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Abstract 

 The transition from a glaciated world to one that was ice-free makes the early Permian a 

time interval that in many ways mirrors the present, and hence there is great interest in 

constraining paleoclimate conditions over that transition.  A common method for estimating 

ancient temperatures uses the oxygen isotope composition of marine carbonate, but this approach 

becomes significantly more complicated prior to the Cretaceous due to uncertainties about 

diagenesis and the isotopic composition of seawater, which has been hypothesized to be more 

depleted than during the Cenozoic.  I use stable isotope compositions of sequentially 

microsampled accretionary calcite from fossil bivalves in SE Australia to evaluate Permian 

seawater isotope composition and water temperature seasonality.  Co-occurring dropstones, 

diamicts, and glendonites constrain winter temperatures to near-freezing and hence allow 

calculations of water composition.  Records from microsampled specimens of the bivalve 

Eurydesma, spanning roughly 11° of paleolatitude (North Sydney Basin, New South Wales to 

Hobart, Tasmania) reveal cyclic seasonal fluctuations in δ
18

Ocarb that vary with latitude.  The 

δ
13

Ccarb values exhibit ~1‰ of seasonal variation, and are in agreement with characteristically 

positive values published for the early Permian of ~5.5‰.  The δ
18

Ocarb values vary seasonally 

by up to 3.3‰around a mean that decreases from  -1.2‰ to -1.75‰ moving towards the pole; 

more enriched isotope values correspond to dark growth bands within the shells, suggesting 

slower growth in the winter months. Mean δ
18

O and seasonal amplitude both decrease with 

increasing paleolatitude, similar to an observed gradient in the modern high latitudes off the 

coast of Greenland.  Decreasing seasonality is a reflection of decreasing summer temperatures 

with increasing latitude, while winter temperature minima are presumed to be constant because 

of freezing conditions.  The decrease in mean δ
18

Ocarb with latitude reflects decreasing δ
18

Owater, 



similar to that observed over a similar latitudinal range off Greenland today.  As with Greenland, 

the slope of the δ
18

O-latitude relationship is steeper than that seen in the global ocean today, 

indicating some contribution of isotopically negative fresh water.  Whether this reflects 

progressive mixing with isotopically negative water from higher latitudes (e.g., the Arctic Ocean 

today) or similar amounts of runoff/precipitation at each location that itself is progressively more 

negative with latitude is as yet unclear, though significant departure from marine salinities is not 

observed. 
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Introduction 

 Global climate transitioned from an icehouse to a greenhouse state during the early 

Permian (Li and Powell, 2001; Korte et al., 2005; 2008; Fielding et al., 2006; Clapham and 

James, 2008).  Because continental ice sheets were waning in size, the early Permian offers 

similarities to waning of modern ice-sheets, and hence there is great interest in constraining 

paleoclimate conditions over that transition (Fielding et al., 2006;Korte et al., 2008; James et al., 

2009; Ivany and Runnegar, 2010).  The majority of evidence for deglaciation is contained within 

the sedimentary record, and detailed stratigraphic, geochemical, and paleobotanical studies have 

done much to clarify the processes and conditions associated with deglaciation (Dickins, 1978; 

1996; Runnegar, 1979; 1980ab; McClung, 1980ab; Herbert, 1980; Rees et al., 2002; Clapham 

and James, 2008; Fielding et al., 2008; 2010; Frank et al., 2008a; Korte et al., 2008).  

Quantitative estimates of paleotemperatures through this window, however, are fraught with the 

uncertainties that accompany studies of the very distant past.  Stable isotope compositions of 

oxygen have proved to be invaluable tools for addressing issues relating to climate in the 

Cenozoic, but applying this proxy to Paleozoic samples is more difficult.  The primary reason for 

this difficulty is in determining whether or not the specimens have retained their primary isotopic 

compositions or if they have been diagenetically altered.  This concern is further exacerbated by 

the age disparity between more recent specimens and Paleozoic specimens because of the 

increased probability of alteration via exposure, diagenetic fluids, or thermal resetting in older 

samples. 

 A growing number of authors have used stable oxygen isotopes in the later part of the 

Paleozoic to interpret climate (Compston, 1960; Lowenstam, 1961; Mii and Grossman, 1994; 

Veizer et al., 1997; 1999; Wenzel et al., 2000; Korte et al., 2008; Angiolini et al., 2009; Ivany 
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and Runnegar, 2010; Nützel, 2010; Mii et al. 2012; and others).  The vast majority of these 

studies use shell carbonate of brachiopods and bivalves and report isotope compositions for 

geographically isolated samples of dozens of individuals, either as shell fragments, bulk 

specimens, or (more rarely) through high-resolution sampling of individual specimens. While 

these studies have vastly improved our understanding of conditions during this transition, they 

nevertheless face the pervasive challenge of demonstrating the primary nature of isotope 

compositions, and they lack the spatial resolution within individual specimens necessary to 

address questions of seasonality, a component of climate that is gaining more attention in studies 

of deep earth history.   

 Here, I report data from 9 early Permian bivalve specimens sampled sequentially at high 

spatial resolution within shells.  This approach has been widely used in younger specimens to 

resolve seasonal environmental variation recorded by organisms that produce a carbonate 

skeleton by accretion (Jones, 1980; Williams et al. 1982; Quitmeyer et al., 1985; Buick and 

Ivany, 2004; Hallmann et al., 2008; Ivany et al., 2004; Schöne et al., 2004; 2005(a)(b); 2008).  

Isotope data come from shells of the bivalve Eurydesma cordatum (Morris 1845) from SE 

Australia that span roughly 1100 km of the modern outcrop belt.  Eurydesma is a cold-water, 

high-latitude, calcitic bivalve characteristic of the Permian of Gondwana (Runnegar, 1979).  

Specimen locations range from the North Sydney Basin at ~64°S paleolatitude to the Tasmanian 

Basin at ~75°S paleolatitude (Scotese, 2002) and are closely associated with sedimentologic and 

mineralogic indicators of near-freezing conditions.  Seasonally resolved records of δ
18

Ocarb not 

only afford an additional method by which to evaluate the influence of diagenesis on ancient 

shell carbonate (through preservation of a variable cyclic signal throughout ontogeny), but also 

provide estimates of paleoseasonality of water-temperatures in the early Permian ocean off the 
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coast of Gondwana.  In addition, by sampling across a wide range of paleolatitudes and from 

sites with independent evidence for cold temperatures, it is possible to place constraints on 

regional differences in water composition that might relate to latitudinal gradients associated 

with the Permian hydrologic cycle. 

Geologic Setting and Depositional Environment 

During the early Permian, Australia was connected to Antarctica and located close to the 

South Pole as the southern-most portion of Pangaea (Figure 1) (Li and Powell, 2001; Stampfli 

and Borel, 2002; Fielding et al., 2010).  Sediments from which specimens sampled in this study 

originate were deposited on a continental shelf atop folded, older Paleozoic rocks.    Localities 

span more than 1,100 km of modern exposure in SE Australia, from northern New South Wales 

(north Sydney Basin) to Tasmania (Figure 1).  Early Permian paleolatitudes for the North and 

South Sydney Basin span ~64-70°S, while the Tasmanian region was at a latitude of ~73-75°S 

(Li and Powell, 2000; Stampfli and Borel, 2002; Korte et al., 2008).    

