,

where δn,m is 1 if m = n and zero otherwise. In addition, the Hermite polynomials enjoy the

following properties [27]:

• Three-Term Recurrence: Hn+1(x) = 2xHn(x)− 2nHn−1(x).

• H ′n(x) = 2nHn−1(x), and H
(k)
n (x) = 2k n!

(n−k)!
Hn−k(x).

• Hn is a solution to the differential equation u′′ − 2xu′ + 2nu = 0

• {Hn : n ∈ N0} forms a complete orthogonal system in L2
ω(R).

A d-dimensional Hermite polynomial is simply a tensor product of the univariate poly-

nomials.

Definition 2.2. For n ∈ Nd
0 and x ∈ Rd, we define the nth Hermite polynomial as

Hn(x) :=
d∏
j=1

Hnj
(xj).

Alternatively, one may write

Hn(x) = (−1)|n|e||x||
2
2
∂|n|

∂xn

(
e−||x||

2
2

)
.

A few three dimensional Hermite polynomials are
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H(0,0,0)(x, y, z) = 1, H(2,1,1)(x, y, z) = 16x2yz − 8yz,

H(2,2,0)(x, y, z) = 16x2y2 − 8x2 − 8y2 + 4, H(3,0,1)(x, y, z) = 16x3z − 24xz,

H(0,4,0)(x, y, z) = 16y4 − 48y2 + 12.

The d-dimensional Gaussian weight ω is exactly equal to the product of its univariate

cases. This means that for functions where the variables can be separated (as with the

Hermite polynomials), then the inner product can be easily computed one spatial dimension

at a time. In more detail, for any m,n ∈ Nd
0,

〈Hm, Hn〉ω =

∫
Rd

Hm(x)Hn(x)ω(x) dx

=
d∏

k=1

∫
R
Hmk

(x)Hnk
(x)ω(x) dx

=
d∏

k=1

〈Hmk
, Hnk

〉ω

=
d∏

k=1

nk!2
nk
√
πδmk,nk

= n!2nπd/2δm,n.

This section concludes with some basic theorems involving the Hermite polynomials.

Theorem 2.3. Let n ∈ Nd. Define n− 1 := (nj − 1)dj=1. Then

∂

∂x
(Hn−1(x)ω(x)) = (−1)dHn(x)ω(x).
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Proof. First consider the univariate case. Observe that ω′(x) = −2xω(x). Then for n = 1,

d

dx
(H0(x)ω(x)) =

d

dx
(ω(x)) = −2xω(x) = −H1(x)ω(x).

Using the three term recurrence, for any integer n ≥ 2,

d

dx
(Hn−1(x)ω(x)) = H ′n−1(x)ω(x) +Hn−1(x)ω′(x)

= 2(n− 1)Hn−2(x)ω(x)− 2xHn−1(x)ω(x)

= −[2xHn−1(x)− 2(n− 1)Hn−2(x)]ω(x)

= −Hn(x)ω(x).

Then for the multivariate case:

∂

∂x
(Hn−1(x)ω(x)) =

(
∂

∂x1

· · · ∂
∂xd

)
Hn−1(x)ω(x)

=
d∏
j=1

d

dxj
Hnj−1(xj)ω(xj)

=
d∏
j=1

(−1)Hnj
(xj)ω(xj)

= (−1)dHn(x)ω(x).

Corollary 2.4. Let n ∈ N0. Then

∫ x

0

Hn+1(t)ω(t)dt = (−1) (Hn(x)ω(x)−Hn(0)) . (2.3)
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Theorem 2.5. For any n ∈ Nd
0,

∂

∂x
(Hn(x)) = 2d

(
d∏
j=1

nj

)
Hn−1(x).

Proof. Consider a single dimension first. The theorem is easy to verify for n = 1, 2. In those

cases,

H ′1(x) = (2x)′ = 2 = 2H0(x), (for n = 1),

and

H ′2(x) = (4x2 − 2)′ = 8x = 2nH1(x), (for n = 2.)

Suppose the theorem is true for some positive integers n− 2 and n− 1. Then the statement

of the theorem can be shown to be true for n by an application of the three term recurrence.

H ′n(x) = (2xHn−1(x)− 2(n− 1)Hn−2(x))′

= 2Hn−1(x) + 2xH ′n−1(x)− 2(n− 1)H ′n−2(x)

= 2Hn−1(x) + 4(n− 1)xHn−2(x)− 4(n− 1)(n− 2)Hn−3(x)

= 2Hn−1(x) + 2(n− 1) (2xHn−2(x)− 2(n− 2)Hn−3(x))

= 2Hn−1(x) + 2(n− 1)Hn−1(x)

= 2nHn−1(x),

as desired. Therefore, by induction, the theorem is true when d = 1 and for all n ≥ 1.

In several dimensions, the statement of the theorem can be shown to be true using a
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product of the univariate case. In fact,

∂

∂x
(Hn(x)) =

d∏
j=1

d

dxj
Hnj

(xj) =
d∏
j=1

2njHnj
(xj) = 2d

(
d∏
j=1

nj

)
Hn−1(x).

Theorem 2.6. Denote the largest root of Hn by x∗n. For any n ∈ N0,

Hn(x) ≤ 2nxn,

for all x ≥ x∗n.

Proof. Proceed by induction on n.

The cases n = 0, 1 are trivially true since H0 ≡ 1 and H1(x) = 2x ≤ 21x1.

Suppose the statement of the theorem is true for some positive integer n. Define a

function f(x) := 2n+1xn+1. Since x∗n+1 ≥ 0, we know that 0 = Hn+1(x∗n+1) ≤ f(x∗n+1).

Furthermore, it is well known that the zeros of orthogonal polynomials are interlaced. This

fact guarantees that the largest root of Hn+1 is larger than the largest root of Hn for every

nonnegative integer n.
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Thus for all x ≥ x∗n+1 > x∗n,

d

dx
Hn+1(x) = (n+ 1)Hn(x)

≤ (n+ 1)2nxn, (via the induction step)

≤ (n+ 1)2n+1xn

=
d

dx
f(x).

Therefore Hn+1(x) ≤ f(x) for all x ≥ x∗n+1 for this n.

Induction on n promises that the statement is true for all n ∈ N0.

Theorem 2.7. For any n ∈ N0, the integral of the square of the nth Hermite polynomial can

be written a a combination of products of Hermite polynomials and the error function via

∫ x

0

H2
n(t)ω(t)dt =

n−1∑
k=0

n!2k

(n− k)!
Hn−k(x)Hn−k−1(x)ω(x) + n!2n−1

√
π erf(x).

Proof. Using Theorem 2.3, for any integer k ≥ 1,

d

dx
(Hk−1(x)ω(x)) = −Hk(x)ω(x).

For any non-negative integer n, the product Hn(x)Hn−1(x) is an odd polynomial (Theorem

A.3), and therefore for any n ≥ 1, Hn(0)Hn−1(0) = 0. One can use integration by parts to
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see that

∫ x

0

H2
n(t)ω(t)dt =

∫ x

0

(Hn(t))(Hn(t)ω(t))dt

=

∫ x

0

(Hn(t))(−Hn−1(t)ω(t))′dt

= Hn(t)Hn−1(t)ω(t)|x0 −
∫ x

0

(−2n)H2
n−1(t)ω(t)dt

= Hn(x)Hn−1(x)ω(x) + 2n

∫ x

0

H2
n−1(t)ω(t)dt.

Continue to apply the above procedure to get

∫ x

0

H2
n(t)ω(t)dt =

n−1∑
k=0

n!2k

(n− k)!
Hn−k(x)Hn−k−1(x)ω(x) + n!2n

∫ x

0

ω(x)dx

=
n−1∑
k=0

n!2k

(n− k)!
Hn−k(x)Hn−k−1(x)ω(x) + n!2n−1

√
π erf(x).

Corollary 2.8. Let n ∈ N0. Then

∫ ∞
0

H2
n+1(t)ω(t)dt = n!2n−1

√
π.



CHAPTER 2. SPARSE FOURIER HERMITE EXPANSIONS 18

Proof. In Theorem 2.7, let x tend to positive infinity.

∫ ∞
0

H2
n+1(t)ω(t)dt = lim

x→∞

∫ x

0

H2
n+1(t)ω(t)dt

= lim
x→∞

(
n−1∑
k=0

n!2k

(n− k)!
Hn−k(x)Hn−k−1(x)ω(x) + n!2n−1

√
π erf(x)

)

=
n−1∑
k=0

n!2k

(n− k)!
lim
x→∞

(Hn−k(x)Hn−k−1(x)ω(x)) + n!2n−1
√
π.

The interchange of the sum and limit will be justified since the sum is finite.

Note that

0 ≤ lim
x→∞

(Hn−k(x)Hn−k−1(x)ω(x)) = lim
x→∞

Hn−k(x)Hn−k−1(x)

e−x2

≤ lim
x→∞

(2x)2n−2k−1

e−x2
,

by Theorem 2.6.

By L’Hôpital’s Rule for limits ([26]), lim
x→∞

(2x)2n−2k−1

e−x2
= 0 for any integers n and k.

Therefore, ∫ ∞
0

H2
n+1(t)ω(t)dt = n!2n−1

√
π.

2.2 Fourier Hermite Series

In the previous section, it was observed that d-dimensional Hermite polynomials are orthogo-

nal in L2
ω(Rd) because the univariate Hermite polynomials are orthogonal in L2

ω(R). It is well
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known that the set of the Hermite polynomials forms a complete orthogonal set in L2
ω(Rd),

and therefore also forms a basis. This property will be used throughout the remainder of

this dissertation to find a good approximation of a given function f ∈ L2
ω(Rd) in terms of

only a few well-chosen elements in this basis.

Definition 2.9. For any f ∈ L2
ω(Rd), the Fourier-Hermite expansion of f is given by

f(x) =
∑
n∈Nd

0

cnHn(x),

where the coefficients cn are defined via

cn =
〈f,Hn〉ω
n!2nπd/2

.

It is impractical to try to calculate the Hermite-Fourier expansion over the entire index set

Nd
0. One would like to find the coefficients only for small values of |n|, and would be justified

in doing so. The coefficients cn from Definition 2.9 decay very rapidly as |n| increases. For

each f , there exists a finite positive constant C such that cn ≤ C/(n!2n). This is due to the

fact that since f ∈ L2
ω(Rd), the norm ||f ||ω is bounded above by a finite positive constant

C1. Then

cn :=
〈f,Hn〉ω
||Hn||2ω

≤ ||f ||ω||Hn||ω
||Hn||2ω

≤ C1

||Hn||ω
=

C

n!2n
.

An approximation to the Hermite-Fourier expansion of f over a finite full grid index set is

considered first.
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Fix N ∈ N0, and let Yd
N be the full grid index set defined by

Yd
N =

{
n ∈ Nd

0 : nj < N, ∀j ∈ {1, 2, . . . , d}
}
.

(a) Y2
32 (b) Y3

32

Figure 2.2: The Full Grid Index Sets Y2
32 and Y3

32.

Definition 2.10. For a fixed positive integer N , the full grid Fourier-Hermite approximation

of order N of the function f ∈ L2
ω(Rd) is defined by

FNf(x) :=
∑
n∈Yd

N

cnHn(x).

The coefficients cn are the same as in Defintion 2.9.

The full grid Fourier-Hermite approximation is just a truncation of the full Fourier-

Hermite expansion as in Defintion 2.9. It is also called the spectral approximation of f .

Using a Korobov-like norm defined below, one can prove that the spectral approximation is

a good approximation of f .
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For a fixed number s > 0 and functions φ, ψ ∈ L2
ω(Rd), define

〈φ, ψ〉κs :=
∑
n∈Nd

0

〈φ,Hn〉ω〈ψ,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s.

By Theorem A.1, 〈·, ·〉κs defines an inner product. Denote the induced norm on L2
ω(Rd) by

|| · ||κs , and let the space Hs(Rd) ⊂ L2
ω(Rd) denote the collection of all functions f such that

||f ||κs <∞.

Theorem 2.11. For any s > 0, f ∈ L2
ω(Rd) and N ∈ N,

||f − FNf ||ω ≤ N−s||f ||κs .

Proof. The Fourier-Hermite expansion of f has the form
∑
n∈Nd

0

cnHn(x). Since the Hermite

polynomials are an orthogonal basis of L2
ω(Rd), a generalization of Parseval’s identity can be

used (See Theorem A.5).

||f − FNf ||2ω =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

n∈Nd
0\Yd

N

cnHn

∣∣∣∣∣∣
∣∣∣∣∣∣
2

ω

=
∑

n∈Nd
0\Yd

N

|cn|2||Hn||2ω.

The right hand side simplifies to
∑

n∈Nd
0\Yd

N

|〈f,Hn〉ω|2

n!2nπd/2
. Then multiply and divide by the factor

∏d
j=1(1 + nj)

2s to obtain

||f − FNf ||2ω =
∑

n∈Nd
0\Yd

N

|〈f,Hn〉ω|2

n!2nπd/2

d∏
j=1

(1 + nj)
2s

d∏
j=1

(1 + nj)
−2s.

Since no n occurring in the summation index set is an element of Yd
N , it follows that
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nja ≥ N for some ja. Then

d∏
j=1

(1 + nj)
−2s =

d∏
j=1

1

(nj + 1)2s
≤ 1

(1 + nja)2s
≤ 1

(1 +N)2s
≤ 1

N2s
,

We have shown ||f − FNf ||2ω ≤ N−2s||f ||2κs as desired.

2.3 Hyperbolic Cross Sparse-Grid Approximation

Although having infinitely many coefficients to compute can be avoided by truncating the

Fourier-Hermite expansion and summing only over the index set Yd
N , in high dimensions the

cardinality of this index set is still too large to allow quick computation of the projections,

since the full grid index set Yd
N contains Nd elements. The size of the index set used

for the truncation needs to be drastically reduced to allow timely computations, but must

be designed to keep the approximation results obtained with the full grid approximation.

Considering the nature of decay of the coefficients cn, a hyperbolic cross index set is used to

satisfy these requirements.