Specimens of Eurydesma were collected from shallow-water, marine, sedimentary rocks 

of Sakmarian age that include the pebbly Bundella Mudstone, the volcanogenic sands of the 

Millfield Farm and Allandale Formations, the sandstones and breccias of the Wasp Head 

Formation, the medium-fine grained Cranky Corner Candstone, and the biomicritic and 

dropstone-rich Darlington Limestone (Runnegar, 1979, 1980a; McClung, 1980b; Fielding et al., 

2006; Rygel et al., 2008; Ivany and Runnegar, 2010; Australian Government, Geoscience 

Australia, 2011; Figure 2, Table A1).    In addition, the somewhat younger (Kungurian) and 

deeper-water Wandrawndian Siltstone (Runnegar, 1979, 1980a; Fielding et al., 2006, 2008; 

Rygel et al., 2008; Ivany and Runnegar, 2010) was also sampled.  These units and coeval 



- 4 - 
 

formations in the region all contain indicators of cold-water deposition, including tillites, 

dropstones, and glendonites (De Lurio and Frakes, 1999; Runnegar, 1979; Frank et al., 2008a,b; 

Selleck, 2007; Suess et al., 1982).  The Darlington Limestone in particular contains numerous 

layers of dropstones, some of which are very large (Runnegar, 1979; Reid, 2010).  Glendonites 

are pseudomorphs after the mineral ikaite; an authigenic hydrated calcium carbonate that forms 

in sediments at temperatures below 4°C (Bischoff, 1993).  Glendonites are common in these 

early Permian units and constrain depositional temperatures to near freezing (Frank et al., 

2008a,b; Selleck, 2007).   Common fossils include the epifaunal bivalves Eurydesma cordatum 

and Deltopecten, the spiriferid brachiopods Trigonotreta and Ingelarella, and hard-substrate-

encrusting trepostome bryozoans (Runnegar, 1979; Reid, 2010).   A number of semi-infaunal and 

infaunal bivalves, crinoids, rugose corals, and gastropods are also present (Runnegar, 1979, 

1980b; McClung, 1980a; Reid, 2010; Clapham and James, 2008) (Table A1).  This community 

of organisms is representative of open marine conditions and therefore normal marine salinity 

(Clapham and James, 2008).   
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Figure 1)  Paleogeographic reconstruction showing the approximate locations of sample sites (1. 

Allandale Railroad, 2. Bimbadeen, 3. Cranky Corner and Tangorin, 4. Wasp Head, 5. North 

Head, 6. Derwent River, 7. Maria Island). Sydney-Gunnedah-Bowen and Tasmanian Basin 

systems are indicated by dark shading, and present-day outline of Australia is in pale gray.  

Modified from Blakey (http://cpgeosystems.com/index.html) and Mii et al. (2012). 

 



- 6 - 
 

 

Figure 2)  Stratigraphic sections of the three regions sampled in this study.  Specimens mostly 

come from Sakmarian equivalents of the Allandale Formation.  Based on information derived 

from Runnegar (1979, 1980b); McClung (1980a); Ivany and Runnegar (2010); Reid (2010); Reid 

and James (2010); Rygel et al. (2008); Fielding et al. (2006); Geoscience Australia; and 

Runnegar (personal communication).  See Table A1 for details. 

 

 



- 7 - 
 

Eurydesma cordatum 

 Eurydesma was an immobile epifaunal bivalve with massive, heavily calcified umbones 

that acted as an anchor to help it maintain its preferred hinge-down orientation in high energy 

environments with low sedimentation rates (Runnegar, 1979).  While its specific taxonomic 

affinity is uncertain, it belongs to the Subclass Pteriomorphia, the group that includes the oysters, 

marine mussels, pectens, and arcs (Runnegar 1979).  Specimens of Eurydesma provide an ideal 

platform for this study. First, the shells of Eurydesma are composed of diagenetically stable, 

low-Mg calcite, and the thick and heavily calcified umbones offer well defined and expanded 

growth lines for sampling (Figure 3). Secondly, bivalves are known to precipitate calcite in 

isotopic equilibrium with water (e.g. Mook and Vogel, 1968; Klein et al., 1996), making 

paleotemperature reconstruction possible.  Earlier work for Eurydesma has shown that 

alternating light and dark growth bands are seasonal, with the lighter colored regions exhibiting 

periods of faster growth during the warmer months and darker regions representing periods of 

slower growth and/or growth cessation (Ivany and Runnegar, 2010). 
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Figure 3.  Eurydesma cordatum modified from Morris (1845), with inset showing cross section 

through the umbo of specimen MIsA from Maria Island, Tasmania. Digitized sampling lines are 

superimposed on growth banding. 

 

Methods  

 Specimens were cut through the umbo perpendicular to growth and polished to reveal 

growth banding.  Thin sections were prepared for the examination of shell textures, and thick 

sections were prepared from the immediately adjacent slab for micromilling.    Three or more 

spot samples were collected from each thick section for evaluation of diagenetic alteration using 

minor element (Fe, Mn) concentrations; analyses were carried out using the quadrupole ICP-MS 

at SUNY-Oswego.  Thick sections were spot sampled for initial evaluation of stable isotope 

values, and 8 shells were micromilled at a resolution of 6 samples per year over 5 consecutive 

years.  Sampling was done in the central region of the umbo to minimize potential exposure to 

diagenetic fluids, and near the faster-growing, juvenile portion of the ontogeny so as to exploit 

the more expanded growth lines and hence better temporal resolution.  Any evident cracks or 

microborings were avoided, but several samples from obviously secondary cements filling such 

structures at or near the exterior surface of shells were collected for comparison with shell 
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isotope values.  Stable isotope analyses (δ
18

O and δ
13

C) were performed at the University of 

Kansas using a Finnigan MAT 253 isotope ratio mass spectrometer coupled to a KIEL III 

automated carbonate reaction device.   

Results  

Textures in Thin Section 

 Thin sections reveal shell fabrics with prismatic elongate calcite crystals oriented 

perpendicular to the growth banding (Texture A in Figure 4).  Crystals exhibit undulatory 

extinction, and microgrowth increments similar to primary shell textures as seen in other 

pteriomorph bivalves such as Pinna bicolor (Carter and Stehli, 1980).  A second fabric of 

smaller ‘bushy’ calcite crystals oriented parallel to growth-band-parallel features within the shell 

(Texture B in Figure 4) is also observed within some of the specimens.  Texture B is interpreted 

as a primary feature related to a change in growth rate, as the fabric is concentrated on the 

commissure side of the growth-parallel features and would be expected to be distributed on both 

sides if simply diagenetic.   
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Figure 4.  Photomicrographs of two Eurydesma specimens in plane-polarized light.   GP = 

Growth-parallel crack, Texture A = Prismatic elongate crystals oriented parallel to the direction 

of growth, Texture B = Smaller ‘bushy’ crystals randomly-oriented and associated with growth-

parallel features 

 

Elemental Geochemistry 

 Concentrations of Fe and Mn have been widely used to indicate alteration of shallow 

marine carbonates (Morrison and Brand, 1986; Brand, 1989; 2004; Brand et al. 2003; Korte et 

al., 2008; Mii and Grossman, 1994; Mii et al., 2012; Wenzel, 2000).  Fe and Mn are often 

enriched in marine carbonates during diagenesis due to the tendency for those elements to be 

present at higher concentrations in pore water under anoxic conditions (Brand, 1989).  Shell 

samples from Eurydesma plot within the range reported for well-preserved Permian bivalves and 

brachiopods (Mii et al., 2012; Korte et al., 2008), and modern brachiopods from Brand et al. 