Fix N ∈ N0, and let LdN be the sparse grid index set defined by

LdN =

{
n ∈ Nd

0 :
d∏
j=1

(nj + 1) ≤ N

}
.

The sparse grid index set contains O(N logd−1N) elements ([12]). In the case d = 2 or 3

and N = 32, which are very moderate values for d and N , comparison between Figures 2.2

and 2.3 illustrate the huge computational advantage in using the sparse grid index set over

the full grid index set.
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(a) L2
32 (b) L3

32

Figure 2.3: The Sparse Grid Index Sets L2
32 and L3

32.

Definition 2.12. The sparse grid Fourier-Hermite approximation of f ∈ L2
ω(Rd) of order

N is

fN =
∑
n∈Ld

N

cnHn. (2.4)

The coefficients cn are the same as in Definition 2.9.

The sparse grid approximation competes well with the full grid approximation in terms

of approximation order. Compare the following with Theorem 2.11.

Theorem 2.13. For any s > 0 and f ∈ L2
ω(Rd),

||f − fN ||ω ≤ N−s ||f ||κs .

Proof. The outline of the proof follows that of Theorem 2.11. Since the Hermite polynomials

are orthogonal relative to the Gaussian weight ω, one may use Theorem A.5 to obtain the
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following:

||f − fN ||2ω =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Nd

0

cnHn −
∑
n∈Ld

N

cnHn

∣∣∣∣∣∣
∣∣∣∣∣∣
2

ω

=
∑

n∈Nd
0\Ld

N

|cn|2||Hn||2ω

=
∑

n∈Nd
0\Ld

N

∣∣∣∣〈f,Hn〉ω
||Hn||2ω

∣∣∣∣2 ||Hn||2ω

=
∑

n∈Nd
0\Ld

N

〈f,Hn〉2ω
||Hn||2ω

=
∑

n∈Nd
0\Ld

N

〈f,Hn〉2ω
||Hn||2ω

d∏
j=1

(1 + nj)
2s

d∏
j=1

(1 + nj)
−2s.

The set LdN is the collection of all multi-indices n such that nj > 0 and
∏d

j=1(1 + nj) ≤ N .

Therefore for all n ∈ Nd
0 \ LdN ,

d∏
j=1

(1 + nj) ≥ N ⇒
d∏
j=1

(1 + nj)
−2s ≤ N−2s.

Thus

||f − fN ||2ω ≤
∑

n∈Nd
0\Ld

N

〈f,Hn〉2ω
||Hn||2ω

d∏
j=1

(1 + nj)
2sN−2s ≤ ||f ||2κsN−2s.

The following regularity result holds.

Theorem 2.14. For fixed 0 < k < s, and f ∈ L2
ω(Rd),

||f − fN ||κk ≤ Nk−s||f ||κs .
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Proof. Let
∑
n∈Nd

0

cnHn be the Fourier-Hermite expansion of f . Then

||f − fN ||2κk =
∑
n∈Nd

0

〈f − f̃N , Hn〉2ω
n!2nπd/2

d∏
j=1

(nj + 1)2k.

Since f − fN =
∑

n∈Nd
0\Ld

N

cnHn, it follows that

〈f − fN , Hn〉ω =


cn||Hn||2ω, if n ∈ Nd

0 \ LdN

0, if n ∈ LdN

.

Also, note that

|cn|2||Hn||4ω =
〈f,Hn〉2ω
||Hn||4ω

||Hn||4ω = 〈f,Hn〉2ω.

Therefore

||f − fN ||2κk =
∑

n∈Nd
0\Ld

N

|cn|2||Hn||4ω
n!2nπd/2

d∏
j=1

(1 + nj)
2k

=
∑

n∈Nd
0\Ld

N

〈f,Hn〉2ω
n!2nπd/2

d∏
j=1

(1 + nj)
2k

=
∑

n∈Nd
0\Ld

N

〈f,Hn〉2ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s

d∏
j=1

(1 + nj)
2(k−s).

Since the index set for the summation includes no values from LdN , it follows that
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∏d
j=1(1 + nj) ≥ N . Therefore

||f − fN ||2κk ≤ N2(k−s)
∑

n∈Nd
0\Ld

N

〈f,Hn〉2ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s

= N2(k−s)||f ||2κs

as desired.



Chapter 3

Discretization Part 1: Removing the

Tails

One difficulty encountered in approximating Fourier-Hermite approximations has now been

overcome. Summations over an infinite index set must be avoided, so in the previous chapters

the index set was truncated first to a finite full grid and then to a finite sparse grid, and the

error arising from the truncations has been analyzed. However, to compute the full grid and

sparse grid approximations as in Definitions 2.10 and 2.12, one needs to exactly compute the

coefficients cn which, if even possible, are difficult and computationally consuming. The next

few chapters of this dissertation focus on the development of a scheme for the approximation

of the integrals ∫
Rd

f(x)Hn(x)ω(x)dx (3.1)

appearing in the coefficients cn of the Fourier-Hermite expansions of f in such a way to

keep the approximation order obtained in the previous chapter. To accomplish this, first the

27
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integrands are considered only over a compact subset Id of Rd, then a quadrature method

based on multiscale interpolation is used to approximately evaluate the integral

∫
Id

f(x)Hn(x)ω(x)dx. (3.2)

One may be tempted to choose an arbitrarily large set Id, which would indeed guarantee

the integral in Equation (3.2) is approximately equal to the integral in Equation (3.1). How-

ever, this would be foolish since it would force a more computationally exhaustive quadrature

method to be used to numerically compute the integral in (3.2). Therefore the set Id should

be chosen just large enough to ensure the two integrals are within an acceptable margin or

error.

In this chapter, I shall show how to find an appropriate compact set Id and prove that

the error between the two integrals in Equations (3.1) and (3.2) is bounded. The next

chapter will develop and analyze a quadrature method to numerically compute the integral

in Equation (3.2).

3.1 Definitions and Strategies

In general, for any quadrature method used, the following definition applies.

Definition 3.1. For any function f ∈ L2
ω(Rd), let Q(f,n) be a quadrature rule used to

approximate the integral 〈f,Hn〉ω with error ε(f,n). The discrete sparse Fourier-Hermite
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approximation of f is

fQ,N :=
∑
n∈Ld

N

cQ,nHn, with cQ,n =
Q(f,n)

||Hn||2ω
.

Notice that this is similar to Definition 2.12, but with each 〈f,Hn〉ω replaced with Q(f,n).

Theorem 3.2. Let fN be as in Definition 2.12 and fQ,N be as in Definition 3.1. Then

||fN − fQ,N ||2ω ≤
∑
n∈Ld

N

ε2(f,n)

n!2nπd/2
.

Proof. Use the generalized Parseval’s identity. (Theorem A.5.)

||fN − fQ,N ||2ω =
∑
n∈Ld

N

|cn − cQ,n|2||Hn||2ω

=
∑
n∈Ld

N

∣∣∣∣〈f,Hn〉ω
||Hn||2ω

− Q(f,n)

||Hn||2ω

∣∣∣∣2 ||Hn||2ω

=
∑
n∈Ld

N

|〈f,Hn〉ω −Q(f,n)|2

||Hn||2ω

=
∑
n∈Ld

N

ε2(f,n)

n!2nπd/2
.

This theorem agrees with intuition; the error should depend on how well the quadrature

method performs, but should also be smaller if higher degree polynomials are used in the

approximation. Now it remains to pick a quadrature method that not only has a very good

error term ε, but that also is computationally cheap.
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3.2 Gaussian Quadrature

Since the integrands include a sequence of orthogonal polynomials, one’s first instinct may

be to use the Gaussian quadrature method to approximate the integrals. In one dimension,

for a function g ∈ C2N(R), the Gaussian quadrature method guarantees

∫ ∞
−∞

g(x)ω(x) dx =
N−1∑
i=0

Aig(xi) +
N !
√
π

(2N)!2N
g(2N)(ξ), (3.3)

for some ξ ∈ R, and with the nodes xi being the zeros of the Nth Hermite polynomial and

the weights given by Ai =
2N−1(N − 1)!

√
π

N2[HN−1(xi)]2
[1], [22]. Simply replace g by f · Hn for the

desired result. Denote the Hermite-Gaussian quadrature rule by QG(f, n). Then Theorem

3.2 becomes

||fN − f̂N ||2ω ≤
N−1∑
n=0

ε2
G(f, n)

n!2n
√
π

=
N−1∑
n=0

1

n!2n
√
π

(
N !
√
π

(2N)!2N

)2 ∣∣(fHn)(2N)(ξ)
∣∣2

=
N−1∑
n=0

1

n!2n
√
π

(
N !
√
π

(2N)!2N

)2
∣∣∣∣∣

2N∑
i=0

(
2N

i

)
f (2N−i)(ξ)H(i)

n (ξ)

∣∣∣∣∣
2

.

One may stop there and notice a glaring problem with this method, even in the one di-

mensional case. Summations of high order derivatives of f are being taken. Therefore this

method requires f to be very smooth. However, this cannot be guaranteed, and even if this

condition is met, f may have very large total variation. If f is highly oscillatory, then the

error term may blow up beyond repair. Authors have widely ignored this fact, instead opting

to say merely that this method will yield an exact result if fHn is a polynomial of degree
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less than or equal to 2N . Of course, this implies that f must already be a polynomial, so

writing it in terms of Hermite polynomials is a trivial exercise. It becomes clear that a better

course would be to abandon this method, and opt for ones that are equipped to handle a

wider class of functions.

3.3 A Two-Fold Strategy: Selecting the Location of

the Cut

If f ∈ L2
ω(Rd), then it is reasonable to expect the bulk of the integral 〈f,Hn〉ω to come from

some bounded domain in Rd, and for the contribution from the so-called ‘tail’ portion

∫
|x|�1

f(x)Hn(x)ω(x) dx

to be small. Eventually, the weight ω should be the dominant function in the integrand,

and thus the integrand should become quite small. See Figure 3.1 for an illustration of this

phenomenon.

Fix a positive number A to be determined later, and let I = [−A,A]. Split the integral

into two pieces and approximate each separately. That is,

∫
Rd

f(x)Hn(x)ω(x) dx =

∫
Id

f(x)Hn(x)ω(x) dx +

∫
Rd\Id

f(x)Hn(x)ω(x) dx.

A quadrature method will be used to approximate the ‘inside’ integral, and the ‘tail’

integral will be estimated. This procedure has two sources of error- the error from truncating
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the interval of integration and the error from the quadrature method used to approximate the

‘inside’ integral. In this chapter, I shall show how to bound the error from the ‘tail’ integral.

In the subsequent chapters, I shall show how an appropriate quadrature method can be

developed to estimate the ‘inside’ integral well while keeping the computational complexity

low.

For motivation, let us investigate the error from the tail portions in one dimension first.

The inner product to be approximated can be decomposed as

〈f,Hn〉ω =

∫
I

f(x)Hn(x)ω(x) dx+

∫
R\I

f(x)Hn(x)ω(x) dx.

If this integral is approximated by

〈f,Hn〉ω ≈
∫
I

Pf(x)Hn(x)ω(x)dx,

where the portion of the integral over R \ I is discarded, and Pf is an approximation of f to

be defined later, then the error ε as in Definition 3.1 has two components. It can be written

as

ε(f, n) = εmiddle(f, n) + εtail(f, n),

where εmiddle(f, n) is the error from the quadrature method over I, and εtail(f, n) is the value

of the integral over R \ I which is to be discarded in the computation of the discretized

coefficient. It is desirable for the two sources of error to have the same order. Since A is to

be fixed in a manner that depends only on the fixed values N and s, it is not included in

the notation of the error.
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Figure 3.1: Plots of H2
N(x)ω(x) for different choices of N .

The value A where to cut off the tails of the integrands must be selected carefully. If A

is too large, then computing the quadrature on [−A,A] may be too cumbersome. If A is too

small, then disregarding the tails may contribute significant error. This section is dedicated

to selecting a balanced choice of A, and to approximating the error εtail.

Theorem 3.3. If A is chosen such that for some positive constant c

1

||Hn||2ω

∫
Rd\Id

H2
n(x)ω(x)dx ≤ c

N2s+1 logd−1
2 N

, (3.4)

for all n ∈ LdN , then there exists c1 > 0 such that

∑
n∈Ld

N

ε2
tail(f, n)

||Hn||2ω
≤ c1N

−2s||f ||2ω. (3.5)
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Proof. Let S be a Lebesgue measurable set. Define the indicator function on S via

χS(x) :=


1, if x ∈ S,

0, if x /∈ S.

Since εtail(f, n) = 〈f,Hnχ(Rd\Id)〉ω ≤ ||f ||ω||Hnχ(Rd\Id)||ω,

∑
n∈Ld

N

ε2
tail(f, n)

||Hn||2ω
≤ ||f ||2ω

∑
n∈Ld

N

||Hnχ(Rd\Id)||2ω
||Hn||2ω

= ||f ||2ω
∑
n∈Ld

N

1

||Hn||2ω

∫
Rd\Id

H2
n(x)ω(x)dx

≤ c||f ||2ω
∑
n∈Ld

N

1

N2s+1 logd−1
2 N

, (by assumption)

≤ c1||f ||2ω
N2s+1 logd−1

2 N

(
N logd−1

2 N
)

= c1N
−2s||f ||2ω.

Note: The value of c1 is equal to the value of c times the constant occurring in the size of

the index set LdN .

Now a guideline for choosing A satisfying the assumption of Theorem 3.3 must be devel-

oped.

Theorem 3.4. If A is chosen such that

A ≥ max

{
erfc

(
1

N2s+1 logd−1
2 N

)
, x∗N−1

}
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then there exists a positive constant c such that for all n ∈ LdN ,

1

||Hn||2ω

∫
Rd\Id

H2
n(x)ω(x)dx ≤ c

N2s+1 logd−1
2 N

. (3.6)

Proof. If n = (n1, n2, . . . , nd) ∈ LdN , then denote the first d− 1 coordinates as

n̂d = (n1, n2, . . . , nd−1).

The set Rd \ Id can be decomposed as
[
(Rd−1 \ Id−1)× I

]
∪
[
Rd−1 × (R \ I)

]
. For if

xd ∈ I, then x̂d must satisfy x̂d ∈ Rd−1 \ Id−1. However, if xd ∈ R \ I, then x ∈ Rd \ Id for

any x̂d ∈ Rd−1.

Using this notation and observation, the left side of Equation (3.6) can be written as

1

||Hn||2ω

∫
Rd\Id

H2
n(x)ω(x)dx =

=
1

||Hn||2ω

∫
(Rd−1\Id−1)×I

H2
n(x)ω(x)dx+

1

||Hn||2ω

∫
Rd−1×(R\I)

H2
n(x)ω(x)dx

=

 1

||Hn̂d
||2ω

∫
Rd−1\Id−1

H2
n̂d

(x)ω(x)dx


 1

||Hnd
||2ω

∫
I

H2
nd

(x)ω(x)dx

+

+

 1

||Hn̂d
||2ω

∫
Rd−1

H2
n̂d

(x)ω(x)dx


 1

||Hnd
||2ω

∫
R\I

H2
nd

(x)ω(x)dx


≤ 1

||Hn̂d
||2ω

∫
Rd−1\Id−1

H2
n̂d

(x)ω(x)dx+
1

||Hnd
||2ω

∫
R\I

H2
nd

(x)ω(x)dx.

Notice the first term in the above inequality is similar to the original term in the string of
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inequalities. Therefore, let us continue in this manner to get

1

||Hn||2ω

∫
Rd\Id

H2
n(x)ω(x)dx =

≤ 1

||Hn̂d
||2ω

∫
Rd−1\Id−1

H2
n̂d

(x)ω(x)dx+
1

||Hnd
||2ω

∫
R\I

H2
nd

(x)ω(x)dx

≤ · · ·

≤
d∑

k=1

1

||Hnk
||2ω

∫
R\I

H2
nk

(x)ω(x)dx

=
d∑

k=1

2

||Hnk
||2ω

∫ ∞
A

H2
nk

(x)ω(x)dx.

Since the constant c can (and is expected to) depend on d, it suffices to pick a value A

such that

1

n!2n

∫ ∞
A

H2
n(x)ω(x)dx ≤ 1

N2s+1 logd−1
2 N

,

for all n = 0, 1, . . . , N − 1. Figure 3.2 suggests this should be possible for a moderate value

of A.

If n = 0, this reduces to finding A such that

√
π

2
erfc(A) ≤ 1

N2s+1
logd−1

2 N.
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Figure 3.2: Plots of
1

n!2n

∫ ∞
A

H2
n(x)ω(x)dx for various n with N = 50.

For n > 0, Theorem 2.7 and Corollary 2.8 can be used.

1

n!2n

∫ ∞
A

H2
n(x)ω(x)dx =

=
1

n!2n

∫ ∞
0

H2
n(x)ω(x)dx− 1

n!2n

∫ A

0

H2
n(x)ω(x)dx

=
1

n!2n

(
n!2n−1

√
π erfcA−

n−1∑
k=0

n!2k

(n− k)!
Hn−k(A)Hn−k−1(A)ω(A)

)

=

√
π

2
erfc(A)−

n−1∑
k=0

1

(n− k)!2n−k
Hn−k(A)Hn−k−1(A)ω(A)

≤
√
π

2
erfc(A),

provided A ≥ x∗n, the largest root of Hn.

After the observations that erfc is a decreasing function and x∗n ≤ x∗n+1 for all n ∈ N, one
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can conclude that the desired result holds for any A satisfying

A ≥ max

{
erfc

(
1

N2s+1 logd−1
2 N

)
, x∗N−1

}
. (3.7)

The value of c that holds in the above computations is c =
2d√
π

.

0 5 10 15 20
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−200
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−150

10
−100

10
−50

10
0

Figure 3.3: Semi-log plot of y = erfc(x).

Although obtaining an estimate of A satisfying

erfc(A) ≤ c

N2s+1 logd−1
2 N

(3.8)

in terms of N, d and s is difficult, MATLAB can compute the value of A numerically using the

erfcinv function. Figure 3.3 contains a semi-log plot of the complimentary error function.

It is easy to see that even though the magnitude of the right hand side of the inequality

(3.8) is very small, it is reasonable to expect a modest value of A will satisfy the inequality.

A loose upper bound estimate of the value of A that satisfies Equation (3.8) is

A ≈
√

2 max{s, d} log2N.
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Several plots illustrating this approximation can be seen in Figure 3.4. These plots demon-

strate that as the number and degree of Hermite polynomials used in the Fourier Hermite

approximation of f grows, the value of A which guarantees and accurate approximation of

the truncated coefficients increases at a sub-logarithmic rate.
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Figure 3.4: Plots of erfcinv

(
1

N2s+1 logd−1
2 N

)
and an estimate for various s and d against

values of N .
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An approximation for the largest root of Hn is given in [24] as

x∗n ≈
√

2(n+ 1)− (2(n+ 1))1/3.

Therefore the condition of A in Equation (3.7) can be updated, and we shall choose the

parameter A in the following manner:

A = max

{√
(2(N + 1)− (2(N + 1))1/3), erfcinv

(
1

N2s+1 logd−1
2 N

)}
.

This value of A is very modest, so it will not force the quadrature method, which will

be developed in the next chapter, to consume any unnecessary computational resources.

However, it depends on N , s, and d and is defined to be sufficiently large to ensure that

when the integral in Equation (3.1) is replaced with the integral in Equation (3.2) for every

value of n ∈ LdN , then the resulting entire Fourier Hermite approximates a function f within

N−s.



Chapter 4

Discretization Part 2: Approximate

the Body

There are several viable possibilities for approximating the integral

∫
Id

f(x)Hn(x)ω(x)dx

after the interval I has been determined. After briefly introducing a univariate quadrature

method based on linear spline interpolation, I shall then discuss in depth a multivariate

multiscale method based on piecewise polynomial interpolation.

Although the former method is easy to implement and provides elegant results, the latter

is less specific and applies to a wider class of functions f of which to approximate. The

multiscale method is the one adopted by the subsequent chapters of this dissertation, and it

will be used in the development of algorithm and computational results to be presented.

41
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4.1 Linear Spline Interpolation

One possibility is using a quadrature method based on linear spline interpolation. Let T be

a natural number, and choose T + 1 nodes inside I = [−A,A].

−A = t0 < t1 < · · · < tT = A

Let Bi be the ith linear B-spline defined by

Bi(x) =



x−ti
ti+1−ti if ti ≤ x ≤ ti+1,

ti+2−x
ti+2−ti+1

if ti+1 ≤ x ≤ ti+2,

0 otherwise.

The graph of a typical Bi is given in Figure 4.1. For i = 0 or i = T , Bi is defined with the

obvious modifications.

ti ti+1 ti+2

1

x

y

Figure 4.1: Plot of a typical Bi(x).

The piecewise linear spline interpolant of the function f is defined by

Sf (x) :=
T∑
i=0

f(ti)Bi(x).
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Denote the interpolation error by

Ef (x) := f(x)− Sf (x).

Let | · |∞,Id : L2
ω(Rd)→ R be defined via

|f |∞,Id := sup
x∈Id
|f(x)|, for any f ∈ L2

ω(Rd).

From Theorem A.2, | · |∞,Id defines a seminorm.

It is well-known [10, 15] that the linear spline interpolation error is by bounded by

∆2

8
|f ′′|∞,I , where ∆ = max{ti+1 − ti|i = 0 : T − 1}. Using this method, the ‘middle’ error

εmiddle as defined in the previous chapter takes the form

εmiddle(f, n) :=

∣∣∣∣∣∣
∫
I

Ef (x)Hn(x)ω(x) dx

∣∣∣∣∣∣ . (4.1)

Theorem 4.1. Let f ∈ L2
ω(Rd) ∩ C2(Id). For any n ∈ LdN , there exists a positive constant

C such that the quadrature error εmiddle(f, n) as in Equation (4.1) with maximum step size

∆, is bounded above by

εmiddle ≤ C∆2
√
n!2n|f ′′|∞,I .

Proof. First, the weighted L2 norm of the interpolation error function will be bounded. In
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fact, it is observed that

||Ef ||2ω =

∫ ∞
−∞

E2
f (x)ω(x) dx

≤
∫ ∞
−∞

∆4

64
|f ′′|2∞,Iω(x) dx

=
∆4

64
|f ′′|2∞,I

∫ ∞
−∞

ω(x) dx

=
∆4
√
π

64
|f ′′|∞,I .

This inequality is now used below.

εmiddle(f, n) =

∣∣∣∣∣∣
∫
I

Ef (x)Hn(x)ω(x) dx

∣∣∣∣∣∣
= |〈EfχI , Hn〉ω|

≤ ||EfχI ||ω ||Hn||ω

≤ ∆2|f ′′|∞,I ||Hn||ω

= C∆2
√
n!2n|f ′′|∞,I .

Note that the constant C does not depend on n.

Let | · |W 2,∞(Id) denote the Sobolev semi-norm on L2
ω(Rd) ∩ C2(Rd) defined via

|f |W 2,∞(Id) := |f ′′|∞,Id , for any f ∈ L2
ω(Rd) ∩ C2(Rd).

Corollary 4.2. Let f ∈ L2
ω(R) ∩C2(I). For any n ∈ LN , there exists a positive constant C
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such that for any fixed maximum step size ∆,

N−1∑
n=0

ε2
middle(f, n)

n!2n
√
π
≤ C∆4N |f |2W 2,∞(I).

Proof. The proof is a direct consequence of Lemma 4.1.

N−1∑
n=0

ε2
middle(f, n)

n!2n
√
π
≤

N−1∑
n=0

(
C1∆2

√
n!2n|f ′′|∞,I

)2

n!2n
√
π

= C∆4|f ′′|2∞,I
N−1∑
n=0

1

= C∆4N |f ′′|2∞,I

= C∆4N |f |2W 2,∞(I).

Using the piecewise linear spline method for obtaining a quadrature method in one di-

mension can give a good error estimate. Define an approximation to the Fourier-Hermite

series of a function f as

f̃N :=
∑
n∈LN

c̃nHn,

where the coefficients c̃n are found via truncation as in the previous chapter, and linear spline

interpolation. I.e.

c̃n :=
1

||Hn||2ω

∫
I

Sf (x)Hn(x)ω(x)dx.

Theorem 4.3. Let f ∈ L2
ω(R) ∩ C2(I). Fix a constant s > 0. Choose the parameter A as

in Theorem 3.3, and choose the nodes {ti} such that ∆ ≤ N−(2s+1)/4. There exists a positive
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constant C such that

||fN − f̃N ||ω ≤ CN−s
√
||f ||2ω + |f |2W 2,∞(I).

Proof. Since 0 ≤ (a− b)2 for any real values a and b, it follows that

0 ≤ (a− b)2 = a2 − 2ab+ b2

⇒ a2 + 2ab+ b2 ≤ 2a2 + 2b2

⇒ (a+ b)2 ≤ 2(a2 + b2).

Therefore, (εtail(f, n) + εmiddle(f, n))2 ≤ 2(ε2
tail(f, n) + ε2

middle(f, n)). Combine this with The-

orem 3.2 to get

||fN − f̂N ||2ω ≤ 2

(
N−1∑
n=0

ε2
tail(f, n)

n!2n
√
π

+
N−1∑
n=0

ε2
middle(f, n)

n!2n
√
π

)
.

From Lemma 4.2 and Theorem 3.3, for some positive constants C1 and C2,

||f̃N − f̂N ||2ω ≤ C1N
−2s||f ||2ω + C2∆4N |f |2W 2,∞(I)

≤ C1N
−2s||f ||2ω + C2N

−2s|f |2W 2,∞(I).

Therefore, there exists a positive constant C such that

||f̃N − f̂N ||2ω ≤ CN−2s
(
||f ||2ω + |f |2W 2,∞(I)

)
.
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Now we are ready to present a theorem describing the error from replacing the exact

infinitely expanded Fourier-Hermite series with the sparse-grid truncation computed with

approximated coefficients.

Theorem 4.4. Let f ∈ L2
ω(R) ∩ C2(I). Fix a constant s > 0. Choose the parameter A as

in Theorem 3.3, and choose the nodes {ti} such that ∆ ≤ N−(2s+1)/4. There exists a positive

constant C such that

||f − f̃N ||ω ≤ CN−s
(
||f ||κs +

√
||f ||2ω + |f |2W 2,∞(I)

)
.

Proof. From the triangle inequality,

||f − f̃N ||ω ≤ ||f − fN ||ω + ||fN − f̃N ||ω.

Combine Theorems 2.13 and 4.3 to obtain the result

||f − f̃N ||ω ≤ CN−s
(
||f ||κs +

√
||f ||2ω + |f |2W 2,∞(I)

)
.

It is expected to have three contributions to the error since there are three steps to

the approximation. First, the index set is truncated so that only finitely many terms of the

Fourier-Hermite series are computed. Then the coefficients of those terms must be computed.

To this end, a two-step method is introduced. The second contribution to the error is from
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throwing out the tails of the interval over which the integrals are computed. Finally, the

third contribution to the error is from the quadrature method used on the remaining portion

of the interval. These results are good, but using linear spline interpolation is not always an

appropriate choice. In order for the above described method to work, the function f must be

continuous and possess a smooth derivative of order at least two. A more general approach

based on piecewise polynomial interpolation, which does not assume continuity, is developed

in the next few sections.

4.2 Heirarchical Lagrange Interpolation

The ideas from this section can be found in [6], but are included here for completeness.

Another possibility for approximating the middle portion of the integral is using a quadra-

ture method based on piecewise polynomial interpolation. To accommodate a fast algorithm,

it is desirable for the piecewise polynomial interpolation to have a multiscale scheme. To

achieve this, the interpolating polynomials will be related to a refinable set.

Choose two contractive mappings φ0 and φ1 on I defined by

φ0(x) :=
x− A

2
, and φ1(x) :=

x+ A

2
.