(2003) (Figure 5, Table A2).   A range of threshold values for Fe and Mn concentrations in 

calcite have been proposed by numerous authors above which diagenetic alteration is to be 
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suspected.  In this study, we use conservative values of Mn <300ppm and Fe <1,000ppm 

(Morrison and Brand, 1986; Brand, 1989; Korte et al., 2008) to indicate primary shell carbonate. 

The 4 samples exhibiting values of Mn >300ppm and/or Fe >1,000ppm are cements on the 

exterior of a specimen from Maria Island, a sample from within a crack in a Maria Island 

specimen, and a microbored region of the North Head specimen, all collected for comparison 

with samples from the central region of the umbo where stable isotope sampling was done.  

Samples from umbonal regions exhibit Fe and Mn concentrations of 66±67ppm and 11±4ppm, 

respectively, well within the suggested limits for primary shell, and many were at or below the 

detection limit for Fe at 5ppm. 

 

Figure 5.  The concentrations of Fe and Mn from Eurydesma (solid black dots) and published 

data from other well-preserved Permian bivalves and brachiopods.  The gray field represents the 

region occupied by modern brachiopods from Brand et al. 2003.  Fe and Mn concentrations 

>1,000 ppm and >300 ppm respectively were used in this study as indicators of suspected 

alteration, and the dashed line is the detection limit for Fe. 
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Stable Isotopes 

 Plots of isotope value versus distance along the sampled shell define cyclic variation in 

δ
18

Ocarb in all but one of the specimens, as expected for shell accretion during seasonal 

fluctuations in temperature (Figure 6).  Values of δ
18

Ocarb range from ~1‰ and -3 ‰, and growth 

bands are associated with positive isotope values and hence winter months (Table A3).  A single 

specimen from Derwent River yields somewhat more negative values (-2.9‰ to -5.1‰ with an 

average of -3.8‰) and does not exhibit obvious seasonal variation.  Carbon isotope compositions 

within specimens show substantially less variation, a weak tendency to co-vary positively with 

oxygen isotope values, and hover near the published values of around +5.5‰ for the Permian 

open ocean (Mii et al., 1997; Grossman, et al., 2008; Veizer et al., 1999), ranging from +4.0 to 

+6.3‰ (Figure 6). 

 Mean winter values for each shell are computed from the most positive oxygen isotope 

values within each annual cycle (4-6 winters per shell), mean summer values from the most 

negative (3-7 summers per shell), and seasonal range from the difference between these two, 

with the exception of the Derwent River specimen (Table 1).    Mean winter δ
18

Ocarb values 

decrease with increasing latitude, ranging from 0.88‰ ±0.34‰  for the Bimbadeen specimen in 

the North Sydney Basin to -0.96‰ ±0.33‰ for the Maria Island 1 specimen in the Tasmanian 

Basin, (r
2
 = 0.70; Figure 7).  There is no latitudinal trend in mean summer values (North Sydney 

Basin average = -2.53‰ ± 1.37‰ Tasmania = -2.44‰ ± 0.26‰).  The seasonal range of δ
18

O 

values, therefore, generally decreases with increasing latitude, but the trend is not without 

exception, as summer δ
18

O values are more variable among locations (Table 1 and Figure 8). 
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Figure 6.  Plots of δ
18

O and δ
13

C versus the position in the shell and the inferred temperature for 

each of the specimens sampled in this study plus a published specimen from Bimbadeen (Ivany 

and Runnegar; 2010).  Temperatures for each specimen are determined using a δ
18

Owater 

calculated assuming a winter minimum of 4°C (see text for details). 
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Table 1.  Mean shell isotope values by paleolatitude. 

Basin Locality 
Summer 

δ
18

Ocarb 

Mean 

Summer 

Winter 

δ
18

Ocarb 

Mean 

Winter 

Season

ality 

Mean 

Seasonality 

Midpoint (season 

average) 

NSB 
Allandal

e 
-3.67 -2.85 0.54 0.46 4.21 3.35 -1.19 

  
-2.06 

 
0.15 

 
2.21 

  

  
-3.48 

 
0.65 

 
4.13 

  

  
-2.20 

 
0.63 

 
2.83 

  

    
0.35 

    

NSB 
Bimbade

en 
-1.85 -2.31 1.11 0.88 2.96 3.19 

 

  
-2.43 

 
0.24 

 
2.67 

  

  
-2.61 

 
0.81 

 
3.42 

  

  
-2.90 

 
0.91 

 
3.81 

  

  
-1.48 

 
1.20 

 
2.68 

  

  
-2.58 

 
1.03 

 
3.61 

  
NSB Tangorin -1.55 -1.24 0.87 0.40 2.42 1.59 -0.42 

  
-1.62 

 
0.73 

 
2.35 

  

  
-1.10 

 
0.26 

 
1.36 

  

  
-0.64 

 
-0.11 

 
0.53 

  

  
-1.03 

 
0.24 

 
1.27 

  

  
-1.52 

      

NSB 
Cranky 

Corner 
-1.19 -1.26 0.80 0.65 1.99 1.84 -0.31 

  
-1.33 

 
0.91 

 
2.24 

  

  
-1.17 

 
0.49 

 
1.66 

  

  
-1.39 

 
0.08 

 
1.47 

  

  
-0.89 

 
0.95 

 
1.84 

  

  
-1.59 

      

SSB 
Wasp 

Head 
-1.95 -2.33 0.81 0.23 2.76 2.56 -1.05 

  
-2.20 

 
0.19 

 
2.39 

  

  
-1.30 

 
-0.24 

 
1.06 

  

  
-2.39 

 
-0.15 

 
2.24 

  

  
-3.82 

 
0.55 

 
4.37 

  

SSB 
North 

Head 
-2.21 -2.62 -1.14 -0.87 1.07 1.76 -1.75 

  
-3.06 

 
-0.68 

 
2.38 

  

  
-2.59 

 
-0.77 

 
1.82 

  

    
-0.89 

    

TS 
Maria 

Island 1 
-3.08 -2.55 -1.51 -0.96 1.57 1.60 -1.75 

  
-2.63 

 
-1.14 

 
1.49 

  

  
-2.28 

 
-0.89 

 
1.39 
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Figure 7.  Minimum δ
18

O values for each winter season of each shell plotted by paleolatitude.  
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Figure 8.  Seasonal range of δ
18

O values with latitude. (Note that both samples from the Cranky 

Corner sandstone are not included in the regression)  

 

Discussion  

Primary signal or diagenesis? 

 Critical to any paleoenvironmental interpretation based on stable oxygen isotope data is 

the ability to establish whether δ
18

Ocarb values are primary and have not been altered during 

diagenesis.  Shell microtextures and trace elemental concentrations are standard tools by which 

to identify diagenetic changes.  Beyond this, sufficiently depleted oxygen isotope values may 

give cause for concern, but many otherwise pristine shells with minimal Fe or Mn from the 

Paleozoic yield surprisingly depleted δ
18

Ocarb values (Veizer et al., 1997; 1999; Brand, 2004), 

although some have been shown to be altered (Mii and Grossman, 1997).  The observed trend 

toward more negative δ
18

Ocarb values with increasing age has led some to suggest secular change 

in the oxygen isotopic composition of the world oceans (Veizer et al., 1997), but this is still a 

contentious hypothesis (see review by Jaffrés, 2007).  In this study, Eurydesma shell textures are 

largely consistent with those observed in living bivalves (Carter and Stehli, 1980), and samples 
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of umbonal calcite exhibit Mn and Fe concentrations well within the range of modern calcitic 

bivalves and below the typical thresholds for alteration at 300ppm and 1,000ppm, respectively 

(Morrison and Brand, 1986; Brand, 1989).  It is also the case that concentrations of Fe are 

influenced by other factors, as outlined in Morrison and Brand (1986), and moderately elevated 

concentrations may not indicate alteration.  Stable isotope values are clustered in the most 

positive portion of the range of published Permian values (Figure 9), consistent with primary 

values.  Clear seasonal variation associated with growth banding is present in all but one 

specimen, also arguing for the retention of primary compositions (Ivany and Runnegar, 2010).  It 

is therefore unlikely that diagenetic alteration has been significant. 