Define Ψ := {φ0, φ1}. Then I is an invariant set relative to the mappings Ψ. A subset V ⊂ I

is called refinable relative to the mappings Ψ if Ψ(V ) ⊂ V . For example, the following sets
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are refinable relative to Ψ:

{
−A
3
,
A

3

}
,

{
−A
5
,
A

5

}
, {−A, 0, A} , and

{
−A
7
,
3A

7
,
5A

7

}
.

Let V0 be a refinable set relative to the mappings Ψ of size m. Say

V0 = {−A < v0,1 < v0,1 < · · · < v0,m−1 < A}.

Associated with V0 are the Lagrange cardinal polynomials of degree m− 1 defined by

`0,r(x) :=
m−1∏

q=0,q 6=r

x− v0,q

v0,r − v0,q

.

One may now approximate f by a combination of these cardinal polynomials. In effect,

f would be approximated by its interpolating polynomial of degree m− 1 with nodes in V0.

However, for a higher degree of accuracy, one may want to refine the sets and instead use

a piecewise polynomial interpolation. This is a desirable method. To achieve this accuracy

without sacrificing computational speed, a multiscale method will be developed.

Define a sequence of sets by Vj := Ψj(V0). It is necessary for each to be refinable.

Theorem 4.5. Let Ψ = {φi} be a collection of contractible mappings, and let V0 be a set

that is refinable relative to Ψ. Then each Vj = Ψj(V0) is also refinable relative to Ψ.

Proof. By assumption, Ψ(V0) ⊂ V0. Suppose Ψj(V0) ⊂ Ψj−1(V0) for some j ∈ N0. Then

Ψj+1(V0) = Ψ(Ψj(V0)) ⊂ Ψ(Ψj−1(V0)) = Ψj(V0).
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Therefore, by induction on j, each set Vj := Ψj(V0) is refinable.

These refinable sets will be used as a foundation of the multiscale construction of the

piecewise polynomial interpolation of f . The jth layer of the multiscale piecewise polynomial

will introduce information about f only on the set Vj \ Vj−1. The multiscale method is

excellent for interpolating oscillatory functions. If a higher order of accuracy is needed, then

it is easy to refine the interpolation. Only the finer details need to be added while keeping

all of the work that has already been done.

Define two linear operators Tρ : L∞(I)→ L∞(I) by

(Tρf) (x) :=


f ◦ φ−1

ρ (x), x ∈ φρ(I)

0, x /∈ φρ(I)

for ρ = 0, 1. These linear operators will be used successively to define new spaces.

Let F0 = span{`0,r|r ∈ {0, 1, . . . ,m− 1}}, and define

FM := T0FM−1 ⊕ T1FM−1. (4.2)

Since FM−1 ⊂ FM for each M ∈M, FM may be decomposed as FM = FM−1 ⊕GM . Repeat-

edly apply this equation and let G0 = F0 to obtain

FM = GM ⊕GM−1 ⊕ · · · ⊕G0. (4.3)

This is the multiscale decomposition of FM ; to obtain FM , one needs only to find the new
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basis functions that are not already included in FM−1.

It is now necessary to describe the bases of FM and GM . First, consider how each

cardinal function `0,r behaves under an application of T0 or T1. Both will yield a hori-

zontal compression by a factor of 1/2, and T0 gives a horizontal shift of −A/2, T1 a hor-

izontal shift of A/2. As the linear operators are successively applied, the effects are com-

pounded. Let PM = {ρ1, ρ2, . . . , ρM | ρi = 0 : 1}, and define TPM
= TρMTρM−1

· · ·Tρ1 . Then

FM = span {TPM
(`0,r) : r ∈ {0, 1, . . . ,m− 1}}. Let us rewrite these basis functions in a more

manageable way. Let η(PM) =
∑M

i=1 ρi2
i. Then the functions `M,r for r = 0, 1, . . . , 2Nm− 1

form a basis for FN , and can be obtained from the functions `0,r′ by

`M,r = TPM
`0,r′ , r = mη(PM) + r′. (4.4)

Plots of all of the basis functions in F2 using the nodal form as in equation (4.2) and

the multiscale form as in equation (4.3) are given in the Figures 4.2 and 4.3. Plots of the

individual basis functions are given near the end of the chapter in Figures 4.4 and 4.5. Figure

4.2 uses m = 2 and the initial refinable set V0 =

{
−A
3
,
A

3

}
, which is symmetric about the

origin. For this choice of V0, F2 consists of the following Lagrange cardinal polynomials:

F2 = {`0,0, `0,1, `1,0, `1,3, `2,0, `2,3, `2,4, `2,7} .

Figure 4.3 uses m = 3 and a skewed refinable set. Both use A = 1 for convenience.

The collection of all of the interpolation nodes used for the basis functions `M,r is exactly

the set VM . Because of the refinability of the sets VM , many of the basis functions `M,r
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(a) Nodal basis

−1 −0.5 0 0.5 1
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0

1

2

(b) Multiscale basis

Figure 4.2: Nodal Basis and Multiscale Basis for F2, taking V0 = {−A/3, A/3} and A = 1.
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(a) Nodal basis of F2
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−10

−5

0

5

(b) Multiscale basis of F2

Figure 4.3: Nodal Basis and Multiscale Basis for F2, taking V0 =

{
−A
7
,
3A

7
,
5A

7

}
and A = 1.

can be obtained from combinations of the basis functions `M−1,r′ of FM−1. The rest of

the basis functions for FM are associated with the nodes in VM but not in VM−1. Define

Wj = {r : vj,r ∈ Vj \ Vj−1} for j ≥ 1 and W0 = {0, 1, . . . ,m − 1}. One can now write

Gj = span{`j,r : r ∈ Wj}.
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4.3 Multiscale Piecewise Polynomial Interpolation

Applying a multiscale piecewise polynomial interpolation method to approximate the integral

∫
I

f(x)Hn(x)ω(x)dx

is a new contribution to this area of study. The main result from this subsection is found in

Theorem 4.6.

Define the interpolation projection PM : C(I)→ FM of a function f : R→ R by

PMf :=
2Mm−1∑
r=0

f(vM,r)`M,r, for all f ∈ C(I). (4.5)

This is the ‘nodal’ interpolation operator. To develop the multiscale decomposition of the

interpolation operator, define the difference operator as Qj := Pj − Pj−1 for j ≥ 1, and

Q0 = P0. Then the interpolation projection can be written as PMf =
∑M

j=0 Qjf , for all

f ∈ C(I). Notice that the operators Qj are associated with the Lagrange cardinal functions

with nodes in the sets Wj. These basis functions enjoy the property `i,j(vi,j) = 1. However,

due to scaling, `i,j(vk,l) is not always zero if (i, j) 6= (k, l). (See figure 4.2.) Therefore, to

write an explicit formula for each Qjf , a new functional must be introduced taking this

property into account. Suppose one wanted to write PM and each Qj as

Qjf =
∑
r∈Wj

ηj,r(f)`j,r (4.6)
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and

PMf =
M∑
j=0

∑
r∈Wj

ηj,r(f)`j,r. (4.7)

Then it is proven in [12] that ηj,r must be defined via

η0,r(f) = f(v0,r), and ηj,r(f) = f(vj,r)−
m−1∑
q=0

f
(
vj−1,mb r

2m
c+q

)
aq,r mod 2m, (4.8)

for j 6= 0, where aq,k = `0,q(v1,k).

The formula in equation (4.7) is the multiscale piecewise polynomial interpolation of f .

It interpolates f exactly on each node vM,r for r ∈ Z2Mm, and it defines a polynomial of

degree m− 1 on each subinterval Ij,r, where Ij,i := [−A+ i2−j+1A, −A+ (i+ 1)2−j+1A] for

each j = 0, 1, . . . ,M and i ∈ Z2j .

Recall that the goal is to replace f in the following integral

∫
I

f(x)Hn(x)ω(x) dx (4.9)

by the piecewise polynomial to obtain the approximation

∫
I

(PMf)(x)Hn(x)ω(x) dx. (4.10)

Define a space that consists of all functions that are smooth on each subinterval Ij,i via

Xm
M(I) :=

{
f : R→ R such that f (α) ∈ C(IM,i),∀i ∈ Z2M , α ≤ m

}
, (4.11)
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with seminorm

|f |Xm
M (I) := max

{
|f (α)|

∣∣
IM,i

: α ≤ m, i ∈ Z2M

}
.

Notice functions in Xm
M(I) are not necessarily continuous, only piecewise continuous.

Theorem 4.6. Fix M ∈ N0. For all f ∈ L2
ω(R)∩Xm

M(I), there exists a positive constant C

such that the error in estimating the integral in equation (4.9) by the integral in (4.10) can

be bounded by

∣∣∣∣∣∣
∫
I

(f − PMf) (x)Hn(x)ω(x) dx

∣∣∣∣∣∣ ≤ C
Am2−mM+n/2

√
n! |f |Xm

M (I)

(m− 1)!
.

Proof. On each subinterval IM,i, PMf is a polynomial of degree m− 1. Fix i ∈ Z2M and let

x ∈ IM,i. Then there exists some constant ξx ∈ IM,i such that

|(PMf)(x)− f(x)| = 1

(m− 1)!

∣∣f (m)(ξx)
∣∣ · m−1∏

j=0

∣∣x− vM,2im+j

∣∣
≤
|f |Xm

M (I)

(m− 1)!

m−1∏
j=0

∣∣x− vM,2im+j

∣∣
≤
|f |Xm

M (I)

(m− 1)!

m−1∏
j=0

|IM,i|

≤ (2−M+1A)m
|f |Xm

M (I)

(m− 1)!
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Now insert this estimate into the integral.

∣∣∣∣∣∣
∫
I

(f − PMf) (x)Hn(x)ω(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
2M−1∑
i=0

∫
IM,i

(f − PMf) (x)Hn(x)ω(x) dx

∣∣∣∣∣∣∣
≤

2M−1∑
i=0

Am|f |Xm
M (I)

2m(M+1)(m− 1)!

∫
IM,i

|Hn(x)|ω(x) dx

=
Am|f |Xm

M (I)

2m(M+1)(m− 1)!

∫
I

|Hn(x)|ω(x) dx

The remaining integral can be estimated using Jensen’s inequality.

∫
I

|Hn(x)|ω(x) dx ≤

∫
I

H2
n(x)ω(x) dx

1/2

≤
√
n!2n
√
π.

Therefore one can write for a positive constant C = π1/4,

∣∣∣∣∣∣
∫
I

(f − PMf) (x)Hn(x)ω(x) dx

∣∣∣∣∣∣ ≤ C
Am2−mM+n/2

√
n!

(m− 1)!
|f |Xm

M (I) .

Since A was chosen so that the bulk of each f(x)Hn(x)ω(x) occurs in the interval I, a

quadrature method based on the piecewise polynomial interpolation gives a good approxi-

mation even over all of R.

Corollary 4.7. Fix M ∈ N0. Fix a positive integer m, and choose some 0 < s < m. Let A

be chosen as in Theorem 3.3. For all f ∈ L2
ω(R)∩Xm

M(I), there exists a positive constant C
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such that

∣∣∣∣∣∣
∫
R

(f − PMf) (x)Hn(x)ω(x) dx

∣∣∣∣∣∣ ≤ C

(
N−s||f ||ω +

Am2−mM+n/2
√
n!

(m− 1)!
|f |Xm

M (I)

)
.

Proof. Each of the cardinal functions `M,i is identically zero outside of the interval I. There-

fore PMf(x) = 0 for all x ∈ R \ I. Combine the results of Theorems 3.3 and 4.6.

An observation about the preceding Corollary is in order. Supposing A,N, and m are

fixed, in order to achieve a decent discrete approximation as in (4.9), one must choose an

appropriately large value for M . This is expected though; the refinement of subintervals

must be sufficiently small for an acceptable approximation of f . Guidelines for choosing M

are formalized in the next chapter.

Now that the theory has been developed for the discrete sparse Fourier Hermite approx-

imation based on multiscale piecewise polynomial interpolation in one dimension, it can

extended to higher dimensions by the use of the tensor product. The following section does

this.

4.4 High Dimension Discrete Sparse Fourier Hermite

Approximations

The formulae in the preceding section can be extended to a high dimensional setting by use

of the tensor product. This section contains several important theorems which will facilitate

the analysis of the discrete sparse Fourier Hermite approximation of a function, which is

defined in Definition 4.13.
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The d dimensional Lagrange polynomials and the d dimensional functionals η are given

by

`N,r := `N,r1 ⊗ `N,r2 ⊗ · · · ⊗ `N,rd ,

`j,r := `j1,r1 ⊗ `j2,r2 ⊗ · · · ⊗ `jd,rd ,

ηj,r := ηj1,r1 ⊗ ηj2,r2 ⊗ · · · ⊗ ηjd,rd ,

for any M ∈ N and any j, r ∈ Nd
0. Let W d

M = WM ×WM × · · · ×WM , and

vM,r = (vN,r1 , vN,r2 , . . . , vN,rd) ∈ W d
N . We define PdM := ⊗dk=1PM .

Notice that PdMf =
∑

vM,r∈V d
M
f(vM,r)`M,r. This is the full grid interpolation projection of

f onto F d
M . Also define Qj := Qj0 ⊗ Qj1 ⊗ · · · ⊗ Qjd . For the multiscale interpolation, use

the high dimensional tensor product version of equations (4.6) and (4.7). It is proven in [12]

that

PdMf =
∑

j∈Zd
M+1

∑
r∈Wj

ηj,r(f)`j,r, (4.12)

and

Qjf =
∑
r∈Wj

ηj,r(f)`j,r. (4.13)

It follows immediately that the tensor product multiscale Lagrange interpolation of f can

be written as

PdMf =
∑

j∈Zd
M+1

Qjf.

To reduce computational cost, I shall again use the ideas from Section 2.2, and compute

the sum over a hyperbolic cross index set. For a fixed positive integer M , consider the sparse
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grid index set SdM defined by

SdM :=

{
j ∈ ZdM+1 :

d∑
k=1

jk ≤M + 1

}
.