Figure 9.  Eurydesma δ
18

O and δ
13

C values from this study (black dots) in comparison to 

published Permian bivalve data.  Shaded region encloses Permian (Mii et al., 2012; Korte et al., 

2008) and modern (Brand et al., 2003) brachiopod data.   Our data cluster tightly at the most 

positive end of both axes, whereas progressive diagenetic alteration will shift compositions 

toward more negative values (Lohmann, 1988).   
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Paleotemperatures and Water Composition 

 If shell compositions are primary, they offer the potential to calculate the temperature of 

the Permian ocean off SE Australia so long as a reasonable value for the δ
18

Owater can be 

obtained.  Given that these early Permian bivalves were growing at a time when Gondwana was 

still in part glaciated (Fielding et al. 2008; 2010), we assume that δ
18

Owater was close to the global 

average today of 0‰.  The resulting temperatures, as calculated from the Epstein et al. (1953) 

equation for mollusk calcite revised by Anderson and Arthur (1983), range from 20°C for the 

lowest latitudes and 24°C for the highest latitudes.  Not only do these temperatures suggest 

increasing warmth with latitude, but they are far warmer than that presumed for ikaite formation 

(≤4°C) and stand in stark contrast with associated cold-water indicators such as tillites and 

dropstones in these sections (Frank et al., 2008a,b; Selleck, 2007).  It therefore seems apparent 

that the local δ
18

Owater at these sites was more depleted than 0‰, and that its isotope value likely 

decreased with increasing latitude, so as to yield temperatures consistent with sedimentologic 

indicators and the expected trend toward cooler temperatures with latitude that pervades on Earth 

today. 

 We therefore calculate local seawater isotope compositions using the isotopic 

compositions of shell accreted during winter seasonal extremes and assuming that water 

temperatures were near-freezing at those times (e.g. Ivany and Runnegar, 2010).  Eurydesma 

growth was probably restricted to a consistent minimum growth temperature associated with 

taxon-specific physiological constraints (Schöne et al. 2008); therefore, the winter temperatures 

recorded are likely to be about the same at each locality.  Winter temperature minima in the 

ocean do not generally fall below -2°C because this is the point at which seawater of typical 

marine salinity (~35ppt) freezes.  Modern Arctic bivalves studied by Schöne et al. (2005b) are 
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able to grow down to temperatures of 4°C, and the bivalve Laturnula living off the coast of 

Antarctica grows at temperatures between 0° and 3°C (Sato-Okoshi and Okoshi, 2008).  The 

ikaite precursor to co-occurring glendonites is unstable at temperatures in excess of 4°C 

(Bischoff et al., 1993).  Together, these observations suggest that temperatures recorded by 

Eurydesma during the Permian Australian winter likely were in the range of 0-4°C.   Solving for 

δ
18

Owater using the range of 0 to +4°C and the minimum winter shell compositions yields local 

water compositions ranging from a maximum of -2.4‰ at Bimbadeen at the lowest latitudes 

(assuming a maximum precipitation temperature of 4°C) to a minimum of -5.3‰ for Maria 

Island 1 at the highest (assuming a minimum precipitation temperature of 0°C; Table 2, Figure 

10).  Regardless of temperature, the gradient in seawater isotope values exhibits a slope of -0.16 

per mil per degree latitude with an r
2
 = 0.82 (Figure 11). 

 

Figure 10.  Winter temperatures (0 to 4°C, horizontal lines) used to estimate water isotope 

compositions (dashed lines) using shell isotope values.  The range of average winter shell δ
18

O 

values (in black) span the most positive values  at Bimbadeen and the most negative at Maria 

Island.  Gray circles are individual winter values of shell carbonate from the North Sydney 
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Basin, black squares are from the South Sydney Basin and the triangles are from Maria Island, 

Tasmania (see Table 1).  Local water composition therefore ranged from ~-2.6 in the north when 

assuming maximum precipitation temperatures of 4 °C to ~-5.3‰ in the south if assuming 

minimum precipitation temperatures of 0 °C (solid curves). 

 

   In the modern ocean, high-latitude surface-water compositions are more depleted than the 

global mean due to the influence of progressively more depleted precipitation with increasing 

latitude (Schmidt et al., 1999; Bowen and Wilkinson, 2002; Legrande and Schmidt, 2002).  All 

open-ocean values, however exceed ~ -1.0‰, except where influenced by mixing with the semi-

restricted Arctic Ocean, which receives isotopically depleted fresh water during summer melting 

of polar ice and snow (Ekwurzel et al. 2001).  Inferred Permian local seawater values are 

significantly more negative, and the gradient with latitude is similar to that seen off of the coast 

of Greenland today (Figure 11), suggesting that Greenland might be a good analog for SE 

Australia during the Permian.  The Greenland latitudinal trend in water composition likely 

reflects the mixing of depleted meteoric water with seawater.  Depleted waters could be admixed 

from the Arctic Ocean or derived from more local precipitation and/or glacial meltwater.  If the 

latter, the compositional gradient with latitude could be a coincidence of more 

precipitation/runoff of similar composition to the north, or roughly comparable amounts of 

isotopically more negative water toward the north. This latter hypothesis is supported by 

consistent salinities with latitude, averaging ~33 ppt.  The influx of fresh water cannot be enough 

to cause an appreciable drop in salinity, and hence must be isotopically negative enough to effect 

the change in δ
18

Owater values without impacting paleoecology. Similar phenomena likely gave 

rise to the Permian trend as well.  However, inferred isotope values of Permian seawater are 

~3‰ more negative than the waters off Greenland today, despite similar amounts of change with 

latitude.  Is this offset simply a coincidence of proportionally greater contributions of meltwater 
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to the Permian coastline than Greenland sees today?  Assuming Permian oceans were not unlike 

those today and marine isotope values at ~65°S were roughly -0.5‰, a mixture with a salinity of 

approximately 29-32ppt (roughly 9-17% freshwater) would result from the addition of enough 

fresh water  at -30‰ to yield the inferred water values of -3.0 to -5‰.  If taxa in the Eurydesma 

fauna were tolerant of salinities in this range, then paleoecologic indicators would not be 

sensitive enough to reflect brackish conditions.  Brachiopods, echinoderms, corals, and 

bryozoans, however, are generally thought to be stenohaline organisms. 

Figure 11.  Permian local seawater compositions (calculated assuming a winter minimum of 

4°C) versus paleolatitude (black diamonds), and observed compositions for the Pacific, Atlantic, 

and along the SE coast of Greenland plotted against latitude.  The gradationally-shaded region is 

Permian seawater composition extrapolated from trends in the modern δ
18

O values (gray curves) 

and Permian low-latitude brachiopods.  Modern data from the Global Seawater Oxygen-18 

Database at NASA, http://data.giss.nasa.gov/o18data/.   