Definition 4.8. For a function f : Rd → Rd, the multiscale sparse grid interpolation of f

is given by

SdMf :=
∑
j∈SdM

∑
r∈Wj

ηj,r(f)`j,r. (4.14)

Note that SdMf =
∑
j∈SdM

Qjf . In higher dimensions, the multiscale sparse grid interpolant

SdM will be used instead of PdM . To establish the approximation order, first some definitions

and lemmas are needed.

For any j ∈ SM and i ∈ Z2j , define Ij,i = −A+ i2−j+1A.

Define the collection of sets

Vj := Ψj1(V0)×Ψj2(V0)× · · · ×Ψjd(V0),

for any j ∈ Nd
0. For any j ∈ SdM and i ∈ Zd

2j
, define Ωj,i := ⊗dk=1 [Ijk,ik , Ijk,ik+1].

The operator Qj is bounded. The following theorem appears in [12].

Theorem 4.9. There exists a positive constant c such that for all f ∈ C(Id) and j ∈ Nd
0,

||Qjf ||∞ ≤ c||f ||∞ (4.15)
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Extend the space Xm
M(I) to higher dimensions via the following:

Xm
M(Id) =

{
f : Rd → R : f (α)|Ωj,i

∈ C(Ωj,i), ∀j ∈ SdM , r ∈ Wj, |α|∞ ≤ m
}
, (4.16)

with seminorm

|f |Xm
M (Id) := max

{
|f (α)|∞,Ωj,i

: α ∈ Nd
0, |α|∞ ≤ m,∀j ∈ SdM , r ∈ Wj

}
.

Then the operators Qj are bounded for f in this new space as shown in the next lemma.

Lemma 4.10. For fixed d and M in N, there exists a positive constant c such that for all

f ∈ Xm
M(Id) and j ∈ Nd

0 with |j| > 0,

||Qjf ||∞ ≤ c

(
A

2

)m
2−m|j||f |Xm

M (Id). (4.17)

The proof closely follows that of Lemma 2.10 in [12].

With these tools, now the multiscale sparse grid Lagrange interpolation error can be

investigated.

Theorem 4.11. For fixed positive integers d and M , there exists a positive constant c such

that for all f ∈ Xm
M(Id),

∣∣∣∣(PdM − SdM
)
f
∣∣∣∣
∞ ≤ cAmMd−12−m(M+d)|f |Xm

M (Id).
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Proof. It follows immediately from (4.12), (4.14), and (4.13) that

(
PdM − SdM

)
f =

∑
j∈Zd

M+1\S
d
M

Qjf.

Therefore

||
(
PdM − SdM

)
f ||∞ ≤

∑
j∈Zd

M+1\S
d
M

||Qjf ||∞

≤ cAm2−md ||f ||Xm
M (Id)

∑
j∈Zd

M+1\S
d
M

2−m|j|

≤ cAmMd−12−m(M+d)||f ||Xm
M (Id).

The last inequality follows from the estimate
∑

j∈Zd
M+1\S

d
M

2−m|j| ≤ cMd−12−mM from Lemma

3.7 in [5].

Now this estimate can be used to bound the difference between f and its sparse multiscale

interpolation SdMf .

Theorem 4.12. For fixed positive integers d and M , there exists a positive constant c such

that for all functions defined on Id with the property f ∈ Xm
M(Id),

∣∣∣∣f − SdMf
∣∣∣∣
∞,Id ≤ cAmMd−12−m(M+d)|f |Xm

M (Id).

Proof. Since PdMf is precisely piecewise polynomial interpolation of f , there exists a positive
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constant c such that

||f − PdMf ||∞,Id ≤ c2−mM |f |Xm
M (Id).

Now, by the triangle inequality

||f − SdMf ||∞,Id ≤ ||f − PdMf ||∞,Id + ||PdMf − SdMf ||∞,

and then by substituting the above result with the one from Theorem 4.11 yields the desired

result.

Now equipped with facts about SdMf , we are ready to define the discrete sparse Fourier

Hermite approximation of f .

Definition 4.13. For fixed positive integers M , N , and m, and for any function f ∈

L2
ω(Rd) ∩Xm

M(Id), the discrete sparse Fourier Hermite approximation of f is given by

f̌M,N :=
∑
n∈Ld

N

čM,nHn,

where the discrete coefficients can be found via the formula

čM,n :=
〈SdMf,Hn〉ω

n!2nπd/2
. (4.18)

Developing framework that leads to and supports the discrete sparse Fourier Hermite

approximation has been the main purpose of this paper so far. From here out, the discussion

will focus on its approximation analysis, numerical implementation, and use in applications.
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Figure 4.4: Plots of all of the Lagrange cardinal polynomials in F2, where V0 = {−1/3, 1/3}.
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Chapter 5

Discrete Sparse Fourier Hermite

Approximations

In the previous chapter, I focused on approximating the coefficients of the Fourier Hermite

series using a quadrature method featuring truncation and piecewise polynomial interpo-

lation. Before delving into computational issues in approximating the coefficients, I shall

verify that they do not contribute too much error to the overall approximated series.

Fix two positive integers M and N . The integer N will determine the number of terms

appearing in the sparse representation of the Fourier Hermite series, and the integer M will

determine the number of piecewise polynomial segments used for the quadrature method to

approximate the coefficients.

Definition 5.1. The discrete sparse Fourier Hermite approximation of a given function

65
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f ∈ Hs(Rd) ∩Xm
M(Id) is given by

f̌M,N :=
∑
n∈Ld

N

čM,nHn,

where the coefficients čM,n are computed using the methods described in the previous chapter.

That is,

čM,n =
1

||Hn||2ω

∫
Id
SdMf(x)Hn(x)ω(x) dx.

It is of course desirable for f̌M,N to approximate the Fourier Hermite series of f well.

There are three main sources of error: from using a sparse index set, from truncating the

intervals over which the integrals for the coefficients are computed, and from using a quadra-

ture method to compute the integral over the remaining interval. To simplify notation when

considering the error, denote the sparse Fourier Hermite series that do not have the third

source of error by f̌N , with Fourier coefficients čn. That is,

f̌N :=
∑
n∈Ld

N

čnHn,

where

čn :=
1

||Hn||2ω

∫
Id

f(x)Hn(x)ω(x) dx.

Using the triangle inequality, the error between f and f̌M,N can be bounded by

||f − f̌M,N ||ω ≤ ||f − fN ||ω + ||fN − f̌N ||ω + ||f̌N − f̌M,N ||ω. (5.1)

The error of the first term was discussed in Chapter 2. The error of the second and third
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terms will depend on the parameters A, m and M . These parameters will need to be chosen

in such a way that each term in (5.1) contributes approximately the same order of error.

The purpose of this chapter is to show how these parameters can be chosen in a way that

will ensure the total approximation error is small.

Recall from Theorem 2.13 that for any f ∈ Hs(Rd) ⊂ L2
ω(Rd) with s > 0,

||f − fN ||ω ≤ N−s||f ||κs . (5.2)

The following two lemmas bound the error from the second norm appearing in equation

(5.1)

Lemma 5.2. For any subset S of Rd, let χS denote the characteristic function that is equal

to 1 on S and 0 everywhere else. Define the interval I := [−A,A], where the parameter A is

chosen as in Theorems 3.3 and 3.4. Let f ∈ L2
ω(Rd). For a fixed positive integer N ,

||fN − f̌N ||ω ≤ ||f ||ω

∑
n∈Ld

N

||HnχRd\Id ||2ω
||Hn||2ω

1/2

.

Proof. By the definitions of fN and f̌N , ||fN − f̌N ||2ω =
∑
n∈Ld

N

(cn − čn)2 ||Hn||2ω.

The difference between the exact and truncated coefficients can be bounded by

|cn − čn| =
1

||Hn||2ω

∣∣∣∣∫
Rd\Id

f(x)Hn(x)ω(x) dx

∣∣∣∣
=

1

||Hn||2ω

∣∣〈f,Hnχ(Rd\Id)〉ω
∣∣

≤
||f ||ω||Hnχ(Rd\Id)||ω

||Hn||2ω
.
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Therefore ||fN − f̌N ||2ω ≤ ||f ||2ω
∑
n∈Ld

N

||Hnχ(Rd\Id)||2ω
||Hn||2ω

.

Lemma 5.3. Let f ∈ Hs(Rd), with 0 < s, and choose the parameter A as in Theorems 3.3

and 3.4. Then there exists a positive constant c such that

||fN − f̌N ||ω ≤ CN−s||f ||ω. (5.3)

Proof. Notice that 〈f,Hnχ(Rd\Id)〉ω = εtail(f, n). Then apply Theorem 3.3.

Finally, the third term in equation (5.1) is bounded as in the following lemma.

Lemma 5.4. Let f ∈ L2
ω(Rd) ∩ Xm

M(Id). Choose the parameter A as described above. For

fixed M,N ∈ N0,

||f̌N − f̌M,N ||ω ≤ C||f − SdMf ||∞,Id

∑
n∈Ld

N

||HnχId ||2ω
||Hn||2ω

1/2

.

Proof. The expansions of f̌N and f̌M,N differ only in their coefficients:

||f̌N − f̌M,N ||2ω =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Ld

N

(čn − čM,n)Hn

∣∣∣∣∣∣
∣∣∣∣∣∣
2

ω

=
∑
n∈Ld

N

|čn − čM,n|2||Hn||2ω.

By the definitions of čn and čM,n,

|čn − čM,n| =
1

||Hn||2ω

∣∣∣∣∫
Id

(
f − SdMf

)
(x)Hn(x)ω(x) dx

∣∣∣∣

=

∣∣〈(f − SdMf)χId , HnχId〉ω
∣∣

||Hn||2ω
.



CHAPTER 5. DISCRETE SPARSE FOURIER HERMITE APPROXIMATIONS 69

Then, by Cauchy Schwarz, the numerator of the previous quantity is bounded above by

||(f − SdMf)χId ||ω||HnχId ||ω. Finally,

||(f − SdMf)χId ||2ω =

∫
Id

(f − SdMf)2(x)ω(x) dx

||f − SdMf ||2∞,Id
∫
Id

ω(x) dx

≤ C||f − SdMf ||2∞,Id ,

for some positive constant C.

Theorem 5.5. Suppose f ∈ Hs(Rd) ∩Xm
M(Id) such that 0 < s < m. Let A be chosen as in

Theorems 3.3 and 3.4. Choose k such that

A ≤ C logk2 N

k(d−1)/mN1+1/m
,

for some positive constant C, and set M = dlog2(logk2 N)e.

Then

||f̌N − f̌M,N ||ω ≤ CN−s|f |Xm
M (Id).

Proof. Let ε be chosen such that s+ ε ≤ m.
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From Lemma 5.4 and Theorem 4.12,

||f̌N − f̌M,N ||ω ≤ C||f − SdMf ||∞,Id

∑
n∈Ld

N

||HnχId ||2ω
||Hn||2ω

1/2

≤ C||f − SdMf ||∞,Id

∑
n∈Ld

N

1

1/2

≤ C
√
N(log

d−1
2

2 N)||f − SdMf ||∞,Id

≤ C
√
N(log

d−1
2

2 N)AmMd−12−mM |f |Xm
M (Id).

Since M ≥ log2(logk2 N), it follows that 2−mM ≤ log−mk2 N . Therefore

||f̌N − f̌M,N ||ω ≤ C
√
N(log

d−1
2

2 N)AmMd−12−mM |f |Xm
M (Id)

≤ C
√
N(log

d−1
2

2 N)Amkd−1(logd−1
2 log2N)(log−mk2 N)|f |Xm

M (Id)

≤ C
(

log
3(d−1)/2
2 N

) √Nkd−1

logmk2 N
Am|f |Xm

M (Id).

Then using the condition on A and the assumption on m gives the result

||f̌N − f̌M,N ||ω ≤ C
(
logd−1

2 N
)
N−m|f |Xm

M (Id)

≤ C
(
logd−1

2 N
)
N−(m+ε)|f |Xm

M (Id)

≤ CN−s|f |Xm
M (Id).
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It seems natural that the number of refinements of the multiscale interpolation method

used to help compute integrals over the interval Id should depend on the size of Id. This is

why it is necessary for the parameter k, which depends on N , to be present in the choice of M .

However, the astute reader will have noticed that several of the accuracy results in previous

chapters were not tight. Therefore choosing k dependent on N is sufficient to guarantee the

presented accuracy, but is not necessary. Indeed, as we will see, the upper bound for the

given value of k has very slow growth compared to N . As suggested in Figure 5.1, the size

of k is several orders of magnitude smaller than N . Additionally, in most applications, the

size of N will be fixed, or at least have an upper bound. Therefore in practical settings, one

is free to choose the parameter k, independent of N .

For large N , the size of A will be determined by the location of x∗N , the largest root of

HN . As was remarked earlier, x∗N ≈
√

2N − (2N)1/3. Using this bound for A, one can see k

will satisfy the assumption in Theorem 5.4 if

N (3m+1)/2kd−1 ≤ c logmk2 N, (5.4)

for some positive constant c and for all N larger than some N0. An approximation for k that

satisfies Equation (5.4) is

k =
(3m+ 2) log2N

2m log2 log2N
. (5.5)

A plot of this estimate of k versus N , for N ranging from 10 to 106, is given in Figure 5.1.

One can see that although k depends on N , it’s growth is very very slow.

Combining Equations (5.1), (5.2) and (5.3) with Theorem 5.5 yields the following Theo-
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Figure 5.1: Plot of the estimate k ≈ (3m+ 2) log2N

2m log2 log2N
for different m.

rem, which is a primary result of this dissertation.

Theorem 5.6. Suppose f ∈ Hs(Rd) ∩ Xm
M(Id) such that 0 < s < m. Fix N ∈ N0, and

choose the parameter A as in Theorems 3.3, 5.5, and k and M as in Theorem 5.5. Then

there exists a positive constant C such that

∣∣∣∣f − f̌M,N

∣∣∣∣
ω
≤ CN−s

(
||f ||κs + ||f ||ω + |f |Xm

M (Id)

)
.



Chapter 6

Implementation

For a given function f ∈ L2
ω(Rd) and a positive integer N , the construction of the discrete

sparse Fourier Hermite approximation as in Definition 5.1 requires computing the coefficients

čM,N . The topic of this section is to find a fast, reliable, accurate way to compute the

multiscale discretization of the coefficients in the sparse Fourier Hermite expansion of f .

This chapter switches discussion between univariate and multivariate cases, so the bold-

face notation will be used to denote vectors.

The terms involved in the Fourier Hermite expansion have very large magnitude, so for

numerical considerations, the problem will be recast. The normalized Hermite polynomials

are defined as

hn :=
Hn

||Hn||ω
. (6.1)

Note that several different inner products and norms have been used throughout this dis-

sertation. ‘Normalization’ here refers to the fact that ||hn||ω = 1. Using the normalized

73
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Hermite polynomials, the Fourier Hermite series of f can be written as

f =
∑
n∈Nd

0

dnhn, (6.2)

where dn = 〈f, hn〉ω. Notice this expression is equivalent to the expansion (2.11). The

coefficients cn have two copies of the norm ||Hn||ω in their denominators. To derive the

expansion (6.2) from (2.11), move one copy of ||Hn||ω from the coefficient to the polynomial

part Hn. That is, for each n ∈ Nd
0,

dnhn = 〈f, hn〉ωhn =
〈f,Hn〉ωHn

||Hn||2ω
= cnHn.

Similarly, the discrete sparse Fourier Hermite approximation of f in Definition 5.1 can

be written as

f̌M,N =
∑
n∈Ld

N

ďM,nhn, (6.3)

with the coefficients given by ďM,n := 〈SdMf, hn〉ω. Observe ďM,n = ||Hn||ω čM,n.

From Equation (4.14) and the above observation, it holds that

〈SdMf, hn〉ω =
∑
j∈SdM

∑
r∈Wd

j

ηj,r(f)〈`j,r, hn〉ω.

Let

Aj,r(n) :=

∫
Id
`j,r(x)hn(x)ω(x)dx

for each j ∈ SdM , r ∈Wj and n ∈ Nd
0. Then the coefficients in computing the discrete sparse
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Fourier Hermite approximation (6.3) can be computed via

ďM,n = 〈SdM , hn〉ω =
∑
j∈SdM

∑
r∈Wd

j

ηj,r(f)Aj,r(n),

and the discrete sparse Fourier Hermite approximation of f can be computed via

f̌M,N(x) =
∑
n∈Ld

N

∑
j∈SdM

∑
r∈Wj

ηj,r(f)Aj,r(n)hn(x). (6.4)

To achieve the goal of finding a fast and good discrete sparse Fourier Hermite approxi-

mation, one must have algorithms to quickly and accurately compute the quantities Aj,r(n)

and ηj,r(f). First, the collection Aj,r(n) will be considered.

It is fortunate that the terms Aj,r(n), which approximate high dimensional oscillatory

integrals, do not need to be further approximated by a quadrature formula. Since the

Lagrange cardinal polynomials, the Hermite polynomials, and the Gaussian weight function

used in the definition of Aj,r(n) are all defined in higher dimensions using tensor products,

it follows that

Aj,r(n) =
d∏

k=1

∫
Id

`jk,rk(xk)hnk
(xk)ω(xk) dxk =

d∏
k=1

Ajk,rk(nk). (6.5)

As such, an evaluation scheme needs to be developed only for the univariate case.

Therefore, for now, consider the case when d = 1. Each `j,r is a polynomial of degree

m−1 on a subinterval of [−A,A], and is equal to zero everywhere else. We use this property

along with Theorem 2.3 to compute the integrals Aj,r(n) quickly and without introducing

any additional quadrature error.
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To shorten notation, denote the subintervals of I = [−A,A] by Ii,j = −A + i2−j+1A for

any i ∈ N2j and j ∈ N0. Then

supp (`j,r) =
[
Ib r

m
c,j , Ib r

m
c+1,j

]
,

and

Aj,r(n) =

∫ Ib r
m c+1,j

Ib r
m c,j

`j,r(x)hn(x)ω(x) dx. (6.6)

Since each `j,r is a polynomial of degree m− 1, Equation (6.6) can now be written as

Aj,r(n) =
m−1∑
p=0

bj,r(p)
[
Fp,n

(
Ib r

mc+1,j

)
− Fp,n

(
Ib r

mc,j
)]
, (6.7)

where `j,r(x) =
∑m−1

p=0 bj,r(p)x
p for x ∈ supp(`j,r), and the functionals Fp,n(x) are defined as

follows.

Definition 6.1. For each p ∈ {0, 1, . . . ,m− 1}, n ∈ L1
N and x ∈ I, define

Fp,n(x) =

∫ x

0

tphn(t)ω(t) dt.

The functionals can be computed exactly in an iterative way.

Theorem 6.2. For each j ∈ {0, 1, . . . ,M}, r ∈ Wj and x ∈ I, the following equations hold.

1. For all x,

F0,0(x) =
4
√
π

2
erf(x). (6.8)
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2. For all x,

F1,0(x) =
1− ω(x)

2 4
√
π

(6.9)

3. For all x and all p ≥ 2,

Fp,0(x) =
−xp−1ω(x)

2 4
√
π

+

(
p− 1

2 4
√
π

)
Fp−2,0(x). (6.10)

4. For all x and integers n > 0,

F0,n(x) =
−hn−1(t)ω(t)√

2n

∣∣∣∣x
0

. (6.11)

5. For all x and integers n ≥ 1,

F1,n(x) =

√
n+ 1

2
F0,n+1(x) +

√
n

2
F0,n−1(x) (6.12)

6. For all x and integers p ≥ 0,

Fp,1(x) =
√

2Fp+1,0(x). (6.13)

7. For all x, integers p ≥ 0 and integers n ≥ 2,

Fp,n(x) =

√
2

n
Fp+1,n−1(x)−

√
n− 1

n
Fp,n−2(x). (6.14)
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8. For all x, integers n ≥ 1 and integers p ≥ 2,

Fp,n(x) =
−xp−1hn(x)ω(x)

2
+

(
p− 1

2

)
Fp−2,n(x) +

√
n

2
Fp−1,n−1(x). (6.15)

Proof. 1. From the definition of erf x, F0,0(x) =
4√π
2

erf(x).

2. Equation (6.9) follows from the observation tω(t) = −1
2
ω′(t).

3. Use integration by parts to derive Equation (6.10). If p ≥ 2, then

Fp,0(x) =
1
4
√
π

∫ x

0

tpω(t)dt

=
1
4
√
π

∫ x

0

tp−1 · tω(t)dt

=
−1

2 4
√
π

∫ x

0

td−1ω′(t)dt

=
−tp−1ω(t)

2 4
√
π

∣∣∣∣x
0

+
p− 1

2 4
√
π

∫ x

0

tp−2ω(t)dt

=
−xp−1ω(x)

2 4
√
π

+
p− 1

2 4
√
π
Fp−2,0(x).

4. Equation (6.11) follows from Corollary 2.4, and that

Hn−1

||Hn||ω
=

Hn−1√
n!2n
√
π

=
Hn−1√

2n||Hn−1||ω
=
hn−1√

2n
.
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Then

F0,n(x) =

∫ x

0

hn(t)ω(t)dt =

∫ x

0

Hn(t)ω(t)

||Hn||ω
dt

=
−Hn−1(t)ω(t)

||Hn||ω

∣∣∣∣x
0

=
−hn−1(t)ω(t)√

2n

∣∣∣∣x
0

.

5. Equation (6.12) follows from the observation that for all n ≥ 1,

tHn(t) =
Hn+1

2
(t) + nHn−1(t)

following from the three term recurrence of the Hermite polynomials. Then

thn(t) =
Hn+1(t)

2
√
n!2n
√
π

+
nHn−1(t)√
n!2n
√
π

=

√
n+ 1

2
hn+1 +

√
n

2
hn−1(t).

6. Since H1(t) = 2t,

F1,k(x) =

∫ x

0

tph1(t)ω(t)dt =

√
2√
π

∫ x

0

tp+1ω(t)dt

=
√

2

∫ x

0

tp+1h0(t)ω(t)dt =
√

2Fp+1,0(x).
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7. Using the recurrence relation Hn(t) = 2tHn−1(t)− 2(n− 1)Hn−2(t) for n ≥ 2,

Fp,n(x) =

∫ x

0

tphn(t)ω(t)dt

=

∫ x

0

tp
(

2tHn−1(t)− 2(n− 1)Hn−2(t)

||Hn||ω

)
ω(t)dt

=

√
2

n

∫ x

0

tp+1hn−1(t)ω(t)dt−
√
n− 1

n

∫ x

0

tphn−2(t)ω(t)dt

=

√
2

n
Fp+1,n−1(x)−

√
n− 1

n
Fp,n−2(x).

8. The final formula can be recovered using integration by parts. Notice

h′n(t) =
H ′n(t)

||Hn||ω
=

2nHn−1(t)

||Hn||ω
=

2nHn−1(t)√
2n||Hn−1||ω

=
√

2nhn−1(t).

Then, if p ≥ 2,

Fp,n(x) =

∫ x

0

tphn(t)ω(t)dt

=
−1

2

∫ x

0

tp−1hn(t)ω′(t)dt

=
−tp−1hn(t)ω(t)

2

∣∣∣∣x
0

+
1

2

∫ x

0

[
tp−1hn(t)

]′
ω(t)dt

=
−tp−1hn(t)ω(t)

2

∣∣∣∣x
0

+
1

2

∫ x

0

[
(p− 1)tp−2hn(t) +

√
2ntp−1hn−1

]
ω(t)dt

=
−tp−1hn(t)ω(t)

2

∣∣∣∣x
0

+
p− 1

2
Fp−2,n(x) +

√
n

2
Fp−1,n−1(x)

=
−xp−1hn(x)ω(x)

2
+
p− 1

2
Fp−2,n(x) +

√
n

2
Fp−1,n−1(x).
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Figure 6.1: Levels of dependence in the recurrence relation from equation (6.15) for d = 1.

Algorithm 6.3. For a fixed x, compute the collection {Fp,n(x)}m−1, N−1
p=0, n=0 in a single dimen-

sion as follows.

Step1. Compute ω(x) and hn(x) for each n = 0, 1, . . . , N − 1 using the three term recurrence

relation.

Step 2. Compute F0,0(x) and F1,0(x) using Equations (6.8) and (6.9).

Step 3. Compute Fp,0(x) for p = 2, 3, . . . ,m− 1 using Equation (6.10).

Step 4. Compute F0,n(x) for n = 2, 3, . . . , N − 1 using Equation (6.11).

Step 5. Compute Fp,1(x) for p = 0, 1, . . . ,m− 2 using Equation (6.13).

Step 6. Compute Fm−1,1(x) using Equation (6.15).

Step 7. For each n = 2,3,. . . ,N-1, compute Fp,n(x) for p = 0, 1, . . . ,m − 2 using Equation

(6.14), and compute Fm−1,n(x) using Equation (6.15).

If m = 2, then Algorithm 6.3 can be simplified.

Algorithm 6.4. For a fixed x, compute the collection {Fp,n(x)}1, N−1
p=0, n=0 in a single dimension

as follows.

Step 1. Compute ω(x) and hn(x) for each n = 0, 1, . . . , N−1 using the three term recurrence

relation.
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Figure 6.2: Blocks of computation steps from Algorithm 6.3.

Step 2. Compute F0,0(x) and F1,0(x) for each x using Equations (6.8) and (6.9).

Step 3. Compute F0,1(x) =
√

2F1,0(x) for each x.

Step 4. Compute F1,1(x) =
−xω(x)√

2 4
√
π

+
1√
2
F0,0(x) for each x.

Step 5. Compute F0,n+1(x) = hn(0)− hn(x)ω(x).

Step 6. Compute F1,n+1(x) =
1√

2(n+ 1)
(−xhn(x)ω(x) + F0,n(x)).

Theorem 6.5. Let NN,m,x be equal to the computational cost of completing Algorithm 6.3

for fixed values N,m and x. Then

NN,m,x = 2N +mN −m+ 6.

Proof. For each fixed x, computing ω(x) and each hn(x) for n = 0, 1, . . . , N via the three

term recurrence in Step 1 of Algorithm 6.3 requires a total of 2(N + 1) + 1 multiplications.
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Computing Step 2 requires only a single multiplication. Since multiplication and division by

2 can be achieved by only shifting digits in binary, computing Fp,0(x) for each x and each p

via Equation (6.10) requires two multiplications. Therefore Step 3 of Algorithm 6.3 requires

2(m− 3) multiplications. Computing Equation (6.11) for each x and n can be accomplished

in one multiplication, so Step 4 requires N − 3 multiplications. Since Equation (6.13) is

multiplication by 2, Step 5 is free for each x. Equation (6.14) requires one multiplication

and Equation (6.15) requires four multiplications for each x, p, and n. Therefore Step 6

requires exactly 4 multiplications and Step 7 requires (N − 3)(m− 1) + 4.

Therefore, altogether the computational cost of completing all steps associated with

Algorithm 6.3 in one dimension for fixed values N,m and x is the total computation cost

from each step: 2N +mN −m+ 6.

For each fixed value j ∈ S1
M , to compute the collection

{Aj,r(n) : r ∈ Wj, n = 0 : N − 1} via Equation (6.7) and Algorithm 6.3, requires evaluating

each Fp,n at 2j + 1 values of x. Namely at the points in the collection {Is,j : s = 0 : 2j}.

Theorem 6.6. Fix positive integers N and m. To fully compute the collection

{Fp,n(Ii,j) : p ∈ Zm, n ∈ ZN , j ∈ ZM , i ∈ Z2j} (6.16)

requires (2N +mN −m+ 6)(2M+1 − 1) multiplications.