 

 The extrapolation shown in Figure 11 is an estimate for low-latitude Permian seawater 

isotopic composition based on the 2
nd

 order polynomials fit to the modern data but adjusted for 

the more negative Permian high latitudes, assuming today’s Greenland and Permian SE Australia 

experience similar amounts of runoff.  This admittedly tenuous extrapolation suggests tropical 



- 22 - 
 

δ
18

Owater values between roughly -1‰ and -3‰.    Published low-latitude δ
18

Ocarb values (Korte 

et al., 2005) combined with the assumption that Permian tropical temperatures were comparable 

to those today (~27° C) are consistent with tropical δ
18

Owater values of around -1‰, at the more 

enriched end of our estimate.  While a tropical seawater value of -1‰ is not far from the global 

mean today and is within the range of values experienced by the ocean during the Cenozoic, the 

tropics tend to be more positive than the global mean due to evaporative enrichment of surface 

waters.  A global mean of -1‰ already requires the absence of measurable glacial ice on the 

planet, and we know that this was not the case during the early Permian.  If indeed -1‰ is more 

positive than the overall mean, and if there was still substantial, if waning (Fielding et al., 2006) 

glacial ice on Gondwana, it is likely that global mean seawater composition was more depleted 

than -1‰.  There is, however, a considerable amount of uncertainty in this estimate, and that 

uncertainty may well encompass seawater values more consistent with constant seawater δ
18

O 

through time.  At present, we are not able to resolve this uncertainty.   

Permian Seasonality 

 Local Permian water compositions calculated using estimated winter minimum 

temperatures allow for an approximation of the seasonal range of temperatures in each specimen, 

so long as local δ
18

Owater is not changing during the year.  Seasonality is greater at lower 

latitudes, with the North Sydney Basin averaging between 11-12°C and the Tasmanian Basin 5-

6°C (Table 2).  Because winter temperatures are assumed to be the same across latitude, the 

decrease in seasonal range with increasing latitude is due to either a drop in summer 

temperatures toward the pole or increased amounts of run-off at the lower latitudes in the 

summer.  This temperature range is similar to that in today’s oceans above ~40°N or S latitude, 

although Permian seasonal ranges are a bit higher than those at similar latitudes today if water 
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compositions are constant year-round (Appendix figure A1).  Because seasonal range at high 

latitudes is controlled by summer water temperatures, these data suggest that Permian summers 

were warmer than those today at similar latitudes, or that increased runoff at the lower latitudes 

makes this appear so.  Given the typical truncation of winter minima and summer maxima 

pointed out by Williams et al. (1982) and addressed by Wilkinson and Ivany (2002) and 

Goodwin et al. (2003), these are likely to be conservative estimates for seasonal range because 

the full winter portion of the seasonal signal may not be represented.  While warmer Permian 

summers could imply that icehouse summers were warmer than that today, warmer summers 

could also result from the influence of a large land mass in the Southern Hemisphere at this time 

(Crowley 1986), so long as portions of the continent were ice-free and so had lower albedo.  The 

presence of plant fossils including large trees in this succession suggests this to be the case (Rees 

et al., 2002).  In addition, we assume here that there is no seasonal change in the composition of 

local seawater, and this may not be the case.  If there were some summer contribution from 

isotopically negative meltwater in the summers, the seasonal range of isotope values would be 

greater, giving the appearance of higher seasonality. 

 

Table 2.  Seasonal temperature range inferred for each region based on estimated water 

compositions and mean winter and summer δ
18

Ocarb values (assuming no change in water 

composition seasonally) 

Region 

Range of water 

compositions 

(‰) 

Mean 

winter δ
18

O 

(‰) 

Mean 

summer δ
18

O 

(‰) 

Temperature 

Range (°C) 

North Sydney Basin -3.9 to -2.6 +0.60 -2.53 11-12 

South Sydney Basin -4.8 to -3.5 -0.32 -2.44 7-8 

Tasmania Basin -5.3 to -4.0 -0.79 -2.44 5-6 
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Conclusion 

 Although numerous authors have attempted to estimate temperatures from biogenic 

calcite in the high-latitudes of the Permian, each has recognized the same difficulty of estimating 

water compositions.  The data presented in this research provide a method by which to better 

estimate water temperatures by constraining the latitudinal variability in water composition, a 

trend similar to that off of the coast of modern-day Greenland.  By sampling individual 

specimens at a high-resolution, it is possible to recover the cyclic variability in δ
18

Ocarb that is 

indicative of seasonal temperature changes.  Without constraints on the maximum and minimum 

compositions within specimens, it would be impossible to constrain winter minimum values that 

are necessary for our approach of estimating isotopic water compositions.  Our results show that 

water compositions in the high-latitudes of SE Australia became as much as 1.4‰ more negative 

over 11° of increasing paleolatitude and 1,100 km of geographic spread.  It may be possible to 

use this latitudinal gradient to better estimate temperatures from previously recovered specimens 

at similar paleolatitudes along SE Australia and even to help resolve the issue of seawater δ
18

O 

for the Permian across all latitudes.  Additional complicating factors such as seasonal run-off 

from highly-depleted meltwater sources must be taken into account as the amount of run-off is 

not likely to be equal year-round.  Improved high-resolution sampling across a wider range of 

Permian paleolatitudes and geographical locations, as well as progress toward independent 

controls on paleotemperatures, may help better constrain Permian Ocean chemistry and climates. 
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Appendix 

Table A1.  Localities arranged by paleolatitude. 

Locality Paleolatitude Formation Age Lithology Fossils Present 

Tangorin Core 

and Cranky 

Corner 

64°S Cranky Corner 

Sandstone 

Middle-Late 

Sakmarian 

massive green 

medium-fine 

grained sandstone 

Deltopecten, Megadesmus, 

Schizodus, Trigonotreta, 

Ingelarella, Suliciplica, 

Hyolithes 

Bimbadeen 64°S Millfield Farm 

Formation (equivalent 

of the Allandale Fm) 

Middle-Late 

Sakmarian 

volcanogenic 

sands 

Deltopecten, spiriferid 

brachiopods, bryozoans, 

crinoids, gastropods 

Allandale RR 

Track 

64°S Allandale Formation Middle-Late 

Sakmarian 

conglomerate 

lithic sandstone 

Deltopecten, Megadesmus,  

Pyramus, Australomya, 

Schizodus,  spiriferid 

brachiopods, bryozoans, 

crinoids, gastropods 

Wasp Head 68°S Wasp Head 

Formation 

Middle-Late 

Sakmarian 

fine-medium 

grained sandstones 

and breccias 

Deltopecten, Megadesmus,  

Pyramus, Australomya, 

Schizodus, Ingelarella, 

Trigonotreta, Pseudosyrinx, 

Warthia 

North Head, 

Ulladulla 

69°S Wandrawandian 

Siltstone 

Kungurian Fine-grained 

quartz-lithic silty 

sandstone and 

siltstone 

Myonia, productid and 

spiriferid brachiopods, 

Thamnopora(tabulate coral), 

crinoids and bryozoans 

Maria Island 73°S Darlington Limestone Late Sakmarian limestone with 

numerous layers of 

dropstones 

Deltopecten, spiriferid 

brachiopods, numerous 

bryozoan types 

Derwent River 75°S Bundella Mudstone Sakmarian pebbly marine 

mudstone 

Deltopecten, spiriferid 

brachiopods, rugose corals, 

crinoids 

 

Australian Government, Geoscience Australia (http://dbforms.ga.gov.au/pls/www/geodx.strat_units.int) correspondence with Bruce Runnegar 
and Dan Petrizzo as well as; Runnegar, 1979, 1980b; McClung, 1980a; Ivany and Runnegar, 2010; Rygel et al., 2008; Fielding et al., 2006.   
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Table A2.  Geochemical analyses 

Locality Basin Sample Location Mn 

ppm 

Sr 

ppm 

Mg 

ppm 

Fe 

ppm 

Allandale NSB Outer Region 3 403 1053 <5 

Allandale NSB Central Region (sampling area) 2 372 969 <5 

Allandale NSB Inner Region 3 378 1101 <5 

Allandale NSB Outer Region 8 350 1048 <5 

Allandale NSB Central Region (sampling area) 3 421 1332 <5 

Allandale NSB Inner Region 2 454 1160 <5 

Bimbadeen NSB Outer Region 54 406 1451 <5 

Bimbadeen NSB Central Region (sampling area) 20 424 1280 <5 

Bimbadeen NSB Inner Region 30 366 1087 <5 

Bimbadeen NSB Outer Region 10 437 1189 <5 

Bimbadeen NSB Central Region (sampling area) 11 513 1363 <5 

Bimbadeen NSB Inner Region 8 413 1147 <5 

Cranky Corner NSB Outer Region 12 479 1293 <5 

Cranky Corner NSB Central Region (sampling area) 12 591 1670 54 

Cranky Corner NSB Inner Region 36 479 1635 242 

Cranky Corner NSB Outer Region 42 389 1259 <5 

Cranky Corner NSB Inner Region 24 417 1287 74 

Tangorin SSB Outer Region 6 364 1166 237 

Tangorin SSB Central Region (sampling area) 5 455 1429 284 

Tangorin SSB Inner Region 53 584 2088 345 

North Head SSB Central Region (sampling area) 27 492 2042 <5 

North Head SSB Inner Region(near microborings) 403 574 1833 970 

Wasp Head SSB In "exterior texture" 4 490 1379 <5 

Wasp Head SSB In "central" texture (towards central region) 5 520 1469 266 

Wasp Head SSB in crack (inner portion) crack 1 170 453 1380 96 

Wasp Head SSB adjacent to crack 1 6 340 1254 <5 

Wasp Head SSB in crack (near edge) crack 2 17 455 1568 <5 

Wasp Head SSB adjacent to crack 2 11 514 1879 <5 

Wasp Head SSB Central Region (sampling area) 4 395 1248 <5 

Maria Island TS In "exterior texture" 3 513 1482 245 

Maria Island TS In "central" texture (sampled areas) 2 500 1300 188 

Maria Island TS Potential cement? 434 1681 1434 7027 

Maria Island TS Potential cement? 420 806 1543 4634 

Maria Island TS Outer Region 5 517 1327 <5 

Maria Island TS Central Region (sampling area) 1 371 1022 <5 

Maria Island TS Inner Region 4 465 1600 <5 

Maria Island TS In crack towards edge 93 938 1893 1712 

Maria Island TS adjacent to crack 10 498 1301 223 
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Locality, sedimentary basin, sample ID, location of the sample within the specimen, and the 

corresponding values for Mn, Sr, Mg, and Fe (all in ppm).  ‘Central Region (sampling area)’ 

denotes the region of the shell that was microsampled for stable isotopes.  ‘Outer Region’ 

denotes a region of the shell near the exterior, ‘Inner Region’ is the region of the shell closest to 

the body cavity.  Several other samples were taken within cracks and adjacent to the sampled 

cracks, and in regions that contained microborings.  In addition to these, a transect was taken 

across one shell from Maria Island (MIs2A) from the exterior of the shell towards the interior to 

investigate the possibility of a trend with distance from the matrix. 

  

Maria Island TS Transect (outer-most sample) 7 535 1285 62 

Maria Island TS Transect 6 552 1330 135 

Maria Island TS Transect 5 566 1363 259 

Maria Island TS Transect 5 566 1323 171 

Maria Island TS Transect 6 538 1462 256 

Maria Island TS Transect 5 567 1431 400 

Maria Island TS Transect 6 590 1546 309 

Maria Island TS Transect 6 570 1571 391 

Maria Island TS Transect 4 568 1565 299 

Maria Island TS Transect 3 569 1578 322 

Maria Island TS Transect 5 562 1694 377 

Maria Island TS Transect (inner-most sample) 8 610 1934 432 

Derwent River SSB Outer Region 63 421 1227 <5 

Derwent River SSB Central Region (sampling area) 20 361 1011 <5 

Derwent River SSB Inner Region 18 327 1186 <5 

Derwent River TS Central Region (sampling area) 15 549 1697 403 
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Table A3. Stable isotope values of micromilled specimens, distances along the milled trajectory 

for each sample, and positions of growth bands. 

Basin distance (mm) Specimen δ
18

Ocarb δ
13

Ccarb Growth bands 

NSB 0.000 ARR1C 0.54 6.07 y 

 

0.407 ARR1C -1.29 5.96 

 

 

0.815 ARR1C -2.06 6.49 

 

 

1.222 ARR1C -2.74 6.89 

 

 

1.629 ARR1C -3.67 6.61 

 

 

2.037 ARR1C -2.34 5.92 

 

 

2.572 ARR1C 0.15 6.01 y 

 

3.334 ARR1C -0.87 6.07 

 

 

3.838 ARR1C -1.78 5.96 

 

 

4.342 ARR1C -2.06 6.23 

 

 

4.845 ARR1C -1.78 6.41 

 

 

5.349 ARR1C -1.67 6.32 

 

 

5.853 ARR1C 0.65 6.27 

 

 

6.104 ARR1C 0.05 6.11 y 

 

7.042 ARR1C -1.90 5.99 

 

 

8.150 ARR1C -2.70 6.57 

 

 

8.572 ARR1C -2.73 6.84 

 

 

8.994 ARR1C -3.48 6.64 

 

 

9.767 ARR1C -0.50 6.90 

 

 

10.179 ARR1C 0.63 6.43 

 

 

10.454 ARR1C -1.42 6.40 y 

 

11.128 ARR1C -1.91 6.46 

 

 

11.830 ARR1C -2.20 6.38 
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12.339 ARR1C -1.33 6.30 

 

 

13.013 ARR1C -1.43 6.28 

 

 

13.745 ARR1C 0.35 6.28 

 

 

14.218 ARR1C 0.05 6.13 y 

NSB 0.000 Bimbadeen -1.44 5.59 

 

 

0.223 Bimbadeen -1.80 5.56 

 

 

0.446 Bimbadeen -1.83 5.47 

 

 

0.669 Bimbadeen -1.72 5.63 

 

 

0.892 Bimbadeen -1.85 5.76 

 

 

1.115 Bimbadeen -1.96 5.72 

 

 

1.338 Bimbadeen -1.80 5.83 

 

 

1.561 Bimbadeen -1.12 6.10 

 

 

1.784 Bimbadeen -0.06 6.14 

 

 

2.007 Bimbadeen 0.58 6.11 

 

 

2.231 Bimbadeen 1.11 5.68 y 

 

2.454 Bimbadeen 0.98 5.53 

 

 

2.677 Bimbadeen 0.14 5.38 

 

 

2.900 Bimbadeen -0.22 5.50 

 

 

3.123 Bimbadeen -1.22 5.60 

 

 

3.346 Bimbadeen -1.59 5.57 

 

 

3.569 Bimbadeen -2.28 5.60 

 

 

3.792 Bimbadeen -1.64 5.69 

 

 

4.015 Bimbadeen -2.43 5.45 

 

 

4.238 Bimbadeen -1.83 5.70 

 

 

4.461 Bimbadeen -1.63 5.83 

 