Proof. From the previous Theorem, we know that for each Ii,j, computing the collection

{Fp,n(Ii,j)} for all p ∈ Zm and all n ∈ ZN requires 2N + mN −m + 6 multiplications. The
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cardinality of the set of all Ii,j of interest is

|{j ∈ ZM , i ∈ Zj}| =
M∑
j=0

2j = 2M+1 − 1.

Corollary 6.7. Let N,m be fixed positive integers. Choose M = dlog2 logk2 Ne, where k is

chosen as in Theorem 5.5. Then the computational complexity of computing the collection

{
Aj,r(n) : j ∈ S1

M , r ∈ Wj, n ∈ ZN
}

(6.17)

using Equation (6.7) is O(N logk2 N).

In several dimensions, the values Aj,r(n) are defined using products as in Equation (6.5).

If they are computed naively, this will require d multiplications for each (j, r,n).

Algorithm 6.8. Let N,m be fixed positive integers. Choose M = dlog2 log 2kNe, where k is

chosen as in Theorem 5.5. Compute the collection

{
Aj,r(n) : n ∈ LdN , j ∈ SdM , r ∈Wj

}

as follows.

Step 1. Compute the single dimension collection

{Aj,r(n) : j ∈ ZM , r ∈Wj, n ∈ ZN}
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using Algorithm 6.3.

Step 2. For each n ∈ LdN , compute the sum

čn =
∑
j∈SdM

∑
r∈Wj

d∏
k=1

Ajk,rk(nk).

Theorem 6.9. Let N,m be fixed positive integers. Choose M = dlog2 log 2kNe where k is

chosen as in Theorem 5.5. Computing the collection

{
Aj,r(n) : n ∈ LdN , j ∈ SdM , r ∈Wj

}

via Algorithm 6.8 requires O(N log
2(d−1)+k
2 N) multiplications.

Proof. From Corollary 6.7, computing the collection

{Aj,r(n) : n ∈ ZN , j ∈ ZM , r ∈Wj}

as in Step 1 of Algorithm 6.8 requires O(N logk2 N) multiplications. These values should be

stored in memory for future use.

The cardinality of the set LdN is O(N logd−1
2 N), and the cardinality of the set

{
j ∈ SdM , r ∈Wj

}

is Md−12M ≤ ckd−1 logd−1
2 (log2N) logk2 N for some constant c. Therefore the cardinality of
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the index set {
n ∈ LdN , j ∈ SdM , r ∈Wj

}
is O(Nkd−1 logd−1

2 (log2N) logd−1+k
2 N) = O(N log

2(d−1)+k
2 N), using the estimate of k given

in Equation (5.5).

For each triplet (j, r,n) in this index set, we require d multiplications of the univariate

quantities stored in memory to compute Aj,r(n).

Therefore the cost of computing Aj,r(n) for all j ∈ SdM , r ∈ Wj and n ∈ LdN is

O(N log
2(d−1)+k
2 N). The sum of all of these as in Step 2 of Algorithm 6.8 does not con-

tribute any additional multiplications.

The values
{
ηj,r(f) : j ∈ SdM , r ∈Wj

}
defined in Equation (4.8) are computed using the

Algorithm written by Xu and Jiang appearing in [12]. It is proven therein that the complexity

to compute the set using their algorithm is O(N logd−1
2 N).

Now we come to the primary result concerning the computational cost of the sparse

discrete Fourier Hermite approximation scheme proposed in this dissertation.

Theorem 6.10. Let N,m be fixed positive integers. Let M = dlog2 logk2 Ne where k is chosen

as in Theorem 5.5. Then the cost of computing the inner product

〈SdM(f), Hn〉ω

for all n ∈ LdN is O(N log
2(d−1)+k
2 N).
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Proof. Recall the inner products are decomposed via the formula

〈SdM(f), Hn〉ω =
∑
j∈SdM

∑
r∈Wj

ηj,r(f)Aj,r(n).

We compute {Aj,r(n)} in O(N log
2(d−1)+k
2 N) multiplications. We compute {ηj,r(f)} in

O(N logd−1
2 N) multiplications.

To compute the sum, we require one multiplication for each pair (j, r) in the index set

{j ∈ SdM , r ∈Wj}, a set of cardinality O(logd−1+k
2 N).

Therefore the entire collection can be computed using O(N log
2(d−1)+k
2 N) multiplications.



Chapter 7

Numerical Results

In this chapter, numerical examples are presented to demonstrate the accuracy and compu-

tational efficiency of Algorithm 6.3, which numerically computes čn,M , the coefficients in the

discrete sparse Fourier Hermite approximation of a given function f . The computer program

is run on an HP ENVY laptop with an Intel i5 2.67 GHz CPU and 4GB RAM. The machine

precision of the computer used is 2.2204e− 016.

In the numerical examples, use ‘Err’ to denote the relative error, which is computed as

Err =
||f − f̌M,N ||ω√

||f ||2κs + ||f ||2ω + |f |2
Xm

M (Id)

.

The presented results verify the theoretical error estimate from Theorem 5.6 if Err < N−s.

The computing time in seconds spend calculating the coefficients čM,n for all n ∈ LdN is

denoted by ‘CT’. The compression ratio CR denotes the value |LdN |/Nd. The value MN

is the actual number of multiplications used to compute the Fourier Hermite coefficients.

Since the compression ratio depends only on N and d, it needs to be investigated in only

88
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one example.

As discussed in Chapter 5, the parameter k may be fixed independently of N . In the

following examples, the value of k will be specified in a manner that does not depend on N ,

however, we will still achieve, or even beat, the desired approximation accuracy.

The first two examples use multivariate polynomials that are separable in each variable.

These examples are designed to demonstrate the accuracy of the proposed algorithm. Since

the example functions are polynomials, it is trivial to express them each as a finite Fourier

Hermite series, and the error of the proposed discrete sparse Fourier Hermite approximation

is easy to compute. Note that although the two example functions admit a finite Fourier

Hermite series expression, the proposed method does not guarantee the approximation will

equal the exact expansion. This is because of the quadrature method used to numerically

compute the coefficients. It will compute the coefficients within an acceptable tolerance, but

it will not produce a termwise exact result.

The theoretical results presented in this paper guarantee a global approximation relative

to the weighted L2 norm. However, as the reader will see from the Figures appearing in this

section, the computed approximations in fact give very good pointwise approximations on

the interval Id.

Example 7.1. Consider in this example the function f1,d(x) :=
∏d

j=1 x
2
j , for x ∈ Id and

d = 2, 3, 4. The parameters will be set as m = 3 and s = 2.99. The value k is fixed at 3 and

is not chosen to depend on N .

To compute the accuracy of the algorithm in this example, first the exact Fourier Hermite

series of f must be computed. Using the standard definition of the Hermite polynomials, as
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well as the normalized definition, the exact expansions are

f1,2 =
H2,2

16
+
H2,0 +H0,2

8
+
H0,0

4

=

√
π

2
h2,2 +

√
π

2
√

2
(h2,0 + h0,2) +

√
π

2
h0,0,

and

f1,3 =
H2,2,2

64
+
H0,2,2 +H2,0,2 +H2,2,0

32
+
H2,0,0 +H0,2,0 +H0,0,2

16
+
H0,0,0

8
.

= π3/4

(
h2,2,2√

8
+
h2,2,0 + h2,0,2 + h0,2,2

4
+
h2,0,0 + h0,2,0 + h0,0,2

2
√

8
+
h0,0,0

8

)
.

The results are displayed in Table 7.1 and graphically in the Figures 7.1 and 7.2. The

large jump in ‘Err’ from N = 5 to N = 10 for d = 2 is due to the fact that (2, 2) /∈ L2
5, but

the term h2,2 is in the exact expansion of f . This discrepancy is also shown in Figure 7.1.

However, for all N ≥ 10, and for each term hn in the exact expansion of f1,2, the index n is

an element of the sparse index set LdN , and therefore the numerical results in a very small

error, and visually the plots of the approximations are indistinguishable from the exact plot.
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(b) Approximation with N = 5.

Figure 7.1: Plots of Fourier-Hermite approximations from Example 1 with m = 3, d = 2.
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N Err CT CR Mn N−s

d
=

2

5 1.3841e-003 0.001543 4.0000e-001 12960 8.1298e-003
10 6.5795e-008 0.018664 2.7000e-001 186624 1.0233e-003
15 6.5953e-010 0.030042 2.0000e-001 311040 3.0443e-004
20 2.2772e-012 0.094269 1.6500e-001 1026432 1.2880e-004
25 1.7673e-014 0.125249 1.3920e-001 1353024 6.6094e-005
30 3.0603e-015 0.160367 1.2333e-001 1726272 3.8318e-005

d
=

3

5 7.1779e-005 0.125678 1.2800e-001 179712 8.1298e-003
10 8.6133e-005 0.311694 5.3000e-002 3938112 1.0233e-003
15 4.8937e-005 0.562010 2.8148e-002 7058880 3.0443e-004
20 2.3254e-005 2.438147 1.9000e-002 27841536 1.2880e-004
25 1.1657e-006 3.344474 1.3376e-002 38282112 6.6094e-005
30 9.6284e-007 4.447853 1.0222e-002 50554368 3.8318e-005

d
=

4

5 1.5978e-006 0.124670 3.6800e-002 1788480 8.1298e-003
10 3.4845e-006 4.472589 8.9000e-003 54788400 1.0233e-003
15 6.4826e-006 8.525389 3.3383e-003 104036400 3.0443e-004
20 5.7423e-007 41.372797 1.8250e-003 478716480 1.2880e-004
25 1.2881e-007 57.721236 1.0701e-003 685285920 6.6094e-005
30 7.5379e-009 77.918464 6.9383e-004 921365280 3.8318e-005

Table 7.1: Numerical Results from Example 1.
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Figure 7.2: Cross sections from the Fourier Hermite Approximation of Example 1 with d = 3.
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Example 7.2. Consider in this example the functions f2,2(x, y) = xy3 and f2,3(x, y, z) =

xy3z2. Let m = 3 and s = 2.99. Again, fix the parameter k = 3.

The functions from Example 7.2 can be written exactly using a finite number of Hermite

polynomials or the normalized Hermite polynomials as

f2,2 =
1

16
H1,3 +

3

8
H1,1

=

√
6π

4
h1,3 +

3
√
π

4
h1,1

and

f2,3 =
1

64
H1,3,2 +

3

32
H1,1,2 +

1

32
H1,3,0 +

3

16
H1,1,0

=
2
√

3π3/4

8
h1,3,2 +

3
√

2π3/4

8
h1,1,2 +

√
6π3/4

8
h1,3,0 +

3π3/4

8
h1,1,0.

The three norms used in the evaluation of the order of accuracy of the approximation

are computed exactly as

||f2,2||ω =
√

15π
4
, ||f2,3||ω = 3

√
5

8
π3/4

||f2,2||κs =
√
π

4
(6 · 82s + 9 · 24s)

1/2
, ||f2,3||κs = 22s

√
3π3/4

8
(4 · 62s + 6 · 32s + 2 · 22s + 3)

1/2

|f2,2|Xm
M (Id) = A4, |f2,3|Xm

M (Id) = A6.

For small values of N , the numerical results, presented in Table 7.2, suffer slightly since

not enough terms are used to fully describe each function f2,d. However, for larger N ,

the results not only confirm the theoretical results from Theorem 5.6, but are much better

than the theoretical results. In particular, notice for N = 30 that Err is several orders of
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Figure 7.3: Three cross sections of the Fourier Hermite approximation of the function from
Example 2 with N = 30, d = 3.

magnitude smaller than N−s for both d = 2, 3.

Plots of the resulting approximation for d = 3 and N = 30 are presented in Figure

7.3. The three plots give cross sections of the approximation for x = 1, y = 1 and z = 1

respectively. Notice the three plots are visually indistinguishable from the cross sections of

the exact function f2,3, which are defined as cx(y, z) = y3z2, cy(x, z) = xz2 and cz(x, y) = xy3.

Example 7.3. Consider in this example the functions f3,2(x, y) = xey and f3,3(x, y, z) =

xz2ey. Take m = 2 and s = 1.99. For d = 2 use k = 3 and for d = 3 use k = 2.

Since f3,2 and f3,3 are not polynomials, they do not possess finite exact Fourier Hermite

expansions as in the previous two examples. To compute the norms || · ||ω and || · ||κs , first the

functions are written as a truncation of a Taylor series, then converted to Hermite functions.
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The following norms are computed up to the precision of the PC used.

||f3,2||ω ≈ 2.0664, ||f3,3||ω ≈ 3.3208

||f3,2||κ1.99 ≈ 30.6512, ||f3,3||κ1.99 ≈ 3.1113e+ 002

|f3,2|X2
M (I2) = A ∗ exp(A), |f3,3|X2

M (I3) = A3 ∗ exp(A).

In the previous two examples, once N was large enough so that the set
{
hn|n ∈ LdN

}
contained all of the terms in the exact finite Fourier Hermite series of the sample function,

the approximation error results were very good. In this example, the exact Fourier Hermite

series contains an infinite number of terms, so the results are not as good. However, they

still confirm the theoretical error results of Theorem 5.6. A few plots of the two dimensional

approximation are given in Figure 7.4. Notice that as N increases, the ‘curling’ feature near

the boundary of the plot is diminished.
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Figure 7.4: Plots of the function and its Fourier-Hermite approximation from Example 3.

Example 7.4. Consider in this example the functions f4,d(x) =

√√√√ d∑
j=1

(10 + xj).

Take m = 2, s = 1.5 and k = 2.

This example is designed to confirm the accuracy results for a function that is not sep-

arable in each variable. The purpose of the factor of 10 is to ensure f4,d is continuously

differentiable on the set I = [−A,A]d for all values of N considered. Notice from Fig-

ure 7.5, that even though f4,2 is not a polynomial or very polynomial-like, the plot of the

approximation is close to the exact function on the interval I2.
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N Err CT MN N−s

d
=

2

5 1.9392e-003 0.001912 12960 8.1298e-003
10 1.8200e-007 0.018205 186624 1.0233e-003
15 2.1562e-007 0.029993 311040 3.0443e-004
20 2.5875e-008 0.094582 1026432 1.2880e-004
25 2.3903e-008 0.125978 1353024 6.6094e-005
30 2.2007e-008 0.162680 1726272 3.8318e-005

d
=

3
5 1.2745e-004 0.014539 179712 8.1298e-003
10 1.0101e-004 0.312031 3938112 1.0233e-003
15 3.3673e-005 0.550564 7058880 3.0443e-004
20 1.5604e-005 2.437823 27841536 1.2880e-004
25 5.6098e-010 3.397974 38282112 6.6094e-005
30 4.2848e-010 4.527295 50554368 3.8318e-005

Table 7.2: Numerical Results from Example 2.