 

4.684 Bimbadeen -1.49 5.92 

 

 

4.907 Bimbadeen -0.52 6.21 
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5.130 Bimbadeen 0.24 6.18 

 

 

5.353 Bimbadeen 0.74 5.80 y 

 

5.576 Bimbadeen 0.36 5.80 

 

 

5.859 Bimbadeen -0.73 5.75 

 

 

6.089 Bimbadeen -1.46 5.97 

 

 

6.320 Bimbadeen -1.34 5.77 

 

 

6.551 Bimbadeen -2.11 5.84 

 

 

6.782 Bimbadeen -1.79 6.04 

 

 

7.013 Bimbadeen -1.62 6.02 

 

 

7.243 Bimbadeen -2.32 6.05 

 

 

7.474 Bimbadeen -2.61 5.64 

 

 

7.705 Bimbadeen -2.11 5.94 

 

 

7.936 Bimbadeen -0.87 6.15 

 

 

8.166 Bimbadeen 0.25 6.10 

 

 

8.397 Bimbadeen 0.81 5.76 y 

 

8.628 Bimbadeen -0.02 5.71 

 

 

8.859 Bimbadeen -0.65 5.73 

 

 

9.090 Bimbadeen -1.61 5.99 

 

 

9.320 Bimbadeen -1.87 5.96 

 

 

9.551 Bimbadeen -1.97 6.03 

 

 

9.782 Bimbadeen -2.90 6.14 

 

 

10.013 Bimbadeen -2.73 5.93 

 

 

10.243 Bimbadeen -2.73 5.84 

 

 

10.474 Bimbadeen -2.57 5.93 

 

 

10.705 Bimbadeen -1.30 6.05 

 

 

10.936 Bimbadeen 0.40 6.01 

 

 

11.167 Bimbadeen 0.91 5.96 y 
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11.635 Bimbadeen -0.96 5.57 

 

 

11.883 Bimbadeen -0.51 5.53 

 

 

12.131 Bimbadeen -1.14 5.52 

 

 

12.379 Bimbadeen -0.63 5.42 

 

 

12.628 Bimbadeen -1.48 5.64 

 

 

12.876 Bimbadeen -1.26 5.92 

 

 

13.124 Bimbadeen 0.37 6.27 

 

 

13.372 Bimbadeen 1.02 5.94 y 

 

13.621 Bimbadeen 0.59 5.39 

 

 

13.869 Bimbadeen -0.53 5.53 

 

 

14.117 Bimbadeen -0.50 5.58 

 

 

14.366 Bimbadeen -0.97 5.40 

 

 

14.614 Bimbadeen -1.65 5.72 

 

 

14.862 Bimbadeen -2.01 5.91 

 

 

15.110 Bimbadeen -2.58 6.06 

 

 

15.359 Bimbadeen -1.59 6.32 

 

 

15.607 Bimbadeen 0.32 6.56 

 

 

15.855 Bimbadeen 1.03 6.15 y 

 

16.103 Bimbadeen 0.93 5.70 

 

 

16.352 Bimbadeen -0.18 5.64 

 

NSB 0.000 Tangorin -1.55 4.52 y 

 

0.246 Tangorin 0.87 4.82 

 

 

0.491 Tangorin 0.63 5.06 

 

 

0.864 Tangorin -0.66 4.38 

 

 

1.135 Tangorin -1.02 3.82 

 

 

1.688 Tangorin -1.62 3.63 y 

 

1.988 Tangorin -0.42 4.35 
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2.159 Tangorin 0.73 4.62 

 

 

2.331 Tangorin 0.07 4.42 

 

 

2.502 Tangorin -0.53 4.30 

 

 

2.674 Tangorin -0.91 3.88 

 

 

2.845 Tangorin -1.10 3.55 

 

 

3.016 Tangorin -0.50 3.88 

 

 

3.543 Tangorin 0.26 4.15 

 

 

4.172 Tangorin -0.05 3.92 y 

 

4.293 Tangorin -0.38 3.85 

 

 

4.415 Tangorin -0.64 3.78 

 

 

4.536 Tangorin -0.40 4.08 

 

 

4.829 Tangorin -0.26 3.98 

 

 

5.122 Tangorin -0.11 3.99 

 

 

5.415 Tangorin -0.82 3.78 

 

 

5.708 Tangorin -1.03 3.61 

 

 

6.001 Tangorin -0.61 3.81 

 

 

6.959 Tangorin 0.17 4.18 y 

 

7.781 Tangorin 0.24 3.99 

 

 

7.945 Tangorin -0.57 3.79 

 

 

8.110 Tangorin -1.22 3.51 

 

 

8.275 Tangorin -1.52 3.43 

 

 

8.439 Tangorin -1.25 3.63 

 

 

8.604 Tangorin -0.14 4.09 y 

NSB 0.000 CC1D -1.19 4.82 

 

 

0.365 CC1D 0.80 5.01 y 

 

0.865 CC1D -0.01 4.70 

 

 

1.056 CC1D -0.64 4.84 
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1.422 CC1D -0.73 4.94 

 

 

1.610 CC1D -1.20 4.90 

 

 

1.797 CC1D -1.33 4.87 

 

 

1.984 CC1D -1.08 5.08 

 

 

2.503 CC1D -0.90 5.22 

 

 

2.681 CC1D 0.91 5.13 y 

 

2.859 CC1D 0.13 4.42 

 

 

3.037 CC1D -0.79 4.53 

 

 

3.215 CC1D -0.89 4.58 

 

 

3.393 CC1D -1.14 4.79 

 

 

3.571 CC1D -1.17 4.98 

 

 

3.749 CC1D -1.07 5.21 y 

 

3.887 CC1D 0.49 4.58 

 

 

4.025 CC1D -0.27 4.45 

 

 

4.163 CC1D -0.72 4.43 

 

 

4.301 CC1D -1.28 4.59 

 

 

4.438 CC1D -1.39 4.66 

 

 

4.576 CC1D -1.27 4.73 

 

 

4.714 CC1D -1.38 4.79 y 

 

4.848 CC1D 0.08 4.65 

 

 

4.981 CC1D 0.04 4.18 

 

 

5.115 CC1D -0.62 4.16 

 

 

5.248 CC1D -0.89 4.41 

 

 

5.382 CC1D -0.78 4.50 

 

 

5.515 CC1D -0.44 4.84 

 

 

5.649 CC1D 0.61 5.13 y 

 

5.787 CC1D 0.95 4.43 
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5.926 CC1D -0.26 3.93 

 

 

6.065 CC1D -0.64 4.18 

 

 

6.203 CC1D -0.89 4.42 

 

 

6.342 CC1D -0.96 4.55 

 

 

6.481 CC1D -1.40 4.42 

 

 

6.619 CC1D -1.59 4.36 y 

SSB 0.000 WH1A 0.81 4.85 y 

 

0.292 WH1A -0.28 4.50 

 

 

0.712 WH1A 0.20 4.70 

 

 

1.371 WH1A -1.31 4.89 

 

 

1.663 WH1A -1.40 4.53 

 

 

1.956 WH1A -1.95 4.87 

 

 

2.592 WH1A -1.33 4.84 

 

 

2.897 WH1A -1.75 4.71 

 

 

3.250 WH1A -0.63 5.20 y 

 

3.521 WH1A 0.19 4.61 

 

 

3.792 WH1A -0.63 4.97 

 

 

4.062 WH1A -0.68 4.85 

 

 

4.333 WH1A -1.49 4.99 

 

 

4.604 WH1A -2.20 4.85 

 

 

4.874 WH1A -2.15 5.08 

 

 

5.145 WH1A -1.72 5.22 y 

 

5.823 WH1A -0.24 4.88 

 

 

6.326 WH1A -0.67 5.16 

 

 

6.631 WH1A -1.28 5.07 

 

 

6.936 WH1A -1.30 5.09 

 

 

7.352 WH1A -0.15 5.09 
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8.037 WH1A -1.95 5.26 

 

 

8.342 WH1A -1.36 5.08 y 

 

8.588 WH1A -2.39 4.75 

 

 

9.258 WH1A -0.62 4.94 

 

 

9.877 WH1A -0.12 4.74 

 

 

10.123 WH1A 0.55 4.68 

 

 

10.369 WH1A -0.74 5.29 

 

 

10.615 WH1A -3.82 4.33 

 

 

11.103 WH1A -2.67 5.18 y 

SSB 0.000 NH1C -1.22 4.96 y 

 

0.284 NH1C -1.14 5.40 

 

 

0.568 NH1C -2.21 4.58 

 

 

1.021 NH1C -1.69 4.89 

 

 

1.300 NH1C -1.92 4.81 

 

 

1.579 NH1C -1.89 5.11 

 

 

2.179 NH1C -3.06 4.59 y 

 

2.463 NH1C -2.34 5.04 

 

 

2.757 NH1C -2.35 5.08 

 

 

3.051 NH1C -2.28 5.02 

 

 

4.522 NH1C -0.68 5.62 y 

 

4.872 NH1C -1.30 5.31 

 

 

5.468 NH1C -0.77 5.21 y 

 

5.822 NH1C -1.41 4.86 

 

 

6.175 NH1C -2.59 4.61 

 

 

6.528 NH1C -1.82 5.16 

 

 

6.881 NH1C -2.08 5.08 

 

 

7.742 NH1C -1.97 5.04 
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8.092 NH1C -1.58 5.00 

 

 

9.325 NH1C -0.89 5.35 y 

TS 0.000 MIsA -1.51 5.64 y 

 

0.238 MIsA -1.48 5.83 

 

 

0.504 MIsA -2.61 5.60 

 

 

0.769 MIsA -2.89 5.60 

 

 

1.034 MIsA -3.08 5.25 

 

 

1.299 MIsA -2.67 5.33 

 

 

1.565 MIsA -2.22 5.15 

 

 

1.830 MIsA -1.44 5.33 

 

 

2.267 MIsA -1.14 5.56 y 

 

2.542 MIsA -1.60 5.42 

 

 

2.817 MIsA -2.63 5.18 

 

 

3.093 MIsA -2.48 5.22 

 

 

3.368 MIsA -2.32 5.11 

 

 

3.643 MIsA -1.97 4.88 

 

 

3.919 MIsA -1.71 4.95 y 

 

4.749 MIsA -0.89 5.44 

 

 

5.488 MIsA -1.06 5.58 

 

 

5.780 MIsA -2.28 5.04 

 

 

6.288 MIsA -2.15 5.09 

 

 

6.994 MIsA -2.43 4.89 

 

 

7.286 MIsA -2.55 4.75 

 

 

7.792 MIsA -1.67 4.94 

 

 

8.330 MIsA -0.57 5.12 y 

 

8.628 MIsA -1.02 5.19 

 

 

9.101 MIsA -2.02 5.18 

 



- 37 - 
 

 

9.407 MIsA -2.49 5.19 

 

 

10.163 MIsA -2.21 5.30 

 

 

10.655 MIsA -2.32 5.38 

 

 

10.961 MIsA -1.68 4.76 

 

 

11.268 MIsA -1.03 4.63 

 

 

12.052 MIsA -0.82 5.13 y 

 

12.346 MIsA -0.97 4.98 

 

 

12.914 MIsA -1.58 4.72 

 

 

13.222 MIsA -2.47 4.74 

 

 

13.529 MIsA -2.14 4.68 

 

 

13.836 MIsA -0.80 4.45 y 

TS 0.000 MIs2B -1.05 4.77 y 

 

0.345 MIs2B -0.98 4.62 

 

 

0.689 MIs2B -2.15 4.98 

 

 

1.034 MIs2B -2.39 5.06 

 

 

1.379 MIs2B -2.33 4.82 

 

 

1.723 MIs2B -2.26 4.74 

 

 

2.068 MIs2B -1.95 4.69 

 

 

2.413 MIs2B -0.84 5.21 y 

 

2.717 MIs2B -0.57 4.86 

 

 

3.020 MIs2B -1.56 4.93 

 

 

3.324 MIs2B -1.64 5.07 

 

 

3.628 MIs2B -2.05 4.79 

 

 

3.932 MIs2B -2.24 4.53 

 

 

4.235 MIs2B -1.58 4.73 

 

 

4.539 MIs2B -0.46 5.12 y 

 

4.822 MIs2B -1.92 5.12 
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5.104 MIs2B -2.11 4.95 

 

 

5.387 MIs2B -2.02 4.80 

 

 

5.669 MIs2B -2.06 4.77 

 

 

5.952 MIs2B -1.71 4.64 

 

 

6.234 MIs2B -0.69 5.06 

 

 

6.547 MIs2B -0.95 4.65 y 

 

6.859 MIs2B -1.96 4.99 

 

 

7.171 MIs2B -2.17 5.10 

 

 

7.483 MIs2B -2.52 4.93 

 

 

7.796 MIs2B -2.19 4.68 

 

 

8.108 MIs2B -1.55 4.77 

 

 

8.420 MIs2B -0.12 4.79 y 

 

8.703 MIs2B -0.95 4.68 

 

 

8.986 MIs2B -1.67 4.70 

 

 

9.269 MIs2B -2.23 4.59 

 

 

9.552 MIs2B -1.70 4.56 

 

 

9.834 MIs2B -0.65 4.94 y 

 

10.117 MIs2B -1.07 4.75 

 

TS 0.000 DR1B -4.00 4.75 y 

 

0.428 DR1B -4.10 5.00 

 

 

0.856 DR1B -4.25 5.03 

 

 

1.383 DR1B -4.28 4.99 

 

 

1.796 DR1B -4.15 5.08 

 

 

2.210 DR1B -5.09 4.58 

 

 

2.624 DR1B -4.69 4.36 

 

 

3.158 DR1B -3.29 4.75 y 

 

3.558 DR1B -3.07 4.87 
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3.813 DR1B -4.09 4.83 

 

 

4.323 DR1B -3.56 5.12 

 

 

4.750 DR1B -4.05 5.08 y     

 5.797 DR1B -3.61 4.68      

 6.225 DR1B -3.83 4.48      

 6.566 DR1B -3.14 4.77 y     

 7.750 DR1B -3.45 4.94      

 8.192 DR1B -2.99 4.92      

 8.976 DR1B -2.90 4.79      

 9.474 DR1B -3.61 4.77      

 10.354 DR1B -4.01 5.01 y     
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Figure A1) Plot of the seasonal range of temperatures from the Northern and Southern 

Hemispheres for the modern Atlantic Ocean.  The range of SST is computed from the difference 

between average SST for the months of January and August, from August 2008 to January 2012.  

Maximum seasonality is achieved at the mid-latitudes in both the northern and southern 

hemispheres of the Atlantic Ocean, with seasonality decreasing in both directions away from the 

mid-latitudes.  Data downloaded from the NASA Earth Observations Website at 

http://neo.sci.gsfc.nasa.gov/Search.html?group=10.   
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