N Err CT MN N−s

d
=

2

5 1.5184e-003 0.001550 5760 4.0600e-002
10 3.2744e-004 0.009040 82944 1.0233e-002
15 9.8112e-005 0.015834 138240 4.5664e-003
20 3.6438e-005 0.045008 456192 2.5760e-003
25 1.5449e-005 0.061540 601344 1.6523e-003
30 7.1808e-006 0.073578 767232 1.1496e-003

d
=

3

5 9.5993e-004 0.002681 19456 4.0649e-002
10 1.5370e-004 0.017275 176384 1.0233e-002
15 3.4559e-005 0.031582 316160 4.5664e-003
20 9.8577e-006 0.116372 1323008 2.5760e-003
25 3.3580e-006 0.160051 1819136 1.6523e-003
30 1.3016e-006 0.208652 2402304 1.1496e-003

Table 7.3: Numerical Results for Example 3.

N Err CT MN N−s

d
=

2

5 7.7113e-003 0.001054 2400 8.9443e-002
10 5.2524e-003 0.002961 15552 3.1623e-002
15 4.2081e-003 0.004563 25920 1.7213e-002
20 3.5441e-003 0.011196 88704 1.1180e-002
25 2.7385e-003 0.014464 116928 8.0000e-003

d
=

2

5 3.1208e-002 0.002751 19456 8.9443e-002
10 1.5203e-002 0.017136 176384 3.1623e-002
15 1.0963e-002 0.030415 316160 1.7213e-002
20 1.0891e-002 0.114381 1323008 1.1180e-002

Table 7.4: Numerical Results for Example 4.
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Figure 7.5: Plots of the function and its Fourier-Hermite approximation from Example 4.

Example 7.5. Consider the function

f5,2(x, y) =



x2y, for − A ≤ x < −A/3

0, for − A/3 ≤ x < A/3

(x− 1) ∗ y, for A/3 ≤ x ≤ A

.

Take m = 2, s = 1.5 and k = 3.

This example is designed to confirm the results for functions that are not continuous. In

order for any candidate function to be in the space Xm
M(Id), the points of discontinuity can be

located only at points in the refinable set VM . However, as N increases, so does the value A,

which in turn adjusts the values in the refinable sets. So for this example, the value A(N) will

be fixed at A(30). This will affect the complexity of the numerically computed coefficients,

especially for smaller values of N , but enables a meaningful comparison of results.
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N Err CT MN N−s

d
=

2

5 1.9252e-002 0.002324 5760 8.9443e-002
10 4.6874e-003 0.009723 82944 3.1623e-002
15 1.9433e-003 0.014964 138240 1.7213e-002
20 1.5688e-003 0.045885 456192 1.1180e-002
25 7.9197e-004 0.060433 601344 8.0000e-003

Table 7.5: Numerical Results for Example 5.
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Figure 7.6: Plot of the Fourier-Hermite approximation from Example 5 with N = 10.
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Appendix A

Various Results

Theorem A.1. For a positive fixed value s, let

〈·, ·〉κs : L2
ω(Rd)× L2

ω(Rd)→ R

be defined via

〈f, g〉κs :=
∑
n∈Nd

0

〈f,Hn〉ω〈g,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s,

for any functions f, g ∈ L2
ω(Rd). Then 〈·, ·〉κs defines an inner product.

Proof. Notice the map is symmetric since for any f, g ∈ L2
ω(Rd),

〈f, g〉κs =
∑
n∈Nd

0

〈f,Hn〉ω〈g,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s

=
∑
n∈Nd

0

〈g,Hn〉ω〈f,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s

= 〈g, f〉κs .

100
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The map is linear in the first argument since

〈αf, g〉κs =
∑
n∈Nd

0

〈αf,Hn〉ω〈g,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s

= α
∑
n∈Nd

0

〈f,Hn〉ω〈g,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s

= α〈f, g〉κs ,

and

〈f + g, h〉κs =
∑
n∈Nd

0

〈f + g,Hn〉ω〈h,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s

=
∑
n∈Nd

0

〈f,Hn〉ω〈h,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s +

∑
n∈Nd

0

〈g,Hn〉ω〈h,Hn〉ω
n!2nπd/2

d∏
j=1

(1 + nj)
2s

= 〈f, h〉κs + 〈g, h〉κs ,

for any f, g, h ∈ L2
ω(Rd) and α ∈ R.

Since each term in the sum

〈f, f〉κs =
∑
n∈Nd

0

〈f,Hn〉2ω
n!2nπd/2

d∏
j=1

(a+ nj)
2s

is non-negative, 〈f, f〉κs ≥ 0 for every f ∈ L2
ω(Rd). Additionally, if 〈f, f〉κs = 0, then it

follows that 〈f,Hn〉ω must equal 0 for every n ∈ L2
ω(Rd). Since {Hn} is a complete orthogonal

collection in L2
ω(Rd), this guarantees f ≡ 0. Therefore the map is positive definite.

Since the map 〈·, ·〉κs is symmetric, linear, and positive definite, it defines an inner product
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on L2
ω(Rd).

Theorem A.2. Let | · |∞,Id : L2
ω(Rd)→ R be defined via

|f |∞,Id := sup
x∈Id
|f(x)|, for any f ∈ L2

ω(Rd).

Then | · |∞,Id is a seminorm.

Proof. Note that for any f, g ∈ L2
ω(Rd) and α ∈ R,

|αf |∞,Id = sup
x∈Id
|αf(x)|

= |α| sup
x∈Id
|f(x)|

= |α||f |∞,Id ,

|f + g|∞,Id = sup
x∈Id
|f(x) + g(x)|

≤ sup
x∈Id
|f(x)|+ sup

y∈Id
|g(y)|

= |f |∞,Id + |g|∞,Id ,

and clearly |f |∞,Id ≥ 0. However, if |f |∞,Id = 0, this does not mean f ≡ 0, but only that

f |Id ≡ 0.

Therefore | · |∞,Id defines a seminorm.

Theorem A.3. Let Hn(x) be the univariate Hermite polynomial of degree n, for n ∈ N0. If
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n is odd, then Hn contains only odd powers of x. If n is even, then Hn has only even powers

of x.

Proof. We will proceed by induction on n.

The theorem is clearly true for n = 0, since Hn(x) ≡ 1.

Suppose it is true for some integer n− 1. Then, by Theorem 2.5,

H ′n(x) = 2nHn−1(x).

If n is an even integer, then n− 1 is an odd integer, and therefore, by the assumption, Hn−1

is polynomial with all odd-degree powers of x. Thus H ′n is an odd polynomial, and so one

can conclude that Hn is an even polynomial.

If n is an odd integer, then n − 1 is an even integer, and then Hn−1 and H ′n are both

even polynomials. Thus Hn is a polynomial, but this does not yet show Hn is an odd

polynomial. However, one can conclude Hn−2 is an odd polynomial. Therefore, by the three

term recurrence,

Hn(x) = 2(0)Hn−1(0)− 2nHn−2(x) = 0,

for any integer n ≥ 2, and H1(0) = 0 since H1(x) = 2x. Thus we have shown Hn is an odd

polynomial.

Therefore the theorem is true for any non-negative integer n.

In a single dimension, some formulas for the direct computation of integrals involving

the Gaussian weight are included below.

1.

∫ b

a

e−x
2

dx = erf(x)|ba
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2.

∫ b

a

xe−x
2

dx = −1

2
e−x

2

∣∣∣∣b
a

3. For m > 2 even,

∫ b

a

xme−x
2

dx =

=

−xm−1

2
e−x

2 −
m/2−1∑
j=1

∏j
i=1(m− 2i+ 1)

2j+1
xm−2j−1e−x

2

+
(m− 1)!!

2m/2
erf(x)

∣∣∣∣∣∣
b

a

4. For m > 1 odd,

∫ b

a

xme−x
2

dx =

=

−1

2
xm−1e−x

2 −
m−1

2∑
j=1

∏j
i=1(m− 2i+ 1)

2j+1
xm−2j−1e−x

2

∣∣∣∣∣∣
b

a

.

Lemma A.4. For any m,n ∈ N0, the product HmHn can be written as the sum

HmHn =

min{m,n}∑
i=0

2i

i!

m!

(m− i)!
n!

(n− i)!
Hm+n−2i.

Proof. If n = 0, then the summation reduces to the single term Hm. If n = 1 and m ≥ 1,

then the summation is Hm+1 + 2mHm−1. By the three term recurrence of the Hermite

polynomials, this is equal to 2xHm which is HnHm. Since the statement is symmetric in m

and n, we have shown that it is true for any pair (m,n) with either m ≤ 1 or n ≤ 1.

We now proceed by induction. Consider a pair (m,n + 1) with n ≥ 1 and n + 1 ≤ m.

Suppose the statement of the lemma is true for the pairs (m,n) and (m,n−1). For notational

convenience, denote
2i

i!

m!

(m− i)!
n!

(n− i)!
by γ(m,n, i). Then using the three term recurrence
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and the induction step gives

HmHn+1 = Hm (2xHn − 2nHn−1)

= 2x (HmHn)− 2n (HmHn−1)

= 2x

(
n∑
i=0

γ(m,n, i)Hm+n−2i

)
− 2n

(
n−1∑
i=0

γ(m,n− 1, i)Hm+n−1−2i

)
.

Using the three term recurrence, the first summation in the previous line can be rewritten

in the form

n∑
i=0

γ(m,n, i)2xHm+n−2i =

=
n∑
i=0

γ(m,n, i) [Hm+n−2i+1 + 2(m+ n− 2i)Hm+n−2i−1]

=

(
n∑
i=0

γ(m,n, i)Hm+n−2i+1

)
+

(
n∑
i=0

γ(m,n, i)2(m+ n− 2i)Hm+n−2i−1

)

=

(
Hm+n+1 +

n∑
i=1

γ(m,n, i)Hm+n−2i+1

)
+

+

(
2n+1m!

(m− n− 1)!
Hm−n−1 +

n−1∑
i=0

γ(m,n, i)2(m+ n− 2i)Hm+n−2i−1

)

=Hm+n+1 +
2n+1m!

(m− n− 1)!
Hm+n−1 +

(
n−1∑
i=0

γ(m,n, i+ 1)Hm+n−2i−1

)
+

+

(
n−1∑
i=0

γ(m,n, i)2(m+ n− 2i)Hm+n−2i−1

)
,

after re-indexing to obtain the last equality.

Now consider a combination of the γ terms that will arise when the results of the last
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two strings of equalities are combined.

γ(m,n, i+ 1) + 2(m+ n− 2i)γ(m,n, i)− 2(n− i)γ(m,n, i) =

= γ(m,n, i+ 1) + 2(m− i)γ(m,n, i)

=

(
2i+1

(i+ 1)!

m!

(m− i− 1)!

n!

(n− i− 1)!

)
+

(
2(m− i)2i

i!

m!

(m− i)!
n!

(n− i)!

)
=

(
2i+1

(i+ 1)!

m!

(m− i− 1)!

n!

(n− i− 1)!

)
+

(
2i+1

i!

m!

(m− i− 1)!

n!

(n− i)!

)
=

(
2i+1

i!

m!

(m− i− 1)!

n!

(n− i− 1)!

)(
1

i+ 1
+

1

n− i

)
=

(
2i+1

i!

m!

(m− i− 1)!

n!

(n− i− 1)!

)(
n+ 1

(i+ 1)(n− i)

)
=

2i+1

(i+ 1)!

m!

(m− i− 1)!

(n+ 1)!

(n− i)!

= γ(m,n+ 1, i+ 1).

Combining all the previous results gives

HmHn+1 = Hm+n+1 +
2n+1m!

(m− n− 1)!
Hm+n−1+

+

(
n−1∑
i=0

(γ(m,n, i+ 1) + γ(m,n, i)2[(m+ n− 2i)− (n− i)])Hm+n−2i−1

)

= Hm+n+1 +
2n+1m!

(m− n− 1)!
Hm+n−1 +

(
n−1∑
i=0

γ(m,n+ 1, i+ 1)Hm+n−2i−1

)

= Hm+n+1 +
2n+1m!

(m− n− 1)!
Hm+n−1 +

(
n∑
i=1

γ(m,n+ 1, i)Hm+n−2i+1

)

=
n+1∑
i=0

γ(m,n+ 1, i)Hm+n+1−2i.

So the statement of the lemma is true for (m,n + 1) with m ≥ n + 1 ≥ 2. Therefore, by
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symmetry, the lemma is true for all pairs of nonnegative integers m and n.

Parseval’s identity [14] generalizes to collections of complete orthogonal systems.

Theorem A.5. Let {Hn}∞n=0 be the collection of Hermite polynomials. Let f ∈ L2
ω(R). If

the Fourier Hermite expansion of f is
∑∞

n=0 cnHn, then

||f ||2ω =
∞∑
n=0

|cn|2||Hn||2ω.

Proof. The collection of Hermite polynomials can be normalized.

Let hn := Hn/||Hn||ω. Then f can be expressed in terms of the normalized Hermite polyno-

mials:

f =
∞∑
n=0

cnHn

=
∞∑
n=0

cn||Hn||ω
Hn

||Hn||ω

=
∞∑
n=0

dnhn,

where dn := cn||Hn||ω for each n ∈ N0.

Since {Hn} is a complete orthogonal system in L2
ω(R), so is {hn}. By the classical
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Parseval’s identity,

||f ||2ω =
∞∑
n=0

|dn|2

=
∞∑
n=0

|cn|2||Hn||2ω.
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